
Pseudo-Free Families of Finite Computational Elementary

Abelian p-Groups

Mikhail Anokhin

Information Security Institute,
Lomonosov University, Moscow, Russia

anokhin@mccme.ru

Abstract

We initiate the study of (weakly) pseudo-free families of computational elementary abelian p-
groups, where p is an arbitrary fixed prime. We restrict ourselves to families of computational
elementary abelian p-groups Gd such that for every index d, each element of Gd is represented by a
single bit string of length polynomial in the length of d.

First, we prove that pseudo-freeness and weak pseudo-freeness for families of computational ele-
mentary abelian p-groups are equivalent. Second, we give some necessary and sufficient conditions
for a family of computational elementary abelian p-groups to be pseudo-free (provided that at least
one of two additional conditions holds). These necessary and sufficient conditions are formulated in
terms of collision-intractability or one-wayness of certain homomorphic families of knapsack functions.
Third, we establish some necessary and sufficient conditions for the existence of pseudo-free families
of computational elementary abelian p-groups. With one exception, these conditions are the existence
of certain homomorphic collision-intractable families of p-ary hash functions or certain homomorphic
one-way families of functions.

As an example, we construct a Diffie-Hellman-like key agreement protocol from an arbitrary family
of computational elementary abelian p-groups. Unfortunately, we do not know whether this protocol
is secure under reasonable assumptions.

Keywords: Family of computational groups, pseudo-free family of computational groups, weakly
pseudo-free family of computational groups, elementary abelian p-group, homomorphic family of
functions, collision-intractable family of functions, one-way family of functions, family of p-ary hash
functions.

Contents

1 Introduction 2

2 Preliminaries 3
2.1 General Preliminaries . 3
2.2 Probabilistic Preliminaries . 4
2.3 Computational and Cryptographic Preliminaries . 4

3 (Weakly) Pseudo-Free Families of Computational Elementary Abelian p-Groups 7
3.1 Families of Computational Elementary Abelian p-Groups 7
3.2 Pseudo-Free Families of Computational Elementary Abelian p-Groups 8
3.3 Weak Pseudo-Freeness and Its Equivalence to Pseudo-Freeness for Families of Computa-

tional Elementary Abelian p-Groups . 9
3.4 Some Remarks . 10

1

4 Necessary and Sufficient Conditions for Pseudo-Freeness and for the Existence of
Pseudo-Free Families 11
4.1 The Functions knG,g, the Families KnρΓ, and the Probability Ensembles IρD,Γ 11
4.2 Auxiliary Results . 12
4.3 Putting It All Together . 15
4.4 A Diffie-Hellman-Like Key Agreement Protocol . 16

5 Problems for Further Research 17

1 Introduction

Informally, a family of computational groups is a family of groups whose elements are represented by
bit strings in such a way that equality testing, multiplication, inversion, computing the identity element,
and sampling random elements can be performed efficiently. Loosely speaking, a family of computational
groups is called pseudo-free if, given a random group G in the family (for an arbitrary value of the security
parameter) and random elements g1, . . . , gm ∈ G, it is computationally hard to find a system of group
equations

vi(a1, . . . , am;x1, . . . , xn) = wi(a1, . . . , am;x1, . . . , xn), i = 1, . . . , s, (1)

and elements h1, . . . , hn ∈ G such that (1) is unsatisfiable in the free group freely generated by a1, . . . , am
(over variables x1, . . . , xn), but

vi(g1, . . . , gm;h1, . . . , hn) = wi(g1, . . . , gm;h1, . . . , hn)

in G for all i ∈ {1, . . . , s}. If a family of computational groups satisfies this definition with the additional
requirement that n = 0 (i.e., that the equations in (1) be variable-free), then this family is said to be
weakly pseudo-free. Of course, (weak) pseudo-freeness depends heavily on the form in which system (1)
is required to be found, i.e., on the representation of such systems.

The notion of pseudo-freeness (which is a variant of weak pseudo-freeness in the above sense) was
introduced by Hohenberger in [Hoh03, Section 4.5] (for black-box groups). Rivest gave formal definitions
of a pseudo-free family of computational groups (see [Riv04a, Definition 2], [Riv04b, Slide 17]) and a
weakly pseudo-free one (see [Riv04b, Slide 11]). Note that the definitions of (weak) pseudo-freeness in
those works are based on single group equations rather than systems of group equations. For motivation
of the study of pseudo-freeness, we refer the reader to [Hoh03, Riv04a, Mic10]. Also, the above cited
works contain definitions of (weak) pseudo-freeness in the variety A of all abelian groups (using different
terminology). (A variety of groups can be defined as a class of groups that is closed under taking
subgroups, homomorphic images, and cartesian products. In particular, any variety of groups contains
the trivial group because this group is the cartesian product of the empty family of groups.) Note that
most works on pseudo-free families of computational groups deal with pseudo-freeness in A. To define a
(weakly) pseudo-free family in A, it is natural to require that all groups in the family be abelian and to
replace the free group by the free abelian group in the above definition of a (weakly) pseudo-free family.
Similarly, we can define a (weakly) pseudo-free family in an arbitrary variety V of groups. To do this,
we require that all groups in the family belong to V and replace the free group by the V-free group in
the above definition of a (weakly) pseudo-free family. See [Ano13, Definition 3.3] for a formal definition
of a pseudo-free family of computational groups in an arbitrary variety of groups. Of course, pseudo-free
families of computational groups in different varieties are completely different objects. A survey of results
concerning pseudo-freeness can be found in [Fuk14, Chapter 1].

In this paper, we study (weakly) pseudo-free families of computational groups in the variety of all
elementary abelian p-groups, where p is an arbitrary fixed prime number. We call these families (weakly)
pseudo-free families of computational elementary abelian p-groups. Note that we restrict ourselves to
families (Gd | d ∈ D) of computational elementary abelian p-groups (where D ⊆ {0, 1}∗) such that for
every d ∈ D, each element of Gd is represented by a single bit string of length polynomial in |d|. Hence
we can assume that Gd ⊆ {0, 1}≤η(|d|) for some polynomial η and that the representation of each element
g ∈ Gd is g itself (see Definition 3.1).

Let (Hi | i ∈ I) (where I ⊆ {0, 1}∗) be a weakly pseudo-free family of finite computational groups
in an arbitrary variety of infinite exponent (or, in another terminology, of exponent zero), e.g., in the

2

variety of all groups or all abelian groups. (The exponent of a variety V of groups is equal to the order
of a free generator of the V-free group.) Assume that, given a positive integer n, a representation of the
variable-free equation an1 = 1 can be computed in polynomial time. Then it is easy to prove that the
problem of finding |Hi| for a given i ∈ I is computationally hard (see [Riv04a, Subsection 4.1] or [Riv04b,
Slide 12] for a guideline). It can be expected that this does not necessarily hold for (weakly) pseudo-free
families of finite computational groups in varieties of finite exponent (provided that such families exist).
In particular, this applies to (weakly) pseudo-free families of computational elementary abelian p-groups
(see Corollary 4.8 and Remark 4.9). Note that the problem of extending the theory of pseudo-freeness to
families of computational groups of easily computable order was posed by Rivest (see [Riv04a, Section 7],
[Riv04b, Slide 22]).

The main contributions of this paper are as follows:

• The equivalence of pseudo-freeness and weak pseudo-freeness for families of computational elemen-
tary abelian p-groups (see Theorem 3.7). This enables us to use the definition of weak pseudo-
freeness (which is more convenient for our purposes than the definition of pseudo-freeness) for
proving results concerning pseudo-freeness. Bearing in mind this equivalence, we do not use the
terms “weakly pseudo-free” and “weak pseudo-freeness” when speaking of families of computational
elementary abelian p-groups after the proof of Theorem 3.7.

• Some necessary and sufficient conditions for a family Γ of computational elementary abelian p-groups
to be pseudo-free, provided that at least one of two additional conditions holds (see Theorem 4.11).
These necessary and sufficient conditions are formulated in terms of collision-intractability or one-
wayness of certain homomorphic families KnγΓ of functions, where γ is a polynomial parameter. See
Subsection 4.1 for the definition of these families of functions.

• Some necessary and sufficient conditions for the existence of pseudo-free families of computational
elementary abelian p-groups (see Theorem 4.12). With one exception, these conditions are the
existence of certain homomorphic collision-intractable families of p-ary hash functions or certain
homomorphic one-way families of functions.

In Subsection 4.4, we construct a Diffie-Hellman-like key agreement protocol from an arbitrary family
of computational elementary abelian p-groups. Also, the protocol uses a polynomial parameter ρ. Un-
fortunately, we do not know whether this protocol is secure (in some natural sense) under reasonable
assumptions on the underlying family of computational elementary abelian p-groups and the polynomial
parameter ρ. We leave this for further research (see Problem 5.3).

The rest of the paper is organized as follows. Section 2 contains notation, basic definitions, and general
results used in the paper. In Section 3, we formally define and discuss families of computational elementary
abelian p-groups (with the above restrictions), as well as pseudo-free and weakly pseudo-free ones. Also,
Section 3 contains the proof of equivalence of pseudo-freeness and weak pseudo-freeness for families of
computational elementary abelian p-groups. In Section 4, we give some necessary and sufficient conditions
for pseudo-freeness and for the existence of pseudo-free families of computational elementary abelian p-
groups. Finally, Section 5 contains some problems concerning families of computational elementary
abelian p-groups. We suggest these problems for further research.

2 Preliminaries

2.1 General Preliminaries

In this paper, N denotes the set of all nonnegative integers. Let m,n ∈ N. For a set X, we denote by Xn

the set of all (ordered) n-tuples of elements from X and by Xm×n the set of all m× n matrices over X.
When necessary, we consider tuples as matrices with one row. As usual, (xi,j) denotes the m× n matrix
(for some specified m and n) whose (i, j) entry is xi,j for all i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. The
transpose of a matrix M is denoted by MT.

We consider elements of {0, 1}n as bit strings of length n. Furthermore, let {0, 1}≤n =
∪n

i=0{0, 1}i and
{0, 1}∗ =

∪∞
i=0{0, 1}i. If u, v ∈ {0, 1}∗, then we denote by |u| the length of u and by uv the concatenation

of u and v. The unary representation of n, i.e., the string of n ones, is denoted by 1n. Similarly, 0n

denotes the string of n zeros.

3

Let I be a set. Suppose each i ∈ I is assigned an object qi. Then we denote by (qi | i ∈ I) the family
of all such objects and by {qi | i ∈ I} the set of all elements of this family.

When necessary, we assume that all “finite” objects (e.g., integers, tuples of integers, tuples of tuples
of integers) are represented by bit strings in some natural way. Sometimes we identify such objects with
their representations. Unless otherwise specified, integers are represented by their binary expansions.

Throughout the paper, p denotes an arbitrary fixed prime number. Also, we denote by Zp the set
{0, . . . , p − 1}. If necessary, this set is considered as a field under addition and multiplication modulo p
or as the additive group of this field. The intended meaning will be clear from the context.

In this paper, we deal with elementary abelian p-groups. Recall that a group G is called an elementary
abelian p-group if G is abelian and pg = 0 for any g ∈ G. (We use additive notation for abelian groups.)
In fact, elementary abelian p-groups are the same as vector spaces over the field Zp. Therefore a group
is an elementary abelian p-group if and only if it is isomorphic to a direct power of the additive group of
this field. For any n ∈ N and any group G, Gn denotes the nth direct power of G. If S is a system of
elements of a group, then we denote by ⟨S⟩ the subgroup of this group generated by S.

For convenience, we say that a function π : N→ N \ {0} is a polynomial if there exist c ∈ N \ {0} and
d ∈ N such that π(n) = cnd for any n ∈ N \ {0} (π(0) can be an arbitrary positive integer).

2.2 Probabilistic Preliminaries

Let X be a probability distribution on a finite or countably infinite sample space X. Then we denote by
suppX the support of X , i.e., the set {x ∈ X | PrX {x} ̸= 0}. In many cases, one can consider X as a
distribution on suppX . Suppose α is a function from X to a finite or countably infinite set Y . Then α
can be considered as a random variable. The distribution of this random variable is denoted by α(X).
Recall that this distribution is defined by Prα(X){y} = PrX α

−1(y) for each y ∈ Y .
We use the notation x1, . . . ,xn ← X to indicate that x1, . . . ,xn (denoted by upright bold letters)

are independent random variables distributed according to X . We assume that these random variables
are independent of all other random variables defined in such a way. Furthermore, all occurrences of an
upright bold letter in a probabilistic statement refer to the same (unique) random variable. Of course,
all random variables in a probabilistic statement are assumed to be defined on the same sample space.
Other specifics of random variables do not matter for us. Note that the probability distribution X in
this notation can be random. For example, suppose (Xi | i ∈ I) is a probability ensemble consisting of
distributions on the set X, where the set I is also finite or countably infinite. Moreover, let I be a
probability distribution on I. Then i ← I and x ← Xi mean that the joint distribution of the random
variables i and x is given by Pr[i = i, x = x] = PrI{i}PrXi{x} for each i ∈ I and x ∈ X.

For any n ∈ N, we denote by Xn the distribution of (x1, . . . ,xn), where x1, . . . ,xn ← X . Similarly,
for arbitrary m,n ∈ N, Xm×n denotes the distribution of (xi,j), where xi,j ← X for all i ∈ {1, . . . ,m}
and j ∈ {1, . . . , n}.

The notation x1, . . . , xn ← X indicates that x1, . . . , xn (denoted by upright medium-weight letters)
are fixed elements of the set X chosen independently at random according to the distribution X .

Let R and S be probability distributions on the set X. Then the statistical distance (also known as
variation distance) between R and S is defined as

∆(R,S) = 1

2

∑
x∈X

|PrR{x} − PrS{x}|.

It is well known that ∆(R,S) = maxM⊆X |PrRM−PrS M |. See also, e.g., [Sho08, Section 8.8] or [Lub96,
Lecture 7].

For a nonempty finite set Z, we denote by U(Z) the uniform probability distribution on Z.

2.3 Computational and Cryptographic Preliminaries

We need to generate random elements y ← U(Zp). But if p ̸= 2, then there is no probabilistic bounded-
time algorithm (in the standard sense) that do this (see [Sho08, Exercise 9.4]). For this reason, we
slightly modify the standard definition of a probabilistic algorithm. The only modification we make to
this definition is allowing a probabilistic algorithm to use random elements y← U(Zp) instead of random
bits b← U({0, 1}). (Recall that p is fixed.) Unless otherwise specified, probabilistic algorithms considered

4

in this paper use random elements of Zp. Note that there exists a probabilistic polynomial-time algorithm
A such that A uses random bits and for any n ∈ N the statistical distance between the distribution of
A(1n) and U(Zp) is at most 2−n (see Algorithm RN′ in [Sho08, Section 9.2]). Similarly, it is easy to
see that there exists a probabilistic polynomial-time algorithm B such that B uses random elements
of Zp and for any n ∈ N the statistical distance between the distribution of B(1n) and U({0, 1}) is at
most p−n. This shows that the computational power of probabilistic polynomial-time algorithms using
random elements of Zp is almost the same as that of such algorithms using random bits.

Let X = (Xi | i ∈ I) be a probability ensemble consisting of distributions on {0, 1}∗, where I ⊆ {0, 1}∗
or I ⊆ N. Then X is called polynomial-time samplable (or polynomial-time constructible) if there exists a
probabilistic polynomial-time algorithm A such that for every i ∈ I the distribution of A(i) (if I ⊆ {0, 1}∗)
or A(1i) (if I ⊆ N) coincides with Xi. It is evident that if X is polynomial-time samplable, then there
exists a polynomial π satisfying suppXi ⊆ {0, 1}≤π(|i|) (if I ⊆ {0, 1}∗) or suppXi ⊆ {0, 1}≤π(i) (if I ⊆ N)
for any i ∈ I.

Suppose K is an infinite set of nonnegative integers, D is a subset of {0, 1}∗, and D = (Dk | k ∈ K)
is a polynomial-time samplable probability ensemble consisting of distributions on D. Let Ek be the
distribution of (1k,d), where k ∈ K and d← Dk, and let E = (Ek | k ∈ K). Then E is a polynomial-time
samplable probability ensemble. Also, denote

∪
k∈K supp Ek by E. That is, E = {(1k, d) | k ∈ K, d ∈

suppDk}. This notation is used throughout the paper.
A function ϵ : K → {r ∈ R | r ≥ 0} is called negligible if for every polynomial π there exists a

nonnegative integer n such that ϵ(k) ≤ 1/π(k) whenever k ∈ K and k ≥ n. We denote by negl an
unspecified negligible function on K. Any (in)equality containing negl(k) is meant to hold for all k ∈ K.

Let (rk | k ∈ K) and (sk | k ∈ K) be probability ensembles consisting of random variables that take
values in {0, 1}∗. Then these ensembles are said to be computationally indistinguishable (or indistin-
guishable in polynomial time) if for any probabilistic polynomial-time algorithm A, |Pr[A(1k, rk) =
1] − Pr[A(1k, sk) = 1]| = negl(k). Furthermore, probability ensembles (Rk | k ∈ K) and (Sk | k ∈ K)
consisting of distributions on {0, 1}∗ are called computationally indistinguishable (or indistinguishable in
polynomial time) if (rk | k ∈ K) and (sk | k ∈ K) are computationally indistinguishable, where rk ← Rk

and sk ← Sk for all k ∈ K.

Definition 2.1. Suppose (Hd | d ∈ D) is a family of groups. We call a family (ϕd : Hd → {0, 1}∗ | d ∈ D)
of functions homomorphic if the following two conditions hold:

(i) For any d ∈ D, the operation ◦d in ϕd(Hd) given by ϕd(y) ◦d ϕd(z) = ϕd(yz), where y, z ∈ Hd,
is well defined. (Hence for every d ∈ D, ϕd(Hd) is a group under ◦d and ϕd is a homomorphism
from Hd onto this group.)

(ii) The functions (d, v, w) 7→ v ◦d w, (d, v) 7→ v−1 (in the group ϕd(Hd)), and d 7→ ϕd(1), where
d ∈ D and v, w ∈ ϕd(Hd), are polynomial-time computable. (Here, of course, ϕd(1) is the
identity element of the group ϕd(Hd).)

Let d ∈ D. It is evident that if ϕd is a homomorphism from Hd to a group Gd ⊆ {0, 1}∗, then ◦d is
well defined and coincides with the restriction of the multiplication in Gd to the subgroup ϕd(Hd). Also,
it is easy to see that the operation ◦d is well defined if and only if ϕ−1

d (ϕd(1)) is a normal subgroup of Hd

and ϕ−1
d (ϕd(y)) = yϕ−1

d (ϕd(1)) for all y ∈ Hd. In particular, this holds if ϕd is one-to-one.
We emphasize that a homomorphic family of functions does not just consist of group homomorphisms.

It is also required that multiplication, inversion, and computing the identity element in the group ϕd(Hd)
can be performed in polynomial time when d is given. Note that we use the term “homomorphic family
of functions” by analogy with the term “homomorphic encryption.”

We will use Definition 2.1 in the case when Hd is an elementary abelian p-group for each d ∈ D. In
this case, of course, we will switch to additive notation. It is evident that if Hd is an elementary abelian
p-group and ◦d is well defined, then ϕd(Hd) is an elementary abelian p-group under ◦d as a homomorphic
image of Hd.

Definition 2.2 (see also [Lub96, Preliminaries]). A function ρ : D → N is called a polynomial parameter
(on D) if the function d 7→ 1ρ(d) (d ∈ D) is polynomial-time computable. It is easy to see that the
function ρ is a polynomial parameter if and only if it is polynomial-time computable and there exists a
polynomial π satisfying ρ(d) ≤ π(|d|) for all d ∈ D. A function η : I → N, where I ⊆ N, is said to be
a polynomial parameter (on I) if the function 1i 7→ η(i) (i ∈ I) is a polynomial parameter on the set
{1i | i ∈ I} in the above sense.

5

Note that the restriction of any polynomial to a set I ⊆ N is a polynomial parameter on I.

Example 2.3. We will use the following types of polynomial parameters on E:

• (1k, d) 7→ η(k), where η is a polynomial parameter on K (in particular, a polynomial restricted to
K).

• (1k, d) 7→ ρ(d), where ρ is a polynomial parameter on D.

Remark 2.4. Suppose (Rd | d ∈ D) and (Sd | d ∈ D) are polynomial-time samplable probability ensem-
bles consisting of distributions on {0, 1}∗. Let σ be a polynomial parameter on E and let d ← Dk,
r0, . . . , rσ(1k,d) ← Rd, and s0, . . . , sσ(1k,d) ← Sd, where k ∈ K. Assume that the probability en-
sembles ((d, r0) | k ∈ K) and ((d, s0) | k ∈ K) are computationally indistinguishable. Then a stan-
dard hybrid argument (see [Gol01, proof of Theorem 3.2.6]) shows that the probability ensembles
((d, r1, . . . , rσ(1k,d)) | k ∈ K) and ((d, s1, . . . , sσ(1k,d)) | k ∈ K) are computationally indistinguishable.

(It suffices to prove this in the case when σ(1k, d) = π(k) for all (1k, d) ∈ E, where π : K → {pl | l ∈ N}
is a polynomial parameter.)

Let Φ = (ϕd : Yd → {0, 1}∗ | d ∈ D) be a family of functions such that there exists a polynomial η
satisfying Yd ⊆ {0, 1}≤η(|d|) for all d ∈ D. Recall that the family Φ is called polynomial-time computable
if the function (d, y) 7→ ϕd(y) (where d ∈ D and y ∈ Yd) is polynomial-time computable. Moreover,
recall that a collision for a function ϕ is a pair of distinct elements in its domain having the same image
under ϕ.

Definition 2.5. The family Φ is called collision-intractable (or collision-resistant) with respect to D
if for any probabilistic polynomial-time algorithm A, Pr[A(1k,d) is a collision for ϕd] = negl(k), where
d← Dk.

In particular, if ϕd is one-to-one for each d ∈ D, then Φ is collision-intractable with respect to D.

Definition 2.6. Suppose (Yd | d ∈ D) is a polynomial-time samplable probability ensemble, where Yd is
a probability distribution on Yd for any d ∈ D. Then the family Φ is said to be one-way with respect to D
and (Yd | d ∈ D) if it is polynomial-time computable and for any probabilistic polynomial-time algorithm
A, Pr[A(1k,d, ϕd(y)) ∈ ϕ−1

d (ϕd(y))] = negl(k), where d← Dk and y← Yd.

We use the term “one-way family of functions” instead of the more common term “family of one-
way functions” because one-wayness is a property of the whole family of functions rather than of its
individual members. For the same reason, we use the terms “homomorphic family of functions” and
“collision-intractable family of functions.”

The next lemma is well known.

Lemma 2.7. Suppose the family Φ is polynomial-time computable and collision-intractable with respect
to D. Also, assume that the following conditions hold:

• Yd ̸= ∅ for all d ∈ D.

• The probability ensemble (U(Yd) | d ∈ D) is polynomial-time samplable.

• For d← Dk and y← U(Yd), where k ∈ K, we have Pr[ϕ−1
d (ϕd(y)) = {y}] = negl(k).

Then the family Φ is one-way with respect to D and (U(Yd) | d ∈ D).

Lemma 2.7 can be proved using an argument similar to that used in the proof of Proposition 8.4
in [GB08] (see also [GB08, Proposition 8.2]). We will apply Lemma 2.7 to families Φ consisting of group
homomorphisms that are not one-to-one. It is evident that if ϕ is such a homomorphism defined on a
group Y , then ϕ−1(ϕ(y)) ̸= {y} for all y ∈ Y .

We need the following variant of the well-known Goldreich-Levin theorem for Zp.

Lemma 2.8 (follows from [DGK+10, Theorem 1]). Suppose (ψd : Zρ(d)
p → {0, 1}∗ | d ∈ D) is a one-

way family of functions with respect to D and (U(Zρ(d)
p) | d ∈ D), where ρ is a polynomial parameter

on D. For every k ∈ K, let d ← Dk, y, z ← U(Zρ(d)
p), and t ← U(Zp). Then the probability ensembles

((d, ψd(y), z,yz
T) | k ∈ K) and ((d, ψd(y), z, t) | k ∈ K) are computationally indistinguishable.

6

Note that for any y = (y1, . . . , yn) ∈ Zn
p and z = (z1, . . . , zn) ∈ Zn

p (where n ∈ N), yzT is the inner
product of y and z over the field Zp, i.e., y1z1 + · · ·+ ynzn.

Definition 2.9. Let (Ik | k ∈ K) be a pairwise disjoint family of nonempty subsets of {0, 1}∗ and let
I =

∪
k∈K Ik. For each i ∈ I, define κ(i) as the unique k ∈ K such that i ∈ Ik. Assume that the following

two conditions hold:

• There exists a polynomial π such that Ik ⊆ {0, 1}≤π(k) for any k ∈ K.

• The function κ : I → K defined above is a polynomial parameter.

Moreover, suppose σ and τ are polynomial parameters onK. Then a family (χi : Zσ(κ(i))
p → Zτ(κ(i))

p | i ∈ I)
of functions is called a family of p-ary hash functions if this family is polynomial-time computable and
σ(k) > τ(k) for all k ∈ K.

3 (Weakly) Pseudo-Free Families of Computational Elementary
Abelian p-Groups

3.1 Families of Computational Elementary Abelian p-Groups

Loosely speaking, a family of computational groups consists of groups Gd (where d ∈ D) whose elements
are represented by bit strings in such a way that equality testing, multiplication, inversion, computing
the identity element, and sampling random elements in Gd can be performed efficiently when d is given.
See [Ano13, Definition 3.1] for a formal definition of a family of computational groups. In this paper, we
consider only families (Gd | d ∈ D) of computational elementary abelian p-groups such that the following
additional conditions hold:

• For any d ∈ D, each element of Gd is represented by a single bit string. Hence we can assume that
Gd ⊆ {0, 1}∗ and that the representation of each element g ∈ Gd is g itself.

• There exists a polynomial η such that Gd ⊆ {0, 1}≤η(|d|) for all d ∈ D. In this case, the family of
computational groups has exponential size, i.e., there exists a polynomial η′ such that |Gd| ≤ 2η

′(|d|)

for all d ∈ D. See also [Ano13, Definition 3.2]. As noted in [Ano13], pseudo-free families that do
not have exponential size per se are of little interest.

Now we give a formal definition of a family of computational elementary abelian p-groups (with the
above restrictions).

Definition 3.1. Let ((Gd,Gd) | d ∈ D) be a family of pairs, where Gd ⊆ {0, 1}∗ is an elementary abelian
p-group and Gd is a probability distribution on Gd for any d ∈ D. Then this family is said to be a family
of computational elementary abelian p-groups if the following conditions hold:

• There exists a polynomial η such that Gd ⊆ {0, 1}≤η(|d|) for all d ∈ D.

• There exists a deterministic polynomial-time algorithm that, given d ∈ D and g, h ∈ Gd, computes
g + h in Gd.

• The probability ensemble (Gd | d ∈ D) is polynomial-time samplable.

For example, if ρ is a polynomial parameter on D, then ((Zρ(d)
p ,U(Zρ(d)

p)) | d ∈ D) is a family of compu-
tational elementary abelian p-groups. Note that before Definition 3.1 we do not specify the distributions
on the sets of representations of group elements when speaking of families of computational groups. This
is because these distributions do not matter for us there.

In the rest of the paper, Γ = ((Gd,Gd) | d ∈ D) denotes a family of computational elementary abelian
p-groups.

Remark 3.2. It is evident that, given d ∈ D and g ∈ Gd, −g (in Gd) can be computed in polynomial time
as (p− 1)g. Moreover, the identity element of Gd can also be computed in polynomial time from d ∈ D
as pg for an arbitrary element g ∈ Gd (which can be obtained by sampling from the distribution Gd).

7

Remark 3.3. Suppose ((Hd,Hd) | d ∈ D) is a family of computational elementary abelian p-groups and
Φ = (ϕd : Hd → {0, 1}∗ | d ∈ D) is a polynomial-time computable family of functions. Assume that
Φ satisfies Condition (i) of Definition 2.1 and that the function (d, v, w) 7→ v ◦d w (d ∈ D, v, w ∈
ϕd(Hd)) is polynomial-time computable, where ◦d is defined in this condition. Then it is easy to see
that ((ϕd(Hd), ϕd(Hd)) | d ∈ D) is a family of computational elementary abelian p-groups. Furthermore,
Remark 3.2 shows that Φ also satisfies Condition (ii) of Definition 2.1. Thus, the family Φ is homomorphic.

3.2 Pseudo-Free Families of Computational Elementary Abelian p-Groups

Suppose F∞,∞ is the elementary abelian p-group with basis a1, a2, . . . , x1, x2, . . . (as a vector space over
the field Zp). We consider F∞,∞ as a free group in the variety of all elementary abelian p-groups.
Furthermore, let F∞ = ⟨a1, a2, . . . ⟩, Fm,n = ⟨a1, . . . , am, x1, . . . , xn⟩, and Fm = Fm,0 = ⟨a1, . . . , am⟩ for
any m,n ∈ N. It is well known that ai and xj (for all i, j ∈ N \ {0}) can be considered as variables taking
values in an arbitrary elementary abelian p-group G. Namely, suppose w =

∑∞
i=1 yiai +

∑∞
j=1 zjxj ∈

F∞,∞, where yi, zj ∈ Zp for all i, j ∈ N\{0}. Here, of course, y1, y2, . . . , z1, z2, . . . are uniquely determined
by w and the sets Iw = {i ∈ N \ {0} | yi ̸= 0} and Jw = {j ∈ N \ {0} | zj ̸= 0} are finite. Assume
that w ∈ Fm,n for some m,n ∈ N. (This means that yi = zj = 0 for all i > m and j > n.) Let
g = (g1, . . . , gm, . . .) be an m′-tuple, where m′ ≥ m, or an infinite sequence of elements of G. Similarly,
let h = (h1, . . . , hn, . . .) be an n′-tuple, where n′ ≥ n, or an infinite sequence of elements of G. Then the
element w(g;h) ∈ G is defined as y1g1 + · · ·+ ymgm + z1h1 + · · ·+ znhn. Whenever n = 0, we omit the
semicolon in this notation, i.e., we write w(g) instead of w(g;). Note that w = w(a;x), where, of course,
a = (a1, a2, . . .) and x = (x1, x2, . . .).

In this paper, we use either of the two following representations of the element w for computational
purposes:

• (((i1, yi1), . . . , (is, yis)), ((j1, zj1), . . . , (jt, zjt))), where {i1, . . . , is} = Iw, i1 < · · · < is, {j1, . . . , jt} =
Jw, and j1 < · · · < jt.

• ((y1, . . . , ym), (z1, . . . , zn)), where m = max Iw and n = max Jw. Here we put max ∅ = 0.

All our results depending on such a representation hold for both representations defined above. Note that
every element of F∞,∞ has a unique representation of each of the above forms.

Remark 3.4. By a straight-line program over F∞,∞ we mean a sequence (u1, . . . , un) of tuples such that
for any l ∈ {1, . . . , n}, either ul = (b,m), where b ∈ {a, x} and m ∈ N \ {0}, or ul = (i, j,+), where
i, j ∈ {1, . . . , l − 1}. Here a, x, and + are considered as symbols. A straight-line program (u1, . . . , un)
over F∞,∞ naturally defines the sequence (v1, . . . , vn) of elements of F∞,∞ by induction. Namely, for
every l ∈ {1, . . . , n}, we put vl = bm if ul = (b,m) and vl = vi + vj if ul = (i, j,+), where b, m, i, and
j are as above. Then the straight-line program (u1, . . . , un) represents the element vn. Note that we do
not need tuples ul of the form (i,−) defining vl = −vi (where i ∈ {1, . . . , l − 1}) because they can be
replaced by sequences of at most 2⌊log2(p− 1)⌋ tuples of the form (i, j,+). Also, 0 can be represented by
a straight-line program over F∞,∞ consisting of one tuple of the form (b,m) and at most 2⌊log2 p⌋ tuples
of the form (i, j,+).

It is easy to see that, given a straight-line program over F∞,∞ representing an element w ∈ F∞,∞, the
first of the above representations of w can be computed in polynomial time. Conversely, given the first
of the above representations of an element w ∈ F∞,∞, a straight-line program over F∞,∞ representing w
can also be computed in polynomial time. This is why we do not use the representation of elements of
F∞,∞ by straight-line programs over F∞,∞ for computational purposes (unlike [Hoh03]).

Let G be an elementary abelian p-group and let g = (g1, . . . , gm) ∈ Gm, where m ∈ N. Denote by
Σ(G, g) the set of all tuples ((v1, w1), . . . , (vs, ws), h) such that the following conditions hold:

• s ∈ N \ {0}, h ∈ Gn for some n ∈ N, and v1, w1, . . . , vs, ws ∈ Fm,n.

• The system of equations
vi(a;x) = wi(a;x), i = 1, . . . , s,

over variables x1, . . . , xn is unsatisfiable in Fm (or, equivalently, in F∞).

• vi(g;h) = wi(g;h) in G for all i ∈ {1, . . . , s}.

8

Definition 3.5. The family Γ of computational elementary abelian p-groups is called pseudo-free with
respect to D if for any polynomial π and any probabilistic polynomial-time algorithm A, Pr[A(1k,d,g) ∈
Σ(Gd,g)] = negl(k), where d← Dk and g← Gπ(k)d .

A more general definition of a pseudo-free family of computational groups (in an arbitrary variety V
of groups with respect to D and a representation for elements of the V-free group by bit strings) was
given in [Ano13, Definition 3.3]. Our Definition 3.5 is a special case of that definition (in the variety of
all elementary abelian p-groups and with respect to the above representations for elements of F∞,∞).

3.3 Weak Pseudo-Freeness and Its Equivalence to Pseudo-Freeness for Fam-
ilies of Computational Elementary Abelian p-Groups

We define a weakly pseudo-free family of computational elementary abelian p-groups similarly to the
definition of a weakly pseudo-free family of computational groups given by Rivest in [Riv04b, Slide 11].
For an elementary abelian p-group G and a tuple g = (g1, . . . , gm) ∈ Gm, where m ∈ N, let

Σ′(G, g) = {v ∈ Fm | ((v, 0), ()) ∈ Σ(G, g)} = {v ∈ Fm \ {0} | v(g) = 0}.

The condition of the next definition is obtained from the condition of Definition 3.5 by replacing Σ(Gd,g)
by Σ′(Gd,g).

Definition 3.6. The family Γ of computational elementary abelian p-groups is said to be weakly pseudo-
free with respect to D if for any polynomial π and any probabilistic polynomial-time algorithm A,

Pr[A(1k,d,g) ∈ Σ′(Gd,g)] = negl(k), where d← Dk and g← Gπ(k)d .

Theorem 3.7. The family Γ is pseudo-free with respect to D if and only if it is weakly pseudo-free with
respect to D.

Proof. It is sufficient to construct deterministic polynomial-time algorithms B and C such that for every
d ∈ D, g ∈ Gm

d (where m ∈ N), u ∈ Σ(Gd, g), and v ∈ Σ′(Gd, g), we have B(u) ∈ Σ′(Gd, g) and
C(v) ∈ Σ(Gd, g).

Let d ∈ D and g ∈ Gm
d , where m ∈ N. Also, let u = ((v1, w1), . . . , (vs, ws), h) ∈ Σ(Gd, g), where

s ∈ N \ {0}, h ∈ Gn
d for some n ∈ N, and vi, wi ∈ Fm,n for all i ∈ {1, . . . , s}. Suppose B is a deterministic

polynomial-time algorithm that proceeds on input u as follows:

1. By rearranging the scalar multiples of a1, . . . , am, x1, . . . , xn in vi(a;x) and wi(a;x), transform
the system of equations

vi(a;x) = wi(a;x), i = 1, . . . , s, (2)

into an equivalent system of the form

v′i(x) = w′
i(a), i = 1, . . . , s, (3)

where v′i(x) ∈ ⟨x1, . . . , xn⟩ and w′
i(a) ∈ Fm for all i ∈ {1, . . . , s}.

2. By using Gaussian elimination, transform system (3) into an equivalent system of the form

xnj + v′′j (x) = w′′
j (a), j = 1, . . . , t,

0 = w′′
l (a), l = t+ 1, . . . , s,

where 1 ≤ n1 < · · · < nt ≤ n, 0 ≤ t ≤ s, v′′j (x) ∈ ⟨xnj+1, . . . , xn⟩ for all j ∈ {1, . . . , t},
w′′

i (a) ∈ Fm for all i ∈ {1, . . . , s}. (Since (2) is unsatisfiable in Fm, this system is also unsatisfiable
in this group. This means that w′′

l (a) ̸= 0 for some l ∈ {t+ 1, . . . , s}.)

3. Choose an index l ∈ {t+1, . . . , s} such that w′′
l (a) ̸= 0 (see the previous item) and return w′′

l (a).
(It is easy to see that w′′

l (g) = 0. Therefore, B(u) ∈ Σ′(Gd, g).)

Let v ∈ Σ′(Gd, g). Suppose C is a deterministic polynomial-time algorithm that returns ((v, 0), ()) on
input v. Then C(v) ∈ Σ(Gd, g).

9

In what follows, bearing in mind Theorem 3.7, we do not use the terms “weakly pseudo-free” and
“weak pseudo-freeness” when speaking of families of computational elementary abelian p-groups.

Remark 3.8. For an elementary abelian p-group G and a tuple g = (g1, . . . , gm) ∈ Gm, where m ∈ N, let

Λ(G, g) = {(y1, . . . , ym) ∈ Zm
p \ {0} | y1g1 + · · ·+ ymgm = 0}.

It is easy to see that the condition of Definition 3.6 (and by Theorem 3.7, the condition of Definition 3.5
as well) holds if and only if for any polynomial π and any probabilistic polynomial-time algorithm A,

Pr[A(1k,d,g) ∈ Λ(Gd,g)] = negl(k), where d ← Dk and g ← Gπ(k)d . In the sequel, we use only the last
condition as a characterization of families of computational elementary abelian p-groups that are pseudo-
free with respect to D. Note that this condition does not depend on the representation of elements
of F∞,∞.

3.4 Some Remarks

Remark 3.9. Let Ξ be a set of polynomial parameters on E such that for any polynomial π there exists
a polynomial parameter ξ ∈ Ξ satisfying π(k) ≤ ξ(1k, d) for all (1k, d) ∈ E. For example, we can take
the set of all polynomial parameters on E as Ξ. Replace the polynomial π by ξ ∈ Ξ and π(k) by ξ(1k,d)
in the condition defined in Remark 3.8. Then the modified version of this condition is equivalent to the
original one. The same holds for the conditions of Definitions 3.5 and 3.6.

We prove that if the family Γ satisfies the original version of the condition defined in Remark 3.8,
then it satisfies the modified version of this condition. The converse and the equivalence of the two
versions for the conditions of Definitions 3.5 and 3.6 can be proved similarly. Let ξ ∈ Ξ and let A
be a probabilistic polynomial-time algorithm. Choose a polynomial π such that ξ(1k, d) ≤ π(k) for all
(1k, d) ∈ E. Suppose B is a probabilistic polynomial-time algorithm that proceeds on input (1k, d, g) for

every k ∈ K, d ∈ suppDk, and g = (g1, . . . , gπ(k)) ∈ G
π(k)
d as follows:

1. Invoke A on input (1k, d, g′), where g′ = (g1, . . . , gξ(1k,d)).

2. If A returns a ξ(1k, d)-tuple of elements of Zp, then return this tuple right-padded with π(k) −
ξ(1k, d) zeros (to obtain a π(k)-tuple of elements of Zp). Otherwise, the algorithm B fails.

It is evident that B(1k, d, g) ∈ Λ(Gd, g) if and only if A(1k, d, g′) ∈ Λ(Gd, g
′). Therefore,

Pr[A(1k,d,g′) ∈ Λ(Gd,g
′)] = Pr[B(1k,d,g) ∈ Λ(Gd,g)] = negl(k),

where d← Dk, g1, . . . ,gπ(k) ← Gd, g′ = (g1, . . . ,gξ(1k,d)), and g = (g1, . . . ,gπ(k)).

Remark 3.10. Let G1k,d = Gd and G1k,d = Gd for each (1k, d) ∈ E. Then ((Ge,Ge) | e ∈ E) is a family of
computational elementary abelian p-groups. Furthermore, this family is pseudo-free with respect to E if
and only if the family Γ is pseudo-free with respect to D.

By Remark 3.10, we can use both D and E as an index set for the family Γ when studying or using
its pseudo-freeness. The advantage of using E is that it is the union of the pairwise disjoint family
(supp Ek | k ∈ K) satisfying the requirements of Definition 2.9. Therefore E is suitable for indexing
families of p-ary hash functions. But we use D (except in the proof of Theorem 4.12) because we prefer
to separate Γ from the probability ensemble D.
Remark 3.11. Let ρ : D → N \ {0} be a polynomial parameter. Then it is obvious that Γρ =

((G
ρ(d)
d ,Gρ(d)d) | d ∈ D) is a family of computational elementary abelian p-groups. Moreover, if the family

Γ is pseudo-free with respect to D, then the family Γρ is also pseudo-free with respect to D. Indeed,
suppose π is a polynomial and A is a probabilistic polynomial-time algorithm. Let B be a probabilis-
tic polynomial-time algorithm that proceeds on input (1k, d, g) for every k ∈ K, d ∈ suppDk, and

g = (g1, . . . , gπ(k)) ∈ G
π(k)
d as follows:

1. Choose gi,j ← Gd for all i ∈ {1, . . . , π(k)} and j ∈ {2, . . . , ρ(d)}.

2. Invoke A on input (1k, d, (v1, . . . , vπ(k))), where vi = (gi, gi,2, . . . , gi,ρ(d)) for any i ∈ {1, . . . , π(k)}.

3. Return the output of A (if it exists).

10

It is evident that Λ(G
ρ(d)
d , (v1, . . . , vπ(k))) ⊆ Λ(Gd, g). Therefore,

Pr[A(1k,d,v) ∈ Λ(G
ρ(d)
d ,v)] ≤ Pr[B(1k,d,g) ∈ Λ(Gd,g)] = negl(k),

where d← Dk, v← (Gρ(d)d)π(k), and g← Gπ(k)d .

4 Necessary and Sufficient Conditions for Pseudo-Freeness and
for the Existence of Pseudo-Free Families

4.1 The Functions knG,g, the Families Knρ
Γ, and the Probability Ensembles IρD,Γ

Let G be an elementary abelian p-group and let g = (g1, . . . , gm) ∈ Gm, where m ∈ N. Then we define
the function knG,g : Zm

p → G by knG,g(y) = y1g1 + · · · + ymgm for all y = (y1, . . . , ym) ∈ Zm
p . The

function knG,g can be considered as a knapsack function (see [MM11]). But, unlike many other variants
of knapsack functions and like discrete exponential functions, knG,g is a group homomorphism. Also, it
is obvious that, given d ∈ D, g ∈ Gm

d , and y ∈ Zm
p , knGd,g(y) can be computed in polynomial time.

Furthermore, suppose ρ is a polynomial parameter on D. Then we denote by KnρΓ the family

(knGd,g | d ∈ D, g ∈ G
ρ(d)
d). Of course, KnρΓ depends only on (Gd | d ∈ D) and ρ. We use the nota-

tion with Γ and ρ because of its convenience. It is easy to see that the family KnρΓ is homomorphic and
polynomial-time computable. Moreover, for any k ∈ K, let IρD,Γ,k be the distribution of (d,g), where

d ← Dk and g ← Gρ(d)d . The probability ensemble (IρD,Γ,k | k ∈ K) is denoted by IρD,Γ. For brevity, we

use (U(Zρ(d)
p) | d ∈ D) as a shorthand for (U(Zρ(d)

p) | d ∈ D, g ∈ Gρ(d)
d) when speaking of the one-wayness

of KnρΓ with respect to IρD,Γ and (U(Zρ(d)
p) | d ∈ D). This notation is used throughout the paper.

By the problem of inverting knGd,g we mean the problem of finding an element in kn−1
Gd,g

(f) when
given (d, g, f), where d ∈ D, g ∈ Gm

d , and f ∈ knGd,g(Zm
p) (m ∈ N). The next three remarks show that

this problem has some nice properties.

Remark 4.1. Since knGd,g is a group homomorphism, the problem of inverting this function is random
self-reducible. Namely, there exists a probabilistic polynomial-time oracle algorithm A such that for any
d ∈ D, g ∈ Gm

d , f ∈ knGd,g(Zm
p) (m ∈ N), and any probabilistic oracle O, we have

Pr[AO(d, g, f) ∈ kn−1
Gd,g

(f)] = Pr[O(knGd,g(y)) ∈ kn−1
Gd,g

(knGd,g(y))],

where y ← U(Zm
p). This means that if O returns a preimage of knGd,g(y) under knGd,g with some

probability δ(d, g), then AO computes a preimage of any f ∈ knGd,g(Zm
p) under knGd,g with the same

probability δ(d, g). A similar result for the discrete logarithm problem is well known.
The required algorithm A is similar to the algorithm in [Lub96, Lecture 4] for the discrete logarithm

problem. The algorithm A proceeds on input (d, g, f), where d, g, and f are as above, as follows:

1. Choose u← U(Zm
p).

2. Query the oracle on f + knGd,g(u). If the oracle returns a tuple z ∈ Zm
p , then return z − u

(computed in Zm
p). Otherwise, the algorithm A fails.

The above result follows from the obvious fact that if f = knGd,g(y) for some y ∈ Zm
p and u ← U(Zm

p),
then f + knGd,g(u) = knGd,g(y + u), where y + u is distributed uniformly on Zm

p .

Remark 4.2. The problem of inverting knGd,g is self-reducible in the following sense. For every d ∈ D,
let Od be an oracle that on input (b, h) ∈ Gn

d ×Gd (n ∈ N) returns 1 if h ∈ knGd,b(Zn
p) and 0 otherwise.

Then there exists a deterministic polynomial-time oracle algorithm A such that AOd(d, g, f) ∈ kn−1
Gd,g

(f)
for all d ∈ D, g ∈ Gm

d , and f ∈ knGd,g(Zm
p) (m ∈ N). This fact seems to be well known (even for

knapsack functions with polynomially bounded input coefficients; such knapsack functions are considered
in [MM11]). But we provide a proof of it (for knGd,g) for completeness and for the convenience of the
reader.

Let d, g = (g1, . . . , gm), and f be as above. The required algorithm A on input (d, g, f) successively
finds (by exhaustive search and using the oracle Od) some elements y1, . . . , ym ∈ Zp such that f − y1g1−
· · ·−yigi ∈ knGd,(gi+1,...,gm)(Zm−i

p) for all i ∈ {1, . . . ,m}. Then the algorithm A returns y = (y1, . . . , ym).
By construction, we have knGd,g(y) = f . It is easy to see that such elements y1, . . . , ym exist.

11

Remark 4.3. There exists a deterministic polynomial-time oracle algorithm A such that for any d ∈ D, g =

(g1, . . . , gm) ∈ Gm
d , f ∈ knGd,g(Zm

p) (m ∈ N), and any basis b of Gd, we have A
kn−1

Gd,b(d, g, f) ∈ kn−1
Gd,g

(f).
(It is evident that if b = (b1, . . . , bn) ∈ Gn

d is a basis of Gd, then knGd,b is a group isomorphism from Zn
p

to Gd.) Namely, the algorithm A on input (d, g, f) (where d, g, and f are as above) returns a solution
(y1, . . . , ym) ∈ Zm

p to the system of linear equations y1 kn
−1
Gd,b

(g1) + · · ·+ ym kn−1
Gd,b

(gm) = kn−1
Gd,b

(f). In
particular, this implies the following fact: If β is a polynomial-time computable function on D such that
β(d) is a basis of Gd for all d ∈ D, then the problem of inverting knGd,g is Cook-reducible to its special
case when g = β(d).

The problem of inverting knGd,g might be of independent interest. One of the purposes of this paper
is to draw attention to this problem. See also Problem 5.4 below.

4.2 Auxiliary Results

The proof of the next lemma is similar to that of Theorem 2.2 in [IN96].

Lemma 4.4. Suppose ρ is a polynomial parameter on D such that the family KnρΓ is one-way with respect

to IρD,Γ and (U(Zρ(d)
p) | d ∈ D). For every k ∈ K, let d ← Dk, g1, . . . ,gρ(d),h ← Gd, u1, . . . ,uρ(d),v ←

U(Gd), y← U(Zρ(d)
p), g = (g1, . . . ,gρ(d)), and u = (u1, . . . ,uρ(d)). Assume that

((d,g,h) | k ∈ K) and ((d,u,v) | k ∈ K) are computationally indistinguishable. (4)

Then the probability ensembles ((d,g, knGd,g(y)) | k ∈ K) and ((d,g,h) | k ∈ K) are computationally
indistinguishable.

Proof. Suppose (ek | k ∈ K) and (fk | k ∈ K) are probability ensembles consisting of random variables
taking values in {0, 1}∗. For brevity, we write ek ≈ fk if these probability ensembles are computationally
indistinguishable.

Let z← U(Zρ(d)
p) and t← U(Zp). Then (4) and Lemma 2.8 imply that

(d,u,v, knGd,u(y), z,yz
T) ≈ (d,g,h, knGd,g(y), z,yz

T)

≈ (d,g,h, knGd,g(y), z, t) ≈ (d,u,v, knGd,u(y), z, t). (5)

Suppose A is a probabilistic polynomial-time algorithm. Let B be a probabilistic polynomial-time
algorithm that proceeds on input (1k, d, u, v, f, z, t) for every k ∈ K, d ∈ suppDk, u = (u1, . . . , uρ(d)) ∈
G

ρ(d)
d , v ∈ Gd, f ∈ knGd,u(Z

ρ(d)
p), z = (z1, . . . , zρ(d)) ∈ Zρ(d)

p , and t ∈ Zp as follows:

1. For all i ∈ {1, . . . , ρ(d)}, compute u′i = ui + ziv.

2. Invoke A on input (1k, d, u′, f + tv), where u′ = (u′1, . . . , u
′
ρ(d)).

3. Return the output of A (if it exists).

It is evident that if f = knGd,u(y), where y ∈ Zρ(d)
p , then f + tv = knGd,u′(y) + (t− yzT)v.

Let u′
i = ui + ziv for all i ∈ {1, . . . , ρ(d)} and u′ = (u′

1, . . . ,u
′
ρ(d)). It is easy to see that the random

variable (d,u′,y) has the same distribution as (d,u,y). Therefore,

Pr[B(1k,d,u,v, knGd,u(y), z,yz
T) = 1] = Pr[A(1k,d,u′, knGd,u′(y)) = 1]

= Pr[A(1k,d,u, knGd,u(y)) = 1]. (6)

Furthermore, conditioned on t ̸= yzT, the random variables (d,u′, knGd,u′(y)+ (t−yzT)v) and (d,u,v)
are identically distributed. Hence,

Pr[B(1k,d,u,v, knGd,u(y), z, t) = 1] = Pr[A(1k,d,u′, knGd,u′(y) + (t− yzT)v) = 1]

= Pr[A(1k,d,u′, knGd,u′(y) + (t− yzT)v) = 1 | t = yzT] Pr[t = yzT]

+ Pr[A(1k,d,u′, knGd,u′(y) + (t− yzT)v) = 1 | t ̸= yzT] Pr[t ̸= yzT]

=
1

p
Pr[A(1k,d,u, knGd,u(y)) = 1] +

p− 1

p
Pr[A(1k,d,u,v) = 1]. (7)

12

It follows from (5)–(7) that

|Pr[A(1k,d,u, knGd,u(y)) = 1]− Pr[A(1k,d,u,v) = 1]|

=
p

p− 1
|Pr[B(1k,d,u,v, knGd,u(y), z,yz

T) = 1]− Pr[B(1k,d,u,v, knGd,u(y), z, t) = 1]|

= negl(k).

Therefore, (d,u, knGd,u(y)) ≈ (d,u,v). On the other hand, (4) implies that (d,g, knGd,g(y)) ≈
(d,u, knGd,u(y)) and (d,u,v) ≈ (d,g,h). Thus, (d,g, knGd,g(y)) ≈ (d,g,h).

Note that Lemma 4.4 is very close to a special case of Lemma 4.2 in [MM11] (or Corollary 1 in
the preliminary version of that paper). We provide a proof of Lemma 4.4 for completeness and for the
convenience of the reader.

Remark 4.5. For every k ∈ K, let d← Dk, h← Gd, and v ← U(Gd), as in Lemma 4.4. By Remark 2.4
(with σ of the second type given in Example 2.3), if (U(Gd) | d ∈ D) is polynomial-time samplable and
((d,h) | k ∈ K) and ((d,v) | k ∈ K) are computationally indistinguishable, then Condition (4) holds for
any polynomial parameter ρ on D. Moreover, if maxd∈suppDk

∆(Gd,U(Gd)) = negl(k), then it is easy
to see that the statistical distance between the distributions of (d,g,h) and (d,u,v) (in the notation of
Lemma 4.4) is negligible as a function of k ∈ K. Therefore in this case Condition (4) also holds for any
polynomial parameter ρ on D.

Lemma 4.6. Assume that the family Γ is pseudo-free with respect to D. Then for any polynomial
parameter ρ on D, the family KnρΓ is collision-intractable with respect to IρD,Γ.

Proof. Suppose ρ is a polynomial parameter on D and A is a probabilistic polynomial-time algorithm.
Let B be a probabilistic polynomial-time algorithm that proceeds on input (1k, d, g) for every k ∈ K,

d ∈ suppDk, and g ∈ Gρ(d)
d as follows:

1. Invoke A on input (1k, d, g).

2. If A returns a pair (y, y′) ∈ Zρ(d)
p ×Zρ(d)

p , then return y− y′ (computed in Zρ(d)
p). Otherwise, the

algorithm B fails.

It is evident that B(1k, d, g) ∈ Λ(Gd, g) if and only if A(1k, d, g) is a collision for knGd,g. This implies
that

Pr[A(1k,d,g) is a collision for knGd,g] = Pr[B(1k,d,g) ∈ Λ(Gd,g)] = negl(k),

where d ← Dk and g ← Gρ(d)d . Here the second probability is negligible by Remark 3.9 with Ξ being
the set of all polynomial parameters on E. We apply the modification (according to Remark 3.9) of the
condition defined in Remark 3.8 to the polynomial parameter (1k, d) 7→ ρ(d) on E (see the second type
of polynomial parameters given in Example 2.3).

Lemma 4.7. Let ((Hd,Hd) | d ∈ D) be a family of computational elementary abelian p-groups. Also,
suppose Φ = (ϕd : Hd → Gd | d ∈ D) is a family of functions such that the following conditions hold:

• For any d ∈ D, ϕd is a homomorphism.

• The family Φ is one-way with respect to D and (Hd | d ∈ D).

• For d← Dk, g← Gd, and h← Hd, the probability ensembles ((d,g) | k ∈ K) and ((d, ϕd(h)) | k ∈
K) are computationally indistinguishable.

Then the family Γ is pseudo-free with respect to D.

Proof. Suppose π : K → {pl | l ∈ N} is a polynomial parameter and A is a probabilistic polynomial-time
algorithm. Let B be a probabilistic polynomial-time algorithm that proceeds on input (1k, d, f) for every
k ∈ K, d ∈ suppDk, and f ∈ ϕd(Hd) as follows:

1. Choose i← U({1, . . . , π(k)}) and r1, . . . , ri−1, ri+1, . . . , rπ(k) ← Hd.

2. Invoke A on input (1k, d, w), where w = (ϕd(r1), . . . , ϕd(ri−1), f, ϕd(ri+1), . . . , ϕd(rπ(k))).

13

3. If A returns a tuple (z1, . . . , zπ(k)) ∈ Zπ(k)
p , where zi ̸= 0, then return −z−1

i (z1r1+ · · ·+zi−1ri−1+

zi+1ri+1 + · · ·+ zπ(k)rπ(k)) (of course, z
−1
i is computed in the field Zp). Otherwise, the algorithm

B fails.

Let k ∈ K, i← U({1, . . . , π(k)}), d← Dk, r1, . . . , rπ(k),h← Hd, v← Gπ(k)d , and

w = (ϕd(r1), . . . , ϕd(ri−1), ϕd(h), ϕd(ri+1), . . . , ϕd(rπ(k))).

It is evident that B(1k, d, f) ∈ ϕ−1
d (f) if and only if A(1k, d, w) = (z1, . . . , zπ(k)) ∈ Λ(Gd, w), where zi ̸= 0.

This implies that

Pr[B(1k,d, ϕd(h)) ∈ ϕ−1
d (ϕd(h))] = Pr[A(1k,d,w) = (z1, . . . , zπ(k)) ∈ Λ(Gd,w), zi ̸= 0]. (8)

Denote by ν(v) the number of random elements of Zp used by the algorithm A on input v. Let s ←
U(Zν(1k,d,w)

p) represent the sequence of random elements of Zp used by A on input (1k,d,w). It is easy
to see that the random variables (d,w, s) and i are independent. Therefore,

Pr[A(1k,d,w) = (z1, . . . , zπ(k)) ∈ Λ(Gd,w), zi ̸= 0] ≥ 1

π(k)
Pr[A(1k,d,w) ∈ Λ(Gd,w)]. (9)

By Remark 2.4 (with σ of the first type given in Example 2.3), the probability ensembles ((d,v) | k ∈
K) and ((d,w) | k ∈ K) are computationally indistinguishable. (It is obvious that (d,w) and
(d, (ϕd(r1), . . . , ϕd(rπ(k)))) are identically distributed.) Hence,

Pr[A(1k,d,v) ∈ Λ(Gd,v)] ≤ Pr[A(1k,d,w) ∈ Λ(Gd,w)] + negl(k). (10)

It follows from (8)–(10) that

Pr[A(1k,d,v) ∈ Λ(Gd,v)] ≤ π(k) Pr[B(1k,d, ϕd(h)) ∈ ϕ−1
d (ϕd(h))] + negl(k) = negl(k).

By Remark 3.9, Γ is pseudo-free with respect to D. Here we use this remark with Ξ being the set of
all functions ξ : E → N such that there exists a polynomial parameter ξ′ : K → {pl | l ∈ N} satisfying
ξ(1k, d) = ξ′(k) for all (1k, d) ∈ E.

The next corollary follows from Remark 3.3 and Lemma 4.7.

Corollary 4.8. Let ((Hd,Hd) | d ∈ D) be a family of computational elementary abelian p-groups. Also,
suppose (ϕd : Hd → {0, 1}∗ | d ∈ D) is a homomorphic family of functions that is one-way with respect to
D and (Hd | d ∈ D). Then ((ϕd(Hd), ϕd(Hd)) | d ∈ D) is a pseudo-free family of computational elementary
abelian p-groups with respect to D, where ϕd(Hd) is considered as an elementary abelian p-group under
the operation ◦d defined in Condition (i) of Definition 2.1.

Remark 4.9. Corollary 4.8 can be considered as a tool for constructing pseudo-free families of compu-
tational elementary abelian p-groups. For example, assume that there exist a family ((Hd,Hd) | d ∈ D)
of computational elementary abelian p-groups and a family Φ = (ϕd : Hd → {0, 1}∗ | d ∈ D) of functions
such that the following conditions hold:

• Φ is one-way with respect to D and (Hd | d ∈ D).

• For any d ∈ D, ϕd is one-to-one. (Hence, Φ satisfies Condition (i) of Definition 2.1.)

• There exists a deterministic polynomial-time algorithm that, given d ∈ D and v, w ∈ ϕd(Hd),
computes ϕd(ϕ

−1
d (v)+ϕ−1

d (w)). (Hence by Remark 3.3, Φ satisfies Condition (ii) of Definition 2.1.)

Then Corollary 4.8 enables us to construct a pseudo-free family of computational elementary abelian
p-groups with respect to D. Moreover, we can conjecture that a family Φ satisfying the above conditions

exists even in the case when Hd = Zρ(d)
p and Hd = U(Zρ(d)

p) for all d ∈ D, where ρ is an appropriate
polynomial parameter on D.

Lemma 4.10. Suppose there exists a polynomial parameter ρ on D such that the following two conditions
hold:

14

• The family KnρΓ is one-way with respect to IρD,Γ and (U(Zρ(d)
p) | d ∈ D).

• For d ← Dk, g
′ ← Gρ(d)+1

d , and u′ ← U(Gd)
ρ(d)+1, the probability ensembles ((d,g′) | k ∈ K) and

((d,u′) | k ∈ K) are computationally indistinguishable. (This condition is obviously equivalent to
Condition (4) in Lemma 4.4.)

Then the family Γ is pseudo-free with respect to D.

Proof. Let ρ be a polynomial parameter on D such that the above two conditions hold. By Lemma 4.4,

for d ← Dk (where k ∈ K), g ← Gρ(d)d , h ← Gd, and y ← U(Zρ(d)
p), the probability ensembles

((d,g,h) | k ∈ K) and ((d,g, knGd,g(y)) | k ∈ K) are computationally indistinguishable. Furthermore,

Lemma 4.7 implies that the family Γ′ = ((Gd,Gd) | d ∈ D, g ∈ Gρ(d)
d) of computational elementary abelian

p-groups is pseudo-free with respect to IρD,Γ. But it is easy to see that Γ′ is pseudo-free with respect

to IρD,Γ if and only if Γ is pseudo-free with respect to D.

4.3 Putting It All Together

Theorem 4.11. Let Θ be the set of all polynomial parameters θ : D → N such that pθ(d) > |Gd| for all
sufficiently large k ∈ K and all d ∈ suppDk. Assume that at least one of the following two conditions
(from Remark 4.5) holds:

• (U(Gd) | d ∈ D) is polynomial-time samplable and for d ← Dk, h ← Gd, and v ← U(Gd), the
probability ensembles ((d,h) | k ∈ K) and ((d,v) | k ∈ K) are computationally indistinguishable.

• maxd∈suppDk
∆(Gd,U(Gd)) = negl(k).

Then the following conditions are equivalent:

(i) The family Γ is pseudo-free with respect to D.

(ii) For any polynomial parameter ρ on D, the family KnρΓ is collision-intractable with respect to IρD,Γ.

(iii) For any polynomial parameter θ ∈ Θ, the family KnθΓ is collision-intractable with respect to IθD,Γ.

(iv) There exists a polynomial parameter θ ∈ Θ such that the family KnθΓ is collision-intractable with
respect to IθD,Γ.

(v) For any polynomial parameter θ ∈ Θ, the family KnθΓ is one-way with respect to IθD,Γ and

(U(Zθ(d)
p) | d ∈ D).

(vi) There exists a polynomial parameter θ ∈ Θ such that the family KnθΓ is one-way with respect to

IθD,Γ and (U(Zθ(d)
p) | d ∈ D).

Proof. (i) =⇒ (ii): Follows from Lemma 4.6.
(ii) =⇒ (iii): Trivial.
(iii) =⇒ (iv): Trivial (because Θ ̸= ∅).
(iii) =⇒ (v): Follows from Lemma 2.7.
(iv) =⇒ (vi): Follows from Lemma 2.7.
(v) =⇒ (vi): Trivial (because Θ ̸= ∅).
(vi) =⇒ (i): Follows from Remark 4.5 and Lemma 4.10.

Theorem 4.12. The following conditions are equivalent:

(i) There exists a pseudo-free family of computational elementary abelian p-groups (with respect to
some probability ensemble of the required form).

(ii) For any polynomial parameter η : N→ N such that η(n) > n for all n ∈ N, there exist a pairwise
disjoint family (Ik | k ∈ K) (consisting of nonempty subsets of {0, 1}∗) satisfying the require-
ments of Definition 2.9 and a homomorphic collision-intractable (with respect to some polynomial-
time samplable probability ensemble (Ik | k ∈ K) satisfying supp Ik ⊆ Ik for all k ∈ K) family

(χi : Zη(τ(κ(i)))
p → Zτ(κ(i))

p | i ∈ I) of p-ary hash functions, where I =
∪

k∈K Ik, κ : I → K is from
Definition 2.9, and τ is a polynomial parameter on K.

15

(iii) There exist a pairwise disjoint family (Ik | k ∈ K) (consisting of nonempty subsets of {0, 1}∗)
satisfying the requirements of Definition 2.9 and a homomorphic collision-intractable (with respect
to some polynomial-time samplable probability ensemble (Ik | k ∈ K) satisfying supp Ik ⊆ Ik for
all k ∈ K) family of p-ary hash functions indexed by

∪
k∈K Ik.

(iv) There exists a homomorphic family (ϕu : Zρ(u)
p → {0, 1}∗ |u ∈ U) of functions (where U is a

subset of {0, 1}∗ and ρ is a polynomial parameter on U) that is one-way with respect to some

probability ensemble of the required form and the probability ensemble (U(Zρ(u)
p) |u ∈ U).

(v) There exist a set V ⊆ {0, 1}∗, a family ((Hv,U(Hv)) | v ∈ V) of computational elementary abelian
p-groups, and a homomorphic family (ψv : Hv → {0, 1}∗ | v ∈ V) of functions that is one-way with
respect to some probability ensemble of the required form and the probability ensemble (U(Hv) | v ∈
V).

(vi) There exists a pseudo-free family ((Aw,U(Aw)) |w ∈ W) of computational elementary abelian
p-groups (with respect to some probability ensemble of the required form), where W is a subset
of {0, 1}∗.

Proof. (i) =⇒ (ii): For any n ∈ N, let αn be the one-to-one function from {0, 1}≤n onto {0, 1}n+1\{0n+1}
defined by αn(u) = u10n−|u| for all u ∈ {0, 1}≤n. Then the functions (1n, u) 7→ αn(u) and (1n, v) 7→
α−1
n (v), where n ∈ N, u ∈ {0, 1}≤n, and v ∈ {0, 1}n+1 \ {0n+1}, are polynomial-time computable.
Assume that Γ is pseudo-free with respect to D. Choose a polynomial π such that Gd ⊆ {0, 1}≤π(k)

for every k ∈ K and d ∈ suppDk. For each such k and d, let G1k,d = απ(k)(Gd) and G1k,d = απ(k)(Gd).
Consider G1k,d as an elementary abelian p-group under the unique operation such that the restriction of

απ(k) to Gd is a group isomorphism from Gd to G1k,d. Remark 3.10 implies that Γ = ((Ge,Ge) | e ∈ E)
is a pseudo-free family of computational elementary abelian p-groups with respect to E . Suppose ρ
is the polynomial parameter on E such that ρ(1k, d) = η(π(k) + 1) for any (1k, d) ∈ E. Then

({(e, w) | e ∈ supp Ek, w ∈ G
ρ(e)

e } | k ∈ K) and Knρ
Γ

satisfy the requirements of Condition (ii) (Knρ
Γ

is collision-intractable with respect to IρE,Γ by Lemma 4.6).

(ii) =⇒ (iii): Trivial.
(iii) =⇒ (iv): Follows from Lemma 2.7.
(iv) =⇒ (v): Trivial.
(v) =⇒ (vi): Follows from Corollary 4.8 and the well-known fact that if ψ : H → G is a group

homomorphism, where H is finite, then ψ(U(H)) = U(ψ(H)).
(vi) =⇒ (i): Trivial.

4.4 A Diffie-Hellman-Like Key Agreement Protocol

In this subsection, we construct a Diffie-Hellman-like key agreement protocol from the family Γ of
computational elementary abelian p-groups. To describe this protocol, we need some notation. Let
Y = (yi,j) ∈ Zs×m

p and Q = (qi,j) ∈ Gm×n, where s,m, n ∈ N and G is an elementary abelian p-group.
Then it is natural to define Y Q as the s × n matrix over G whose (i, j) entry is

∑m
l=1 yi,lql,j . We can

consider G as a right vector space over the field Zp such that qz = zq for all q ∈ G and z ∈ Zp. Hence for
any Z = (zi,j) ∈ Zn×t

p (where t ∈ N), QZ is naturally defined as the m×t matrix over G whose (i, j) entry

is
∑n

l=1 qi,lzl,j . It is easy to see that (Y Q)Z = Y (QZ). Note that in this notation, knG,g(y) = ygT = gyT

for all y ∈ Zm
p and g ∈ Gm.

The protocol uses a polynomial parameter ρ : D → N \ {0}. The public parameters of the protocol

are k ∈ K (the security parameter), d ← Dk, and Q ← Gρ(d)×ρ(d)
d . We assume that the parties of the

protocol (traditionally called Alice and Bob) communicate over a channel providing sender authenticity
and message integrity. The protocol proceeds as follows:

1. Alice chooses y← U(Zρ(d)
p), computes yQ, and sends yQ to Bob.

2. Bob chooses z← U(Zρ(d)
p), computes QzT, and sends QzT to Alice.

3. Alice computes the common secret key y(QzT).

16

4. Bob computes the common secret key (yQ)zT.

For any k ∈ K, let d ← Dk, Q ← Gρ(d)×ρ(d)
d , y, z ← U(Zρ(d)

p), and u ← U(Gd). Standard security
requirements for this protocol are as follows:

(i) For any probabilistic polynomial-time algorithm A, Pr[A(1k,d,Q,yQ,QzT) = yQzT] = negl(k).
This condition is similar to the condition of computational hardness of the computational Diffie-
Hellman problem.

(ii) The probability ensembles ((d,Q,yQ,QzT,yQzT) | k ∈ K) and ((d,Q,yQ,QzT,u) | k ∈ K) are
computationally indistinguishable. This condition is similar to the condition of computational
hardness of the decisional Diffie-Hellman problem.

It is easy to prove the following results:

• If the expectation of 1/|Gd| is negligible as a function of k ∈ K, then (ii) implies (i).

• Let Γρ = ((G
ρ(d)
d ,Gρ(d)d) | d ∈ D), as in Remark 3.11. Then (i) implies that the family KnρΓρ is

one-way with respect to IρD,Γρ and (U(Zρ(d)
p) | d ∈ D). (We identify a matrix with the tuple of its

rows.)

Moreover, we have the following facts:

• Let Q′ ← G(ρ(d)+1)×ρ(d)
d and U′ ← U(Gd)

(ρ(d)+1)×ρ(d). Assume that the probability ensembles
((d,Q′) | k ∈ K) and ((d,U′) | k ∈ K) are computationally indistinguishable. Then, by Lemma 4.10,

one-wayness of KnρΓρ with respect to IρD,Γρ and (U(Zρ(d)
p) | d ∈ D) implies pseudo-freeness of Γρ with

respect to D.

• Recall that if Γ is pseudo-free with respect to D, then Γρ is also pseudo-free with respect to D (see
Remark 3.11).

Unfortunately, we do not know whether (i) or (ii) holds under reasonable assumptions on Γ and ρ

(e.g., under the one-wayness of KnρΓρ with respect to IρD,Γρ and (U(Zρ(d)
p) | d ∈ D) or the pseudo-freeness

of Γ with respect to D). We leave this as an interesting open question. See also Problem 5.3 below.

5 Problems for Further Research

In this section, we suggest some problems concerning families of computational elementary abelian p-
groups for further research. Note that similar problems for some other objects were already posed. For
example, see [Hoh03, Section 6.1, Problem 2], [Mic10, Section 5], [Riv04a, Section 7, Conjecture 2],
and [Riv04b, Slide 22] for natural analogues of Problems 5.1–5.3 for pseudo-free families in the varieties
of all groups and all abelian groups. Analogues of Problem 5.4 for numerous candidates for one-way
families of functions are well known.

Problem 5.1. Construct a pseudo-free family of computational elementary abelian p-groups (with re-
spect to a probability ensemble of the required form) under some standard cryptographic assumptions
(e.g., under the general integer factoring intractability assumption).

Corollary 4.8 enables us to construct a pseudo-free family of computational elementary abelian p-
groups under some nonstandard cryptographic assumption. See also Remark 4.9 and Theorem 4.12.

Problem 5.2. Find applications of pseudo-free families of computational elementary abelian p-groups.
For example, construct some cryptographic primitives or secure cryptographic protocols from an arbitrary
pseudo-free family of computational elementary abelian p-groups.

The proof of the implication (i) =⇒ (ii) of Theorem 4.12 shows how to construct a homomorphic
collision-intractable family of p-ary hash functions (that is also one-way by Lemma 2.7) from a pseudo-
free family of computational elementary abelian p-groups.

17

Problem 5.3. Explore the security of the Diffie-Hellman-like key agreement protocol presented in Sub-
section 4.4 (under reasonable assumptions on the family Γ and the polynomial parameter ρ).

Of course, Problem 5.3 is connected with Problem 5.2. Note that the results presented in Subsection 4.4
give only necessary conditions for the security of the protocol. Hasegawa et al. [HIST09, Theorem 6]
proved that the computational Diffie-Hellman problem in a pseudo-free family (satisfying some additional
condition) is in some sense computationally hard. Their proof is valid for pseudo-free families in any
variety of infinite exponent, provided that, given an integer n ≥ 2, a representation of the equation
xn1 = a1 can be computed in polynomial time. (Here we use the notation of Section 1.) Informally
speaking, the proof of this result in [HIST09] is based on a reduction from the proper power problem
(also known as the strong RSA problem, see [Riv04a, Section 4]) to the computational Diffie-Hellman
problem. Since the proper power problem problem is computationally hard in any pseudo-free family
(see [Riv04a, Theorem 4] or [Riv04b, Slide 19]), the computational Diffie-Hellman problem in every such
family is computationally hard, too. In fact, the reduction used in [HIST09] was proposed by Azimian
in [Azi05] and goes back to the work of Shmuely [Shm85].

Problem 5.4. Explore the cryptographic properties of families of functions knGd,g (where d ∈ D, g ∈ Gm
d ,

and m ∈ N) for suitable families Γ of computational elementary abelian p-groups. The properties of the
problem of inverting knGd,g are particularly interesting.

Theorem 4.11 shows that Problem 5.4 is connected with Problem 5.1. See Subsection 4.1 for some
remarks concerning the problem of inverting knGd,g.

Acknowledgement

This research was supported in part by the Russian Foundation for Basic Research (grant no. 13-01-
00183).

References

[Ano13] M. Anokhin. Constructing a pseudo-free family of finite computational groups under the
general integer factoring intractability assumption. Groups — Complexity — Cryptology,
5(1):53–74, 2013. Preliminary version: Electronic Colloquium on Computational Complexity
(ECCC, http://eccc.hpi-web.de/), TR12-114, 2012.

[Azi05] K. Azimian. Breaking Diffie-Hellman is no easier than root finding. Electronic Colloquium
on Computational Complexity (ECCC, http://eccc.hpi-web.de/), TR05-124, 2005.

[DGK+10] Y. Dodis, S. Goldwasser, Y. T. Kalai, C. Peikert, and V. Vaikuntanathan. Public-key en-
cryption schemes with auxiliary inputs. In Proceedings of the 7th Theory of Cryptography
Conference (TCC 2010), volume 5978 of Lecture Notes in Computer Science, pages 361–381.
Springer, 2010.

[Fuk14] M. Fukumitsu. Pseudo-free groups and cryptographic assumptions. PhD thesis, Department
of Computer and Mathematical Sciences, Graduate School of Information Sciences, Tohoku
University, January 2014.

[GB08] S. Goldwasser and M. Bellare. Lecture notes on cryptography. Available at http://cseweb.
ucsd.edu/users/mihir/papers/gb.pdf, July 2008.

[Gol01] O. Goldreich. Foundations of cryptography. Volume 1 (Basic tools). Cambridge University
Press, 2001.

[HIST09] S. Hasegawa, S. Isobe, H. Shizuya, and K. Tashiro. On the pseudo-freeness and the CDH
assumption. International Journal of Information Security, 8(5):347–355, 2009.

[Hoh03] S. R. Hohenberger. The cryptographic impact of groups with infeasible inversion. Master’s
thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute
of Technology, May 2003.

18

http://eccc.hpi-web.de/
http://eccc.hpi-web.de/
http://cseweb.ucsd.edu/users/mihir/papers/gb.pdf
http://cseweb.ucsd.edu/users/mihir/papers/gb.pdf

[IN96] R. Impagliazzo and M. Naor. Efficient cryptographic schemes provably as secure as subset
sum. Journal of Cryptology, 9(4):199–216, 1996. Preliminary version: Proceedings of the 30th
Annual Symposium on Foundations of Computer Science (FOCS 1989), p. 236–241, 1989.

[Lub96] M. Luby. Pseudorandomness and cryptographic applications. Princeton University Press,
1996.

[Mic10] D. Micciancio. The RSA group is pseudo-free. Journal of Cryptology, 23(2):169–186, 2010.
Preliminary version: Proceedings of EUROCRYPT 2005, v. 3494 of Lecture Notes in Com-
puter Science, p. 387–403, Springer, 2005.

[MM11] D. Micciancio and P. Mol. Pseudorandom knapsacks and the sample complexity of LWE
search-to-decision reductions. Cryptology ePrint Archive (http://eprint.iacr.org/), Re-
port 2011/521, 2011. Preliminary version: Proceedings of CRYPTO 2011, v. 6841 of Lecture
Notes in Computer Science, p. 465–484, Springer, 2011.

[Riv04a] R. L. Rivest. On the notion of pseudo-free groups. In Proceedings of the 1st Theory of
Cryptography Conference (TCC 2004), volume 2951 of Lecture Notes in Computer Science,
pages 505–521. Springer, 2004.

[Riv04b] R. L. Rivest. On the notion of pseudo-free groups. Available at https:

//people.csail.mit.edu/rivest/pubs/Riv04e.slides.pdf, https://people.csail.

mit.edu/rivest/pubs/Riv04e.slides.ppt, and http://people.csail.mit.edu/rivest/

Rivest-TCC04-PseudoFreeGroups.ppt, February 2004. Presentation of [Riv04a].

[Shm85] Z. Shmuely. Composite Diffie-Hellman public-key generating systems are hard to break. Tech-
nical Report 356, Technion — Israel Institute of Technology, Department of Computer Science,
Haifa, Israel, February 1985.

[Sho08] V. Shoup. A computational introduction to number theory and algebra. Cambridge University
Press, 2nd edition, 2008.

19

http://eprint.iacr.org/
https://people.csail.mit.edu/rivest/pubs/Riv04e.slides.pdf
https://people.csail.mit.edu/rivest/pubs/Riv04e.slides.pdf
https://people.csail.mit.edu/rivest/pubs/Riv04e.slides.ppt
https://people.csail.mit.edu/rivest/pubs/Riv04e.slides.ppt
http://people.csail.mit.edu/rivest/Rivest-TCC04-PseudoFreeGroups.ppt
http://people.csail.mit.edu/rivest/Rivest-TCC04-PseudoFreeGroups.ppt

	Introduction
	Preliminaries
	General Preliminaries
	Probabilistic Preliminaries
	Computational and Cryptographic Preliminaries

	(Weakly) Pseudo-Free Families of Computational Elementary Abelian p-Groups
	Families of Computational Elementary Abelian p-Groups
	Pseudo-Free Families of Computational Elementary Abelian p-Groups
	Weak Pseudo-Freeness and Its Equivalence to Pseudo-Freeness for Families of Computational Elementary Abelian p-Groups
	Some Remarks

	Necessary and Sufficient Conditions for Pseudo-Freeness and for the Existence of Pseudo-Free Families
	The Functions kn_{G,g}, the Families Kn_Γ^ρ, and the Probability Ensembles I_{D,Γ}^ρ
	Auxiliary Results
	Putting It All Together
	A Diffie-Hellman-Like Key Agreement Protocol

	Problems for Further Research

