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Abstract:- LILI-128 is a clock controlled stream cipher based on two LFSRs with one clock control
function and one non-linear filter function. The clocking of the second LFSR is controlled by the
first LFSR. In this paper we propose a fault algebraic attack on LILI-128 stream cipher. We first
recover the state bits of the first LFSR by injecting a single bit fault in the first LFSR. After that
we recover the second LFSR state bits by following algebraic cryptanalysis technique. We also
propose fault attack on Achterbahn stream cipher, which is based on 8 NLFSRs, 8 LFSRs and one
non-linear combining function. We first inject a single bit fault into the NLFSR-A then observe
the normal and faulty keystream bits to recover almost all the state bits of the NLFSR-A after key
initialization phase. One can apply our technique to other NLFSR-B, C, D to recover their state
bits also.
Keywords:- Stream ciphers, LFSR, NLFSR, LILI-128, Achterbahn, Fault attack.

1 Introduction

Fault analysis is a cryptanalysis technique for the stream ciphers. By this cryptanalysis technique
attacker injects fault into the stream cipher to recover full set or few bits of the state of the cipher.
There are some methods to inject fault in the cipher like as laser shot. Due to this fault, in some
clockings the cipher produces faulty keystream bits. The attacker first observes the normal and
faulty keystream bits to detect the fault position in each clocking. After that the attacker will
try to recover the full or some bits of the state of the cipher by observing the normal and faulty
keystream bits. Recently, in many literatures [5], [8], [6], [9], [1] authors have proposed fault attack
on many recent ciphers.

LILI-128 is one of the clock controlled stream cipher, based on two LFSRs, one clock control function
and one non-linear filter function. In 2000, Dawson et al. [3] proposed the design specification of
LILI stream cipher. This cipher is based on two LFSRs but due to effect of the clock control
function the state of the second LFSR updates in a non-linear way. In each clocking the state of
the LFSRc updates in usual way. Then the clock control function takes two bits as input from the
state of LFSRc to generate a number c ∈ {1, 2, 3, 4}. After that the LFSRd clocks c times. Then
the non-linear filter function takes some bits from the state of the LFSRd as input to generate the
keystream bits in that clocking. The detail of the cipher is described in Section 2.

In 2004, Hoch and Shamir [5] first proposed a fault attack on the LILI-128 stream cipher. They
proposed the fault attack on this stream cipher by injecting a single bit fault in data register of the
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cipher. After injecting the fault in the data register they observed the normal and faulty keystream
bits to recover two clock control bits of the clock control register. After that they found the state
bits of the data register. The main difference between their work and our work is, in our work we
inject fault in clock control register to recover the state bits of clock control LFSR then we perform
algebraic attack on the data register to get back the state bits of the data register.

Achterbahn [4] is one of the stream cipher proposals submitted in the eSTREAM call for stream
ciphers. Achterbahn [4] is a new type of stream cipher, which is based on 8 NLFSRs and 8 LFSRs
and a non-linear combining function. Before generating any keystream bit the cipher first passes
through key initialization phase. The key initialization phase is described in [4]. After the key
initialization phase, the cipher passes through key generation phase. In each clocking of the key
generation phase each NLFSR updates by their non-linear state update function. After that each
linear filter function generates a single bit output by taking some bits of the NLFSR as input.
Finally, the non-linear combining function takes these bits as input to generate the keystream bit.
The detail of the keystream generation phase is described in Section 4.

In 2006, Johansson et al. [7] proposed a cryptanalysis on Achterbahn stream cipher. They proposed
this cryptanalysis by observing low linear complexity of the nonlinear filter function of the cipher.

Our contribution:- In this paper we propose fault attack on this two stream ciphers. We introduce
a new type of fault attack on the LILI-128 stream cipher [3] by injecting fault in the clock control
LFSR. By injecting a single bit fault in the clock control LFSR we first recover the state bits of
the first LFSR. After that we apply algebraic attack [2] technique to recover the state bits of the
second LFSR. In this paper we also propose fault attack on the Achterbahn stream cipher [4] by
injecting a single bit fault in the NLFSR-A. By injecting a single bit fault we are able to recover
almost all the state bits of the NLFSR-A after key initialization phase. One can apply our method
to other NLFSR-B, C, D to recover their state bits after the key initialization phase. This is our
first attempt to analyse Achterbahn [4] by injecting fault.

Organization of the article:- The rest of the article is organized as follows: In Section 2 we
discuss about the design specification of the stream cipher LILI-128. In the Section 3 we propose
fault attack on the stream cipher LILI-128. In Section 4 we discuss the design specification of
the stream cipher Achterbahn. The fault attack on the stream cipher Achterbahn is discussed in
Section 5. Complexity of the fault attack on Achterbahn stream cipher is calculated in Section 5.2.
Finally the article is concluded in Section 6.

2 Design specification of LILI-128 stream cipher

In this section we shall discuss about the design specification of LILI-128 stream cipher [3]. This
cipher is based on two LFSRs and one clock control function and a non-linear filter function. First
LFSR is named as LFSRc and other one is LFSRd. The clocking of the second LFSR is controlled
by the first LFSR. The design specification of this cipher is given in the following figure 1. First
LFSR is of 39 bits and the second LFSR is of 89 bits. The state bits of the LFSRc are denoted by
xi’s and the state bits of the LFSRd are denoted by di’s. The state update function of LFSRc is
Lc and the state update function of LFSRd is Ld. The clock control function is denoted by fc and
the non-linear filter function is denoted by fd. The primitive polynomial corresponding to LFSRc

is given by,

x39 + x35 + x33 + x31 + x17 + x15 + x14 + x2 + 1.
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Figure 1: Design specification of LILI-128

The primitive polynomial corresponding to LFSRd is given by,

x89 + x83 + x80 + x55 + x53 + x42 + x39 + x + 1.

The clocking of the second LFSR is controlled by a function involving two state bits of LFSRc.
The expression of the clock control function is given by,

fc(x12, x20) = 2x12 + x20 + 1 = c(t) ∈ {1, 2, 3, 4}.

The non-linear filter function (fd) of the cipher is of degree 6. The description of the nonlinear
filter function is given in [4]. In each clocking this function takes some state bits from the LFSRd

as input to generate the keystream bits.

In each clocking the LFSRc clocks in normal procedure and the clock control function takes two
state bits (namely x12, x20) from the LFSRc as input and generates a output c(t) ∈ {1, 2, 3, 4}.
This c(t) determines the number of clockings of the LFSRd in that clocking. i.e. suppose in t-th
clocking the value of c(t) = 2 then in t-th clocking the LFSRd will clock 2 times before generating
any keystream bit.

For this clock control function the state update function of the LFSRd becomes nonlinear. Let
dt+1
i denote the i-th bit of the LFSRd at (t + 1)-th clocking. The algebraic expression of dt+1

i will
be,

dt+1
i = (xt12 + 1)(xt20 + 1)dti−1 + (xt12 + 1)xt20d

t
i−2 + xt12(x

t
20 + 1)dti−3 + xt12x

t
20d

t
i−4.

Where xt12, x
t
20 are the clock control bits for the LFSRd at t-th clocking.

3 Fault analysis on LILI-128 by injecting fault in the LFSRc

In this section we shall propose our new fault analysis on LILI-128 stream cipher [3], by injecting
a single bit fault in the LFSRc. After injecting a fault in the LFSRc we will first find the state
bits of LFSRc. After finding the state bits of the LFSRc we will find state bits of the LFSRd by
using classical algebraic attack technique. Before injecting fault in the LFSRc we assume that the
attacker has the following freedom,

• Attacker can inject fault in any arbitrary position of the LFSRc

• After injecting fault the attacker can reset the cipher to the normal condition.
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After injecting the fault in any arbitrary position of the LFSRc, the attacker has to do the following
job,

• The attacker has to detect the position of the fault

• After detecting the fault the attacker has to check the propagation of the fault in each clocking.

As the attacker is injecting fault in any arbitrary position of the LFSRc then after injecting the
fault, depending upon the fault position fault may or may not affect the clock control function’s
output. After injecting fault to any arbitrary position the fault will start moving in each clocking,
when it reaches to the position x12 or x20 the fault will affect in the clock control function’s output
i.e. the clock control function will give faulty output. Suppose the fault is at x20 then the expression
of the output of the clock control function will be ȳ = 2x12 +x′20 + 1. The expression of the output
of the clock control function without fault is y = 2x12 + x20 + 1. The difference between y and ȳ
will be y + ȳ = 1. Similarly if the fault is at x12 then the difference between y and ȳ will be 2. If
fault presents at both the x12 and x20 then the difference between y and ȳ will be 3.

Now the attacker has to detect that, between y and ȳ which one is higher. Clearly y and ȳ are the
number of clockings of the LFSRd. Suppose y > ȳ then for normal case the second LFSRd will
take extra time to generate the keystream than for the faulty case. So by observing the time taken
for generating the keystream bits of the LFSRd the attacker can find that which one is higher
between y and ȳ.

So by observing the time difference for keystream generation for the normal and the faulty case
the attacker can detect whether fault presents in the clock control bits or not. Suppose at t-th
clocking the fault is at x20 then on that clocking the time difference will occur. After 8 clockings
of the LFSRc, the fault will move to x12 then at (t + 8)-th clocking the time difference will again
occur. By observing this type of pattern the attacker can detect that whether fault present at x20
or not. Similarly, if at t-th clocking fault presents at x30 then the time difference of keystream
generation will occur when the fault will move from x30 to x20 i.e. after 10 clockings of the LFSRc

the fault will create the keystream generation’s time difference. So, by observing these types of
time differences the attacker can detect the fault position at certain clocking.

After performing above steps suppose the attacker detect that fault is at x20 and ȳ > y. That
means x20 = 0. Similarly if fault presence at other position or in the feedback of the LFSRc then
by observing the time difference between the generation of the normal keystream bits and the fault
affected keystream bits the attacker can detect some state bits of the LFSRc or get some linear
equations involving state bits of the LFSRc, then the attacker solves the system to get the other
bits. By following these procedures the attacker can recover the state bits of the LFSRc.

After getting the state bits of the LFSRc the attacker will find the state bits of the LFSRd. As
all the bits of the LFSRc are known now, that implies the value of the output of the clock control
function in each clocking is known now. The non-linear filter function fd of the cipher is of degree
6. Courtois and Meier [2] have found a low degree multiple gd of the function fd such that fdgd
will be of degree 4. Then by using classical algebraic attack [2] technique we can find the state bits
of the LFSRd with the 257 CPU clocks.

We are not injecting fault in any fixed position. We are injecting fault in any arbitrary position
after that we are detecting the fault position then we are recovering the state bits of the LFSRc.
Remark:- If we consider the time difference of the keystream generation process for consecutive
keystream bits then also we can construct some linear equations involving the state bits of LFSRc.
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4 Design specification of Achterbahn stream cipher

In this section we shall discuss about the design specification of the Achterbahn stream cipher
[4]. Firstly the cipher follows KSG algorithm to initialize the states then it follows key-generation
algorithm to generate keystream bits. The cipher is based on 8 NLFSRs and 8 linear filter functions
a(x), b(x), ..., h(x) and a non-linear combining function. These filter functions are determined by
the secret key. The number of variables involved in the linear filter functions are 6, 7, 7, 8, 8, 9,
9, 10 respectively. The non-linear combining function R is of degree 3 involving 8 variables, which
are the outputs of the linear filter functions. The design specification of the keystream generator of
the cipher is given in the following figure 2. The algebraic normal form of the non-linear combining
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Figure 2: Design specification of Achterbahn

function R is,

R(y1, y2, ...., y8) = y1 + y2 + y3 + y4 + y5y7 + y6y7 + y6y8 + y5y6y7 + y6y7y8.

The polynomial corresponding to the linear filter function of the filter-a is given by a(x) = a6x
6 +

a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x+ 1. Where a1 is the first bit of the secret key, a2 is the second bit
of the secret key i.e. ai is the i-th bit of the secret key. After KSG filter-a takes first 6 bits as input
to generate a single bit output. Similarly the other filters also follow same types of procedures.
The details of the cipher is given in [4]. The feedback function of the NLFSR-A is given by,

A(x0, x1, ...., x21) =x0 + x5 + x6 + x7 + x10 + x11 + x12 + x13 + x17 + x20

+ x2x7 + x4x14 + x8x9 + x10x11 + x1x4x11 + x1x4x13x14.

The feedback functions of the other NLFSR- B, C, D, E, F, G, H are given in [4]. In the keystream
generation phase each NLFSR updates by usual procedure. In each clocking 8 linear filter functions
takes some bits of the current states of the corresponding NLFSRs’ and generates 8 single bit output.
After that the non-linear combining function takes these 8 bits as input to generate keystream bit.
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5 Fault analysis on Achterbahn by injecting fault in the NLFSR-A

In this section we shall discuss about the fault analysis on Achterbahn stream cipher [4] by injecting
a single bit fault in the first NLFSR. Before injecting fault to the cipher we will assume that the
attacker has the following freedom,

• Attacker can inject fault in any arbitrary position of the NLFSR-A after the key initialization
step

• After injecting fault the attacker can reset the cipher to normal position.

Firstly, we assume that the algebraic expression of the linear filter function filter-a is known to the
attacker. We will denote the faulty keystream bit by z′t and normal keystream bit by zt. As all the
NLFSRs are independent then if we inject a single bit fault in any arbitrary position of the first
NLFSR that fault will never affects other NLFSRs in any clocking. If we inject a single bit fault in
the first NLFSR then that fault will change the output of the filter-a at certain clocking. In that
clocking we will get faulty y1 (output of filter-a) which will generate a faulty keystream bit, as in the
expression of R, y1 presents as linearly. As y1 presents in the combining function R as linear term
then by observing the normal and faulty keystream bits attacker can find that whether the fault in
the NLFSR-A is affecting the output of the filter function or not as the difference between faulty
keystream bit and the normal keystream bit is equal to z′+z = R′(·)+R(·) = y′1 +y1 = a′(·)+a(·).
So by observing the difference between normal and faulty keystream bits the attacker can find that
whether the injected fault presents in the bits of NLFSR-A which are involved in the linear filter
function filter-a.

Now we discuss about the detection procedure of the fault position after injecting the fault in the
first NLFSR. For example we consider the expression of the filter function filter-a is fa(x0, x1, ....x5) =
x0 +x1 +x2 +x3 +x5. Now we inject a fault in arbitrary position of the NLFSR-A. After injecting
the fault attacker will start observing the normal keystream bits and the faulty keystream bits.
Suppose after injecting fault the attacker observes that z′t + zt = 1 for first time for t = 10, then
for t = 12, 13, 14, 15. Then we can tell that after injecting fault, next 9 keystreams are not affected
by the fault but 10th, 12th, 13th, 14th, 15th keystream bits are affected by the fault. As x5 is the
highest indexed variable involved in the filter function, so when the fault moves to 6th position of
the NLFSR-A it affects the output of the filter function filter-a. As the output of the filter function
is affected then it will affect the output of the combining function R also i.e. the keystream bit.
For t = 10 we are getting first time z′t + zt = 1. It means after injecting the fault the cipher will
produce fault free keystream bits for 9 clockings and the attacker will get first time z′t + zt = 1
at 10th clocking. That means initially fault was 16th position. By following this procedure the
attacker can detect the fault position in each clocking.

5.1 Determining the bits of NLFSR-A after key initialization phase

Now we shall discuss the procedure for finding the bits of the NLFSR-A. By the procedure explained
in the previous section we can detect the position of the fault in each clocking. By following the
fault detection procedure the attacker knows the fault position in each clocking. Now the attacker
will use this information to get some bits of the NLFSR-A or to construct some low degree algebraic
equations involving NLFSR bits only, which one can solve easily.

Suppose the fault is at x10. The algebraic normal form of the feedback function of the NLFSR-A
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is,

A(x0, x1, ...., x21) =x0 + x5 + x6 + x7 + x10 + x11 + x12 + x13 + x17 + x20

+ x2x7 + x4x14 + x8x9 + x10x11 + x1x4x11 + x1x4x13x14.

As the fault is at x10 then the expression of the feedback function will be,

Ã(x0, x1, ...., x21) =x0 + x5 + x6 + x7 + x′10 + x11 + x12 + x13 + x17 + x20

+ x2x7 + x4x14 + x8x9 + x′10x11 + x1x4x11 + x1x4x13x14.

So the normal feedback is A(·) and the faulty feedback is Ã(·). Consider the difference between the
normal feedback and the faulty feedback and the difference will be,

A(·) + Ã(·) = x10 + x′10 + x10x11 + x′10x11

= 1 + x11(x10 + x′10)

= 1 + x11.

By fault detection procedure the attacker can find the value of A(·) + Ã(·) by observing the normal
and faulty keystream bits. By using the value of A(·) + Ã(·) the attacker can find the value of x11.

Now if the fault is at x8 then the faulty feedback of the NFSR-A is Ã(·). The expression of the
faulty feedback will be,

Ã(x0, x1, ...., x21) =x0 + x5 + x6 + x7 + x10 + x11 + x12 + x13 + x17 + x20

+ x2x7 + x4x14 + x′8x9 + x10x11 + x1x4x11 + x1x4x13x14.

So the normal feedback is A(·) and the faulty feedback is Ã(·). Now observe the difference between
the normal feedback and the faulty feedback and the difference will be,

A(·) + Ã(·) = x8x9 + x′8x9

= x9(x8 + x′8)

= x9.

By fault detection procedure the attacker can find the value of A(·) + Ã(·) by observing the normal
and faulty keystream bits. By knowing the value of A(·) + Ã(·) the attacker can find the value of
x9. Similarly if the fault is at x9 then we can get the value of x8. By following the same procedure
attacker can get the value of x2 and x7 also.

Suppose fault is at xi other than above variables. When this xi moves to x10 position then xi+1

will move to x11. Then by above procedure we can find the value of xi+1. By this way we can find
values of some other bits also.

By the above observation one can find some bits of the NLFSR-A. Now we will try to construct
some low degree algebraic equations involving the NLFSR-A bits only, by using normal and faulty
keystream bits. By the fault detection procedure the attacker can detect the position of the fault.
Suppose the fault is at position x13 then the expression of the faulty feedback of the NLFSR-A is,

Ã(x0, x1, ...., x21) =x0 + x5 + x6 + x7 + x10 + x11 + x12 + x′13 + x17 + x20

+ x2x7 + x4x14 + x8x9 + x10x11 + x1x4x11 + x1x4x
′
13x14.
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Now consider the difference between A(·) and Ã(·),

A(·) + Ã(·) = (x13 + x′13) + (x1x4x
′
13x14 + x1x4x13x14)

= 1 + x1x4x14(x13 + x′13)

= 1 + x1x4x14.

By observing the difference between the normal keystream bits and faulty keystream bits we can
find the value of A(·) + Ã(·). Then the above equation will be 1 +x1x4x14 = a, where a is a known
value.

If the fault is at x11 then the expression of the faulty feedback of the NLFSR-A is,

Ã(x0, x1, ...., x21) =x0 + x5 + x6 + x7 + x10 + x′11 + x12 + x13 + x17 + x20

+ x2x7 + x4x14 + x8x9 + x10x
′
11 + x1x4x

′
11 + x1x4x13x14.

Consider the difference between A(·) and Ã(·),

A(·) + Ã(·) = (x11 + x10x11 + x1x4x11) + (x′11 + x10x
′
11 + x1x4x

′
11)

= 1 + x10 + x1x4.

By following the above mentioned procedure we can construct more low degree equations involving
the state bits of NLFSR-A after the key initialization phase. After that we solve these equations
by using the known bits (previously found) to get the values of the other bits. The following table
describes the fault location vs bits obtained of the NLFSR-A.

Fault location NLFSR bits obtained

x2 x7
x7 x2
x10 x11, x5
x8 x9, x3
x9 x8, x4
x11 x10, x6
x12 x11
x13 x12, x14
x16 x15, x17
x19 x18, x20
x21 x22

Table 1: Fault location vs NLFSR bit obtained

From the above table we can see that attacker can recover almost all the bits of the NLFSR-A
after key initialization phase by injecting single bit fault in the first NLFSR. One can apply same
procedure to the NLFSR-B, C, D to recover some bits of the state after key-initialization phase.

Remark:- We are not injecting fault in a fixed position. We are injecting fault in any arbitrary
position after that we are detecting the fault position by observing the normal and faulty keystream
bits. After that we are detecting the NFSR bits.
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5.2 Complexity of the attack

In this section we will discuss about the time complexity of this attack. The size of the first NLFSR
is 22 bits. After injecting a single bit fault in the first NLFSR attacker may need to clock the cipher
maximum 22 times to detect the fault position. After detecting the fault position the attacker can
easily recover the NLFSR bit by observing the normal and faulty keystream bits. So the time
complexity for detecting the fault position is 22 × 22 ≈ 29. Hence the time complexity to recover
the NLFSR state bits after key initialization phase is ≈ 29 which is quite less than exhaustive
search.

Remark:- Through out the article we have assumed that the filter function filter-a is known. But
now we will discuss about how to get the algebraic normal form the linear filter function filter-
a. Suppose attacker injects a single bit fault in any arbitrary position of the NLFSR-A. After
injecting the fault the attacker will observe the normal and faulty key stream bits. Suppose at
t1-th clocking attacker first observes that zt1 + z′t1 = 1. After that at t2-th clocking he/she observes
that zt2 + z′t2 = 1. Now the attacker can easily find the value of t2 − t1. Next the attacker can
construct equation involving t2 and t3. By following the same procedure finally he/she will get one
equation n − tk = a, where a is a known value and n is also known as first position bit is always
involved in the expression of the linear filter function. For detail of the linear filter function see
page no. 12 of [4]. Now the attacker can easily solve the systems involving ti’s using one known
value tk = n− a. Then by using this tk the attacker can find tk−1. After getting the values of ti’s
the attacker can find the algebraic normal form the linear filter function filter-a.

6 Conclusion

In this paper we have introduced the fault analysis on the stream cipher LILI-128. Firstly, we have
recovered the state bits of the LFSRc by injecting fault in the LFSRc. After that we have recovered
the state bits of the LFSRd by using classical algebraic attack technique. We have also described
the fault analysis on the Achterbahn stream cipher by injecting fault in the first NLFSR. In this
paper we have shown that by injecting fault into NLFSR-A attacker will able to recover almost all
the state bits of the NLFSR-A after key initialization phase. We are also able to construct some
low degree equations involving the state bits of the NLFSR-A only, which may be helpful for other
cryptanalysis purpose on this cipher. Similarly, one can give same type of analysis for NLFSR-B,
C, D also.
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