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Abstract

The past several years have seen tremendous advances in practical, general-purpose, non-
interactive proof systems called SNARKs. These building blocks are efficient and convenient,
with multiple publicly available implementations, including tools to compile high-level code
(e.g., written in C) to arithmetic circuits, the native representation used by SNARK construc-
tions. However, while we would like to use these primitives in UC-secure protocols—which are
provably-secure even when composed with other arbitrary concurrently-executing protocols—
the SNARK definition is not directly compatible with this framework, due to its use of non
black-box knowledge extraction. We show several constructions to transform SNARKs into UC-
secure NIZKs, along with benchmarks and an end-to-end application example showing that the
added overhead is tolerable.

Our constructions rely on embedding cryptographic algorithms into the SNARK proof sys-
tem. Ordinarily, cryptographic constructions are chosen and tuned for implementation on CPUs
or in hardware, not as arithmetic circuits. We therefore also explore SNARK-friendly cryptog-
raphy, describing several protocol parameterizations, implementations, and performance com-
parisons for encryption, commitments, and other tasks. This is also of independent interest for
use in other SNARK-based applications.

1 Introduction

Succinct Non-Interactive ARguments of Knowledge (SNARKs) [9,24] are cryptographic building
blocks that allow a prover to produce computationally sound proofs for any NP statements (under
the pre-processing model). The proofs are succinct, and verification takes time proportional to
the length of the inputs and outputs, rather than the length of the computation. Known SNARK
constructions typically also offer a zero-knowledge option (henceforth referred to as zk-SNARKs),
i.e., a prover can prove that an NP statement is true, without revealing any information about
the witness.

Despite its well-known drawback of relying on non-falsifiable assumptions, SNARKs are an
attractive object to practitioners due to its (relative) practical efficiency as well as universality.
Recent developments in SNARKs have been exciting, and are exemplary of pushing cryptography
research towards practical adoption. Specifically, various SNARK implementations have been
made open source, and compiler support has also caught up that allows the compilation of
general programs to SNARK implementations [6, 22,37,43].

SNARKs have numerous applications. A line of research focused on verifiable outsourcing of
data and computation to an untrusted cloud provider [6,21,22,30,37,41,43–46]. More recently,
several works also started adopting zk-SNARKs for multi-party protocols to achieve security
against potentially malicious players — in particular, numerous applications of zk-SNARKs
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have been identified in the in cryptocurrency space [5, 23, 35]. In comparison with adopting
customized zero-knowledge proofs or alternative constructions of generic zero-knowledge proofs,
zk-SNARKs offer numerous advantages: 1) due to their universality and available compiler
support, they allow rapid protocol prototyping; 2) they do not require full-scale protocol redesign
when the functionality requirements change (as is often needed for customized protocols), since
it is easy to modify a zk-SNARK to prove a different statement; and 3) their relative efficiency
and non-interactivity make zk-SNARKs broadly applicable in numerous applications.

SNARK lifting for UC-secure protocols. Despite the attractiveness of zk-SNARKs to prac-
titioners, unfortunately zk-SNARKs often cannot be readily adopted in composable, simulation-
secure protocols, due to a gap in the security offered by zk-SNARKs and the security often
required by universally composable (UC) protocols [14, 15, 17]. Specifically, UC-secure proto-
cols would often require simulation sound extractable zero-knowledge proofs. In other words,
suppose that a simulator answers an adversary’s queries on polynomially many, possibly false
statements — nevertheless, whenever the adversary submits a proof for a new statement, the
simulator will be able to extract a valid witness except with negligible failure probability. Un-
fortunately, known zk-SNARKs do not offer such strong soundness properties. Despite the fact
that SNARKs allow “knowledge extraction”, SNARKs’ knowledge extractor is too weak for
many UC-secure protocols, since SNARKs’ extractor is non-blackbox, and requires knowledge
of the concrete algorithm of the adversarial prover. By contrast, in UC-secure protocols, the
simulator must extract witnesses without knowing the environment’s algorithm.

1.1 Our Results and Contributions

SNARK-lifting transformations optimized for concrete efficiency. Our work pro-
poses efficient SNARK-lifting transformations that allow us to transform zk-SNARKs to zero-
knowledge proofs with simulation sound extractability, such that they could be adopted in UC-
secure protocols.

Although the theoretical feasibility of lifting ordinary, computationally-sound, non-interactive
zero-knowledge proofs (NIZKs) to simulation sound extractability ones appears to be folklore
knowledge1, to the best of our knowledge, ours is the first endeavor to optimize such SNARK-
lifting transformations for concrete efficiency. To achieve this goal, we tailor our transformations
specifically for SNARKs (e.g., Section A.2), and moreover, we make new contributions in de-
signing SNARK-friendly cryptographic primitives as explained below.

SNARK-friendly cryptography. To optimize SNARK-lifting transformations and attain
concrete efficiency, we investigated “SNARK-friendly cryptographic primitives”. Specifically,
SNARK-lifting transformations would typically require evaluating cryptographic primitives such
as encryption, commitments, and/or signatures schemes as part of a SNARK circuit. Existing
cryptographic primitives are typically selected and optimized for performance on modern proces-
sor hardware, and may therefore be suboptimal when expressed as an arithmetic circuit for use
within a SNARK. “SNARK-friendly cryptography” refers to a class of cryptographic building
blocks (e.g., encryption, commitments, signatures) that are efficient as arithmetic circuits.

We note that while we primarily use SNARK-friendly cryptography to improve the concrete
performance of our SNARK-lifting constructions, the SNARK-friendly primitives can be of
independent interest and practical in other (non-simulation-secure) applications as well.

Evaluation and open source. Our evaluation results suggest promising performance gains.
For individual primitives such as encryption, we achieve 10x to 40x speedup in comparison

1For example, the work by De Santis et al. transforms an ordinary NIZK to a simulation sound NIZK [40]. Their
construction can be modified to achieve simulation sound extractability, which is a stronger property than simulation
soundness.
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with a straightforward, unoptimized implementation. For our SNARK-lifting transformation as
a whole — assuming that the application-specific NP language has a small witness-validating cir-
cuit — we demonstrate 5x performance gains in comparison with a naive, unoptimized SNARK-
lifting transformation. Finally, in realistic, end-to-end applications where the application-specific
NP language has a moderate-sized circuit [29], we demonstrate a 2x improvement over an un-
optimized implementation. In this case, the speedup is smaller because our optimizations were
mainly related to a small fraction of the entire circuit (which includes the application-specific
NP language).

Our security-lifted zk-SNARKs are generally useful in many multi-party cryptographic pro-
tocols. To make our work reusable by the community, we are in the process of open sourcing
our code and implementations.

Caveats and future work. Our SNARK-lifting transformations result in zero-knowledge
proofs whose sizes are linear in the witness, but still independent of the size of the computa-
tion. We note that there is also no known simulation sound extractable zero-knowledge proof
construction that achieves proof size sublinear in the witness length (even under non-standard
assumptions). We leave it as a future research question how or whether we can achieve this.

1.2 Related Work

Universally composable protocols. Universal Composability (UC) was initially proposed
by Canetti [14] and later improved in subsequent works [15, 17]. At a high level, UC gives a
formal definition framework that tells us when and how cryptographic building blocks may be
considered as “idealized, composable boxes” in protocol design. In principle, UC may allow
designing larger-scale, secure systems in a modular manner.

Non-interactive zero-knowledge proofs. Non-interactive zero-knowledge proofs were first
proposed by Blum, Feldman, and Micali [11], and later extended to multi-theorem by Blum et
al. [12].

Sahai [39] was the first to construct a one-time, simulation-sound NIZK scheme. De Santis
et al. [40] subsequently provide unbounded simulation-sound NIZKs, allowing the adversary to
access many simulated proofs of possibly false statements. Both schemes above are not practical.
Simulation soundness is a slightly weaker condition than simulation sound extractability—the
latter requires that even after seeing a polynomial number of simulated proofs of possibly false
statements, whenever a polynomial-time adversary produces a valid proof, an extractor can ex-
tract a valid witness except with negligible failures. It has been observed [26,27] that simulation
sound extractable NIZKs are UC-secure NIZKs by Canetti’s definition [14] in the presence of
a static adversary. Groth et al. [27] construct perfect NIZK arguments for circuit satisfiability
using bilinear groups. They also extend their scheme to construct UC-secure NIZKs. Groth [26]
also gave more practical, simulation-sound extractable NIZK constructions for an NP language
for bilinear groups.

All of the above simulation-sound extractable NIZKs are not succinct—namely the size of the
proof is proportional to the size of the witness verification circuit |C| that encodes the language.
In this context, succinctness has been shown not to be possible by Gentry and Wichs [25] unless
non-falsifiable assumptions are adopted. The line of research on SNARKs adopt non-falsifiable
assumptions to attain succinctness as well as practical efficiency [6, 21,22,24,37,43].

Subsequent works that apply our SNARK-lifting transformations. Our SNARK-lifting
transformations yield proofs proportional to the witness size (but independent of the circuit
size |C|) and requires encoding into the SNARK circuit various primitives like signatures or
encryption schemes, for which we manifest various efficient circuits.

Subsequent works [28,29] have since adopted our SNARK-lifting transformation. For exam-
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ple, recent works that adopt SNARKs in cryptocurrency protocols [28, 29] used our SNARK-
lifting transformations to attain UC security in protocol design. These works adopted an earlier,
naive version of our construction described in Section 3.1 of this paper, and without SNARK-
friendly cryptography optimizations.

Since then, we have attained better transformations and SNARK-friendly implementations,
allowing us to demonstrate 2x performance improvements in end-to-end applications such as
Hawk [29]. To the best of our knowledge, we are the first to consider efficient SNARK circuits
for such SNARK-lifting transformations, which can be useful in a broad class of composable
protocols.

2 Preliminaries

Notation. In the remainder of the paper, f(λ) ≈ g(λ) means that there exists a negligible
function ν(λ) such that |f(λ)− g(λ)| < ν(λ).

2.1 Non-Interactive Zero-Knowledge Proofs

A non-interactive zero-knowledge proof system (NIZK) for an NP language L consists of the
following algorithms:

• crs← K(1λ,L), also written as crs← KeyGennizk(1λ,L): Takes in a security parameter λ,
a description of the language L, and generates a common reference string crs.

• π ← P(crs, stmt, w): Takes in crs, a statement stmt, a witness w such that (stmt, w) ∈ L,
and produces a proof π.

• b ← V(crs, stmt, π): Takes in a crs, a statement stmt, and a proof π, and outputs 0 or 1,
denoting accept or reject.

• (ĉrs, τ, ek) ← K̂(1λ,L): Generates a simulated common reference string ĉrs, trapdoor τ ,
and extract key ek

• π ← P̂(ĉrs, τ, stmt): Uses trapdoor τ to produce a proof π without needing a witness

Perfect completeness. A NIZK system is said to be perfectly complete, if an honest prover
with a valid witness can always convince an honest verifier. More formally, for any (stmt, w) ∈ R,
we have that

Pr

[
crs← K(1λ,L), π ← P(crs, stmt, w) :
V(crs, stmt, π) = 1

]
= 1

Computational zero-knowlege. Informally, a NIZK system is computationally zero-knowledge,
if the proof does not reveal any information about the witness to any polynomial-time adversary.
More formally, a NIZK system is said to computationally zero-knowledge, if for all non-uniform
polynomial-time adversary A, we have that

Pr
[
crs← K(1λ,L) : AP(crs,·,·)(crs) = 1

]
≈ Pr

[
(ĉrs, τ, ek)← K̂(1λ,L) : AP̂1(ĉrs,τ,·,·)(ĉrs) = 1

]
In the above, P̂1(ĉrs, τ, stmt, w) verifies that (stmt, w) ∈ L, and if so, outputs P̂(ĉrs, τ, stmt)
which simulates a proof without knowing a witness. Otherwise, if (stmt, w) /∈ L, the experiment
aborts.

Computational soundness. A NIZK scheme for the language L is said to be computationally
sound, if for all polynomial-time adversaries A,

Pr

[
crs← K(1λ,L), (stmt, π)← A(crs) :
(V(crs, stmt, π) = 1) ∧ (stmt /∈ L)

]
≈ 0
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Simulation sound extractability. Simulation sound extractability says that even after seeing
many simulated proofs, whenever the adversary makes a new proof, a simulator is able to extract
a witness. Simulation extractability implies simulation soundness and non-malleability, since if
the simulator can extract a valid witness from an adversary’s proof, the statement must belong
to the language. More formally, a NIZK system is said to be simulation sound extractable, if
there exists a polynomial-time algorithm E , such that for any polynomial-time adversary A, it
holds that

Pr


(ĉrs, τ, ek)← K̂(1λ,L);

(stmt, π)← AP̂(ĉrs,τ,·)(ĉrs, ek);
w ← E(ĉrs, ek, stmt, π) : stmt /∈ Q and

(stmt, w) /∈ L and V (ĉrs, stmt, π) = 1

 ≈ 0

In the above, Q is the list of simulation queries. Here the K̂ is identical to the zero-knowledge
simulation setup algorithm when restricted to the first two terms.

Note that in the above definition, the adversary may be able to fake a (different) proof for
a statement that has been queried, however, it is not able to forge a proof for any other invalid
statement. There is a natural strengthening of the above notion where the adversary cannot
even fake a different proof for a statement queried (in fact, it is this stronger notion that is
given as the default in [26]). We define and give constructions for this later in Section 5. In
Hawk [29], however, it is shown that the weaker notion defined above suffices for a typical UC
application; therefore we focus on this notion first.

2.2 Succinct Non-Interactive ARguments of Knowledge (SNARKs)

A SNARK is a NIZK scheme that is perfectly complete, computationally zero-knowledge, and
with the additional properties of being succinct and having a knowledge extractor (which is a
stronger property than soundness):

Succinctness. A SNARK is said to be succinct if an honestly generated proof has poly(λ) bits
and that the verification algorithm V(crs, stmt, π) runs in poly(λ) ·O(|stmt|) time.

Knowledge extraction. Knowledge extraction property says that if a proof generated by
an adversary is accepted by the verifier, then the adversary “knows” a witness for the given
instance. Formally, a SNARK for language L satisfies the knowledge extraction property iff:

For all polynomial-time adversary A, there exists a polynomial-time extractor E , such that
for all uniform advice string z,

Pr

 crs← K(1λ,L)
(stmt, π)← A(crs, z)
a← E(crs, z)

:
V(crs, stmt, π) = 1
(stmt, a) /∈ RL

 ≈ 0

Note that the knowledge extraction property implies computationally soundness (defined for
NIZK), as a valid witness is extracted.

Remarks about knowledge extraction. It has been shown that a SNARK knowledge ex-
tractor cannot exist for all distributions of advice strings [10, 13]. In this paper, we will first
give SNARK-lifting transformations that do not rely on the SNARKs’ knowledge extractor (see
Sections 3.1 and 4.1). However, we show in Section 4.2 that although the UC simulator cannot
directly make use of the SNARK’s non-blackbox extractor, by making use of the SNARK’s
knowledge extractor in other ways in security reductions, we can further optimize our SNARK-
lifting transformation for concrete performance. In such cases, we will assume that a SNARK
knowledge extractor exists for the particular distributions on advice strings that we care about
in this paper (despite the impossibility result for general distributions).
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3 Basic SNARK Lifting Transformation

3.1 Lifting from an Ordinary NIZK

In this section, we show a construction that transforms any NIZK to one that satisfies simulation
sound extractability.

Typically, a NIZK only guarantees soundness, which simply means that if the verifier accepts
a proof, then the statement must be in the language. However, in many cases, what we actually
desire is to gurantee that the prover actually “knows” a valid witness. For example, given a
collision-resistant hash function, it is necessarily true that a collision exists, though to actually
compute such a collision would be an impressive feat. The definition of simulation sound ex-
tractability captures the desired knowledge property - given a valid proof (and the trapdoor
produced during setup), the extractor algorithm can efficiently compute a witness.

Intuition. Our first construction makes use of an asymmetric signature scheme and encryption
scheme, the public keys for which are embedded in the setup parameters, and the private keys
for which are embedded in the trapdoor. The idea is to force every prover to encrypt a witness
and a signature, at least one of which must be legitimate. While an honest prover will simply
provide a valid witness, the simulated prover will use the trapdoor to provide a signature. The
extractor can simply use the trapdoor decryption key to recover a valid witness (or at least a
signature) from the proof. This guarantees that an adversary who breaks the system can be
leveraged to either break the soundness of the underlying NIZK or the unforgeability of the
signature scheme.

Construction. In the following, assume Σ is an unforgeable signature scheme, and (KeyGenEnc,Enc,Dec)
is a perfectly correct public key encryption scheme.

• K(1λ,L): Run (pk, sk)← Σ.Gen(1λ). Run (pke, ske)← KeyGenEnc(1
λ).

Let L′ be the following language: ((stmt, c), (r, w, σ)) ∈ L′ iff

(c = Enc(pke, (w, σ), r)) ∧
((stmt, w) ∈ L ∨ (Σ.V(pk, stmt, σ) = 1))

Run nizk.crs← nizk.K(1λ,L′).
Publish crs := (nizk.crs, pk, pke) as the common reference string.

• P(crs, stmt, w): Parse crs := (nizk.crs, pk). Choose random r, and compute c := Enc(pke, (w,⊥), r).

Call π := nizk.P(nizk.crs, (stmt, c), (r, w,⊥)), and output π′ := (c, π).

• V(crs, stmt, π′): Parse π′ := (c, π), and output nizk.V(nizk.crs, (stmt, c), π).

• K̂(1λ,L): Run the honest K algorithm, but retain the signing key sk as the simulation trapdoor
τ := sk. The extraction key ek := ske, the simulated ĉrs := crs = (nizk.crs, pk, pke).

• P̂(ĉrs, τ, stmt): the simulator calls π := nizk.P(nizk.crs, (stmt, c), (⊥,⊥, σ)) where σ := Σ.Sign(sk, stmt)
and c is an encryption of (⊥, σ). Output (c, π).

Theorem 1. Assume that the underlying NIZK scheme satisfies perfect completeness, computa-
tional soundness, and computational zero-knowlege, that the signature scheme satisfies existen-
tial unforgeability under chosen message attack, and that the encryption scheme is semantically
secure and perfectly correct, then the above construction is a zero-knowledge proof system satis-
fying perfect completeness, computational zero-knowledge, and simulation sound extractability.

The proof for the above theorem is relatively simple, which we defer to appendix.
In the appendix, we also discuss two minor optimizations for this construction: in one, we

reduce the size of the ciphertext by encrypting either the witness or signature, but not both;
and if the underlying ciphertext is a SNARK, we can use the non-blackbox knowledge extractor
to avoid needing to encrypt the signature at all.
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3.2 Optimizations

This basic SNARK-lifting construction can be further optimized for concrete performance. We
defer the details of these optimizations to Appendix A, and instead focus on describing a more
efficient construction that avoids evaluating signatures inside a SNARK circuit, but instead
relies on pseudorandom functions and commitments.

4 Improved SNARK Lifting Transformations

The previous section demonstrates the possibility of upgrading any NIZK to an SSE-NIZK.
However, the construction relies on the use of signature scheme within an arithmetic circuit,
which limits its performance.

In this section, we first show a more efficient construction that avoids the use of signature
schemes (Section 4.1). Next, in Section 4.2 we describe a SNARK-specific optimization that
leverages the SNARK’s non-blackbox knowledge extractor — this may seem counter-intuitive
at first sight since a UC simulator must extract without knowing the environment’s algorithm;
however, we show that the SNARK’s non-blackbox extractor can be used to improve the ef-
ficiency of the lifting transformation, even though the UC simulator never uses the SNARK’s
knowledge extractor to extract the witness.

4.1 Lifting from an Ordinary NIZK

Our construction makes use of a pseudo-random function and a perfectly-binding commitment
scheme, which together replace the original signature scheme.

Intuition. Recall the intuition for a pseudorandom function f : without the knowledge of the
key a, fa(·) behaves like a true random function. However, given a, one can compute fa(·)
easily. In order to use this in lieu of a signature, we include a commitment to a in the public
parameters, and keep a (and the commitment opening) as the trapdoor.

We then design a transformed language such that a prover with a correct witness can pass;
otherwise, the (simulated) prover must give fa(stmt) and an opening of the commitment to the
same a.

Notation. We adopt several conventions for the convenience of readers following along with
our experiment proofs. Sometimes we need placeholders that correspond to different variables
in the experiments. To avoid confusing the names, we reserve z0, z1, . . . for this purpose. For
example, z3 replaces witness “w” in Expt0, although z3 need not be a valid witness. To highlight
the difference between successive experiments, we color the new line red, and may reproduce
the previous line it replaces, striken through.

Construction. Let {fs : {0, 1}∗ → {0, 1}λ}s∈{0,1}λ be a pseudo-random function family, let
comm be a perfectly binding commitment scheme, and let (KeyGenEnc,Enc,Dec) be a semanti-
cally secure encryption scheme.

To simplify our description, we assume Enc and comm both take exactly λ random bits as
randomness and that the witness for L is exactly λ bits; it is straightforward to adapt the proof
when they are of different lengths.

Note that in the language L′, c must be a correct encryption of some w and µ, which allows
the extractor to decrypt. For a statement-witness pair to be valid, either a witness in RL is
provided or an opening to ρ together with the value of fa(stmt) is provided, where a is the
opened value of ρ (from crs).

For language L with NP relationRL, let L′ be the language defined as
(
(stmt, c, pke, ρ), (µ, r, r′, w, a)

)
∈
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RL′ iff:

c=Enc(pke, (w, µ); r) ∧
(

(stmt, w) ∈ RL ∨
(
ρ=comm(a; r′) ∧ µ=fa(stmt)

))
Our SSE-NIZK construction is then defined as follows:

• K(1λ,L):

nizk.crs← nizk.K(1λ,L′); (pke, ske)← KeyGenEnc(1
λ);

s0, r0
$← {0, 1}λ; ρ := comm(s0; r0);

return crs := (nizk.crs, pke, ρ).

• P(crs, stmt, w):

Parse crs := (nizk.crs, pke, ρ); Abort if (stmt, w) /∈ RL;

z0, z1, z2, r1
$← {0, 1}λ; c = Enc(pke, (w, z0); r1);

nizk.π ← nizk.P(nizk.crs, (stmt, c, pke, ρ), (z0, r1, z1, w, z2));

return π := (c, nizk.π).

• V(crs, stmt, π):

Parse crs := (nizk.crs, pke, ρ) and π := (c, nizk.π);

Call nizk.V(nizk.crs, (stmt, c, pke, ρ), nizk.π).

• K̂(1λ,L): Run K to get ĉrs := crs, but keep trapdoor τ := (s0, r0), extraction key ek := ske.

• P̂(ĉrs, τ, stmt):

Parse ĉrs := (nizk.crs, pke, ρ) and τ := (s0, r0);

z3, r1
$← {0, 1}λ; µ = fs0(stmt); c = Enc(pke, (z3, µ); r1);

nizk.π ← nizk.P(nizk.crs, (stmt, c, pke, ρ), (µ, r1, r0, z3, s0));

return π := (c, nizk.π).

• We also define the extractor here:
E(ĉrs, ek, stmt, π): Parse π := (c, nizk.π); (w, µ)← Dec(ek, c); return w.

Theorem 2. Assume that the underlying NIZK scheme satisfies perfect completeness, computa-
tional soundness, computational zero-knowledge, and that the encryption scheme is semantically
secure and perfectly correct, and that the pseudo-random function family is secure, and that the
commitment scheme is perfectly binding and computational hiding, then the above construction
is a zero-knowledge proof system satisfying perfect completeness, computational zero-knowledge,
and simulation sound extractability.

Proof. Completeness is obvious.

Proof of simulation sound extractability.

Lemma 1. The construction is simulation sound extractable.

Proof. We define the simulation soundness extractablility experiment as follows:

Expt0 (Actual game):

1. Setup:

nizk.crs← nizk.K(1λ,L′); (pke, ske)← KeyGenEnc(1
λ);

s0, r0
$← {0, 1}λ; ρ := comm(s0; r0); ĉrs := (nizk.crs, pke, ρ).

2. Define function O(stmtx):
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z3, r1
$← {0, 1}λ; µ = fs0(stmtx); c = Enc(pke, (z3, µ); r1);

nizk.π ← nizk.P(nizk.crs, (stmtx, c, pke, ρ), (µ, r1, r0, z3, s0));

return π := (c, nizk.π).

3. (stmt, π)← AO(·)(ĉrs, ek);

4. Parse π := (c, nizk.π); (w, µ)← Dec(ek, c);

5. Let Q be the set of stmtx queried by A.
Output 1 iff: (1) stmt /∈ Q; and (2) V(ĉrs, stmt, π) = 1; and (3) (stmt, w) /∈ RL.

Note that this is exactly the definition. We next show that Pr[Expt0] = negl(λ) by a series
of hybrid games, which proves simulation sound extractablility.

Expt1 (Relax return condition):

1. Setup:

nizk.crs← nizk.K(1λ,L′); (pke, ske)← KeyGenEnc(1
λ);

s0, r0
$← {0, 1}λ; ρ := comm(s0; r0); ĉrs := (nizk.crs, pke, ρ).

2. Define function O(stmtx):

z3, r1
$← {0, 1}λ; µ = fs0(stmtx); c = Enc(pke, (z3, µ); r1);

nizk.π ← nizk.P(nizk.crs, (stmtx, c, pke, ρ), (µ, r1, r0, z3, s0));

return π := (c, nizk.π).

3. (stmt, π)← AO(·)(ĉrs, ek);

4. Parse π := (c, nizk.π); (w, µ)← Dec(ek, c);

5. Let Q be the set of stmtx queried by A.
Output 1 iff: (1) stmt /∈ Q; and (2) V(ĉrs, stmt, π) = 1; and (3) fs0(stmt) = µ.

Claim 1. If the underlying encryption scheme is perfectly correct, and that the commitment
scheme scheme is perfectly binding, and that the underlying NIZK is computationally sound,
then we have Pr[Expt0] ≤ Pr[Expt1] + negl(λ).

Proof. From the (computational) soundness of the underlying NIZK, we know that (stmt, c, pke, ρ) ∈
L′ holds except for negligible probability.

Since the underlying encryption scheme is perfectly correct, the decrypted (w, µ) is the
only possible values that encrypts to c, hence it is unique for all valid witnesses. Given
(stmt, w) /∈ RL, we consider all such valid witnesses for RL′ , there must exist s′0, r

′
0 such that:

(1) ρ = comm(s′0; r′0); (2) µ = fs′0(stmt). From the perfectly binding property of the underlying
commitment scheme, all witnesses must use the unique value s′0 = s0 (recall s0 is from setup).

Hence, assuming soundness holds, we have fs0 = µ.

Expt2 (Use simulation setup):

1. Setup:

(nizk.ĉrs, nizk.τ)← nizk.K̂(1λ,L′); (pke, ske)← KeyGenEnc(1
λ);

s0, r0
$← {0, 1}λ; ρ := comm(s0; r0); ĉrs := (nizk.ĉrs, pke, ρ).

2. Define function O(stmtx):

z3, r1
$← {0, 1}λ; µ = fs0(stmtx); c = Enc(pke, (z3, µ); r1);

nizk.π ← nizk.P̂1(nizk.ĉrs, nizk.τ, (stmtx, c, pke, ρ), (µ, r1, r0, z3, s0));

Equivalent: nizk.π ← nizk.P̂(nizk.ĉrs, nizk.τ, (stmtx, c, pke, ρ));
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return π := (c, nizk.π).

3. (stmt, π)← AO(·)(ĉrs, ek);

4. Parse π := (c, nizk.π); (w, µ)← Dec(ek, c);

5. Let Q be the set of stmtx queried by A.
Output 1 iff: (1) stmt /∈ Q; and (2) V(ĉrs, stmt, π) = 1; and (3) fs0(stmt) = µ.

Claim 2. Assuming the underlying NIZK is computationally zero-knowledge, we have Pr[Expt1] ≤
Pr[Expt2] + negl(λ).

Proof. Given any polynomial adversary A, we construct the following adversary B for the zero-
knowledge game of the underlying NIZK.

Run Expt2, with nizk.ĉrs obtained from the zero-knowledge game. Replace all calls to nizk.P̂1

with oracle calls to the game. Note that we do not have nizk.τ , which is not used anymore.
Observe that Expt1,Expt2 corresponds to running the game with honest and simulated se-

tup/prover, respectively. I.e., Pr[B] = Pr[Expt1] with honest setup and Pr[B] = Pr[Expt2] with
simulation setup. As the underlying NIZK is computationally zero-knowledge, and that ExptA2
runs in polynomial time, the claim holds.

Expt3 (Separate s0):

1. Setup:

(nizk.ĉrs, nizk.τ)← nizk.K̂(1λ,L′); (pke, ske)← KeyGenEnc(1
λ);

s0, s
′
0, r0

$← {0, 1}λ; ρ := comm(s′0; r0); ĉrs := (nizk.ĉrs, pke, ρ).

2. Define function O(stmtx):

z3, r1
$← {0, 1}λ; µ = fs0(stmtx); c = Enc(pke, (z3, µ); r1);

nizk.π ← nizk.P̂(nizk.ĉrs, nizk.τ, (stmtx, c, pke, ρ));

return π := (c, nizk.π).

3. (stmt, π)← AO(·)(ĉrs, ek);

4. Parse π := (c, nizk.π); (w, µ)← Dec(ek, c);

5. Let Q be the set of stmtx queried by A.
Output 1 iff: (1) stmt /∈ Q; and (2) V(ĉrs, stmt, π) = 1; and (3) fs0(stmt) = µ.

Claim 3. If the underlying commitment scheme is computationally hiding, we have Pr[Expt2] ≤
Pr[Expt3] + negl(λ).

Proof. By the hiding property of the commitment scheme, we know that for all polynomial
adversary B, we have

Pr[x0, x1
$← {0, 1}λ; b

$← {0, 1} : B(x0, x1, comm(xb)) = b] ≤ 1

2
+ negl(λ)

Consider the following adversary B: Run ExptA2 , except with s0 = x1, s
′
0 = x0 and ρ =

comm(xb). Return the output of Expt2.
Observe that getting a commitment of s0 actually corresponds to ExptA2 , while s′0 corresponds

to ExptA3 . Hence by the hiding property, we have

Pr[B = b] =
1

2
Pr[B = 0|b = 0] +

1

2
Pr[B = 1|b = 1]

=
1

2
(1− Pr[Expt3]) +

1

2
Pr[Expt2]

≤1

2
+ negl(λ)

which gives Pr[Expt2]− Pr[Expt3] ≤ negl(λ).
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Expt4 (Replace PRF):
Let F be a true random function.

1. Setup:

(nizk.ĉrs, nizk.τ)← nizk.K̂(1λ,L′); (pke, ske)← KeyGenEnc(1
λ);

s0, s
′
0, r0

$← {0, 1}λ; ρ := comm(s′0; r0); ĉrs := (nizk.ĉrs, pke, ρ).

2. Define function O(stmtx):

z3, r1
$← {0, 1}λ; µ← F (stmtx); c = Enc(pke, (z3, µ); r1);

nizk.π ← nizk.P̂(nizk.ĉrs, nizk.τ, (stmtx, c, pke, ρ));

return π := (c, nizk.π).

3. (stmt, π)← AO(·)(ĉrs, ek);

4. Parse π := (c, nizk.π); (w, µ)← Dec(ek, c);

5. Let Q be the set of stmtx queried by A.
Output 1 iff: (1) stmt /∈ Q; and (2) V(ĉrs, stmt, π) = 1; and (3) F (stmt) = µ.

Claim 4. If the underlying pseudo-random function family {fs}s∈{0,1}λ is secure, then we have
Pr[Expt3] ≤ Pr[Expt4] + negl(λ).

Proof. By the security of the underlying pseudo-random function family, no polynomial-time
algorithm can distinguish a PRF from a true random function F .

We construct the following adversary B for the security game of PRF: Run ExptA4 , replace
each call to F (·) with an oracle call to the game. Return the output of Expt4.

Observe that we have Pr[B = 1|Run with PRF] = Pr[Expt3] and also Pr[B = 1|Run with Random] =
Pr[Expt4], which completes the proof.

Claim 5. We have Pr[Expt4] ≤ 2−λ.

Proof. Since we have stmt /∈ Q, we can view F (stmt) as newly generated random bits indepen-
dent from µ. The result follows.

The above claims complete the proof for simulation sound extractability.

Proof of computational zero-knowledge. We prove the following lemma first:

Lemma 2. If (KeyGenEnc,Enc,Dec) is a semantically secure encryption scheme, then for all
polynomial adversary A, we have the following:

Pr
[
(pk, sk)← KeyGenEnc(1

λ) : AO
0(pk,·,·)(pk) = 1

]
≈ Pr

[
(pk, sk)← KeyGenEnc(1

λ) : AO
1(pk,·,·)(pk) = 1

]
where Ob(pk,m0,m1) : Abort if |m0| 6= |m1|. Return Enc(pk,mb;Uλ).

Proof. Let t∗ be the polynomial bound on the maximum number of queries. We define oracles
Ot(m0,m1) : Abort if |m0| 6= |m1|. Return Enc(pk,m1;Uλ) for the the first t queries and
Enc(pk,m0;Uλ) otherwise.

Observe that O0 = O0 and Ot∗ = O1. We next prove Ot and Ot+1 are indistinguishable by
the security game of the encryption.

We construct the following adversary B for the security game of the encryption: Get pk from
the game; Run AOt(·,·) with the (t + 1)-th query answered by oracle call to the game. Return
the output of A. Observe that Pr[B|ansered by O0] = Pr[AOt ] and Pr[B|ansered by O1] =
Pr[AOt+1 ]

By the cipher-text indistinguishability of the encryption scheme, we have Pr[AOt ] ≈ Pr[AOt+1 ]
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Lemma 3. The construction is computational zero-knowledge.

Proof. We prove zero-knowledge by showing any adversary A can not distinguish a series of
hybrid games.

Expt0 (actual game):

1. Setup (just K̂):

nizk.crs← nizk.K(1λ,L′); (pke, ske)← KeyGenEnc(1
λ);

s0, r0
$← {0, 1}λ; ρ := comm(s0; r0); ĉrs := (nizk.crs, pke, ρ).

2. Define function O(stmtx, w): (just P̂1)

Abort if (stmtx, w) /∈ RL; z3, r1
$← {0, 1}λ; µ = fs0(stmtx); c = Enc(pke, (z3, µ); r1);

nizk.π ← nizk.P(nizk.crs, (stmtx, c, pke, ρ), (µ, r1, r0, z3, s0));

return π := (c, nizk.π).

3. b← AO(·,·)(ĉrs); Output b.

Expt1 (use simluation setup):

1. Setup:

(nizk.ĉrs, nizk.τ)← nizk.K̂(1λ,L′); (pke, ske)← KeyGenEnc(1
λ);

s0, r0
$← {0, 1}λ; ρ := comm(s0; r0); ĉrs := (nizk.ĉrs, pke, ρ).

2. Define function O(stmtx, w):

Abort if (stmtx, w) /∈ RL; z3, r1
$← {0, 1}λ; µ = fs0(stmtx); c = Enc(pke, (z3, µ); r1);

nizk.π ← nizk.P̂1(nizk.ĉrs, nizk.τ, (stmtx, c, pke, ρ), (µ, r1, r0, z3, s0));

Equivalent: nizk.π ← nizk.P̂(nizk.ĉrs, nizk.τ, (stmtx, c, pke, ρ));

return π := (c, nizk.π).

3. b← AO(·,·)(ĉrs); Output b.

Claim 6. If the underlying NIZK is zero-knowledge, then we have Pr[Expt0] ≤ Pr[Expt1] +
negl(λ).

Proof. Consider the following adversary B for the zero-knowledge game: Get crs from the game;
Run Expt1 with crs; Replace all calls to P̂1 with oracle calls. Output the same as Expt1

By the zero-knowledge property, we have Pr[B|honest] ≈ Pr[B|simulated]. Observe that
Pr[B|honest] = Pr[Expt0] while Pr[B|simulated] = Pr[Expt1].

Expt2 (encrypt true witness):

1. Setup:

(nizk.ĉrs, nizk.τ)← nizk.K̂(1λ,L′); (pke, ske)← KeyGenEnc(1
λ);

s0, r0
$← {0, 1}λ; ρ := comm(s0; r0); ĉrs := (nizk.ĉrs, pke, ρ).

2. Define function O(stmtx, w):

Abort if (stmtx, w) /∈ RL; z3, z0, r1
$← {0, 1}λ; µ = fs0(stmtx); c = Enc(pke, (w, z0); r1);

nizk.π ← nizk.P̂(nizk.ĉrs, nizk.τ, (stmtx, c, pke, ρ));

return π := (c, nizk.π).

3. b← AO(·,·)(ĉrs); Output b.
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Claim 7. If the underlying encryption scheme is secure, we have Pr[Expt1] ≈ Pr[Expt2].

Proof. We construct the following adversary B for the game in Lemma 2: Get pk from the game;
Run Expt2 with pk; Replace Enc with oracle calls to the game (providing both (z3, µ), (w, z0) as
two messages). Output as Expt2.

By Lemma 2, we have Pr[B|encrypting w] ≈ Pr[B|encrypting z3]. And observe they corre-
sponds to Expt2 and Expt1.

Expt3 (Use nizk.P̂1):

1. Setup:

(nizk.ĉrs, nizk.τ)← nizk.K̂(1λ,L′); (pke, ske)← KeyGenEnc(1
λ);

s0, r0
$← {0, 1}λ; ρ := comm(s0; r0); ĉrs := (nizk.ĉrs, pke, ρ).

2. Define function O(stmtx, w):

Abort if (stmtx, w) /∈ RL; z0, z1, z2, r1
$← {0, 1}λ; µ

$← {0, 1}λ; c = Enc(pke, (w, z0); r1);

nizk.π ← nizk.P̂1(nizk.ĉrs, nizk.τ, (stmtx, c, pke, ρ), (z0, r1, z1, w, z2));

return π := (c, nizk.π).

3. b← AO(·,·)(ĉrs); Output b.

Claim 8. We have Pr[Expt3] = Pr[Expt2].

Proof. The two probabilities are equal, by the definition of nizk.K̂1 and that (z0, r1, z1, w, z2) is
valid.

Expt4 (Back to P):

1. Setup:

nizk.crs← nizk.K(1λ,L′); (pke, ske)← KeyGenEnc(1
λ);

s0, r0
$← {0, 1}λ; ρ := comm(s0; r0); ĉrs := (nizk.crs, pke, ρ).

2. Define function O(stmtx, w):

Abort if (stmtx, w) /∈ RL;

z0, z1, z2, r1
$← {0, 1}λ; c = Enc(pke, (w, z0); r1);

nizk.π ← nizk.P(nizk.crs, (stmtx, c, pke, ρ), (z0, r1, z1, w, z2));

return π := (c, nizk.π).

3. b← AO(·,·)(ĉrs); Output b.

Claim 9. If the underlying NIZK is zero-knowledge, then we have Pr[Expt4] ≈ Pr[Expt3].

Proof. We construct the following adversary B for the zero-knowledge game: Get crs from the
game; Run ExptA4 with crs; Replace nizk.P with oracle calls. Return the output of ExptA4 .

By the zero-knowledge property, we have Pr[B|honest] ≈ Pr[B|simulated]. And observe the
two probabilities correspond two Pr[Expt4] and Pr[Expt3].

Note that the last experiment is just the honest prover, which completes the proof of the zero-
knowledge property.
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4.2 SNARK-Specific Optimizations

We now show that the non-blackbox extractor from SNARK can be used to simplify and improve
the performance of the construction in Section 4.1.

Intuition. This may seem counter-intuitive: the SNARK knowledge extractor is inherently
incompatible with the simulation-based definition, since the extractor assumes knowledge of the
entire program code and auxilary inputs of the prover, which are not available to the simulator
in the SSE-NIZK game. As we shall see, while our proof relies on a reduction to the SNARK
knowledge extraction game, the simulator itself never uses this extractor.

Note that in the construction in Section 4.1, the encryption of µ is not actually used (in
the extractor). It is useful only because we wish to leverage the adversary to break the pseudo-
random function family, and thus must extract the value of fa(stmt) from the proof returned
by the adversary.

When the underlying NIZK is a SNARK, we can actually omit the encryption of µ. The
rationale is that in our reduction, we can use the SNARK’s non-blackbox extractor to produce
a valid witness instead of extracting it from the ciphertext. The argument can follow a similar
argument to break the pseudo-random function family, given an adversary for the constructed
SSE-NIZK.

We stress that although we use the non-blackbox extractor (in the proof), our simulator
extractor is still blackbox.

Construction. For language L with NP relationRL, let L′ be the language
(
(stmt, c, pke, ρ), (µ, r, r′, w, a)

)
∈

RL′ iff:

c = Enc(pke, w; r) ∧
(

(stmt, w) ∈ RL ∨
(
ρ = comm(a; r′) ∧ µ = fa(stmt)

))
Our SSE-NIZK from SNARK construction is defined as follows:

• K(1λ,L):

snark.crs← snark.K(1λ,L′); (pke, ske)← KeyGenEnc(1
λ);

s0, r0
$← {0, 1}λ; ρ := comm(s0; r0); return crs := (snark.crs, pke, ρ).

• P(crs, stmt, w):

Parse crs := (snark.crs, pke, ρ); Abort if (stmt, w) /∈ RL;

z0, z1, z2, r1
$← {0, 1}λ; c = Enc(pke, w; r1);

snark.π ← snark.P(snark.crs, (stmt, c, pke, ρ), (z0, r1, z1, w, z2));

return π := (c, snark.π).

• V(crs, stmt, π):

Parse crs := (snark.crs, pke, ρ) and π := (c, snark.π);

Call snark.V(snark.crs, (stmt, c, pke, ρ), snark.π).

• K̂(1λ,L): Run K to get ĉrs := crs, but keep trapdoor τ := (s0, r0), extraction key ek := ske.

• P̂(ĉrs, τ, stmt):

Parse ĉrs := (snark.crs, pke, ρ) and τ := (s0, r0);

z3, r1
$← {0, 1}λ; µ = fs0(stmt); c = Enc(pke, z3; r1);

snark.π ← snark.P(snark.crs, (stmt, c, pke, ρ), (µ, r1, r0, z3, s0));

return π := (c, snark.π).

• We also define the extractor here:
E(ĉrs, ek, stmt, π): Parse π := (c, snark.π); w ← Dec(ek, c); return w.
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Theorem 3. Assume that the underlying SNARK scheme satisfies perfect completeness, com-
putational zero-knowledge, and knowledge extraction (which implies soundness), and that the
encryption scheme is semantically secure and perfectly correct, and that the pseudo-random
function family is secure, and that the commitment scheme is perfectly binding and computa-
tional hiding, then the above construction is a zero-knowledge proof system satisfying perfect
completeness, computational zero-knowledge, and simulation sound extractability.

Proof. Completeness is obvious. Next we prove simulation sound extractability and zero-
knowledge.

Proof of simulation sound extractable.

Lemma 4. The construction is simulation sound extractable.

Proof. We define the simulation soundness extractablility experiment as follows:

Expt0: Actual game.
We next show that Pr[Expt0] = negl(λ) by a series of hybrid games, which proves simulation

sound extractablility.

ExptA1 : We view all probabilistic polynomial-time algorithms as deterministic polynomial-
time algorithms, that takes in the random bits as a parameter. E.g., the key generators, provers,
adversaries. Hence in the experiment, we (implicitly) need to sample (and store) all the random
bits used, called R. Consider the point where the adversary returns a statement and a proof.
By definition, there exists a snark.E , that extracts the witness. (Here we view the experiment
till this point as the snark extraction adversary, and the randomness R as the advice string.)
Change return condition to the following:

(µ,⊥,⊥,⊥,⊥)← snark.EA(snark.crs, R):

(1) stmt /∈ Q; and (2) V(ĉrs, stmt, π) = 1; and (3) (stmt, w) /∈ RL fs0(stmt) = µ.

Claim 10. If the underlying encryption scheme is perfectly correct, and that the commitment
scheme scheme is perfectly binding, and that the underlying SNARK satisfies the knowledge
extraction property, then we have Pr[Expt0] ≤ Pr[Expt1] + negl(λ).

Proof. From the knowledge extraction property of the underlying SNARK, we know that (stmt, c, pke, ρ) ∈
L′ and that (µ,⊥,⊥,⊥,⊥) is a valid witness for it, except for negligible probability.

Since the underlying encryption scheme is perfectly correct, the decrypted w is the only possi-
ble values that encrypts to c, hence it is unique for all valid witnesses. Given (stmt, w) /∈ RL, we
consider all such valid witnesses for RL′ , there must exist s′0, r

′
0 such that: (1) ρ = comm(s′0; r′0);

(2) µ = fs′0(stmt). From the perfectly binding property of the underlying commitment scheme,
all witnesses must use the unique value s′0 = s0 (recall s0 is from setup).

Hence, assuming soundness holds, we have fs0 = µ.

We also list the following hybrids, the claims are essentially the same as the ones in con-
struction in Section 4.1.

Expt2: We change to use simulation setup, i.e. snark.K̂ and snark.P̂1. And note that snark.P̂
and snark.P̂1 are equivalent as we used a valid witness for L′, which allows us to further relax
snark.P̂1 to snark.P̂ (ignore the witnesses).

Claim 11. Assuming that the underlying SNARK is computationally zero-knowledge, we have
Pr[Expt1] ≤ Pr[Expt2] + negl(λ).

Expt3: Change the setup: we commit to a different s′0. i.e. s0, s
′
0, r0

$← {0, 1}λ; ρ := comm(s′0; r0);
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Claim 12. If the underlying commitment scheme is computationally hiding, we have Pr[Expt2] ≤
Pr[Expt3] + negl(λ).

Expt4: In the setup, s0 is no longer generated. We replace each fs0 with a true random function
F . Note that this also change the return condition to: (3) F (stmt) = µ.

Claim 13. If the underlying pseudo-random function family {fs}s∈{0,1}λ is secure, then we
have Pr[Expt3] ≤ Pr[Expt4] + negl(λ).

Claim 14. We have Pr[Expt4] ≤ 2−λ.

The above claims complete the proof for simulation sound extractability.

Proof of computational zero-knowledge.

Lemma 5. The construction sastisfies computational zero-knowledge.

Proof. We prove zero-knowledge by showing any adversary A can not distinguish a series of
hybrid games.

Expt0: Actual game.

Expt1: We change to use simulation setup, i.e. snark.K̂ and snark.P̂1. And note that snark.P̂
and snark.P̂1 are equivalent as we used a valid witness for L′, which allows us to further relax
snark.P̂1 to snark.P̂ (ignore the witnesses).

Claim 15. If the underlying SNARK is zero-knowledge, then we have Pr[Expt0] ≤ Pr[Expt1] +
negl(λ).

Expt2: We change to encrypt the true witness, i.e. c = Enc(pke, z3; r1) c = Enc(pke, w; r1). Also
note that µ is not needed any more.

Claim 16. If the underlying encryption scheme is secure, we have Pr[Expt1] ≈ Pr[Expt2].

Expt3: We change back to use snark.P̂1, by providing (z0, r1, z1, w, z2) as a valid witness, i.e.,

snark.π ← snark.P̂1(snark.ĉrs, snark.τ, (stmtx, c, pke, ρ), (z0, r1, z1, w, z2)).

Expt4: We change back to the honest setting. We use snark.K and snark.P to generate the crs
and the proofs.

Claim 17. If the underlying SNARK is zero-knowledge, then we have Pr[Expt4] ≈ Pr[Expt3].

This completes the proof of the zero-knowledge property.

4.3 From SSE-NIZK to UC-Secure NIZKs

While our motivation is to construct a tool suitable for use in UC secure applications, our
construction itself does not require any details from the UC framework. In Hawk, [29] it is
shown that a (weak) SSE-NIZK is sufficient for use in UC-secure applications — this uses
the SSE-NIZK definition directly, instead of an ideal functionality specification (i.e., the UC
composition theorem is not used). It also has been observed elsewhere [16, 26] that a (strong)
SSE-NIZK scheme can realize a UC ideal functionality with a static adversary. In the Appendix,
we describe (without proof) how to weaken the ideal functionality FNIZK so that it can be realized
from (weak) SSE-NIZK.
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5 A Stronger Version

In this section, we define a strengthened version of simulation sound extractability and provide
a construction.

The original definition of simulation sound extractability says that if the adversary does
not know a witness for a statement, he can only prove that statement if the he has previously
submitted this statement as an oracle query (i.e., to the simulated prover). In our strength-
ened definition, which we call “strongly simulation sound extractable”, we further constrain the
adversary to only produce statement-proof pairs that have been previously queried. In other
words, under the weaker definition, it is possible for an adversary to generate novel proofs for
previously-queried statements; this is precluded by the stronger definition.

Strongly simulation sound extractable. We say a NIZK for a language L is strongly
simulation sound extractable iff there exists an extractor E such that for all polynomial-time
adversary A, the following holds:

Pr

 (ĉrs, τ, ek)← K̂(1λ)

(stmt, π)← AP̂(ĉrs,τ,·)(ĉrs, ek)
w ← E(ĉrs, ek, stmt, π)

:
(stmt, π) /∈ Q and
(stmt, w) /∈ RL and
V(ĉrs, stmt, π) = 1

 = negl(λ)

where Q is the set of statement-proof pairs generated by the oracle calls to P̂.

Intuition. Like before, a prover must always provide an encryption of a (possibly bogus)
witness. Our construction makes use of a one-time signature scheme. A pair of one-time
signing/verification keys are generated for each prove. Compared with Section 4.1, the difference
is that instead of fa(stmt), a simulated prover is required to provide µ = fa(pk). Then we require
the prover to sign the statement together with the proof, the cipher-text, and µ. Briefly, due to
the security of signature scheme, the adversary must use a different pk from the ones returned
from oracle queries. Thus, in order for a statement to pass the verifier without a proper witness,
the prover must generate fa(pk) without the knowledge of a (thus breaking the pseudo-random
function).
The Construction. Given a language L with NP relation RL, let L′ be the language that(
(stmt, c, µ, pks, pke, ρ), (r, r′, w, a)

)
∈ RL′ iff :

c = Enc(pke, w; r) ∧
(

(stmt, w) ∈ RL ∨
(
µ = fa(pks) ∧ ρ = comm(a; r′)

))
Next we show the construction from NIZK to strong SSE-NIZK.

• K(1λ,L):

nizk.crs← nizk.K(1λ,L′); (pke, ske)← KeyGenEnc(1
λ);

s0, r0
$← {0, 1}λ; ρ := comm(s0; r0). return crs := (nizk.crs, pke, ρ).

• P(crs, stmt, w):

Parse crs := (nizk.crs, pke, ρ); Abort if (stmt, w) /∈ RL;

(pks, sks)← KeyGenSig(1λ);

z0, z1, z2, r1
$← {0, 1}λ; c = Enc(pke, w; r1);

nizk.π ← nizk.P(nizk.crs, (stmt, c, z0, pks, pke, ρ), (r1, z1, w, z2));

σ ← Sign(sks, (stmt, c, z0, nizk.π));

return π := (c, z0, nizk.π, pks, σ).

• V(crs, stmt, π):

Parse crs := (nizk.crs, pke, ρ) and π := (c, µ, nizk.π, pks, σ);

17



Abort if Verify(pks, (stmt, c, µ, nizk.π), σ) = 0;

Call nizk.V(nizk.crs, (stmt, c, µ, pks, pke, ρ), nizk.π).

• K̂(1λ,L): Run K to get ĉrs := crs, but keep trapdoor τ := (s0, r0), extraction key ek := ske.

• P̂(ĉrs, τ, stmt):

Parse ĉrs := (nizk.crs, pke, ρ) and τ := (s0, r0);

(pks, sks)← KeyGenSig(1λ); µ = fs0(pks); z3, r1
$← {0, 1}λ; c = Enc(pke, z3; r1);

nizk.π ← nizk.P(nizk.crs, (stmt, c, µ, pks, pke, ρ), (r1, r0, z3, s0));

σ ← Sign(sks, (stmt, c, µ, nizk.π)); return π := (c, µ, nizk.π, pks, σ).

• We also define the extractor here:
E(ĉrs, ek, stmt, π): Parse π := (c, µ, nizk.π, pks, σ); w ← Dec(ek, c); return w.

Theorem 4. Assume that the underlying NIZK scheme satisfies perfect completeness, compu-
tational soundness, computational zero-knowledge, that the encryption scheme is semantically
secure and perfectly correct, that the pseudo-random function family is secure, that the com-
mitment scheme is perfectly binding and computational hiding, and that the one-time signature
scheme is strongly unforgeable. Then the above construction is a zero-knowledge proof system
satisfying perfect completeness, computational zero-knowledge, and strongly simulation sound
extractability.

The proof uses a similar idea of that in Section 4, which we defer to appendix.

6 SNARK-Friendly Cryptography

What is efficient and not efficient for SNARKs. Known SNARK constructions model
computation as algebraic circuits modulo a large prime p. Standard implementations and pa-
rameter choices for cryptographic primitives are targeted at modern hardware platforms with
different constraints than SNARKs. For example, some algebraic operations, like addition and
constant-scalar multiplication of field elements Fp, which are expensive in hardware, are essen-
tially free in a SNARK; however, while XORing two 32-bit numbers takes a single cycle on an
ordinary CPU, this is far more costly in an arithmetic circuit.

The following observations guide our choices:

• Addition and multiplications by constants in the field Fp, where p is the SNARK field order,
are almost for free, and in particular are much cheaper than multiplication. Reducing the
number of multiplication gates is the main optimization criteria.

• Bit-level operations in an arithmetic circuit is expensive, as splitting a field element into n
bits requires n+ 1 multiplication gates.

• However, once we have a binary representation of a value, operations like Rotation and Shift
are free.

• Random-access lookup tables, such as those used in many S-Box symmetric cryptography im-
plementations, are likely a bottleneck. Typically, there are two main approaches to implement
lookup tables in a circuit. The first approach is a linear scan to select one element, which
results in O(n) cost. The other approach involves using a permutation network to sort a
sequence of memory accesses by address and providing a proof of consistency; the complexity
of this depends on the number of the accesses to the array. [42]

• Verification can be simpler than forward computation. The SNARK circuits do not always
have to compute the result, but can instead represent a verification algorithm. For example,
a multiplicative inverse circuit does not have to encode the computation of the inverse, but
can instead consist of a single multiplication constraint on the value provided by the prover.
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Designing SNARK-friendly cryptographic primitives. We explore the following strate-
gies for designing SNARK-friendly cryptographic primitives.

1. Protocol- and algebraic-level choices. First, for the same cryptographic building block
(e.g., encryption, signature), we explore building it from different algebraic building blocks
such as RSA and Diffie-Hellman. Certain algebraic structures and operations are by nature
more efficient when encoded as SNARK circuits. We also explore various choices such as
using public-key encryption vs hybrid encryption

2. Circuit-level optimizations. Once a scheme is fixed, we perform numerous optimizations
at the circuit level to reduce the concrete circuit size.

We now describe our protocol choices and optimizations for the cryptographic tasks needed
in our SNARK-lifting constructions from Sections 3 and 4.

6.1 Encryption

As the costs of all our SNARK-lifting constructions are dominated by the public-key encryption
of the witness, we focus most of our efforts on this task.

6.1.1 Public-key encryption.

Hawk [29] and Gyges [28] use a näıve implementation of RSA with OAEP, despite the fact this
encoding is poorly suited to arithmetic circuits.

We explore the following strategies for optimizing public-key encryption as a SNARK circuit.

• Circuit-level optimizations for RSA. We start by implementing an optimized circuit for
RSA encryption. The essential challenge with RSA is that the arithmetic operations are over
integers mod n, where n is larger (e.g., 1024 bits) than the SNARK field order p (typically
a 254-bit prime). We represent integers mod n as sixteen 64-bit elements. To multiply a
pair of such integers z := x ∗ y mod n, we construct a circuit that verifies x ∗ y = q ∗ n + z,
where q and z are 16 64-bit elements provided as witnesses by the prover. The optimizations
we added over Hawk’s implementation was to use a more efficient approach for long integer
equality checks when the chunks are not aligned, and reducing the number of comparisons
needed.

• Diffie-Hellman encryption in a SNARK-friendly field extension. Instead of relying
on RSA as the main PKE scheme, we investigate another scheme based on the Discrete-
Logarithm problem in Extension Fields, and use it for symmetric key exchange. Since p is
only 254-bit prime, the DL problem in Fp will not be hard, therefore an extension Fpµ will
be used instead. This idea is mainly inspired by the construction in Pinocchio coin [23]. The
key exchange circuit has two generators in that case g, h ∈ Fpµ , where 〈g〉 = 〈h〉 is a large
multiplicative subgroup of order q|pµ − 1. We select q to be a factor of the µ-th cyclotomic
polynomial Φµ(x) when evaluated at x = p as in [31].

The extension field construction requires us to search for large primes that divide Φµ(p). In
our implementation using libsnark [8], in order to get about 80-bit level of security, we set
µ to be 4, and choose q to be the 398-bit prime factor of the Φ4(p), where p is the SNARK
field order of libsnark. For higher security when µ = 6, we found a 313-bit prime order
subgroup for the extension field. However, to get higher security levels (i.e., µ > 6), this may
require expensive factorization. Additionally, RSA can be used to encrypt small messages in
a straightforward way, but for the extension field scheme, it is difficult to find an appropriate
way to encode messages as subgroup elements.

• Hybrid encryption. Finally, we consider the use of hybrid encryption, where we use the
public-key encryption to encrypt a symmetric key, and then use the symmetric key to encrypt
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the plaintext. To explore this option, we additionally explored various options of symmetric-
key encryption as we describe below.

6.1.2 Symmetric-key encryption.

After encrypting an ephemeral secret using RSA or an extension field-based scheme, we use a
SHA-256 circuit to derive a secret symmetric key and a secret initialization vector. Then, a
symmetric encryption is performed in CBC mode using a block cipher.

Choosing a standard block cipher like AES is a poor choice for SNARKs due to its complexity.
For example, using a näıve implementation of AES using snarklib [18], one AES-128 block
requires more than 1 million gates, which is several orders of magnitude more expensive than
our baseline from Hawk. This high cost is mainly because näıve implementations use inefficient
look up tables for S-boxes, as well as similarly unoptimized procedures. In our optimized
implementation, we substantially reduce the overhead for memory accesses by using a customized
efficient technique for the S-Box, and remove other look up tables when more efficient alternatives
can be used (Further detail will be covered in a later version). Our more efficient implementation
costs about 23k gates per block, and about 4.6k gates in the initial key expansion phase (we are
also investigating more optimizations in an ongoing work).

To achieve more practical performance, we looked for lightweight ciphers according to the
criteria we described in the beginning of the section, and found two promising ciphers, Speck
and Chaskey, which were proposed recently. Speck was proposed in 2013 [3] by NSA, and in
2015, no attacks have been found so far [4]. Chaskey was proposed in [36], where its security
was proven in the standard model. We use a more secure version of Chaskey called Chaskey-
LTS, which uses 16 rounds instead of 8 to achieve long-term security. These ciphers have more
SNARK-friendly implementations compared to AES, but the disadvantage of using these ciphers
is that they are new compared to AES. We plan to investigate more lightweight ciphers in the
future as well.

6.1.3 Micro-benchmarks

Table 1 provides the micro-benchmarks for the public key and symmetric key schemes discussed
above, compared to their näıve implementations when possible. It should be noted that for
PKE schemes, we assumed that the public key is hardcoded in the circuit, which is suitable for
our purposes in the transformations. If the public keys are not hardcoded, the cost for the field
extension circuit will be about 35k gates instead, but it will result into minor difference in the
RSA case. As noted in the table, the cost of Field Extension is 40x better than the RSA case.
Similarly for the block ciphers, the table shows about 4x better cost for Speck and Chaskey
compared to an optimized version of AES. We also compared with our optimized version of
AES (23k multiplication gates) to an auto-generated SNARK circuit using snarklib [18] (> 1
million multiplication gates). In this case, our optimized version of AES implementation is at
least 40x better than the auto-generated version.

Table 1: The number of multiplication gates of PKE and Symmetric-key Cipher Schemes. Numbers
between (.) represent naive implementation cost, when significant.

PKE Scheme Cost for Key Exchange Block Cipher Cost per Block

RSA-1024 210k (330k) AES 128 23k (1m)
Field Extension (µ = 4) 5k Speck 128 6k

Chaskey LTS 128 5k

Table 2 provides the cost of encrypting 200 bytes using all the above schemes (after optimiza-
tions). One interesting observation to make here is that the cost of RSA with AES encryption
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is worse than using RSA directly. Furthermore, the extension field with the two lightweight
ciphers provide better performance than the other techniques with about 3x speedup. Note
that the speedup here is lower than the previous table, due to the cost of key derivation after
key exchange.

Table 2: The number of gates for encrypting 200 bytes for all schemes.
Total Cost Cost Per Bit Cost Ratio

RSA only 420k 262.5 3.39

RSA + AES 563k 351.88 4.54
RSA + Speck 346k 216.49 2.79
RSA + Chaskey LTS 329k 205.26 2.65

Field Extension + AES 358k 223.75 2.89
Field Extension + Speck 141k 88.36 1.14
Field Extension + Chaskey LTS [Baseline] 124k 77.50 1.0

6.2 Pseudo-random functions / Commitments

In our implementation, we instantiate PRFs and Commitments using an efficient SHA-256
circuit. An efficient SHA-256 circuit costs about 27k gates, while its näıve implementation
using SNARK compilers costs more than 40k gates. The optimizations are mainly achieved
by representing Boolean operations efficiently, and careful circuit design. A previous similar
implementation and a detailed discussion of SHA-256 optimizations can be found in [5].

6.3 Collision Resistant Hash Functions

Lattice-based cryptography, including Ajtai’s collision resistant hash, are promising for use in
SNARKs [7]. However, existing estimates of concrete security for such schemes only extend to
lattices over small finite fields, but do not a priori apply to lattices constructed over a SNARK’s
(much larger) native field. In the Appendix, we establish that these estimates do indeed apply
and show how to parameterize lattice-based schemes.

6.4 Signatures

For the digital signature scheme, we use an optimized RSA signature verification circuit using
the PKCS-1 standard. As stated earlier, SNARK circuits do not necessarily have to compute,
and since the signature verification in RSA is cheaper (due to the small public exponent), we
adopt a signature verification circuit instead, and apply the same optimizations we applied for
the RSA Encryption circuit.

We currently use SHA-256 to hash the message to be signed. For very long messages, this
could be improved by composing a SNARK-friendly collision-resistant hash with a single SHA-
256 block in the end.

6.5 End-to-end Application

Speedup of the entire SNARK-lifting transformation. We evaluate the speedup of
our optimized SNARK-lifting transformation in comparison with a naive, unoptimized baseline
which implements the scheme in Section 3.1. To do this, we isolate the effect of the application-
specfic circuit for the NP language, by considering a very small application-specific circuit. In
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Table 3: Keygen / Proof Computation Time (in seconds) for the pour and freeze circuits from
Hawk [29]

Transformation in Section 3, A.2

Hyb. Enc. w/ Field Ext. Hyb. Enc. w/ RSA
RSA

Naive RSA
Chaskey LTS Speck AES Chaskey LTS Speck AES Baseline [29]

Pour (Keygen) 125.2 128.1 156.2 152.9 151.8 181.3 163.1 218.1
Pour (Proof) 41.0 41.3 55.3 49 48.5 65.0 53.4 80.8
Freeze (Keygen) 96.7 96.7 126.0 120.9 123.9 149.41 132.6 188.1
Freeze (Proof) 31.8 32.0 42.7 40.2 40.5 50.36 40.7 63.6

Transformation in Section 4.2

Hyb. Enc. w/ Field Ext. Hyb. Enc. w/ RSA
RSA

Chaskey LTS Speck AES Chaskey LTS Speck AES

Pour (Keygen) 106.9 110.0 132.4 126.4 130.1 157.8 141.4
Pour (Proof) 40.4 40.4 43.1 40.6 40.7 55.5 46.6
Freeze (Keygen) 78.1 81.1 110.1 104.9 107.9 129.5 116.7
Freeze (Proof) 26.7 26.9 42.2 39.8 39.8 42.8 40.2

this case, our implementation shows 5x performance improvement. In particular, our opti-
mized version adopts the more superior SNARK-lifting transformation described in Section 4.2,
with SNARK-friendly cryptography primitives such as the encryption using field extension and
Chaskey or Speck ciphers.

In the context of a realistic, cryptocurrency application. As mentioned earlier in Sec-
tion 1.2 subsequent works [28,29] that use SNARKs for cryptocurrency applications have since
adopted our SNARK-lifting transformations. However, these works were conducted before we
had the opportunity to optimize our transformations and make them SNARK-friendly. We
therefore use those earlier implementations as a baseline of comparison.

To show the enhancement introduced by our techniques in a real application, we apply the
transformations proposed in this paper and the SNARK-friendly cryptography on sample two
circuits from the Hawk system [29] at 80-bit security level (using RSA-1024 and field extension
at µ = 4). The two circuits selected were pour and freeze which mainly enable users to spend
or commit to coins with hidden values. Note that the circuits for pour and freeze include
many other components for Merkle trees and commitment verification, while the soundness
components are just a subset. The original Hawk paper [29] used the transformation in Section
3 with the optimization in A.2, using only unoptimized RSA for encryption and signature. This
will be the baseline for comparison.

In Table 3, we study the SNARK key generation and proof construction time under the
transformations in sections 3 using the optimization in A.2, and the transformation in 4.2, and
compare all the encryption schemes for both circuits. We used libsnark to run the evaluation
on a single processor of 2.2 GHz with 6GB memory in the worse case. The table shows that
applying the second transformation with the hybrid encryption scheme that uses field extension
and Chaskey LTS can achieve at least 2x better overall performance for both circuits compared
to the baseline. The reason why the speedup is smaller in this case is because our application
required verifying an NP language that is modeled by a moderately large circuit containing about
300-400K multiplication gates (excluding our transformations). Therefore, our optimizations
were mainly related to a small fraction of the circuit — and it is outside the scope of this paper
to optimize the application-specific circuit for the NP language.
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7 Conclusion

We have shown several ways to ugprade a SNARK (or an ordinary NIZK) to an SSE-NIZK,
suitable for use in a composable simulation-based security framework. This is of immediate
practical use, as there are already efficient and general implementations of SNARKs, and nu-
merous applications requiring them. Along the way, we’ve identified protocol choices, parame-
terizations ad optimized implementations for several cryptographic tasks. We show 10x to 40x
performance improvement for implementing individual cryptographic primitives (e.g., encryp-
tion) over SNARK. Altogether, our optimized SNARK-lifting transformation gains 5x concrete
performance in comparison with a naive implementation. Given the wide range of applica-
tions building on SNARKs, we hope our work inspires further effort to develop SNARK-friendly
cryptography, and also that it encourages wider use of simulation-based security specifications.
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Appendix

A Optimizations for Basic SNARK Lifting Transforma-
tion

A.1 Witness Optimization

In this section, we show an improvement of Section 3.1. The idea is simple:
Note in the construction of Section 3.1, for a witness to be valid for RL′ , either w or σ is

valid, but not both. Hence, instead of encrypting both (concatenation), we only need to encrypt
the one we actually use.

For language L with NP relation RL, let L′ be
(
(stmt, c, pks, pke), (r, w)

)
∈ RL′ iff:

c = Enc(pke, w; r) ∧
(
(stmt, w) ∈ RL ∨ Verify(pks, stmt, w) = 1

)
The construction is defined as follows:

• K(1λ,L):

snark.crs← snark.K(1λ,L′); (pke, ske)← KeyGenEnc(1
λ);

(pks, sks)← KeyGenSig(1λ); return crs := (snark.crs, pks, pke).

• P(crs, stmt, w):

Parse crs := (snark.crs, pks, pke); Abort if (stmt, w) /∈ RL;

z0, r1
$← {0, 1}λ; c = Enc(pke, w; r1);

snark.π ← snark.P(snark.crs, (stmt, c, pks, pke), (r1, w));

return π := (c, snark.π).

• V(crs, stmt, π):

Parse crs := (snark.crs, pks, pke) and π := (c, snark.π);

Call snark.V(snark.crs, (stmt, c, pks, pke), snark.π).

• K̂(1λ,L): Run K to get ĉrs := crs, but keep trapdoor τ := sks, extraction key ek := ske.

• P̂(ĉrs, τ, stmt):

Parse ĉrs := (snark.crs, pks, pke) and τ := sks;

z1, r1
$← {0, 1}λ; c = Enc(pke, σ; r1); σ ← Sign(sks, stmt)

snark.π ← snark.P(snark.crs, (stmt, c, pks, pke), (r1, σ));

return π := (c, snark.π).

• We also define the extractor here:
E(ĉrs, ek, stmt, π): Parse π := (c, snark.π); w ← Dec(ek, c); return w.

We next prove the construction is a SSE-NIZK.

Theorem 5. Assume that the underlying NIZK scheme satisfies perfect completeness, computa-
tional soundness, and computational zero-knowlege, that the signature scheme satisfies existen-
tial unforgeability under chosen message attack, and that the encryption scheme is semantically
secure and perfectly correct, then the above construction is a zero-knowledge proof system satis-
fying perfect completeness, computational zero-knowledge, and simulation sound extractability.

Proof. Completeness is obvious. Next we show zero-knowledge and simulation sound extractabil-
ity.

Lemma 6. The construction is zero-knowledge.
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Proof. The lemma can be proved similarly as previous one.

Lemma 7. The construction is simulation sound extractable.

Proof. The proof follows the same idea as the previous proof, We only sketch the hybrid games:

Expt0: Actual game.

Expt1: Change the return condition to, w ← Dec(ek, c):

(1) stmt /∈ Q; (2) V(ĉrs, stmt, π) = 1;

(3) (stmt, w) /∈ RL Verify(pks, stmt, w) = 1

We argue that Pr[Expt0] ≤ Pr[Expt1] + negl(λ): By the soundness of the underlying NIZK,
we know that (stmt, c, pks, pke) ∈ L′ except for negligible probability. Hence we only focus on
such cases. By the perfectly correctness of the underlying encryption scheme, all valid witnesses
must use the unique w decrypted.

If (stmt, w) /∈ RL then we must have Verify(pks, stmt, w) = 1, which gives Pr[Expt0] ≤
Pr[Expt1] + negl(λ).

Next we argue that Pr[ExptA1 ] ≤ negl(λ): Consider otherwise, then we use ExptA1 as an
adversary for the security game of the signature scheme: Get pks from the game; Run ExptA1
with the same pks; Replace signature with oracle calls (hence sks is no longer); Output the w
decrypted.

A.2 SNARK-Specific Optimization

In this section, we show a modified construction based on a SNARK, which improves the one
in Section 3.1 by the use of its non-blackbox extractor.

For language L with NP relationRL, let L′ be the language defined as
(
(stmt, c, pks, pke), (r, w, σ)

)
∈

RL′ iff:
c = Enc(pke, w; r) ∧

(
(stmt, w) ∈ RL ∨ Verify(pks, stmt, σ) = 1

)
The construction is defined as follows:

• K(1λ,L):

snark.crs← snark.K(1λ,L′);
(pke, ske)← KeyGenEnc(1

λ); (pks, sks)← KeyGenSig(1λ);

return crs := (snark.crs, pks, pke).

• P(crs, stmt, w):

Parse crs := (snark.crs, pks, pke); Abort if (stmt, w) /∈ RL;

z0, r1
$← {0, 1}λ; c = Enc(pke, w; r1);

snark.π ← snark.P(snark.crs, (stmt, c, pks, pke), (r1, w, z0));

return π := (c, snark.π).

• V(crs, stmt, π):

Parse crs := (snark.crs, pks, pke) and π := (c, snark.π);

Call snark.V(snark.crs, (stmt, c, pks, pke), snark.π).

• K̂(1λ,L): Run K to get ĉrs := crs, but keep trapdoor τ := sks, extraction key ek := ske.

• P̂(ĉrs, τ, stmt):

Parse ĉrs := (snark.crs, pks, pke) and τ := sks;
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z1, r1
$← {0, 1}λ; c = Enc(pke, z1; r1); σ ← Sign(sks, stmt)

snark.π ← snark.P(snark.crs, (stmt, c, pks, pke), (r1, z1, σ));

return π := (c, snark.π).

• We also define the extractor here:
E(ĉrs, ek, stmt, π): Parse π := (c, snark.π); w ← Dec(ek, c); return w.

We next prove the construction is a SSE-NIZK.

Theorem 6. Assume that the underlying SNARK scheme satisfies perfect completeness, and
computational zero-knowledge, and proof of knowledge properties (which implies soundness),
and that the signature scheme satisfies existential unforgeability under chosen message attack,
and that the encryption scheme is semantically secure and perfectly correct, then the above
construction is a zero-knowledge proof system satisfying perfect completeness, computational
zero-knowledge, and simulation sound extractability.

Proof. Completeness is obvious. Next we prove zero-knowledge and simulation sound ex-
tractability.

Lemma 8. The construction is zero-knowledge.

Proof. The proof essentially follows the same as the previous proof. We only sketch the hybrids
below:

Expt0: Actual game.

Expt1: Change to use simulation setup, i.e., snark.K and snark.P̂.

Expt2: We change to encrypt the true witness, i.e. c is an encryption of (⊥, σ) c is an encryption
of (w,⊥).

Expt3: Change back to use honest setup. Note that this can be done as we provide a valid
witness in RL.

Lemma 9. The construction is simulation sound extractable.

Proof. The proof follows the same idea as the previous proof, with the following modifications:
We can no longer decrypt the proof to get the signature, however we can use the blackbox

extractor from the SNARK. This would allow us to argue that: if the extracted signature is
valid (and the statement has not been queried), then we can break the signature scheme.

We only sketch the hybrid games:

Expt0: Actual game.

ExptA1 : Similar to Expt1 in Lemma 4, we view all probabilistic polynomial-time algorithms as
deterministic ones with random bits as a parameter. We store the random bits used called R.
Change the return condition to:

w ← Dec(ek, c); (w0,⊥, σ0)← snark.EA(snark.crs, R):

(1) stmt /∈ Q; (2) V(ĉrs, stmt, π) = 1;

(3) (stmt, w) /∈ RL Verify(pks, stmt, σ0) = 1
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We argue that Pr[Expt0] ≤ Pr[Expt1] + negl(λ): By the (non-blackbox) extractability of the
SNARK and the fact that A runs in polynomial-time, we have that (w0,⊥, σ0) is a valid witness
except for negligible probability. Hence we focus on the case the (w0,⊥, σ0) is valid.

By the perfectly correctness of the encryption scheme, we have w = w0. Also note that given
(w0 = w,⊥, σ) is valid, if (stmt, w) /∈ RL then we must have Verify(pks, stmt, σ0) = 1, which
gives Pr[Expt0] ≤ Pr[Expt1] + negl(λ).

Next we argue that Pr[ExptA1 ] ≤ negl(λ): Note that for all polynomial A, there exists a
polynomial-time algorithm snark.EA, where the subscript indicates that it uses non-blackbox
access to the adversary A.

Consider the following adversary for the signature scheme: Get pks from the game; Run
ExptA1 with the same pks; Replace signature with oracle calls (hence sks is no longer); Output
(stmt, σ0), where stmt is given by the adversary A and σ0 is given by the (SNARK) extractor.
Since the signature scheme is unforgeable and that stmt has not been queried, we have that
Pr[Expt1] ≤ Verify(pks, stmt, σ0) ≤ negl(λ).

B Omitted Proofs

B.1 Proof of Theorem 1

Proof of Theorem 1. The proof of perfect completeness is obvious. We now show that this
transformation gives a zero knowledge and simulation sound extractable NIZK.

Proof of zero-knowledge. We now show that no polynomial-time adversary A can win the
zero knowledge game except with negligible probability.

We construct the following hybrid games:

ExptA. K̂(1λ,L) and P̂1(ĉrs, τ, stmt, w) are run as defined. Recall that P̂1 checks the witness w

and then calls (c, π)← P̂(ĉrs, τ, stmt).

ExptB.

• K̂(1λ,L): Use the underlying simulator setup algorithm nizk.K̂. Return the simulated
ĉrs := (nizk.ĉrs, pk, pke), and trapdoor τ := (nizk.τ, sk).

• P̂1(ĉrs, τ, stmt, w): Abort if (stmt, w) /∈ L. Output (c, π), where c is an encryption of (⊥, σ)

and π ← nizk.P̂(nizk.ĉrs, nizk.τ, (stmt, c)).

ExptC,t, where t is a polynomial function of λ.

• K̂(1λ,L): Same as before.

• P̂1(ĉrs, τ, stmt, w): Check if (stmt, w) ∈ L, and abort otherwise. For the first t− 1 queries,

let c be an encryption of (w,⊥), and output (c, π) where π ← nizk.P̂(nizk.ĉrs, nizk.τ, (stmt, c)).
However, for the tth and all subsequent queries, behave the same as in ExptB.

ExptD.

• K̂(1λ,L): Same as before.

• P̂1(ĉrs,⊥, stmt, w): Check if (stmt, w) ∈ L, and abort otherwise. Let c be an encryption

of (w,⊥), and output (c, π) where π ← nizk.P̂(ĉrs, τ, (stmt, c)).

ExptE.

• K̂(1λ,L): Actually just run K(1λ,L), and output (crs,⊥,⊥).
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• P̂1(crs,⊥, stmt, w): Actually just run P(crs, stmt, w).

First, ExptA and ExptB are indistinguishable by reduction to zero knowledge property of the
underlying NIZK. Next, notice that ExptB and ExptC,1 are identical. We can also prove for every
polynomial function t ≥ 1 that ExptC,t and ExptC,t+1 are indistinguishable by a reduction to
the semantic security of the underlying encryption scheme. Suppose A distinguishes between
ExptC,t and ExptC,t+1. Then we can construct an adversary A′ for the semantic security game
as follows:

• Generate (ĉrs, τ, ek)← K̂(1λ,L)

• Call b ← AP̂
†(ĉrs,τ,·,·), where P̂†(ĉrs, τ, stmt, w) checks if (stmt, w) ∈ L, and then does as

follows:

– For the first t− 1 queries, behave as in ExptC,t.

– For the (t+ 1)th and all subsequent queries, behave as in ExptC,t+1.

– On the tth query, let σ := Σ.Sign(sk, stmt), and choose m1 := (w,⊥) and m2 := (⊥, σ)
as the adversary’s plaintexts in the sematic security game. Let c† be the resulting
challenge ciphertext obtained from the semantic security game. Output (c†, π†), where

π† ← nizk.P̂(ĉrs, τ, (stmt, c†)).

• Output b

This reduction succeeds because conditioned on the challenger choosing m1 or m2, the resulting
distribution is identical to ExptC,t or ExptC,t+1 respectively. Next, suppose A is able to distin-
guish between ExptB and ExptD. Let t∗ > 1 be a polynomial function that bounds the number
of oracle calls made by A. Notice that ExptC,t∗ is identical to ExptD when run with A. By
induction using the argument above, ExptC,1 is indistinguishable from ExptC,t∗ . Finally, ExptD
is indistinguishable from ExptE because the underlying proof system is zero knowledge.

Proof of simulation sound extractability. We construct the following extractor:

• E(ĉrs, ek, stmt, π′): parse π′ := (c, π), and let (w, σ) := Dec(ske, c). Output w.

We now show that no polynomial-time adversary A can win the simulation sound extractable
game except with negligible probability.

Given that the encryption scheme is perfectly correct, we can assume that the (w, σ) de-
crypted by E is the unique plaintext that produces c as a ciphertext.

Suppose σ is a valid signature, but stmt is not one of the statements signed via an oracle query
to P̂. Since the underlying signature scheme is unforgeable, this event occurs with negligible
probability.

Otherwise, suppose w is not a valid witness under language L (and hence (stmt, c) is not
a statement in L′). This reduces to breaking the computational soundness of the underlying
NIZK. Note that the adversary A′ for the computational soundness game must take in a real
crs and must generate a valid proof for a false statement. We can therefore construct A′(crs)
from A as follows: First, A′ runs (ĉrs, τ, ek)← K̂(1λ,L), but then discards ĉrs. The crs provided
as input will be used instead. Notice that crs and ĉrs here are identically distributed, since
both the soundness game and K̂ both run the ordinary setup nizk.K directly. Next, A′ runs

(stmt, (c, π))← AP̂(crs,τ,·) as in the simulation sound extractable game, and returns ((stmt, c), π)
to the computational soundness game, winning both games with similar probability. Notice that
the oracle P̂(crs, τ, ·) does not have access to any trapdoor for the underlying NIZK and cannot
generate false proofs.

B.2 Proof of Theorem 4

Proof of Theorem 4. Completeness is obvious, we next prove it is also strongly simulation sound
extractable and zero-knowledge.
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Strong simulation sound extractability.

Lemma 10. The construction is strongly simulation sound extractable.

Proof. The game for strong simulation sound extractability is defined as follows:

Expt0 (Actual game):

1. Setup:

nizk.crs← nizk.K(1λ,L′); (pke, ske)← KeyGenEnc(1
λ);

s0, r0
$← {0, 1}λ; ρ := comm(s0; r0). ĉrs := (nizk.crs, pke, ρ).

2. Define function O(stmtx):

(pks, sks)← KeyGenSig(1λ); µ = fs0(pks);

z3, r1
$← {0, 1}λ; c = Enc(pke, z3; r1);

nizk.π ← nizk.P(nizk.crs, (stmtx, c, µ, pks, pke, ρ), (r1, r0, z3, s0)); σ ← Sign(sks, (stmt, c, µ, nizk.π));

return π := (c, µ, nizk.π, pks, σ).

3. (stmt, π)← AO(·)(ĉrs, ek);

4. Parse π := (c, µ, nizk.π, pks, σ); w ← Dec(ek, c);

5. Let Q be the set of statement-proof pairs generated by O(·)
Output 1 iff: (1) (stmt, π) /∈ Q; and (2) V(ĉrs, stmt, π) = 1; and (3) (stmt, w) /∈ RL.

Expt1 (Relax return condition):

1. Setup:

nizk.crs← nizk.K(1λ,L′); (pke, ske)← KeyGenEnc(1
λ);

s0, r0
$← {0, 1}λ; ρ := comm(s0; r0); ĉrs := (nizk.crs, pke, ρ).

2. Define function O(stmtx):

(pks, sks)← KeyGenSig(1λ); µ = fs0(pks);

z3, r1
$← {0, 1}λ; c = Enc(pke, z3; r1);

nizk.π ← nizk.P(nizk.crs, (stmtx, c, µ, pks, pke, ρ), (r1, r0, z3, s0)); σ ← Sign(sks, (stmt, c, µ, nizk.π));

return π := (c, µ, nizk.π, pks, σ).

3. (stmt, π)← AO(·)(ĉrs, ek);

4. Parse π := (c, µ, nizk.π, pks, σ); w ← Dec(ek, c);

5. Let Q be the set of statement-proof pairs and T be the set of verification keys generated
by O(·). The experiment outputs 1 iff:
(1) (stmt, π) /∈ Q; and (2) V(ĉrs, stmt, π) = 1; and (3) pks /∈ T ; and (4) µ = fs0(pks).

Claim 18. If the underlying one-time signature scheme is strongly unforgeable, and that the
underlying NIZK is sound, then we have Pr[Expt0] ≤ Pr[Expt1] + negl(λ).

Proof. Note that if (stmt, π) /∈ Q and “pks has been generated byO(·)”, then the (stmt, c, µ, nizk.π)
(from stmt and π) is a valid message/signature pair. Hence by the unforgeability of the signa-
ture scheme, we know that (stmt, π) /∈ Q and “pks has been generated by O(·)” happens with
negligible probability, which allows us to focus on pks /∈ T .

The decrypted w is unique for all valid witnesses. Further, if some witness is valid for L′
and that (stmt, w) /∈ RL, we know it must be the case that there exists some s′0, such that ρ is
a valid commitment of s′0 and that µ = fs′0(pks), which implies µ = fs0(pks), by the perfectly
binding property.
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Expt2 (Use simulation setup):

1. Setup:

(nizk.ĉrs, nizk.τ)← nizk.K(1λ,L′); (pke, ske)← KeyGenEnc(1
λ);

s0, r0
$← {0, 1}λ; ρ := comm(s0; r0); ĉrs := (nizk.ĉrs, pke, ρ).

2. Define function O(stmtx):

(pks, sks)← KeyGenSig(1λ); µ = fs0(pks);

z3, r1
$← {0, 1}λ; c = Enc(pke, z3; r1);

nizk.π ← nizk.P̂1(nizk.ĉrs, nizk.τ, (stmtx, c, µ, pks, pke, ρ), (r1, r0, z3, s0));

Equivalent: nizk.π ← nizk.P̂(nizk.ĉrs, (stmtx, c, µ, pks, pke, ρ));

σ ← Sign(sks, (stmt, c, µ, nizk.π));

return π := (c, µ, nizk.π, pks, σ).

3. (stmt, π)← AO(·)(ĉrs, ek);

4. Parse π := (c, µ, nizk.π, pks, σ); w ← Dec(ek, c);

5. Let Q be the set of statement-proof pairs and T be the set of verification keys generated
by O(·). The experiment outputs 1 iff:
(1) (stmt, π) /∈ Q; and (2) V(ĉrs, stmt, π) = 1; and (3) pks /∈ T ; and (4) µ = fs0(pks).

Claim 19. If the underlying NIZK is zero-knowledge, then we have Pr[Expt1] ≤ Pr[Expt2] +
negl(λ).

Proof. By the zero-knowledge property, no polynomial-time algorithm can distinguish an honest
setup from an simulation setup. Also note that our experiment runs in polynomial time. This
completes the proof.

Expt3 (Separate s0):

1. Setup:

(nizk.ĉrs, nizk.τ)← nizk.K(1λ,L′); (pke, ske)← KeyGenEnc(1
λ);

s0, s
′
0, r0

$← {0, 1}λ; ρ := comm(s′0; r0); ĉrs := (nizk.ĉrs, pke, ρ).

2. Define function O(stmtx):

(pks, sks)← KeyGenSig(1λ); µ = fs0(pks); z3, r1
$← {0, 1}λ; c = Enc(pke, z3; r1);

nizk.π ← nizk.P̂(nizk.ĉrs, (stmtx, c, µ, pks, pke, ρ));

σ ← Sign(sks, (stmt, c, µ, nizk.π));

return π := (c, µ, nizk.π, pks, σ).

3. (stmt, π)← AO(·)(ĉrs, ek);

4. Parse π := (c, µ, nizk.π, pks, σ); w ← Dec(ek, c);

5. Let Q be the set of statement-proof pairs and T be the set of verification keys generated
by O(·). The experiment outputs 1 iff:
(1) (stmt, π) /∈ Q; and (2) V(ĉrs, stmt, π) = 1; and (3) pks /∈ T ; and (4) µ = fs0(pks).

Claim 20. If the underlying commitment scheme is computationally hiding, then we have
Pr[Expt2] ≤ Pr[Expt3] + negl(λ).

Proof. By the hiding property, no polynomial algorithm can distinguish the commitment of two
elements.
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Expt4 (Replace PRF):
Let F be a true random function.

1. Setup:

(nizk.ĉrs, nizk.τ)← nizk.K(1λ,L′); (pke, ske)← KeyGenEnc(1
λ);

s0, s
′
0, r0

$← {0, 1}λ; ρ := comm(s′0; r0); ĉrs := (nizk.ĉrs, pke, ρ).

2. Define function O(stmtx):

(pks, sks)← KeyGenSig(1λ); µ = F (pks);

z3, r1
$← {0, 1}λ; c = Enc(pke, z3; r1);

nizk.π ← nizk.P̂(nizk.ĉrs, (stmtx, c, µ, pks, pke, ρ));

σ ← Sign(sks, (stmt, c, µ, nizk.π));

return π := (c, µ, nizk.π, pks, σ).

3. (stmt, π)← AO(·)(ĉrs, ek);

4. Parse π := (c, µ, nizk.π, pks, σ); w ← Dec(ek, c);

5. Let Q be the set of statement-proof pairs and T be the set of verification keys generated
by O(·). The experiment outputs 1 iff:
(1) (stmt, π) /∈ Q; and (2) V(ĉrs, stmt, π) = 1; and (3) pks /∈ T ; and (4) µ = F (pks).

Claim 21. If the underlying PRF is secure, then we have Pr[Expt3] ≤ Pr[Expt4].

Proof. Since the PRF is secure, no polynomial-time algorithm can distinguish F from fs0 .
We convert Expt4 to an adversary for the security game of PRF, similar to the proof of

Claim 13. It corresponds to Expt4 and Expt3 when running with random function and PRF,
respectively. This completes the proof.

Claim 22. We have Pr[Expt4] ≤ 2−λ.

Proof. Since pks /∈ T , we know that F (pks) has not been queried before. Hence we may view
F (pks) as newly generated random bits independent from µ. This completes the proof.

Computationally Zero-knowledge.

Lemma 11. The construction is computationally zero-knowledge.

Proof. We prove this by showing a series of indistinguishable hybrids, where the first one is the
simulation setup and the last one is the honest setup.

Expt0 (actual game):

1. Setup:

nizk.crs← nizk.K(1λ,L′); (pke, ske)← KeyGenEnc(1
λ);

s0, r0
$← {0, 1}λ; ρ := comm(s0; r0); ĉrs := (nizk.crs, pke, ρ).

2. Define function O(stmtx, w):

Abort if (stmtx, w) /∈ RL; (pks, sks)← KeyGenSig(1λ); µ = fs0(pks);

z3, r1
$← {0, 1}λ; c = Enc(pke, z3; r1);

nizk.π ← nizk.P(nizk.crs, (stmt, c, µ, pks, pke, ρ), (r1, r0, z3, s0));

σ ← Sign(sks, (stmt, c, µ, nizk.π)); return π := (c, µ, nizk.π, pks, σ).
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3. b← AO(·,·)(ĉrs); Output b.

Expt1 (use simulation setup):

1. Setup:

(nizk.ĉrs, nizk.τ)← nizk.K̂(1λ,L′); (pke, ske)← KeyGenEnc(1
λ);

s0, r0
$← {0, 1}λ; ρ := comm(s0; r0); ĉrs := (nizk.ĉrs, pke, ρ).

2. Define function O(stmtx, w):

Abort if (stmtx, w) /∈ RL;

(pks, sks)← KeyGenSig(1λ); µ = fs0(pks);

z3, r1
$← {0, 1}λ; c = Enc(pke, z3; r1);

nizk.π ← nizk.P̂1(nizk.ĉrs, nizk.τ, (stmt, c, µ, pks, pke, ρ), (r1, r0, z3, s0));

Equivalent: nizk.π ← nizk.P̂(nizk.ĉrs, nizk.τ, (stmt, c, µ, pks, pke, ρ));

σ ← Sign(sks, (stmt, c, µ, nizk.π)); return π := (c, µ, nizk.π, pks, σ).

3. b← AO(·,·)(ĉrs); Output b.

Claim 23. If the underlying NIZK is zero-knowledge, then we have Pr[Expt1] ≈ Pr[Expt0].

Expt2 (Encrypt true witness):

1. Setup:

(nizk.ĉrs, nizk.τ)← nizk.K̂(1λ,L′); (pke, ske)← KeyGenEnc(1
λ);

s0, r0
$← {0, 1}λ; ρ := comm(s0; r0); ĉrs := (nizk.ĉrs, pke, ρ).

2. Define function O(stmtx, w):

Abort if (stmtx, w) /∈ RL; (pks, sks)← KeyGenSig(1λ); µ = fs0(pks);

z3, r1
$← {0, 1}λ; c = Enc(pke, w; r1);

nizk.π ← nizk.P̂(nizk.ĉrs, nizk.τ, (stmt, c, µ, pks, pke, ρ));

σ ← Sign(sks, (stmt, c, µ, nizk.π)); return π := (c, µ, nizk.π, pks, σ).

3. b← AO(·,·)(ĉrs); Output b.

Claim 24. If the underlying encryption scheme is semantically secure, then we have Pr[Expt2] ≈
Pr[Expt1].

Proof. By Claim 2, no polynomial-time algorithm can distinguish an oracle that always encrypt
the first message from one that always encrypt the second.

We construct the following adversary: Run Expt2 but get pke from the game; Replace gen-
erating c with the oracle call, with the two messages being z3 and w.

Note that encrypting z3 is identical to the normal Expt2, while encrypting w is identical to
running Expt1. The claim follows.

Expt3 (Separate s0):

1. Setup:

(nizk.ĉrs, nizk.τ)← nizk.K̂(1λ,L′); (pke, ske)← KeyGenEnc(1
λ);

s0, s
′
0, r0

$← {0, 1}λ; ρ := comm(s′0; r0); ĉrs := (nizk.ĉrs, pke, ρ).

2. Define function O(stmtx, w):

Abort if (stmtx, w) /∈ RL; (pks, sks)← KeyGenSig(1λ); µ = fs0(pks);
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r1
$← {0, 1}λ; c = Enc(pke, w; r1);

nizk.π ← nizk.P̂(nizk.ĉrs, nizk.τ, (stmt, c, µ, pks, pke, ρ));

σ ← Sign(sks, (stmt, c, µ, nizk.π)); return π := (c, µ, nizk.π, pks, σ).

3. b← AO(·,·)(ĉrs); Output b.

Claim 25. If the underlying commitment scheme is computationally hiding, then we have
Pr[Expt3] ≈ Pr[Expt2].

Expt4 (Replace PRF):

1. Setup:

(nizk.ĉrs, nizk.τ)← nizk.K̂(1λ,L′); (pke, ske)← KeyGenEnc(1
λ);

s0, s
′
0, r0

$← {0, 1}λ; ρ := comm(s′0; r0); ĉrs := (nizk.ĉrs, pke, ρ).

2. Define function O(stmtx, w):

Abort if (stmtx, w) /∈ RL;

(pks, sks)← KeyGenSig(1λ); µ
$← {0, 1}λ;

r1
$← {0, 1}λ; c = Enc(pke, w; r1);

nizk.π ← nizk.P̂(nizk.ĉrs, nizk.τ, (stmt, c, µ, pks, pke, ρ));

σ ← Sign(sks, (stmt, c, µ, nizk.π)); return π := (c, µ, nizk.π, pks, σ).

3. b← AO(·,·)(ĉrs); Output b.

Claim 26. If the underlying PRF is secure and that the underlying one-time signature scheme
is unforgeable, then we have Pr[Expt4] ≈ Pr[Expt3].

Proof. First note that the generated pks’s are distinct except for negligible probability, as oth-
erwise it would break the one-time signature scheme.

Also, we can replace fs0 in Expt3 with a true random function F , which is identical to Expt4
when the pks’s are all distinct.

Expt5 (Use nizk.P̂1):

1. Setup:

(nizk.ĉrs, nizk.τ)← nizk.K̂(1λ,L′); (pke, ske)← KeyGenEnc(1
λ);

s′0, r0
$← {0, 1}λ; ρ := comm(s′0; r0); ĉrs := (nizk.ĉrs, pke, ρ).

2. Define function O(stmtx, w):

Abort if (stmtx, w) /∈ RL;

(pks, sks)← KeyGenSig(1λ); µ
$← {0, 1}λ;

z1, z2, r1
$← {0, 1}λ; c = Enc(pke, w; r1);

nizk.π ← nizk.P̂1(nizk.ĉrs, nizk.τ, (stmt, c, µ, pks, pke, ρ), (r1, z1, w, z2));

σ ← Sign(sks, (stmt, c, µ, nizk.π)); return π := (c, µ, nizk.π, pks, σ).

3. b← AO(·,·)(ĉrs); Output b.

Claim 27. We have Pr[Expt5] = Pr[Expt4].

Expt6 (Use P):

1. Setup:
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nizk.crs← nizk.K(1λ,L′); (pke, ske)← KeyGenEnc(1
λ);

s′0, r0
$← {0, 1}λ; ρ := comm(s′0; r0); ĉrs := (nizk.crs, pke, ρ).

2. Define function O(stmtx, w):

Abort if (stmtx, w) /∈ RL; (pks, sks)← KeyGenSig(1λ); µ
$← {0, 1}λ;

z1, z2, r1
$← {0, 1}λ; c = Enc(pke, w; r1);

nizk.π ← nizk.P(nizk.crs, (stmt, c, µ, pks, pke, ρ), (r1, z1, w, z2));

σ ← Sign(sks, (stmt, c, µ, nizk.π)); return π := (c, µ, nizk.π, pks, σ).

3. b← AO(·,·)(ĉrs); Output b.

Claim 28. If the underlying NIZK is zero-knowledge, then we have Pr[Expt6] ≈ Pr[Expt5].

Note that the last experiment is exactly the definition. This completes the proof for the zero-
knowledge part.

B.3 An Ideal Functionality for (Weak) SSE-NIZKs

In Section 2, we defined (weak) SSE-NIZK, and in Section 5 defined a strengthened definition.
The difference between these two definitions is about whether the adversary without a witness
is able to generate new proofs for true statements that have already been proven by an honest
party with a witness. Although the weaker definition is shown in Hawk [29] to be sufficient for
UC-secure applications, the ideal functionality FWEAK-NIZK as defined in [26] is only shown to
be realizable by the stronger definition. We therefore now provide a slightly-weakened variation
of FWEAK-NIZK that allows the adversary to generate new proofs for already-proven statements,
and therefore should be realizable from a (weak) SSE-NIZK. However, we do not provide a
proof, nor do we prove that applications using the functionality from [26] are still secure when
using our functionality instead.

Functionality FWEAK-NIZK(sid,L)

Prove: On input (prove, stmt, w) from party P ignore if (stmt, w) /∈ L. Send (prove, stmt) to A and wait
for answer (proof, π). Upon receiving the answer store (proof, stmt, π) and send (proof, π) and
send (proof, π) to P .

Maul: On input (maul, stmt, π) from A, ignore unless (stmt, x) is already stored for some π′. Record
(stmt, π) and send ok to A.

Verify: On input (verify, stmt, π) from party P , check whether (stmt, π) is stored. If not, then send
(verify, stmt, π) to A and wait for an answer (witness, w). Upon receiving the answer, check
whether (stmt, w) ∈ L and in that case, store (stmt, π). If (stmt, π) has been stored return
(verification, 1) to P , and otherwise return (verification, 0) to P .

C The Concrete Hardness of SIS and Ajtai Hash

The Ajtai hash is a lattice-based collision-resistant hash function that shows great promise for use
in SNARK-friendly cryptographic applications (e.g., Merkle trees, just for one example). [2, 7].
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Ben-Sasson et al. have suggested a parameterization that they conjecture to be secure based
on heuristic extrapolation of earlier estimates [7]. However, this extrapolation is delicate, and
a lack of confidence in this heuristic has apparently stalled its use (e.g., it was not been used
in Zerocash [5], a practical real-world application for which this construction would provide a
significant performance enhancement).

The collision-resistance of the Ajtai hash relies on the hardness of the SIS problem. Hence,
it is natural to estimate the hardness of Ajtai hash by evaluating its corresponding SIS problem.
So far, the best concrete security analysis of SIS is based on empirical observation of the running
time of the best known attack algorithms (LLL,BKZ,BKZ2.0) over a range of parameterizations
[1, 20, 33]. However, to reap the performance benefits of using this within a SNARK, we must
choose a parameterization that lies outside the range covered in this experiment (i.e., the arity
of the lattice must be a large prime q ∼ 2254, the native field of the SNARK, whereas prior
experiments cover only small prime n2 ≤ p ≤ n8). Therefore it is not apparent a priori if the
concrete security estimates can safely be extrapolated here.

In this note, we review the concrete security analysis for SIS, and reproduce (in part) the
empirical experiments from [38], extended to the parameter ranges appropriate for SNARK-
friendly crypto. We provide a step-by-step algorithm for concrete security analysis of arbitrary
SIS instance, and use the algorithm to estimate the security of Ajtai hash functions.

Based on our experiments and calculations, we conclude that:

1. It is indeed reasonable to extrapolate from prior concrete hardness estimates of SIS based
primitives, such as Ajtai hash, even in the SNARK-friendly parameter ranges.

2. To achieve 80 bits of security (against the best-known attacks today), we should increase
the dimension of Ajtai hash to n = 3, rather than n = 1 as suggested in [7] (The authors
use d instead of n in [7]).

C.1 Preliminaries

Notations. We denote with log the logarithm to base 2. Vectors and matrices are written in
boldface, e.g., v and M. We use |v|p to denote the lp norm of vector v. In particular, we denote
with |v| the l2 norm of vector v.

Definition 1 (Lattice). A (full-dimensional) lattice in Rm is a discrete subgroup L = {Bx |x ∈
Zm}, where typically B = [b1, . . . ,bm] ∈ Zm×m is a matrix of linearly independent vectors. The
matrix B is a basis of the lattice L and we write L = L(B). The rank of a lattice L is the rank
of the basis matrix B. If the rank equals m, we say that L is full-rank..

The Shortest Vector Problem (SVP) is probably the most fundamental hard problem in
lattice literature [34].

Definition 2 (Shortest Vector Problem (SVP)). Given a basis B of L and an approximation
factor γ ≥ 1, the task of SVP is to find a set v ∈ L such that |v| ≤ γL0, where L0 denotes the
shortest vector in lattice L.

We are only concerned with a type of lattices called “q-array” lattice. Note that every q-ary
lattice is full-rank.s

Definition 3 (q-ary). A lattice L is called a q-ary if qZ ⊆ L.

For q ∈ N and A ∈ Zn×mq , we define two most important q-arys.

Λq(A) = {w ∈ Zn | ∃e ∈ ZmA>e = w (mod q)} (1)

Λ⊥q (A) = {v ∈ Zm |Av = 0 (mod q)} (2)
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Lemma 12. Let q be a prime and m = O(n log(n)). With high probability, the rows of A are
linearly independent over Zq and det(Λ⊥q (A)) = qn.

The Short Integer Solution (SIS) problem is defined over the q-arry Λ⊥q (A).

Definition 4 (Short Integer Solution (SIS)). Given n,m, q ∈ N, a randomly picked A ∈ Zn×mq ,

and a norm bound 1 ≤ β < q, the SIS problem, denoted as SIS(n,m, q, β), is to find v ∈ Λ⊥q (A)
with 0 < |v| ≤ β.

Definition 5 (Ajtai Hash). Given n,m, q ∈ N, a randomly picked A ∈ Zn×mq , the Ajtai Hash
hAjtai(n,m,q) : {0, 1}m → Znq is defined as

h(x) = Ax (mod q) (3)

C.2 High Level Idea

Our goal is to study the concrete hardness of the Ajtai hash function. Specifically, given an
instance hAjtai(n,m,q), what level of bit-security does it satisfy?

The collision-resistance of the Ajtai hash reduces to SIS: In particular, if the adversary can
find a collision for hAjtai(n,m,q), then it would also break SIS(n,m, q,

√
m). Hence, it is natural

to estimate the hardness of the Ajtai hash by evaluating its corresponding SIS problem. We
focus on the security analysis of the SIS problem next.

The best known algorithm for solving SIS relies on Lattice Reduction Algorithms such as
LLL and BKZ. Given the original input lattice basis B, the goal of lattice basis reduction is to
find a basis B̄ with short, nearly orthogonal vectors. If the basis after reduction B̄ is of “good
quality”, the shortest row vector in the reduced basis can be a relatively good estimation of the
shortest vector in the lattice. We adopt the convention that the first non-zero vector, denoted as
b̄0, is the shortest vector in the reduced basis B̄. Intuitively, given SIS(n,m, q, β), the lattice
reduction based attack keeps reducing the basis of the q-array Λ⊥q (A) until its b̄0 is ≤ β.

In practice, finding the shortest vector for hard lattice instances requires at least exponential
running time. The hardness of SIS is estimated by the time cost for the lattice reduction
algorithm to find a basis with a certain level of “quality”. The quality of a basis B of m-
dimensional lattice L is characterized by the root Hermite factor δ0, which is defined such
that |b0| = δm0 |det(L)|1/m. Notice that the q-array Λ⊥q (A) of SIS(n,m, q, β) has determinant

det(Λ⊥q (A)) = qn. The concrete hardness of SIS(n,m, q, β) is estimated by the time cost the

for lattice reduction algorithm to find a basis with δ0 = (β/qn/m)1/m.

C.3 Lattice Reduction Algorithm: BKZ, BKZ2.0

Several works in literature have studied the running time of BKZ [1,20,32,38]. Specifically, they
provide estimated running time for BKZ/BKZ2.0 to find a basis with certain δ0 root Hermite
factor. The running time below is measured by clock cycles.

1. Ruckert and Schneider [38] provides a table of δ0 and BKZ running time based the esti-
mation by extrapolation on “dollar-days” cost.

2. Lindner and Peikert [32] gives the estimate on BKZ as: TLP11 = 21.8/ log δ0−78.9

3. Albrecht et al. [33] extrapolate a model similar to [32] on BKZ2.0 as: TACF15 = 20.009/ log
2 δ0+4.1

4. Chen and Nguyen [20] provide a simulation-based estimate for BKZ2.0. We denote the
estimated running time as TCN12(m∗, δ0) (The simulation also takes the lattice dimension
m∗ as input).

Notice that the experiments in the above works are run with relatively small prime modulo p.
In order to show that the empirical results also apply under the setting where the prime modulo
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n δ0 m = 2n log q m∗ λ = log TACF15 λ = log TCN12

1 1.0139 508 114 26.8 27.8

2 1.0085 1016 204 63.8 60.6

3 1.0064 1524 289 111.1 107.5

4 1.0052 2032 379 167.2 162.0

Table 4: Security level of the Ajtai Hash for n = 1, 2, 3, 4. Prime modulo is set to q = 2254. We set
m equal to 2n log q (i.e., as appropriate for a Merkle tree application).

is very large q >> p. We repeat the experiments in [38] on BKZ with q = 2254. Specifically, we
run the BKZ reduction algorithm on q-array of randomly generated SIS instance with various
(n,m, β) settings. Our running time matches theirs except for a constant speed up (due to a
faster CPU) whenever the root Hermite factors under the two settings are equivalent.

BKZ2.0 [19] is an upgraded version of BKZ. These improvements include early termination,
extreme pruning, limiting the enumeration radius to the Gaussian Heuristic, and local block
pre-processing [19]. We assume with confidence that the empirical results for BKZ2.0 apply
in the setting with large prime q. We use the BKZ2.0 estimations TACF15 and TCN12 in the
security analysis next.

Set q = 2254. We evaluate the concrete security level of the Ajtai hash hAjtai(n,m,q) for
n = 1, 2, 3, 4 by calling Security − SIS on input n, q,

√
m. Note that we require input length

m > n log q in order to obtain a hash function that compresses its input. Also, m ≥ 2n log q is
required for Merkle Tree applications. See Table 4.

C.4 Calculating The Bit-Security

C.4.1 Choose the optimal sample size m∗

The root Hermite factor δ0 measures the quality of a lattice basis. Specifically, assume q-array
lattice Λ⊥q (A) of SIS(n,m, q, β) has root Hermite factor δ0, its shortest basis vector b0 satisfies

|b0| = δm0 q
n/m. (4)

The goal of the lattice reduction algorithm is to find the shortest possible b0. The right hand
side is minimized when

m = m∗ =

√
n log q

log δ0
. (5)

This optimal value m∗ is the optimal sample size for lattice reduction algorithm, and is some-
times called the “optimal sub-dimension” [34]. Following many other works [1,20,32,33,38], we
assume m∗ is always chosen for BKZ/BKZ2.0.

C.4.2 Calculate the bit-security of SIS

Recall that the security level of SIS(n,m, q, β) can be estimated by the time cost for lattice
reduction algorithm to find a basis with δ0 = (β/qn/m)1/m. The problem here is that m is chosen

as the optimal value m∗ =
√

n log q
log δ0

, which is an expression of δ0. Following the arguments in [38],

we give a simple expression of the optimal m∗ that is only dependent on (n, q, β) for SIS problem.

m∗ = d2n log q

log β
e. (6)
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Fixing δ0 value, the minimum of δm0 q
n/m achieves when m = m∗ =

√
n log q
log δ0

. Equiva-

lently, fixing m = m∗, some lattice reduction algorithm can find a basis with δ0 = 2n log q/m∗2 .
Therefore, there is some lattice reduction algorithm can find vector of length δm

∗

0 qn/m
∗

=
2n log q/m∗qn/m

∗
= q2n/m

∗
inm∗-dimensional lattice. It requires q2n/m

∗ ≤ β to break SIS(n,m, q, β),
which gives m∗ = d 2n log q

log β e.
Combining the above arguments gives us the following algorithm for calculating the bit-

security of the SIS problem.

Input : (n, q, β)
Output: λ
Compute m∗ = d2n log q

log β e;
Compute δ0 = (β/qn/m

∗
)1/m

∗
;

Compute TBKZ using the BKZ2.0 estimation either by TACF15(δ0) or TCN12(m
∗, δ0);

Return λ = log TBKZ .
Algorithm 1: Calculate the bit-security of SIS(n,m, q, β)
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