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Abstract. This paper introduces a new central trapdoor for multivariate quadratic (MQ)
public-key cryptosystems that allows for encryption, in contrast to time-tested MQ primi-
tives such as Unbalanced Oil and Vinegar or Hidden Field Equations which only allow for
signatures. Our construction is a mixed-field scheme that exploits the commutativity of the
extension field to dramatically reduce the complexity of the extension field polynomial im-
plicitly present in the public key. However, this reduction can only be performed by the user
who knows concise descriptions of two simple polynomials, which constitute the private key.
After applying this transformation, the plaintext can be recovered by solving a linear system.
We use the minus and projection modifiers to inoculate our scheme against known attacks.
A straightforward C++ implementation confirms the efficient operation of the public key
algorithms.
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1 Introduction

Since the inception of public-key cryptography, cryptographers have made a huge
effort to find new and better computational problems that feature the elusive trap-
door — a small piece of information that can turn an otherwise hard to invert
function into one that can easily be inverted. This on-going search effort has lead to
a tremendous diversification of the computational problems that underpin public-
key cryptography. This diversification is a good thing: by keeping all the eggs in
separate baskets, a breakthrough in one area is unlikely to spill over to other areas,
thus limiting the catastrophic potential of scientific advances.

Of particular interest to this paper is the class of problems known as multivariate
quadratic (MQ) systems of equations. Not only do cryptosystems based on this prim-
itive offer performance advantages over well-established ones such as RSA or systems
based on elliptic curves, MQ cryptography is also conjectured to be post-quantum
— that is to say, it holds promise of resisting attacks on quantum computers. From
this point of view, MQ cryptography is certainly a promising line of research.

The key challenge in the design of MQ cryptosystems is to find a suitable cen-
tral mapping F : Fn

q → Fm
q which should be easily invertible in addition to being

expressible in terms of multivariate quadratic polynomials. The trapdoor informa-
tion cannot be recovered efficiently from the public key as it is hidden by two affine
transformations. Many central mappings have been proposed, most of which fall in



two main categories [32]: single field schemes, such as UOV [17], Rainbow [7] and
the triangular variants [31], where the central polynomial system is chosen to have
a particular structure that enables efficient inversion; and mixed field schemes, such
as C* [19], HFE [22] and Multi-HFE [3], where arithmetic in the base field is mixed
with arithmetic in an extension field. However, despite the abundance of proposals,
MQ cryptography has an awful track record as most of these proposals have been
broken [2, 14,18,28,29,32].

Consequently, much research in the area of MQ cryptography has been devoted
to patchwork — finding small modifications to existing systems that render specific
attacks infeasible. A few examples among many that fall into this category are the
minus modifier (“−”) [25], which inoculates HFE-type systems against Gröbner ba-
sis attacks and linearization attacks; vinegar variables (“v”) [17], which combines
elements from different trapdoors and like “minus” is capable of making a Gröbner
basis attack prohibitively expensive; and projection (“p”) [9] which appears to suc-
cessfully thwart the Dubois et al. differential attack [10,11] on SFLASH.

However, the search for modifications to fix broken systems has an equally bad
track record. Many of the MQ systems that were supposedly inoculated against
some attack by the introduction of a modification, were broken by minor variants
of that same attack. For example, both the multivariate generalization and the
odd field characteristic variant of HFE were introduced and designed specifically to
thwart the algebraic attack on HFE [14]; however, neither variant has managed to
withstand cryptanalysis [2]. Another example is given by the fate of SFLASH, one of
the three recommended signature schemes of the NESSIE project [1]. The addition
of the minus modifier to the basic C∗ construction did not save the scheme from a
new type of differential attack [10, 11]. The rapid spawn of attacks that break the
inoculated systems seems to suggest the need for a more prudent design strategy:
searching for fundamentally different basic principles for MQ trapdoors, rather than
tinkering on the edges of existing ones.

Related work. Encryption schemes have been the bane of multivariate quadratic
cryptography. No MQ encryption scheme has withstood the test of time, while sev-
eral MQ signature schemes have. However, some very recent results and proposals
in this area pose new and interesting challenges for cryptanalysts.

Porras et al. proposed a new central trapdoor which they call ZHFE [24]. Up
until this point, the extension field polynomial in HFE-based cryptosystem required
the number of nonzero coefficients to be small and its degree to be relatively low,
so as to allow efficient root calculation. The idea of Porras et al. exchanges this
single low-degree polynomial for a pair of high-degree polynomials that make up
the central map. Additionally, these polynomials are chosen such that there exists a
third polynomial, Ψ(X ), which is a function of the first two and yet has low degree.
In order to invert a given image, it suffices to factorize this third polynomial. As the
degree of the polynomials increases, so does the degree of regularity of the system.
This increase in the degree of regularity, in turn, renders a direct algebraic attack
infeasible, even though the very same attack broke the regular HFE cryptosystem.

Tao et al. proposed a multivariate quadratic encryption scheme called Simple
Matrix Encryption, or simply ABC Encryption [27]. Their construction is based on a
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fundamentally new idea: embedding polynomial matrix arithmetic inside the central
trapdoor function. The trapdoor can be inverted with high probability because the
matrix, albeit evaluated in a single point, can be reconstructed from the output.
With high probability this matrix can be inverted, giving rise to a system of linear
equations which describe the input.

Our contributions. We introduce a new central trapdoor for multivariate quadratic
encryption schemes. Our proposal is a mixed-field scheme — similar to the C∗ and
HFE string of proposals because we use an embedding function to pretend as though
a vector of variables in the base field were actually a single variable in the extension
field. However, our proposal is notably different from its predecessors, where the
restriction on the degree of this embedded polynomial was key both to their efficiency
and to their demise; our proposal allows for a high-degree embedded polynomial and
undoes this complexity by exploiting the commutative property of the extension
field. Our proposal allows for encryption, in stark contrast to most other members
of the HFE family.

Like the ABC Encryption Scheme, decryption of a ciphertext consists of essen-
tially solving linear systems. This linear system is parameterized by the particu-
lar ciphertext or message: every possible ciphertext or message implicitly defines a
unique linear system. Knowledge of the private key allows the user to obtain the
linear system efficiently, while the adversary who attacks the system without this
crucial information has no advantage to solve the quadratic system.

Like ZHFE, the central map consists of two high-degree extension field polyno-
mials that satisfy a special relation which is obviously hidden from the adversary.
The decryption algorithm exploits this relation to turn the otherwise hard inversion
problem into an easy one.

Another important similarity between our map and both ABC and ZHFE is that
all three are expanding maps, i.e., Fn

q → Fm
q where m = 2n. This commonality is no

accident, because in order allow unique decryption, the map must be injective. How-
ever, if m ≈ n, the differential of this nearly-bijective map is readily differentiable
from that of a random one — not a desirable property for multivariate quadratic
maps to have.

Despite these similarities, the main advantage of our scheme is that its construc-
tion is notably different from ABC and ZHFE. Consequently, as-yet undiscovered
weaknesses or even attacks that affect ABC or ZHFE may leave our scheme in-
tact. Furthermore, this diversification opens the door for a combination of strategies
whose end result reaps the benefits of both worlds. Certainly the case of HFEv
proves that such a combination may indeed increase both security and performance.

In line with a common theme throughout MQ cryptography, we are unable to
prove the security of our scheme or even to reduce it to a plausible computational
assumption. An exhaustive list of all known attacks on MQ systems and why they
fail against our system is beyond the scope of this paper. Nevertheless, we iden-
tify several pertinent attacks that may be launched against a näıve implementation
of our scheme, and we propose strategies to thwart them. Patarin’s linearization
attack [21] is foiled by the minus modifier and repeated applications of the same
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modifier make the extended MinRank attack [4,18] as well as the direct algebraic at-
tack [14] prohibitively inefficient. The scheme seems naturally resistant to Dubois et
al.’s differential attack [10,11], but we nevertheless recommend to use the projection
modifier, which is the proper countermeasure against this attack.

Outline. We introduce notation and recall basic properties of MQ systems as well
as of extension field embeddings in Section 2. Next, Section 3 defines the trapdoor
proposed in this paper as well as several necessary modifiers. We recommend param-
eters for 80 bits of security in the first part of Section 4 and afterwards discuss the
efficiency of our scheme, both from a theoretical point of view and by referencing
timing results from a software implementation. Section 5 concludes the text.

2 Preliminaries

2.1 Notation and Definitions

We use small case letters (s) to denote scalars in the base field; extension field
elements are denoted by calligraphic capital letters (C); small case bold letters (v)
denote column vectors; and regular capital letters are used for matrices (M).

Let Fq denote the finite field with q elements, which we call the base field. With
any combination of a finite field Fq with a polynomial f(x) ∈ Fq[x] one can asso-
ciate a finite ring E = Fq[x]/〈f(x)〉 of residue classes after division by f(x). If f
is irreducible over Fq and has degree n, then E = Fqn is a finite field we call the
extension field. There exists a natural homomorphism ϕ : (Fq)

n → Fqn that maps a
vector v = (v1, . . . , vn)T ∈ Fn

q onto an element V ∈ Fqn of the extension field. We
can apply this embedding function to the vector of indeterminates x in order to get
the extension field indeterminate X = ϕ(x).

2.2 Multivariate Quadratic Systems

The public key of an MQ cryptosystem is a system of quadratic polynomials mapping
n input variables to m output variables: P : Fn

q → Fm
q ; the public operation consists

of evaluating this system of polynomials in a point. The secret key consists of a
pair of invertible affine mappings on the input and output variables, S and T ,
and an alternate quadratic system of polynomials, F : Fn

q → Fm
q , such that P =

T ◦ F ◦ S. The affine transformations are trivially inverted; the central system F is
constructed in such a way that it is also easy to invert. However, the attacker cannot
efficiently recover F from P and calculate the inverse as F is hidden by the affine
transformations. A schematic overview is given in Fig. 1.

Given a central trapdoor F it is easy to construct a multivariate quadratic cryp-
tosystem by composing it with two affine transformations. This process is out of the
scope of the present paper. Rather, we restrict our attention to the construction of
the central trapdoors.
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Fig. 1: Schematic representation of multivariate quadratic cryptosystems.

3 Central Map

3.1 The Basic Construction

Let A ∈ Fn×n
q be a random matrix over the base field. Then Ax ∈ (Fq[x])n represents

a vector where each element is a linear polynomial in x. And then α(x) = ϕ(Ax)
is an extension field element. The square matrix that represents multiplication by
α(x) is denoted by αm(x) ∈ Fn×n

q . We use α(X ) to stress the fact that α may also
be considered as a univariate polynomial in X over the extension field, regardless of
its representation, although the degree of this polynomial is larger than one.

Similarly, let β(x) = ϕ(Bx) for a random n × n matrix B ∈ Fn×n
q . With these

polynomials α and β, we define the central trapdoor as follows:

F : Fn
q → F2n

q : x 7→
(
αm(x)x
βm(x)x

)
. (1)

To see how we are able to invert F(x) =

(
d1

d2

)
, consider first the equality

α(x)β(x) = β(x)α(x) which holds due to the commutativity of the extension field.
We can proceed to construct a system of linear equations in x:

βm(x)d1 − αm(x)d2 = 0 . (2)

While Gaussian elimination is in this case guaranteed to find a solution, this so-
lution need not be unique. Nevertheless, this set of solutions is expected to be small,
in accordance with the number of solutions to random linear systems. Moreover, this
set can be pruned by iteratively plugging the potential solution into the function F
and verifying that the correct output image (d1; d2) is produced.

3.2 Modifiers

The trapdoor as described above is insecure. In particular, it is broken by the bilinear
attack, the MinRank attack, as well as an algebraic attack using fast Gröbner basis
algorithms. We apply the “minus” to inoculate basic EFC against these attacks.
While not strictly necessary, “projection” may guard against new differential attacks
at very little cost whereas “Frobenius tail” drastically drops the cost of decryption.
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Minus.
Although Patarin’s linearization attack [21] was originally conceived to attack C∗, it

also applies to unprotected EFC. Indeed, Equation 2 describes a bilinear polynomial
in the plaintext and ciphertext, whose coefficients can be calculated using linear
algebra after obtaining enough plaintext-ciphertext pairs. Once these coefficients
are known, obtaining a plaintext that matches a given ciphertext is easy. However,
dropping just one polynomial from the public key is enough to foil this attack. In this
case, the attacker must guess the missing information for every plaintext-ciphertext
pair, making them useless for exact linear algebra.

This “minus” modifier, which consists of removing one or more polynomials from
the public key [23], is more than just a countermeasure against Patarin’s attack. A
pair of important results by Ding et al. [6, 8] indicates that this modifier is much
better thought of as a fundamental building block of multivariate quadratic cryp-
tosystems rather than a mere patch. Indeed, not only does the first application of
this modifier block Patarin’s linearization attack; every repeated application incre-
ments by one the rank of the quadratic form associated with the extension field
polynomial, rendering the MinRank attack due to Kipnis and Shamir [18] as well as
its subsequent improvement by Courtois [4] that much more infeasible. Furthermore,
this rank increase in turn increases the degree of regularity of the system, resulting
in a similarly infeasible algebraic attack.

The use of this modifier does come at the cost of a performance penalty. In partic-
ular, the decryption algorithm must first guess the values of the missing polynomials
before undoing the output transformation T . Under this guess, it can proceed to the
linear system in Equation 2 and compute the potential matching plaintext x. If in-
deed F(x) = (d1; d2), then the correct plaintext was found. If not, then the guess
was wrong and the algorithm must start all over again with a new one.

Fortunately, as long as the number of dropped polynomials a is small enough,
the correct plaintext will still be found with overwhelming probability. In order for
the decryption algorithm to produce the wrong plaintext x upon decrypting the
ciphertext y, there must exist at least two guesses g1 ∈ Fa

q and g2 ∈ Fa
q such that

both (y; g1) and (y; g2) are in the range of P . If P is to be modeled as a random
function Fn

q → F2n−a
q , then its range is a uniform subset of F2n−a

q of size qn, and then
the probability of this event is approximately qn × q−2n+a = q−n+a. Consequently,
as long as a� n, the probability of decryption error remains astronomically small.

Fig. 2 offers empirical validation of this argument. It shows the probability of
decryption error for various even values for a as a function of n. Only when a and n
are on the same order of magnitude, is this probability noticeable; when n rises to
practical values, this probability does indeed drop to zero.

In similar fashion to C∗− and HFE−, this modifier will be denoted by the su-
perscript “−”, i.e., EFC−. The number of dropped polynomials will be denoted by
a.

Projection.
The differential symmetry attacks by Dubois et al. [10,11] on SFLASH, a C∗ variant,

show that the minus operator is not enough to secure it. Dubois et al. identify a
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Fig. 2: Observed decryption error rate.

symmetry in the differential of the C∗ map F :

DF(Lx,y) +DF(x, Ly) = ΛF(x,y)

for some matrices L and Λ. The presence of this symmetry proved fatal.

Fortunately, Ding et al. [9] show experimentally that a small tweak by the name
of “projection” completely foils this line of attack. In particular, pSFLASH projects
the input vector x onto a lower-dimensional space before passing it through the
central map. Smith-Tone [26] has since offered a theoretical basis for the efficacy of
this modifier. At the core of Smith-Tone’s argument is the following theorem:

Theorem 1 (Smith-Tone, [26]). A polynomial f : Fqn → Fqn with a bilinear dif-
ferential has the multiplicative symmetry if and only if it has one quadratic monomial
summand.

While the components of EFC do have bilinear differentials, they do not consist
of a single quadratic monomial but of a sum of them. For example, the first com-
ponent is described by α(X )X =

∑n−1
i=0 AiX qi+1 where the coefficients Ai are with

overwhelming probability not all but one equal to zero. Therefore, by Smith-Tone’s
theorem, the differential multiplicative symmetry is absent with overwhelming prob-
ability.

Nevertheless, in anticipation of more general attacks using a similar differential
invariant, we follow a perspective offered at the conclusion Smith-Tone’s paper: pro-
jection does not destroy the differential symmetry, but pushes it down to a subfield.
Since this modifier is cheap in terms of performance and cannot degrade security,
we choose to err on the side of safety and ensure that no such subfield can exist. In
particular, we guarantee that the matrices A and B have rank n− 1, and that n is
a prime number. Moreover, the kernels of A and B do not intersect except at the
origin. This modifier will be denoted by the subscript p, e.g. EFCp.
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Frobenius Tail in Characteristic Two (or Three).
The trapdoor as described so far can be implemented over any base field and unless

the minus operator is applied, the rank of the quadratic forms associated with the
extension field is two. However, if we restrict to characteristic two, we can naturally
increase this rank by adding an extra “tail” term to both expressions. In turn, we
must drop fewer equations to ensure the same level of security, and this results in
a significant speedup of the decryption algorithm. We will use the subscript t2 to
denote the use of this technique, e.g. EFCt2 .

This trick exploits the following property of fields of characteristic two. Let f(X )
be a linear function, then f(X )3 is a quadratic function and multiplication by f(X )
gives f(X )4 which is once again a linear function.

Let α and β be defined as earlier. Then this enhancement adds the quadratic
terms α(X )3 and β(X )3 as follows:

F : F2n → F2
2n : X 7→

(
α(X )X + β(X )3

β(X )X + α(X )3

)
. (3)

In order to decrypt F(X ) = (D1;D2), the user solves the linear system

α(X )D2 − β(X )D1 = α(X )4 − β(X )4 . (4)

Afterwards, the set of solutions is pruned based on F(X ) = (D1;D2).
A similar trick is possible in fields of characteristic three. For linear functions

f(X ) the term f(X )2 is quadratic and multiplication by f(X ) gives f(X )3 which is
once again a linear function. Although this particular Frobenius tail does destroy the
common factor in the two polynomials, it merely increases the rank of the quadratic
form to three. The use of this trick will be denoted by the subscript t3.

4 Efficiency

4.1 Recommended Parameters

We predict that the most efficient attack on our system is the algebraic attack using
efficient Gröbner basis algorithms such as Faugère’s F4 or F5 [12, 13]. Taking this
attack into account, we propose parameters to ensure at least 80 bits of security.

We follow the argument due to Ding et al. [5, 8], who develop an upper bound
for the degree of regularity of HFE− systems. In this line of reasoning, the degree
of regularity Dreg is intricately linked to the rank r of the quadratic form associated
with the extension field polynomial. Moreover, a applications of the minus modifier
effectively increases this rank by a. Especially for small base fields, the degree of
regularity is expected to lie near its upper bound:

Dreg ≤
(q − 1)(r + a)

2
+ 2 . (5)

This argument applies to a single quadratic form. However, the central map of
EFC consists of two quadratic forms. Nevertheless, we argue that the effect of minus
is replicated across both quadratic forms. The polynomials are dropped after the
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output transformation T is applied, meaning that the effect of the missing infor-
mation passes through T−1 and is not isolated to one quadratic form but spread
across both. Although this reasoning underscores the following parameter recom-
mendations, we note it is not perfectly rigorous and warrants further study.

Considering the two components of our central map separately, we see that their
rank is r = 2. If the Frobenius tail modifiers are applied, this is increased to r = 4
and r = 3 for characteristics 2 and 3, respectively. For a security level of 80 bits, we
recommend to ensure this adjusted rank is at least 12 for F2 and 8 for F3.

a =


10 q = 2, n = 83, EFC−

p

8 q = 2, n = 83, EFC−
pt2

6 q = 3, n = 59, EFC−
p

. (6)

Then we can estimate the degrees of regularity for these base fields:

Dreg ≤
(q − 1)(r + a)

2
+ 2 =

{
8 q = 2
10 q = 3

. (7)

The running time of efficient Gröbner basis algorithms is dominated by Gaus-
sian elimination in the matrix of coefficients associated with the monomials of degree
Dreg. We can use this bottleneck to estimate the algorithm’s total complexity. In par-
ticular, the number of monomials of this degree is given by T =

(
n

Dreg

)
≈ 235 both for

n = 83, q = 2 as well as n = 59, q = 3. Moreover, the number of nonzero monomials
is on the order of τ =

(
n
2

)
≥ 210. Assuming a Wiedemann-type algorithm [30] for

sparse Gaussian elimination, this amounts to τT 2 ≥ 280 in both cases.
Fig. 3 offers some experimental evidence in support of this argument. It plots the

running time of MAGMA’s F4 algorithm to recover the plaintext from the ciphertext
and the public key. The graph on the left starts out with q = 2, n = 35 and a = 1;
from there on out, the parameter a increases. The graph on the right lets n vary from
15 to 38 with q = 2, and keeps a constant at 10 for the basic trapdoor EFC−

p (blue
circles) and at 8 for the Frobenius tail equivalent EFC−

pt2 (red crosses).
The graphs indicate two things. First, the minus modifier enhances security with

(nearly) every application, occasionally lifting the system into the next degree of
regularity. Second, the Frobenius tail modifier enhances security, even compensating
for the rank drop associated with going from a = 10 to a = 8.

4.2 Complexity

The basic trapdoor, as well as all the modified variants, feature only quadratic
terms. Therefore, the transformations T and S should be linear and not affine, and
consequently also the public key will consist of only quadratic terms.

The public key consists of 2n−a polynomials of degree 2 in n variables. Thus the
number of coefficients from Fq in the public key is (2n−a)× n(n−1)

2
= n3−(a+1)n2+

an = O(n3) because a� n. However, we note that there is a considerable amount of
redundancy in the public key which we expect can be exploited to produce smaller
keys.
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Fig. 3: Running time of algebraic attack for various parameters.

The private key consists of two linear transformations S and T , along with a
degree-n irreducible polynomial ψ(z), and matrices A and B. This amounts to n2 +
(2n)2 + 2(n2) + n = 7n2 + n = O(n2) coefficients in Fq.

The most computationally intensive part of the key generation algorithm is the
symbolic matrix-vector multiplication — once in ϕ(Ax)x and once in ϕ(Bx)x. Both
procedures require n2 polynomial-multiplications, each of which consists of n mul-
tiplications in Fq. Since the other steps in the key generation algorithm are less
complex, the asymptotic time complexity of this entire algorithm is O(n3). For the
Frobenius tail modifier, this complexity is worse because the additional extension
field products ϕ(Ax)(QAx) and ϕ(Bx)(QBx) (where Q is the matrix associated
with the Frobenius map x 7→ x2) have dense right-side multiplicands. Consequently,
the cost of polynomial multiplication rises to n2 multiplications and the total time
complexity of the key generation to O(n4).

Encryption consists of evaluating 2n − a quadratic polynomials in n variables.
This comes down to two time steps with unlimited parallelism. Without parallelism,
however, each of the (2n−a)×(n(n−1)+2n) base field operations must be executed
sequentially and the time complexity is therefore O(n3).

Decryption consists of the following steps for qa different guesses, which may be
executed in parallel if the resources are available: (1) inversion of T , which requires
(2n)2 operations; (2) computation of ϕ(d1) and ϕ(d2), which requires n vectorized
additions for a total of n2 operations; (3) two matrix multiplications of n3 operations
each, followed by a matrix subtraction; (4) a Gaussian elimination of some 2n3/3
operations; (5) inversion of S requiring some n2 operations; and finally (6) pruning,
which has an almost constant expected running time. Thus, decryption has an ex-
pected running time of O(qan3). While this expression does involve an exponential
factor, the exponent is rather small — on the order of a ≈ log n, so that decryption
is still practically speaking a polynomial-time algorithm.

Fig. 4 emphasizes this exponential behavior by logarithmically plotting the de-
cryption time as a function of a. Even a moderate increase in the number of dropped
parameters can make decryption impractically slow.
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4.3 Speed

Table 1 shows some timing results obtained from a straightforward C++ implemen-
tation on a 64-bit 3.3 GHz Intel CPU. Despite the scheme’s obvious capacity for
parallelism, it is not exploited beyond bit packing and vectorized addition (byte-wise
xor) for F2. The only other optimization that was used was the compiler’s optimiza-
tion flag. For q = 3, the sizes are computed by representing elements of F3 by two
bits.

Table 1: Implementation results — timings of key generation, encryption and de-
cryption algorithms along with public key, secret key and ciphertext size.

construction sec. key pub. key ctxt. key gen. enc. dec.

EFC−
p , q = 2, n = 83, a = 10 48.3 KB 509 KB 20 B 2.45 s 0.004 s 9.074 s

EFC−
pt2

, q = 2, n = 83, a = 8 48.3 KB 523 KB 20 B 3.982 s 0.004 s 2.481 s

EFC−
p , q = 3, n = 59, a = 6 48.8 KB 375 KB 28 B 2.938 s 0.004 s 12.359 s

5 Conclusion

Extension Field Cancellation (EFC) is a new construction for central trapdoors in
MQ cryptosystems which exploits the commutativity of the extension field in order
to cancel the complexity of the extension field polynomials. After cancellation, the
plaintext can be obtained by solving a linear system. We anticipate several known
attacks and use the projection and minus modifiers to inoculate EFC against these
attacks.

We estimate parameters associated with 80 bits of security from the running
time of an algebraic attack and offer some experimental validation of its complexity.
Our implementation confirms the correctness of our schemes as well as their practical

11



efficiency. Encryption can be done in only a few milliseconds, on par with other post-
quantum cryptosystems such as NTRU [16] and McEliece [20]. However, due to the
missing information from the minus modifier, decryption takes several seconds.

This minus modifier is an obvious candidate for improvement. While it is nec-
essary for security, any significant number of dropped polynomials constitutes an
onerous cost on the decryption function because its running time is exponential in
this number. In fact, the minus modifier is ideally suited for MQ signature schemes,
but ill-suited for MQ encryption schemes. The reason is that for signatures, any
assignment to the missing variables will do; in contrast, the decryption algorithm
must iterate over all possible assignments in order to find the correct plaintext. Any
alternative modifier that has the same effect on security but obviates the need for
exhaustive search can drastically accelerate decryption.

Another question is to determine to which extent the public keys can be shrunk.
While it is difficult to shrink the secret keys without throwing away entropy, the pub-
lic keys contain a large amount of redundancy. Even a relatively moderate reduction
in the public key size can make the cryptosystem a feasible option for applications
where the public key size is critical and currently too large.
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