
Symmetric and Dual PRFs from Standard

Assumptions: A Generic Validation of an HMAC

Assumption

Mihir Bellare1 Anna Lysyanskaya2

December 2015

Abstract

The security of HMAC is proven under the assumption that its compression function is a
dual PRF, meaning a PRF when keyed by either of its two inputs. But, not only do we not
know whether particular compression functions really are dual PRFs, we do not know if dual
PRFs even exist. What if the goal is impossible? This paper addresses this with a foundational
treatment of dual PRFs, giving constructions based on standard assumptions. This provides
what we call a generic validation of the dual PRF assumption for HMAC. Our approach is to
introduce and construct symmetric PRFs, which imply dual PRFs and may be of independent
interest. We give a general construction of a symmetric PRF based on a function having a weak
form of collision resistance coupled with a leakage hardcore function, a strengthening of the
usual notion of hardcore functions we introduce. We instantiate this general construction in two
ways to obtain a symmetric and dual PRF assuming (1) Any collision-resistant hash function,
or (2) Any one-way permutation. A construction based on any one-way function evades us and
is left as an intriguing open problem.
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1 Introduction

The PRF security of HMAC is proven under the assumption that its compression function is a dual
PRF. But, not only do we not know whether particular compression functions really are dual PRFs,
we do not know if dual PRFs even exist. What if the goal is impossible? We address this with a
foundational treatment of dual PRFs, giving constructions based on standard assumptions. This is
the first theoretical evidence that dual PRFs exist, and provides what we call a generic validation of
the dual PRF assumption for HMAC. Tools that we introduce and use for our construction include
leakage hardcore functions and symmetric PRFs.

PRFs. Let F : F.Keys× F.Inp→ F.Out be a function family taking a key fk ∈ F.Keys and an input
x ∈ F.Inp to (deterministically) return the output y = F(fk, x) ∈ F.Out. We recall that F is a
PRF [12] if an efficient adversary has negligible advantage in distinguishing whether its oracle is
F(fk, ·) or a random function, where fk is chosen at random from F.Keys. This well-known notion
has seen an enormous number of applications in both theoretical and applied cryptography.

Dual PRFs. Let S : S0×S1 → S.Out be a function family. Let Sswap : S1×S0 → S.Out be defined
by Sswap(a0, a1) = S(a1, a0). That is, the key for Sswap is the input for S and the input for Sswap is
the key for S. Both S and Sswap are legitimate function families and we can ask if they are PRFs.
We say that S is a dual PRF [3] if both S and Sswap are PRFs. That is (1) an oracle for S(a0, ·) is
indistinguishable from an oracle for a random function when a0 is chosen at random and, separately
but also, (2) an oracle for S(·, a1) is indistinguishable from an oracle for a random function when
a1 is chosen at random. The question we consider in this paper is, do dual PRFs exist, and, if so,
under what assumptions?

Context. Dual PRFs were introduced in [3] in order to prove security of HMAC. HMAC [4] is
a cryptographic hash function based PRF implemented in TLS, SSL and many other places and
used billions of times a day. The underlying primitive is the compression function h of the hash
function. NMAC is obtained by iterating h and is proven PRF-secure assuming h is a PRF [3, 11].
HMAC is obtained from NMAC by putting the key directly in the input of the hash function H,
which results in a swapping of roles: the first iteration of the compression function has the key as
the second argument, while successive ones are keying h via its usual first argument. The PRF
security of HMAC as proven in [3] thus relies on the assumption that the compression function h
is a dual PRF.

Generic validation. The assumption that h is a dual PRF could fail for two reasons. One is
generic, namely that nothing can be a dual PRF. Dual PRFs may simply not exist. The second
reason is specific, namely that, although some functions may be dual PRFs, the particular h used
in some particular hash function isn’t.

Generic failure can be ruled out by showing that the security goal is achievable under standard
assumptions. We call this generic validation. It has value because generic failure is not an idle fear.
It has happened for several (attractive) goals, for example virtual blackbox obfuscation [13, 2] and
commitment secure against selective opening [6] to name just a few.

Generic validation won’t show that a particular candidate practical construct satisfies the as-
sumption. This needs dedicated validation, which is ultimately cryptanalysis. But generic validation
is the first step. In its absence, the goal may be just wishful thinking, and the candidate construct
doomed. In its presence, the candidate is at least in principle plausible, and successful dedicated
validation is a possibility. Generic validation is thus desirable for the security goal underlying any
new assumption.

For (standard) PRFs, we have strong generic validation: classical foundational results say that
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PRFs exist assuming only that one-way functions exist. (OWFs imply PRGs [15] which imply
PRFs [12].) We also have constructions from many particular assumptions [18, 17, 1]. Dual PRFs,
in contrast, have at this point no generic validation. Despite their having been introduced ten
years ago [3], and despite their use as an assumption in supporting the security of the widely-used
HMAC [3], there has been no construction under any (standard or not) assumption. This is the
gap we fill.

Symmetric PRFs. Our approach to construct dual PRFs is based on the notion we introduce of
a symmetric PRF. Let S : S × S → S.Out be a function family whose keyspace and input space are
the same set, call it S. We say that S is symmetric if S(a0, a1) = S(a1, a0) for all a0, a1 ∈ S. That
is, S is unchanged if the order of its inputs is swapped. Then we make the following observation.
Suppose S is (1) A PRF, and (2) is symmetric. Then it is a dual PRF. This is easy to see because
the symmetry implies that Sswap = S, namely Sswap is in fact identical to S. So its PRF security
follows directly from the fact that S is a PRF. We will construct symmetric PRFs. First let us step
back to ask whether existing PRFs happen to be either dual or symmetric.

Negative results. One’s first thought may be that every PRF S is also a dual PRF. It is easy
to see that this is not true. For example suppose S : {0, 1}k × {0, 1}k → {0, 1}k is a PRF with the
property that S(0k, a) = a for all a. This will not contradict PRF security of S because 0k has
negligible probability of being chosen as the key in the PRF game. However Sswap is clearly not a
PRF because Sswap(a, 0k) = S(0k, a) = a so an adversary can query its oracle at 0k and it will get
back the key a, using it which it can easily violate PRF security.

Thus we need special constructions. The next natural question is whether known constructions
of PRFs are dual PRFs. But they are not. For example, take the classic GGM construction [12]
of a PRF from a PRG. We show in Section 3 that there is a choice of the PRG under which the
constructed PRF is not a dual PRF. Or take the Naor-Reingold PRF. We give in Section 3 a
direct attack violating dual PRF security. The Dodis-Yampolskiy PRF [10] is promising because
the formula adds the key and input, thereby seeming to give them symmetric roles, but security
requires that the input comes from a much smaller space than the key, and this precludes being a
symmetric PRF as per our definition. See Section 3 for more information.

SPRF. In Section 5 we give a general construction of a symmetric (hence dual) PRF S. Roughly
the idea is to let R be a PRF with range {0, 1}k and let S : D ×D → {0, 1}k be defined via

S(a0, a1) = R(r0, z1)⊕R(r1, z0) (1)

where ri = E(ai) and zi = H(ai) for certain functions E,H and i ∈ {0, 1}, and D is some
appropriate domain. Thus r0, z0 depend on the input a0 while r1, z1 depend on the input a1, and
only in the application of R are the inputs “mixed.” Two applications of R are used, the key being
an r-value and the input the opposing z-value. Note that the use of this high-level structure with
the xor already guarantees that S is symmetric, regardless of the choices of E,H.

Now we need to find choices of E,H under which S is a PRF. Intuitively, a difficulty in using
the PRF security of R is that the construction does not use a key for R in a blackbox way. If we
think of r0 as the key, then z0 is related information that is needed to simulate an attacker against
S.

Very roughly, we want E to extract hardcore bits, and we want H to provide some kind of
collision resistance. In the proof that S is a PRF we would first use the security of E to move to a
game in which r0 is random. Then we would use the PRF security of R to replace R(r0, ·) with a
random function R. Finally we would use the security of H to say that the z1 values do not repeat,
which means in each xor the first component, and hence the whole, is random.
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However getting this to work requires some care. We strive to make the conditions on E,H as
weak and general as possible so as to allow the maximum flexibility in instantiation and the ability
to instantiate under assumptions as weak as possible. In this spirit one choice we make is to allow
both E and H to be keyed. Both the key and the input would be derived from the single input ai
above. Now the main difficulty is that no standard notion of hardcore function security suffices for
E. Instead we introduce the notion of a leakage hardcore function for H. Roughly —the formal
definition is in Section 4— this means that E with a target key applied to a hidden x0 continues
to look random even given an oracle that can get the results of H at x0 under other, different keys
of its choice. For H we choose as weak a notion of collision resistance as possible. We show that
its being computationally almost universal (cau) [3] suffices. See Section 5 for the full construction
and Theorem 5.2 for the formal claim and proof of PRF security.

Instantiations. To obtain constructions of symmetric (and hence dual) PRFs under specific,
standard assumptions, we instantiate the primitives in our general SPRF construction under the
assumption in question. In Section 6 we give two corresponding results, one under one-way per-
mutations (OWPs) and the other under collision-resistant (CR) hash functions, meaning either of
these assumptions now yield symmetric and dual PRFs. The OWP instantiation uses the Blum-
Micali-Yao (BMY) PRG [8, 21] to instantiate the leakage hardcore function E and an iterated
OWP to instantiate H. The CR hash function instantiation uses the latter to instantiate H and
uses a strong randomness extractor to instantiate E.

Discussion and open questions. The main open question that evades us is a construction of
a symmetric and dual PRF from any one-way function (OWF). The first question is whether one
can instantiate our SPRF construction under a OWF. If not, the next question is whether there is
some other, different construction.

We note that while our result about SPRF has striven to make as general and weak-as-possible
assumptions on the component E,H functions, we have not, in our instantiations, found a way to
take full advantage of this. The only way we have found to get a leakage hardcore function E for
H is to make H keyless, in which case Lemma 4.1 says that a standard hardcore function suffices.
Non-trivial constructions of leakage hardcore functions for H that is cau are thus a direction via
which one might make progress.

2 Basic definitions

Our treatment is concrete rather than asymptotic. For any security goal for a primitive, for example
prf security of a function family, we define an advantage metric, in this case the prf advantage of an
adversary against the function family, which is a number. There is no explicit security parameter.
For a function family to be a PRF means, informally, that “efficient” adversaries have “negligible”
prf advantage. Theorems are made formal by giving the concrete security of reductions. Discussion
surrounding theorems will clarify what they mean qualitatively. The concrete treatment makes
notation somewhat simpler, allows us to see the quantitative security of reductions, and is more in
keeping with the motivating setting of HMAC, where there are no asymptotics.

Notation and conventions. We let ε denote the empty string. If y is a string then |y| denotes
its length and y[i] denotes its i-th coordinate for 1 ≤ i ≤ |y|. If X is a finite set, we let x←$ X
denote picking an element of X uniformly at random and assigning it to x. Algorithms may be
randomized unless otherwise indicated. Running time is worst case. If A is an algorithm, we let
y ← A(x1, . . . ; r) denote running A with random coins r on inputs x1, . . . and assigning the output
to y. We let y←$ A(x1, . . .) be the result of picking r at random and letting y ← A(x1, . . . ; r). We
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Game Gprf
F (A)

fk←$ F.Keys

c←$ {0, 1}; c′←$AFn

Return (c = c′)

Fn(x)

If T [x] = ⊥ then

If (c = 1) then

T [x]← F(fk, x)

Else T [x]←$ F.Out

Return T [x]

Game Gow
F (A)

fk←$ F.Keys

x←$ F.Inp ; y ← F(fk, x)

x′←$A(fk, y)

Return (F(fk, x′) = y)

Game Gcau
H (A)

(x0, x1)←$A
hk←$ H.Keys

If (x0 = x1) then return false

Return (H(hk, x0) = H(hk, x1))

Game Gcr
H (A)

hk←$ H.Keys

(x0, x1)←$A(hk)

If (x0 = x1) then return false

Return (H(hk, x0) = H(hk, x1))

Figure 1: Games for defining PRF and OWF security of a function family F, cau security
of a function family H and HC being a hardcore function family for H.

let [A(x1, . . .)] denote the set of all possible outputs of A when invoked with inputs x1, . . .. We use
the code based game playing framework of [7]. (See Fig. ?? for an example.) By Pr[G] we denote
the event that the execution of game G results in the game returning true. We adopt the convention
that the running time of an adversary refers to the worst-case execution time of the game with
the adversary, so that the time for the execution of oracles to compute replies to oracle queries is
included. This means that usually in reductions, adversary running time is roughly maintained.

Function families. A function family F : F.Keys×F.Inp→ F.Out is a 2-argument function taking
a key fk in the keyspace F.Keys and an input x in the input space F.Inp to return an output F(fk, x)
in the output space F.Out. For fk ∈ F.Keys we let Ffk : F.Inp→ F.Out be defined by Ffk(x) = F(fk, x)
for all x ∈ F.Inp. We say that F is a permutation family if F.Inp = F.Out and Ffk is a permutation
for every fk ∈ F.Keys. We say that F is keyless if F.Keys = {ε} consists only of the empty string. (It
is tempting in this case to just drop the key in the notation but it makes it harder to pattern-match
with the definitions and so, somewhat pedantically, we tend to explicitly write ε as the key when
dealing with keyless families.) The reason to consider such families is that some notions of security,
such as one-wayness, hold just as well for them. (For others, like prf-security, keying is crucial.)

Pseudo-random functions. The security of function family F as a PRF is defined via game
Gprf

F (A) of Fig. 1 associated to F and adversary A. Table T is assumed initially ⊥ everywhere.
The prf advantage of A is

Advprf
F (A) = 2 Pr[Gprf

F (A)]− 1

= Pr[ Gprf
F (A) | c = 1 ]−

(
1− Pr[ Gprf

F (A) | c = 0 ]
)

. (2)

The first equation is the definition, while the second is an alternative representation known to the
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equal by a standard conditioning argument.

One-way function functions. The security of function family F as a OWF is defined via game
Gow

F (A) of Fig. 1 associated to F and adversary A. The point x′ returned by the latter is required

to be in F.Inp. The owf advantage of A is defined as Advow
F (A) = Pr[Gprf

F (A)]. In this case, F may
or may not be keyed. A one-way permutation (OWP) is simply a family of permutations that is a
OWF.

Universal and cau functions. Consider game Gcau
H (A) of Fig. 1 associated to H and adversary

A. The points x0, x1 returned by the latter are required to be in H.Inp. The cau advantage of
A is defined as Advcau

H (A) = Pr[Gcau
H (A)]. We say that H is universal if Advcau

H (A) = 1/|H.Out|
for all adversaries A, regardless of their computing time. Computational au is a computational
relaxation from [3] in which the advantage is treated as a computational metric in the usual way
and adversaries may be computationally bounded.

CR functions. The security of function family H as a collision-resistant (CR) function is defined
via game Gcr

H (A) of Fig. 1 associated to H and adversary A. The points x0, x1 returned by the
latter are required to be in H.Inp. The cr advantage of A is defined as Advcr

H (A) = Pr[Gcr
H (A)].

Practical CR hash functions such as SHA-1 are keyless. A CR function family is cau, giving an
easy way to get the latter.

Extractors. Let X,Y be random variables. We define the statistical distance between X and Y ,
the min-entropy of X and the min-entropy of X given Y , via:

SD(X,Y ) =
1

2

∑
z

|Pr[X = z]− Pr[Y = z]|

2−H∞(X) = max
x

Pr[X = x]

2−H∞(X|Y ) =
∑
y

Pr[Y = y] ·max
x

Pr[X = x |Y = y ] .

Recall, paraphrasing the definition above, that a function family Ext : {0, 1}s × {0, 1}n → {0, 1}m
is universal if for every distinct x1, x2 ∈ {0, 1}n we have Pr[Ext(sk, x1) = Ext(sk, x2)] = 2−m where
the probability is over sk←$ {0, 1}s. The following is a generalized version of the Leftover Hash
Lemma (LHL) [15, 9].

Lemma 2.1 Let Ext : {0, 1}s × {0, 1}n → {0, 1}m be a function family that is universal. Let X be
a random variable over {0, 1}n. Let Us, Um be random variables distributed uniformly over {0, 1}s
and {0, 1}m, respectively, and let Y be a random variable. Assume the three random variables
(X,Y ), Us, Um are independent. Then

SD((Us,Ext(Us, X), Y ), (Us, Um, Y )) ≤ 1

2

√
2m−H∞(X|Y ) . (3)

Symmetric PRFs. Let S : S0 × S1 → S.Out be a function family. Let Sswap : S1 × S0 → S.Out be
defined by Sswap(a0, a1) = S(a1, a0). We say that S is a dual PRF if both S and Sswap are PRFs.
We say that S is symmetric if S0 = S1 and S(a0, a1) = S(a1, a0) for every a0, a1 ∈ S1. If S is
symmetric then Sswap = S. Thus if S is symmetric and a PRF, it is automatically a dual PRF.
We will accordingly target the stronger notion of a symmetric PRF and obtain a dual PRF as a
consequence.
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3 Dual PRF security of existing PRF constructions

If we seek dual PRFs, the first and natural question is whether existing constructions of PRFs
might happen to already be dual. Here we look at a few popular ones and show this is not the case.

GGM. Let F1 : {0, 1}k × {0, 1} → {0, 1}k be a PRF with input space {0, 1}. The GGM construc-
tion [12] builds from it the PRF GGM : {0, 1}k × {0, 1}k → {0, 1}k defined as follows.

Function family GGM(x, y)

For i = 1, . . . , k do x← F1(x, y[i])
Return x

Suppose F1 has the property that F1(0
k, 0) = F1(0

k, 1) = 0k. It could still be a PRF and in
particular if PRFs exist we can easily build a PRF F1 with this property. But then GGMswap(y, 0k) =
GGM(0k, y) = 0k so GGMswap is certainly not a PRF. Thus GGM is not a dual PRF. This shows
that the GGM construction does not in general yield a dual PRF.

Naor Reingold. Let G be prime-order group in which the DDH problem is hard, and let g ∈ G
be a generator of G. Let q = |G|. The Naor-Reingold PRF [18] NR : Zn+1

q ×{0, 1}n → G is defined
by

Function family NR(a, x)

b← a[0] ·
∏n

i=1 a[i]x[i] mod q
y ← gb

Return y

Here the key a is a (n + 1)-vector over G and its i-th component is denoted a[i] ∈ G, with the
components indexed from 0 to n. Let 1G denote the identity element of G and let 0 = (0, . . . , 0) ∈
Gn+1 denote the (n + 1)-vector all of whose components equal 0. Then NRswap(x,0) = NR(0, x) =
g0 = 1G for all x ∈ {0, 1}n. Thus NRswap cannot be a PRF and NR is not a dual PRF. This is true
for all choices of G, g.

Some variants of NR [5] restrict the keyspace to (Z∗q)n+1, which would preclude the above attack
on NRswap. However, NRswap is still subject to attack by setting a to all 1s.

Dodis Yampolskiy. Let e : G×G→ GT be a non-degenerate bilinear map, where groups G,GT

have prime order p. Let g be a generator of G and S ⊆ Zp a set of size N . Then the Dodis
Yampolskiy PRF [10] DY : Zp × S → GT is defined by

Function family DY(a, x)

If (a + x) mod p = 0 then b← 1 else b← (a + x)−1 mod p
y ← e(g, g)b

Return y

This construction is promising because the roles of a and x are symmetric, so we may think we
can swap them and have a symmetric PRF. The difficulty is that for security the input x must
come from a much smaller space than the key, meaning N = |S| is much less than p. This is
because security is based on the q-BDHI assumption, and as per [10, Theorem 2], security of the
PRF requires q = N and security of q-BDHI for adversaries with running time more than N . In
particular, the construction is not shown secure when S = Zp. But to meet our definition of a
symmetric PRF from Section 2, the key-space and domain must be the same set. We note that this
asymmetry in the key and input for DY, and how it precludes some applications, has been pointed
out before in several contexts, including in BC [5] for security against related-key attack.
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Game Ghc
H,HC(A)

hk0←$ H.Keys

hck0←$ HC.Keys

x0←$ H.Inp

w0 ← H(hk0, x0)

s1 ← HC(hck0, (hk0, x0))

s0←$ HC.Out

c←$ {0, 1}
c′←$A(hk0,hck0, w0, sc)

Return (c = c′)

Game Glhc
H,HC(A)

hk0←$ H.Keys

hck0←$ HC.Keys

x0←$ H.Inp

s1 ← HC(hck0, (hk0, x0))

s0←$ HC.Out

c←$ {0, 1}
c′←$ALk(hk0,hck0, sc)

Return (c = c′)

Lk(hk1)

w0 ← H(hk1, x0)

Return w0

Figure 2: Games for defining security of HC as a standard and leakage hardcore function
for H.

Discussion. Although this should be obvious, we should nonetheless clarify that the above attacks
do not represent any bugs or critiques. These constructions were not designed or claimed to be dual
PRFs. But the first question one should ask in seeking dual PRFs is whether existing constructions
of PRFs happen to be dual PRFs. The above indicates that this is not the case and one must seek
new constructions.

4 Leakage hardcore functions

For our construction we will introduce an extension of the standard notion of a hardcore function.
We call it a leakage hardcore function. To understand it, it is useful to begin by recalling the usual
notion.

Hardcore functions. Suppose H is a function family. A hardcore function for H is a function
family HC : HC.Inp×(H.Keys×H.Inp)→ HC.Out, so that an input is a pair (hk, x) consisting of a key
for H and an input for H. We say that HC is a hardcore predicate for H if HC.Out = {0, 1}. Recall
that security considers an adversary given a key hk0 defining the function H(hk0, ·), a key hck0

for the hardcore function, and the result w ← H(hk0, x) of evaluating the function at x0←$ H.Inp.
Now the adversary gets sc for a challenge bit c where s1 = HC(hck0, (hk0, x0)) is the output of the
hardcore function on x0 and s0 is a random string of the same length, and it should have a hard
time figuring out c. Formally the security of HC as a hardcore function for H is defined via game
Ghc

H,HC(A) of Fig. 2 associated to H,HC and adversary A. The hcf advantage of A is defined as

Advhc
H,HC(A) = 2 Pr[Ghc

H (A)]− 1.

Leakage hardcore functions. A leakage hardcore function for H is again a function family
HC : HC.Inp× (H.Keys×H.Inp)→ HC.Out, so that an input is a pair (hk, x) consisting of a key for
H and an input for H. Again we say that HC is a leakage hardcore predicate for H if HC.Out = {0, 1}.
The new element in a leakage hardcore function is that the adversary has an oracle Lk via which
it can obtain “leakage” about x0. This leakage has a very particular form, namely the adversary
can obtain the value of the same function family H on x0 under any key hk1 ∈ H.Keys of its choice,
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meaning Lk takes input hk1 and returns H(hk1, x0), the result of evaluating H on the given key
under the hidden input x0. The requirement is that figuring out the challenge bit remains hard.
The formalization uses game Glhc

H,HC(A) of Fig. 2 associated to H,HC and adversary A. The lhc

advantage of A is defined as Advlhc
H,HC(A) = 2 Pr[Glhc

H (A)]− 1. Since A could in particular call its
oracle on hk0, we omit giving it H(hk0, x0) as input as in the standard game.

Obtaining leakage hardcore functions. Towards obtaining a leakage hardcore function for
a given function family H, one simple observation is that if H is keyless then a standard hardcore
function is leakage hardcore. This is captured by the following lemma.

Lemma 4.1 Suppose H is a keyless function family and HC : HC.Inp× ({ε}×H.Inp)→ HC.Out is a
function family. Let A be a lhc-adversary. Then the proof constructs a hc-adversary A0 such that

Advlhc
H,HC(A) ≤ Advhc

H,HC(A) .

Adversary A0 has about the same running time as adversary A.

Proof of of Lemma 4.1: Adversary A0 gets inputs hk0,hck0, w0, sc and runs A on inputs
hk0, hck0, sc. A query hk1 made by A to it Lk oracle must be in H.Keys = {ε} and thus A1 can
simulate this oracle, returning w0 as the response. Eventually A outputs a bit c′, and A1 outputs
the same bit.

Our construction of a symmetric PRF will need a cau function family that has a leakage hardcore
function which outputs lots of bits. In Section 5 we will assume it. Later we will give various
constructions from various assumptions.

5 The SPRF construction

We provide our general SPRF construction of a symmetric, and hence dual, PRF.

Ingredients. Our construction of a symmetric PRF has the following ingredients:

• A cau function family H : H.Keys× H.Inp→ H.Out

• A leakage hardcore function family HC : HC.Keys× (H.Keys× H.Inp)→ HC.Out for H.

• A PRF R : HC.Out×R.Inp→ R.Out such that H.Out×H.Keys×HC.Keys ⊆ R.Inp and the range
R.Out is a commutative group whose operation we denote ∗. Thus a key for R is an output of
HC while a triple consisting of an output of H, a key for H and a key for HC is a valid input for
R.

We refer to a triple (H,HC,R) of function families satisfying the above conditions as a suite. The
simplest case for the group is that R.Out = {0, 1}R.ol is the set of all strings of some length R.ol,
and y1 ∗ y2 = y1⊕y2, but the existence of efficient PRFs with algebraic ranges [18] motivates being
more general.

SPRF construction. Our construction associates to any suite (H,HC,R) as above the function
family S = SPRF[H,HC,R] defined as follows. It has S.Keys = S.Inp = H.Inp× H.Keys× HC.Keys,
meaning a key or input is a triple a = (x, hk, hck) consisting of a point x ∈ H.Inp, a key hk for
the cau family H and a key hck for the hardcore function family HC. It has range the group
S.Out = R.Out. The function family is then defined as shown in Fig. 3.

Proposition 5.1 Let (H,HC,R) be a suite of function families. Let S = SPRF[H,HC,R] be the
function family associated to them as above. Then S is symmetric.
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Function family S(a0, a1)

(x0,hk0,hck0)← a0; (x1,hk1,hck1)← a1

r0 ← HC(hck0, (hk0, x0)) ; r1 ← HC(hck1, (hk1, x1))

w0 ← H(hk1, x0) ; w1 ← H(hk0, x1)

z0 ← (w0,hk0,hck0) ; z1 ← (w1,hk1,hck1)

y0 ← R(r0, z1) ; y1 ← R(r1, z0)

y ← y0 ∗ y1
Return y

Figure 3: Our SPRF construction.

Proof of Proposition 5.1: The first condition, that the keyspace and input space of S are
the same set, is met by definition. For a0, a1 in this common set we now need to show that
S(a0, a1) = S(a1, a0). This follows from the symmetry in the description of S and the assumption
that the group R.Out is commutative.

PRF security of SPRF. To show S is a dual PRF, it suffices by Proposition 5.1 to show that S
is a PRF. This is the claim of the following theorem.

Theorem 5.2 Let (H,HC,R) be a suite of function families. Let S = SPRF[H,HC,R] be the
function family associated to them as above. Let A be an adversary making at most q queries to its
Fn oracle. Then the proof constructs adversaries AH,AHC,AR such that

Advprf
S (A) ≤ Advlhc

H,HC(AHC) + Advprf
R (AR) +

q(q − 1)

2
·Advcau

H (AH) . (4)

The running times of the constructed adversaries are about the same as that of the original.

Proof of Theorem 5.2: Consider games G0–G4 of Fig. 4. In the code for games G0,G1, if a line
is followed by the name of a game, then that line is included only in the named game. Unmarked
lines are included in both games. Game G2 includes the boxed code while game G3 does not.

We assume wlog that the oracle queries of A are always all distinct. This means the “If T [x] = ⊥”

test in game Gprf
S (A) of Fig. 1 will always return true and so we can drop it. The c = 1 case of

Gprf
S (A) is thus captured by game G0. On the other hand, game G4 captures the c = 0 case of

game Gprf
S (A) except that it returns true iff the latter returns false. From Equation (2) we thus

have

Advprf
S (A) = Pr[ Gprf

S (A) | c = 1 ]−
(

1− Pr[ Gprf
S (A) | c = 0 ]

)
= Pr[G0]− Pr[G4]

= p0 + p1 + p2 + p3 , (5)

where for i ∈ {0, 1, 2, 3} we have let

pi = Pr[Gi]− Pr[Gi+1] .
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Games G0, G1

hk0←$ H.Keys

hck0←$ HC.Keys

x0←$ H.Inp

r0 ← HC(hck0, (hk0, x0)) // G0

r0←$ HC.Out // G1

c′←$AFn

Return (c′ = 1)

Fn((x1,hk1,hck1))

r1 ← HC(hck1, (hk1, x1))

w0 ← H(hk1, x0)

w1 ← H(hk0, x1)

z0 ← (w0,hk0,hck0)

z1 ← (w1,hk1,hck1)

y0 ← R(r0, z1)

y1 ← R(r1, z0)

y ← y0 ∗ y1
Return y

Games G2 , G3

hk0←$ H.Keys

hck0←$ HC.Keys

x0←$ H.Inp

c′←$AFn

Return (c′ = 1)

Fn((x1,hk1,hck1))

r1 ← HC(hck1, (hk1, x1))

w0 ← H(hk1, x0)

w1 ← H(hk0, x1)

z0 ← (w0,hk0,hck0)

z1 ← (w1,hk1,hck1)

y0←$ R.Out

If (R[z1] 6= ⊥) then

bad← true; y0 ← R[z1]

R[z1]← y0
y1 ← R(r1, z0)

y ← y0 ∗ y1

Game G4

c′←$AFn

Return (c′ = 1)

Fn((x1,hk1,hck1))

y←$ R.Out

Return y

Figure 4: Games for proof of Theorem 5.2.

We will build adversaries AH,AHC,AR such that

p0 ≤ Advlhc
H,HC(AHC) (6)

p1 ≤ Advprf
R (AR) (7)

p2 ≤
q(q − 1)

2
·Advcau

H (AH) . (8)

We will also observe that

p3 = p4 . (9)

Putting together Equations (5), (6), (7), (8) and (9) we get Equation (4). We now justify the above
claims.

In game G1, the key r0 for the first application of R is chosen at random rather than obtained as
HC(hck0, (hk0, x0)). Consider adversary AHC shown in Fig. 5. It is playing game Glhc

H,HC(AHC), so
it has input hk0,hck0, s. It runs A, simulating the latter’s Fn oracle via a procedure FnSim that
is shown in the code. The key point is that AHC invokes its Lk oracle to compute w0. Letting c be
the challenge bit in game Glhc

H,HC(AHC) we have

Advlhc
H,HC(AHC)

= Pr[ Advlhc
H,HC(AHC) | c = 1 ]−

(
1− Pr[ Advlhc

H,HC(AHC) | c = 0 ]
)

= Pr[G0]− Pr[G1] = p0

which establishes Equation (6).
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Adversary ALk
HC(hk0,hck0, s)

r0 ← s

c′←$AFnSim

Return c′

FnSim((x1,hk1,hck1))

r1 ← HC(hck1, (hk1, x1))

w0 ← Lk(hk1)

w1 ← H(hk0, x1)

z0 ← (w0,hk0,hck0)

z1 ← (w1,hk1,hck1)

y0 ← R(r0, z1)

y1 ← R(r1, z0)

y ← y0 ∗ y1
Return y

Adversary AFn
R

hk0←$ H.Keys

hck0←$ HC.Keys

x0←$ H.Inp

c′←$AFnSim

Return c′

FnSim((x1,hk1,hck1))

r1 ← HC(hck0, (hk0, x0))

w0 ← H(hk1, x0)

w1 ← H(hk0, x1)

z0 ← (w0,hk0,hck0)

z1 ← (w1,hk1,hck1)

y0 ← Fn(z1)

y1 ← R(r1, z0)

y ← y0 ∗ y1
Return y

Adversary AH

i← 0

c′←$AFnSim

j1←$ {2, . . . , i}
j2←$ {1, . . . , j1 − 1}
Return (vj1 , vj2)

FnSim((x1,hk1,hck1))

i← i + 1

vi ← x1

y←$ R.Out

Return y

Figure 5: Adversaries for proof of Theorem 5.2.

Game G2 maintains a table R[·] that is initially everywhere ⊥. It optimistically picks y0 at random
and sets R[z1] to this value. However, in between these two steps, it first checks whether R[z1]
was already defined, and if so, sets the flag bad to true. This means that the setting of R[z1] to
the newly-chosen y0 was wrong. Accordingly (via the boxed code which is included in game G2) a
correction is made, resetting y0 back to R[z1], so that in this game, R[z1] is the result of a random
function on z1. Now consider adversary AR shown in Fig. 5. It has an Fn oracle, and runs A.
In the simulation of A’s oracle, it applies Fn to z1 to get y0. With c the challenge bit in game
Gprf

R (AR), we have

Advprf
R (AR) = Pr[ Gprf

R (AR) | c = 1 ]−
(

1− Pr[ Gprf
R (AR) | c = 0 ]

)
= Pr[G1]− Pr[G2] = p1

which establishes Equation (7).

In game G3, we may set bad, but, since the boxed code is absent, y0 is always a fresh, random
value. Games G2,G3 are identical until bad (differ only in code following the setting of bad to true)
so by the Fundamental Lemma of Game Playing [7],

p2 = Pr[G2]− Pr[G3] ≤ Pr[G3 sets bad] . (10)

Now consider adversary AH in Fig. 5. We claim that

Pr[G3 sets bad] ≤ q(q − 1)

2
·Advcau

H (AH) . (11)

The reason is that for game G3 to set bad, a z1 value must repeat across queries. By assumption
the queries are distinct, so the only way this could happen is if there were queries j1 < j2 such
that the w1,hk1, hck1 values in these queries were the same but the x1 values were different. This
would be a collision for H(hk0, ·). Now we have to argue that such a collision can be found by a
cau adversary AH. This adversary does not know hk0, so how can it simulate A? In game G3, the
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point y0 is always random. Since R.Out is a group, y is also random. So AH can simulate A’s oracle
by just returning random values. It does this, collecting all the x1 values in the queries. In the
end it picks at random two of these values and returns them. This justifies Equation (11), which,
combined with Equation (10), justifies Equation (8).

As we have just said, in game G3, the point y0 is always random and independent of anything else.
Since R.Out is a group, y is also random. This justifies Equation (9) and completes the proof.

6 Instantiations

We instantiate our SPRF construction to get symmetric and dual PRFs under specific assumptions.

6.1 Construction from CR hash functions

We give a construction from any keyless collision-resistant hash function. It itself will play the role
of H. The following lemma says that for suitable choices of parameters, an extractor —see Section 2
for background— will provide a leakage hardcore function.

Lemma 6.1 Let H : {ε} × {0, 1}n → {0, 1}r be a keyless function family. Let Ext : {0, 1}s ×
{0, 1}n → {0, 1}m be a function family that is universal. Let HC : {0, 1}s×({ε}×{0, 1}n)→ {0, 1}m
be defined by HC(hck, (ε, x)) = Ext(hck, x). Let A be a lhc-adversary. Then

Advlhc
H,HC(A) ≤ 2−(n+2−m−r)/2 . (12)

The result is information-theoretic, meaning is true regardless of the running time of A.

Proof of of Lemma 6.1: Let random variable X be uniformly distributed over {0, 1}n. Let
Us, Um be random variables distributed uniformly over {0, 1}s and {0, 1}m, respectively, and let
Y = H(ε,X). The following chain of inequalities, which establishes the lemma, is justified below:

Advlhc
H,HC(A) ≤ SD((Us,Ext(Us, X), Y ), (Us, Um, Y )) (13)

≤ 1

2

√
2m−H∞(X|Y ) (14)

≤ 2−(n+2−m−r)/2 . (15)

Let X and Us represent, respectively, the randomly chosen x0 and hck in game Glhc
H,HC(A) of Fig. 2.

Then Ext(Us, X) represents s1 while Um represents s0. Since H is keyless, the only information
A can get from its Lk oracle is Y = H(ε,X). The statistical distance of Equation (13) then
represents the maximum possible advantage that A can obtain. The three random variables (X,Y ),
Us, Um are independent so we can apply Lemma 2.1 to get Equation (14). Since |Y | = r we have
H∞(X|Y ) ≥ n− r, which, together with some simplification, yields Equation (15).

Our symmetric and dual PRF S is parameterized by integers m, r. Given the latter, we select n so
that 2−(n+2−m−r)/2 is negligible. Then we select a function family Ext : {0, 1}s ×{0, 1}n → {0, 1}m
that is universal. Next we select a keyless, collision-resistant function family H : {ε} × {0, 1}n →
{0, 1}r. (The definition is recalled in Section 2.) Since it is collision resistant, it is certainly cau.
Finally we select a PRF R : {0, 1}m × R.Inp → R.Out such that {0, 1}r × {ε} × {0, 1}s ⊆ F.Inp
and R.Out is a commutative group, for simplicity {0, 1}l for some l with the group operation being
bitwise xor. This is not an extra assumption because CR functions imply OWFs which imply PRFs.

14



We let HC be defined as in Lemma 6.1. We now have a suite (H,HC,R) and can apply our SPRF
transform. The resulting symmetric and dual PRF is S : ({0, 1}n×{ε}×{0, 1}s)× ({0, 1}n×{ε}×
{0, 1}s)→ {0, 1}l defined by

Function family S(((x0, ε, sk0), (x1, ε, sk1))

r0 ← Ext(sk0, x0) ; r1 ← Ext(sk1, x1)
w0 ← H(ε, x0) ; w1 ← H(ε, x1)
z0 ← (w0, ε, sk0) ; z1 ← (w1, ε, sk1)
y0 ← R(r0, z1) ; y1 ← R(r1, z0)
y ← y0⊕y1
Return y

6.2 Construction from any OWP

We show that the existence of one-way permutations (OWPs) implies the existence of dual PRFs.
We do this by instantiating our SPRF construction using an iterated OWP for H and a leakage
hardcore function obtained via the BMY PRG [8, 21].

Let F : {ε}×X → X be a keyless one-way family of permutations with domain and range a set
X. (The standard definition of a OWP is indeed keyless.) For i ≥ 1 let F(i) : {ε} ×X → X be the
i-th iterate of F, defined inductively by

F(0)(ε, x) = x and F(i)(ε, x) = F(ε,F(i−1)(ε, x)) for i ≥ 1 .

Our symmetric and dual PRF S is parameterized by an integer m. Let R : {0, 1}m×R.Inp→ R.Out
be a PRF such that X×{ε}×{ε} ⊆ F.Inp and R.Out is a commutative group, for simplicity {0, 1}l
for some l with the group operation being bitwise xor. This is not an extra assumption because
OWPs imply PRFs. Let H = F(m) be the m-fold iterate of F. Let HC1 : {ε}× ({ε}×H.Inp)→ {0, 1}
be a hardcore predicate for F. We assume it is keyless, since we can find such hardcore predicates
for any OWP. Let HC : {ε} × ({ε} × H.Inp)→ {0, 1}m be defined by

Function family HC(ε, (ε, x))

For i = 0, . . . ,m do
bi ← HC1(ε, (ε, x)); x← F(ε, x)

Return b1b2 . . . bm

Then from [8, 21] we know that there is a choice of HC1 such that HC is a hardcore function for
H = F(m) assuming only one-wayness of F. Now we have two observations. First, since F, and
hence H, is keyless, and we know that HC is a hardcore function for H, Lemma 4.1 implies that it
is also a leakage hardcore function for H. Second, H is trivially cau, because it is a permutation
family, so there simply do not exist collisions. We can thus apply our SPRF transform to the suite
(H,HC,R) to get a symmetric function family S that, by Theorem 5.2, is a PRF.

6.3 Construction from any OWF?

A construction from any OWF eludes us. Let us discuss why some obvious approaches fail. We
know that UOWHFs, as defined by [19], exist given any OWF, as shown in [20, 16, 14]. A UOWHF
is certainly cau so can play the role of H for our transform. However it is not clear to us how to
find a leakage hardcore function for a UOWHF H. The difficulty is that H is non-trivially keyed,
so the leakage oracle Lk provides potentially useful information to the adversary.
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