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Abstract

We show how to garble a large persistent database and then garble, one by one, a sequence of
adaptively and adversarially chosen RAM programs that query and modify the database in arbitrary
ways. Still, it is guaranteed that the garbled database and programs reveal only the outputs of the
programs when run in sequence on the database. The runtime, space requirements and description
size of the garbled programs are proportional only to those of the plaintext programs and the security
parameter. We assume indistinguishability obfuscation for circuits and poly-to-one collision-resistant
hash functions. The latter can be constructed based on standard algebraic assumptions such as the
hardness of discrete log or factoring. In contrast, all previous garbling schemes with persistent data were
shown secure only in the static setting where all the programs are known in advance.

As an immediate application, our scheme is the first to provide a way to outsource large databases
to untrusted servers, and later query and update the database over time in a private and verifiable way,
with complexity and description size proportional to those of the unprotected queries.

Our scheme extends the non-adaptive RAM garbling scheme of Canetti and Holmgren [ITCS 2016].
We also define and use a new primitive, called adaptive accumulators, which is an adaptive alternative
to the positional accumulators of Koppula et al [STOC 2015] and somewhere statistical binding hashing
of Hubáček and Wichs [ITCS 2015]. This primitive might well be useful elsewhere.
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1 Introduction

Database delegation. Consider an owner of a large database that wishes to delegate the database to an
untrusted remote server, and then update and query the database in arbitrary ways over time. We wish
to hide both the database and the queries/updates from the server, and continue to do so even when the
results of queries are exposed, say via using the results elsewhere. Furthermore, the correctness of responses
to queries, taking into account all past updates, should be verifiable. Does there exist a delegation scheme
that meets these security requirements? Can this be done with complexity and communication comparable
to those of the unprotected mechanism, both for server and data owner? If so, then under what hardness
assumptions?

This task is a practically motivated generalization of the basic delegation-of-computation task. It is also
a natural generalization of the tasks of encrypted and verifiable databases. These are all well studied tasks
with a variety of solutions that obtain a variety of partial verifiability and secrecy guarantees, under a variety
of assumptions, both for general computations and database queries and for specific ones.

Still, the above general question has remained unresolved so far. Indeed, it poses strong requirements:
First, since queries and updates may come over time, the solution must be able to guarantee security even in
the face of adaptively chosen queries and updates. Furthermore, since the size and the complexity of database
queries are typically much smaller than the size of the database, a solution must adhere to stringent efficiency
and succinctness requirements. Out of the many partial solutions to this question let us mention only the
recent work of Kalai and Paneth [KP15], which addresses the same problem, and provides a general solution
assuming LWE. However, their solution guarantees only verifiability and no secrecy.

We provide the first general solution to this problem, guaranteeing both verifiability and strong secrecy,
as well as asymptotically optimal efficiency and succinctness (up to polynomial factors in the security param-
eter.) We assume indistinguishability obfuscation for circuits and collision resistant hash functions that are
at most poly-to-one. We also construct the latter from standard algebraic assumptions such as the hardness
of discrete log, factoring, or finding shortest independent vectors of lattices.

The key element in our solution is an adaptively secure garbling scheme for RAM computations with
persistent data. We thus provide some background on garbling schemes.

Program garbling. The concept of program garbling [Yao86, Rog91] is central in cryptography with a
variety of applications. The goal of a program garbling scheme is to “encode” the functionality of a given
program and input in such a way that one can evaluate the program on the input without learning anything
beyond the output of the evaluation. A closely related notion is that of randomized encodings of functions
[IK00].

The original Yao construction, set in the context of secure two-party computation, uses Boolean circuits
for programs representation. This means that the size of the garbled program is proportional to both the
runtime and space of the plaintext program. It can also be used securely for the evaluation of only a
single garbled input. Many improvements have been made since, e.g., in optimizing the size of the garbled
circuit [KS08, KMR14, ZRE15], in garbling arithmetic circuits [AIK11], in providing improved security
guarantees against both malicious evaluator and garbler [LP11, MR13], in garbling Turing machines (TMs)
[GKP+13] and in developing reusable garbling [GKP+13, GHRW14].

Garbled RAM and persistent memory. Most relevant to our setting is the notion of a garbled RAM
(GRAM) [LO13], which allows the evaluator to do work that is only proportional to the random-access-
machine (RAM) complexity of the plaintext program. Beyond the general complexity advantages of RAM
computation over circuit or even TM computation, the notion of of GRAM naturally opens the door to the the
concept of garbling with persistent memory. Here one garbles a sizable memory (database), and then garbles
a sequence of programs, where the programs are meant to run on the same memory, in sequence. Persistence
implies that any modifications made by some machine should be visible by all subsequent machines. Still,
the complexity of the garbled programs should be comparable to that of the plaintext ones. This should
hold even when this complexity is sub-polynomial in the size of the memory.

A central challenge in garbled RAM constructions, that does not exist in garbling of circuits or Turing
machines, is the need to hide the access pattern to the random access memory. This is typically done by
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incorporating an oblivious RAM (ORAM) mechanism [GO96] in the garbing scheme. The fact that ORAM
schemes inherently make the computation randomized adds significant complication.

The GRAM scheme of Lu and Ostrovsky [LO13] needs one way functions (OWFs) with a strong circular
security property. The need for such a property was removed by Gentry et al. [GHL+14], who present two
GRAM constructions: In the first construction, which is based on identity-based encryption (IBE), the size
of the garbled program is proportional to the running time of the plaintext program; the second construction
uses only standard OWFs but incurs overhead for the garbled program of O(nε), where n is the size of
the memory used by the plaintext program. The additional complexity overhead is removed by Garg et
al. [GLOS15] assuming only standard OWFs.

The constructions of garbled RAM mentioned above are inherently one-time, whereas in the work by
Gentry et al. [GHRW14], the garbled RAM program is reusable. They construct reusable GRAM without
persistent memory from indistinguishability obfuscation for circuits, and reusable GRAM with persistent
memory from obfuscation with a stronger property called strong differing inputs obfuscation.

Succinct GRAM. In the above schemes the description size of the garbled machines is proportional to
the runtime of the plaintext machines. Several works make progress towards reducing the description size
of the garbled machines. Bitansky et al. [BGL+15] and Canetti et al. [CHJV14] construct GRAMs where
the size of the garbled program is proportional only to the space complexity of the plaintext RAM program.
Koppula et al. [KLW15] construct, using similar assumptions, a beautiful fully succinct garbling scheme for
Turing machines. These constructions are based on indistinguishability obfuscation for circuits and injective
one way functions.

Building on the techniques of [KLW15] and using similar assumptions, Canetti and Holmgren [CH16] and
independently Chen et al. [CCC+15] present a fully succinct GRAM where the size of the garbled program
is proportional only to the size of the plaintext RAM program. The main contribution here is in showing
how to encapsulate and hide the randomness necessary for the oblivious RAM mechanism. Chen et al. also
demonstrate how to preserve the Parallel RAM (PRAM) complexity of the plaintext program. Canetti and
Holmgren show how to apply their scheme in the setting of persistent memory as described above.

Adaptive Security for Garbled Programs. The schemes mentioned so far only address the static setting
where all inputs are chosen by the adversary in advance before it sees any garbled program. In contrast,
adaptive security considers the case where new challenges may adversarially depend on the public information
released so far. In the context of one-time garbling, this means that the the input may depend on the garbed
program. This setting is considered in Goldwasser et al. [GKR08] and Bellare et al. [BHR12]. The latter
work presents transformations from statically-secure one-time garbling schemes to adaptively-secure one-
time garbling schemes that either incur overhead for the input garbling that is proportional to the size of the
function circuit or that are instantiated in the random oracle model (ROM). Ananth et al. [ABSV15, AS15]
and Waters [Wat15] construct adaptively secure functional encryption and program garbling for Turing
machines in the plain model. In particular, both input and program in [AS15] are succinct. However, none
of them is able to provide persistent memory.

Overall, while RAM garbling with persistent memory is a natural potential solution to the problem of
outsourcing databases presented earlier, none of the existing solutions appears adequate. Indeed, an adaptive
and succinct garbling scheme with persistent memory seems to be needed.

1.1 This work

We construct an adaptively secure succinct garbling scheme for RAM programs with persistent memory.
That is, the scheme allows its user to garble an initial memory, and then garble RAM programs that arrive
one by one in sequence. The machines can read from and update the memory, and have local output. It is
guaranteed that:
(1) Running the garbled programs one after the other in sequence on the garbled memory results in the same
sequence of outputs as the result of running the plaintext machines one by one in sequence on the plaintext
memory.
(2) The view of any adversary that generates a database and programs and obtains their garbled versions is
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simulatable by a machine that sees only the outputs of the plaintext programs when run in sequence on the
plaintext database. This holds even when the adversary chooses new plaintext programs adaptively, based
on the garbled memory and programs seen so far.
(3) The scheme is both efficient and succinct: The time to garble the memory is proportional to the plaintext
memory, and the memory is garbled only once in the beginning. Up to polynomial factors in the security
parameter, the garbling time and size of the garbled program are proportional only to the size of the plaintext
RAM program. The runtime and space of the garbled machine are comparable to those of the plaintext
machine.

Given such a scheme, constructing a database delegation scheme as specified above is straightforward:
The database owner lets the server store a garbled version of the database. To delegate a query, garble the
program that executes the query. To obtain verifiability use the technique from [CHJV15, BGL+15]: Each
program will contain a signing key and will sign all its outputs. The verification key will be publicized by
the client. To hide the query results from the server, encrypt the program’s output to the querying party,
say using symmetric encryption. We provide a more complete definition and construction within.

1.2 Overview of the construction

Our starting point is the statically-secure garbling scheme of Canetti and Holmgren [CH16]. We briefly
sketch their construction, and then explain where the issues with adaptivity come up and how we solve
them.

Statically-secure garbling scheme for RAMs - an overview. The Canetti-Holmgren construction
consists of three main steps. They first build a fixed-transcript garbling scheme, i.e. a garbling scheme
which guarantees indistinguishability of the garbled machines and inputs as long as the entire transcripts
of the communication with the external memory, as well as the local states kept between activations, are
the same in the two computations. In other words, if the computation of machine M1 on input x1 has the
same transcript as that of M2 on input x2, then M̃1, x̃1 ≈ M̃2, x̃2. This step closely follows the scheme of
Koppula, Lewko and Waters [KLW15] for garbling of Turing machines. The garbled program is essentially
an obfuscated CPU-step circuit, which takes the previous state and a memory symbol as input and outputs
the next state, the symbols to write into memory, and the next location to read from. The main challenge
here is to guarantee the authenticity and freshness of the values read from the memory. This is done using
a number of mechanisms, namely splittable signatures, iterators and positional accumulators.

The second step is to obtain a fixed-address garbling scheme, namely a scheme that guarantees indistin-
guishability of the garbled machines as long as only the sequence of addresses of memory accesses is the same
in the two computations. This is achieved by encrypting the state and memory content in an obfuscation-
friendly way. The third step is to use an obfuscation-friendly ORAM in order to hide the program’s memory
access pattern. (Specifically, they use the ORAM of Chung and Pass [CP13].)

The challenge of adaptive security. We outline three issues which prevent this construction from being
adaptively secure and explain how we deal with them.

The first (and main) issue has to do with the positional accumulator, which is an obfuscation-friendly
variant of a Merkle-hash-tree built on top of the memory. That is, the contents of the memory is hashed
down until a short root (called the accumulator value ac) is obtained. Then this value is signed together with
the current step by the CPU and is kept (in memory) for subsequent verification of database accesses. Using
the accumulator, the evaluator is later able to efficiently convince the CPU that the contents of a certain
memory location L is v. We call this operation “opening” accumulator value ac to contents v at location L.
Intuitively, the main security property is that it should be infeasible to open an accumulator value to two
different contents values at the same location.

However, to be useful with indistinguishability obfuscation, the accumulator needs an additional property,
called enforceability. In [KLW15], this property allows to generate, given memory location L∗ and symbol v∗,
a “rigged” public key for the accumulator along with a “rigged” accumulator value ac∗. The rigged public
key and accumulator look indistinguishable from honestly generated public key and accumulator value, and
also have the property that there does not exist a way to open ac∗ to value other than v∗ at location L∗.
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To get an idea of why enforceability is needed, consider two programs C0 and C1, such that C0(L∗, v∗) =
C1(L∗, v∗), but whose functionality may differ elsewhere, and let C ′i(L, v) be the program “if L, v are consis-
tent with ac∗ then run Ci, else output ⊥”. Let iO be an indistinguishability obfuscator, i.e. it is guaranteed
that iO(A) ≈ iO(B) whenever equal sized programs A,B have the same functionality everywhere. Positional
accumulators allow arguing that iO(C ′0) ≈ iO(C ′1) in spite of the fact that the programs C ′0 and C ′1 have
different functionality. This is done as follows: using the enforceability property it is possible to argue that,
when C ′0 and C ′1 use the rigged public key for the accumulator, the two programs have exactly the same
functionality, and so indistinguishability holds. Due to the indistinguishability of rigged public accumulator
keys from honest ones, indistinguishability holds even for the case of non-rigged accumulator keys.

However, the fact that the special values v∗, L∗, and ac∗ are encoded in the rigged public key forces these
values to be known before the adversary sees the public key. This suffices for the case of static garbling, since
the special values depend only on the underlying computation, and this computation is fixed in advance and
does not depend on adversary’s view. However, in the adaptive setting, this is not the case. This is so since
the adversary can choose new computations — and thus new special values v∗, L∗ — depending on its view
so far, which includes the public key of the accumulator.

A naive solution to this problem would be to generate a fresh accumulator instance for every execution.
But this is not effective in the context of persistent memory, since it requires recomputing a new accumulator
root (corresponding to the new parameters) before every execution and thus doing work proportional to the
entire memory size at every execution.

A more viable potential solution is to replace the accumulator of [KLW15] with the somewhere statistically
binding (SSB) hash of Hubáček and Wichs [HW15], assuming fully homomorphic encryption, or alternatively
from DDH or the φ-hiding assumption [OPWW15]. Similar to the enforcing mechanism in the accumulator
of [KLW15], the SSB hash can also be set up with a hidden statistical binding location, with an additional
feature that only the special location L∗ needs to be known at the time of generation of the rigged public
key. The guarantee is that, with the rigged public key, and for any accumulator value ac, there exists at
most a single value v such that ac can be opened to value v at location L∗.

The fact that only the location needs to be fixed in advance is a significant, since it allows the proof
of security to go through even in the case of an adaptive adversary — as long as the program uses only a
polynomial number of potential memory locations. Indeed, in this case the reduction to the security of the
SSB hash can guess the (adaptively chosen) special location L∗ ahead of time and be correct with polynomial
probability.

Adaptive Accumulators. We propose an alternative solution to SSB hashing. Our solution works regard-
less of the size of the potential address space, and obtains better parameters. Specifically, we define and
construct adaptive accumulators, which are an adaptive alternative to SSB hashing and positional accumu-
lators. In our adaptive accumulators there are no “rigged” public keys. Instead, correctness of an opening of
a hash value at some location is verified using a verification key which can be generated later. In addition to
the usual computational binding guarantees, it should be possible to generate, given a special accumulator
value ac∗, value v∗ and location L∗, a “rigged” verification key vk∗ that looks indistinguishable from an
honestly generated one, and such that vk∗ does not verify an opening of ac∗ at location L∗ to any value other
than v∗. Furthermore, it is possible to generate multiple verification keys, that are all rigged to enforce the
same accumulator value ac∗ to different values v∗ at different locations L∗, where all are indistinguishable
from honest verification keys.

We then use adaptive accumulators as follows: There is a single set of public parameters that is posted
together with the garbled database and is used throughout the lifetime of the system. Now, each new garbled
machine is given a different, independently generated verification key. This allows us, at the proof of security,
to use a different rigged verification key for each machine. Since the key is determined only when a machine
is being garbled (and its computation and output values are already fixed), we can use a rigged verification
key that enforces the correct values, and obtain the same tight security reduction as in the static setting.

Adaptively puncturable hash functions. We build adaptive accumulators from a new primitive called
adaptively puncturable (AP) hash function ensembles. In this primitive a standard collision resistant hash
function h(x) is augmented with three algorithms Verify, GenVK, GenBindingVK. GenVK generates a verifi-
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cation key vk, which can be later used in Verify(vk, x, y) to check that h(x) = y. GenBindingVK(x∗) produces
a binding key vk∗ such that Verify(vk∗, x, y = h(x∗)) accepts only if x = x∗. Finally, we require that real
and binding verification keys should be indistinguishable even for the adversary which chooses x∗ adaptively
after seeing h.

The construction of adaptive accumulators from AP hash functions proceeds as follows. The public key
is an AP hash function h, and the initial accumulator value ac0 is the root of a Merkle tree on the initial
data store (which can be thought of as empty, or the all-0 string) using h. We maintain the invariant that at
every moment the root value ac is the result of hashing down the store. In order to write a new symbol v to
a position L the evaluator recomputes all hashes on the path from the root to L. The “opening information”
for v at L is all hashes of siblings on the path from the root to L.

The verification key is a sequence of d = log |S| (honest) verification keys for h - one for each level of
the tree. The “rigged” verification key for accumulator value ac∗ and value v∗ at location L consists of a
sequence of d rigged keys for the AP hash - where each key forces the opening of a single value along the
path from the root to leaf L∗. Security of the adaptive accumulator follows from the security of the AP hash
via standard reduction.

Constructing AP hash. We construct adaptively puncturable hash function ensembles from indistin-
guishability obfuscation for circuits, plus collision-resistant hash functions with the property that any image
has at most polynomially many preimages. (This implies that the CRHF shrinks at most logarithmically
many bits). We say that a hash function is c-bounded if the number of preimages for any image is no more
than c. To be able to “compose” functions in various ways we will also need that the hash functions have do-
main {0, 1}λ and range {0, 1}λ′ for some λ′ < λ. For simplicity we focus on the setting where λ = λ′+1. We
construct 4-bounded CRHFs assuming hardness of discrete log and 64-bounded CRHFs assuming hardness
of factoring.

The construction of AP hash proceeds in two steps.

1. First we construct a c-bounded AP hash function ensemble from any c-bounded hash function ensemble
{hk}. This is done as follows: The public key is the description of the hash function hk. A verification
key vk is iO(V ), where V is the program that on input x, y outputs 1 if hk(x) = y. A “rigged”
verification key vk∗ that is binding for input x∗ is iO(Vx∗) where Vx∗ is the program that on input
(x, y) does the following:

• if y = fh(x∗), it accepts if and only if x = x∗;

• otherwise it accepts if and only if y = hk(x).

Since hk is c-bounded, the functionality of V and Vx∗ differ only on polynomially many inputs. There-
fore, the real and “rigged” verification keys are indistinguishable following the diO-iO equivalence for
circuits with polynomially many differing inputs [BCP14].

2. Next we construct AP hash functions which are, say, length halving (and are thus not polynomially
bounded) from bounded AP hashing. This is done in the natural way by extending the hash function’s
domain using Merkle-Damg̊ard, and then obfuscating the resulting function. We show that if the
underlying poly-bounded hash is adaptively puncturable, then so is the composed one.

From Adaptive Accumulators to Adaptively Secure Garbling. We return to the challenges en-
countered when trying to use the [CH16] construction in our adaptive setting. Now that we have adaptive
accumulators, we are able to complete the first step in the [CH16] construction in the natural way, and prove
its security in the adaptive setting. Here we generate fresh instances of an iterator and splittable signature
scheme for each new garbled machine. This does not cause any problems since these primitives do not access
the long-lived shared memory.

Towards obtaining fixed-address garbling. Recall that in this step the programs encrypt each memory
cell with a “long lived key” that remains unchanged for all programs. Specifically, [CH16] replaces writing a
symbol s to location addr at timestep t with writing (t, Fk(addr, t)⊕ s) instead, for some puncturable PRF
Fk. The initial memory is encrypted as if it were written at time t = 0.
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This approach is problematic in the adaptive setting. The proof of fixed-access garbling involves punc-
turing Fk and changing its value to random at points which depend on the computation, so a straightforward
adaptation of the proof (for F (i, addr, t), where i is execution number) for the static case does not work.
Indeed, the points at which the memory needs to be punctured may depend on the garbled memory itself.

Our first observation is that there is no need to use addr as a PRF input; instead we can use Fk(i, t),
where i is the execution number. This is because at a single step the program only writes to one address (for
the initial memory, we will now think of each address a as having been written at a distinct time, e.g. −a),
so there is no danger of reusing the pseudorandom padding. Next, note that each program Mi can only use
PRF values F (i, . . .) for Write and F (0, . . .), . . . , F (i, . . .) for Read.

Thus it is possible to puncture F at (i∗, t∗) as follows:

• We hardwire a punctured key into programs M̃1, . . . , M̃i−1, without hardwiring the PRF value; this
works since these programs never use F (i∗, . . .). Note that i∗ and t∗ do not depend on the computation
(we do puncturing for every (i∗, t∗) one by one) and therefore these programs with a punctured key
inside can be generated before i-th computation is known.

• We hardwire a punctured key together with a challenge value into programs M̃i, . . . , M̃n; this is possible
since the challenge value becomes known upon receiving Mi from the adversary.

Note that we could also prove security if we left addr in the input of a PRF and still use it in our adaptive
setting. For this one would need to use a special puncturable PRF (the GGM construction suffices) which
allows one to generate subkeys Ki for computing only F (i, addr, t) for fixed i and arbitrary addr, t.

Issues with the full garbling step. Recall that the full garbling in [CH16] is achieved by applying an
ORAM on top of the fixed-access garbling. The randomness for the real ORAM accesses and the simulated
accesses is sampled using a PRF. This leads to a situation where a PRF key is first used inside a program
Mi for some execution i and later needs to be punctured.

We get around this issue by noticing that the Chung-Pass ORAM has a special property which allows
us to guess which points to puncture with only polynomial security loss. This property, which we call
strong localized randomness, is sketched as follows. Let R be the randomness used by the ORAM. Let
~Ai = ~ai1, . . . , ~aim be a set of locations accessed by the ORAM during emulation of access i. The strong
localized randomness property guarantees that there exists a set of intervals I11, . . . , ITm, Iij ⊂ [1, |R|], such
that:

1. Each ~aij depends only on RIij , i.e., the part of the randomness R indexed with Iij ; furthermore, ~aij is
efficiently computable from Iij ;

2. All Iij are mutually disjoint;

3. All Iij are efficiently computable given the sequence of memory operations.

To see that the Chung-Pass ORAM has strong localized randomness, observe that in its non-recursive
form, each virtual access of addr touches two paths: one is the path used for the eviction, which is purely
random, and the other is determined by the randomness chosen in the previous virtual access of addr.
Therefore, the set of accessed locations is determined by two randomness intervals. When the ORAM is
applied recursively, the sequence of accesses is determined by O(logS) intervals. Since the number of intervals
in the range [1, . . . , |R|] is only polynomial in the security parameter, the reduction can guess the interval
(and therefore the points to puncture at) with only polynomial security loss.

2 Preliminaries

2.1 Function families

A function ensemble F has a key generation function g : Sλ → Kλ; on seeds s of length λ, g produces a key
k for a function fk with domain Dλ and range Rλ:

F = {fk : Dλ → Rλ, k = g(s), s ∈ {0, 1}λ}λ∈N
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2.2 Collision resistant hash function

A hash function ensemble H = {hk : Dλ → Rλ}λ∈N is collision resistant if for all p.p.t. adversary A, there
is a negligible function negl(·) such that

Pr
A,k

[A(1λ, hk)→ x1, x2 ∈ Dλ : hk(x1) = hk(x2) ∧ x1 6= x2] < negl(λ)

2.3 Obfuscation

For a circuit family F = {f : Dλ → Rλ}f∈Fλ , a probabilistic algorithm Obf is an obfuscator, if

1. The circuit Obf(f) has the exact same functionality as f ;

2. There is a polynomial B(·) such that |Obf(f)| ≤ B(|f |).
The security properties are defined as follows:

Definition 2.1 (Indistinguishability Obfuscation [BGI+12, GGH+13]). Obf is an Indistinguishability Ob-
fuscator (iO) for F if for any p.p.t. distinguisher D, there is a negligible function negl(·) such that for all
circuits f0 and f1 that have identical functionalities, and are of the same size, it holds that

|Pr[D(Obf(λ, f0)) = 1]− Pr[D(Obf(λ, f1)) = 1]| ≤ negl(λ)

Definition 2.2 (Differing-inputs Obfuscation [BGI+12, ABG+13, BCP14]). A function family F associated
with a p.p.t. sampler Sam is a differing-inputs function family if for all p.p.t. adversary A, there exists a
negligible function negl(·) such that:

Pr[f0(x) 6= f1(x) : (f0, f1, aux)← Sam(1λ), x← A(1λ, f0, f1, aux) ≤ negl(λ)

Obf is a Differing-inputs Obfuscator for a differing-inputs function family F if for any p.p.t. distinguisher
D, there exists a negligible function negl(·) such that for (f0, f1, aux)← Sam(1λ), we have that

Pr[D(diO(λ, f0), aux) = 1]− Pr[D(diO(λ, f1), aux) = 1] ≤ negl(λ)

Boyle, Chung and Pass show that an indistinguishability obfuscator is also a differing-input obfuscator
for functions with only polynomially many differing-inputs [BCP14].

Lemma 2.1 ([BCP14]). For every polynomial p(·), for all differing-input sampler Sam′(1λ) that outputs
functions with differing-inputs less than p(λ):

Pr[(f0, f1, aux)← Sam′(1λ) : |{x ∈ Dλ|f0(x) 6= f1(x)}| < p(λ)] = 1

an indistinguishability obfuscators is also a differing-input obfuscator for Sam′.

2.4 Puncturable pseudorandom functions

Definition 2.3 (Puncturable PRF [KPTZ13, BW13, BGI14, SW14]). Let `(λ) and m(λ) be the input and
output lengths. A family of puncturable pseudorandom functions F is given by a triple of efficient functions
(Gen, Eval, Puncture), where Gen(1λ) generates the key F , such that F maps from {0, 1}`(λ) to {0, 1}m(λ);
Eval(F, x) takes a PRF F , an input x, outputs F (x); Puncture(F, x∗) takes a key and an input x∗, outputs
a punctured key F{x∗}.

It satisfies the following conditions:

• Functionality preserved over unpunctured points: Let F{x∗} = Puncture(F, x∗), then for all x 6= x∗,
Eval(F, x) = Eval(F{x∗}, x).

• Pseudorandom on the punctured points: For every p.p.t distinguisher D who chooses an input x∗, the
following two distributions are indistinguishable: (x∗, F{x∗}, F (x∗)) and (x∗, F{x∗}, r∗), where r∗ is
uniform in {0, 1}m(λ).

Theorem 2.2 ([GGM86, KPTZ13, BW13, BGI14, SW14]). If one-way function exists, then for all length
parameters `(λ), m(λ), there is a puncturable PRF family that maps from `(λ) bits to m(λ) bits.
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2.5 The RAM Model

2.5.1 RAM Machines

In this work, a RAM machine M is defined as a tuple (Σ, Q, Y, C), where:

• Σ is a finite set, which is the possible contents of a memory cell. For example, Σ = {0, 1}.

• Q is the set of all possible “local states” of M , containing some initial state q0. (We think of Q as a
set that grows polynomially as a function of the security parameter. That is, a state q ∈ Q can encode
cryptographic keys, as well as “local memory” of size that is bounded by some fixed polynomial in the
security parameter.)

• Y is the output space of M .

• C is a circuit implementing a transition function which maps Q× (Σ∪{ε})→ (Q×OΣ)∪Y . Here OΣ

denotes the set of memory operations with Σ as the alphabet of possible memory symbols. Precisely,
OΣ = (N×Σ). That is, C takes the current state and the value returned by the memory access function,
and returns a new state, a memory address, a read/write instruction, and a value to be written in case
of a write.

We write |M | to denote the tuple (`Σ, `Q, `Y , |C|), where `Σ is the length of a binary encoding of Σ, and
similarly for `Q and `Y .

2.5.2 Memory Configurations

A memory configuration on alphabet Σ is a function s : N→ Σ ∪ {ε}. Let ‖s‖0 denote |{a : s(a) 6= ε}| and,
in an abuse of notation, let ‖s‖∞ denote max({a : s(a) 6= ε}), which we will call the length of the memory
configuration. A memory configuration s can be implemented (say with a balanced binary tree) by a data
structure of size O(‖s‖0), supporting updates to any index in O(log ‖s‖∞) time.

We can naturally identify a string x = x1 . . . xn ∈ Σ∗ with the memory configuration sx, defined by

sx(i) =

{
xi if i ≤ |x|
ε otherwise

Looking ahead, efficient representations of sparse memory configurations (in which ‖s‖0 < ‖s‖∞) are
convenient for succinctly garbling computations where the space usage is larger than the input length.

2.5.3 Execution

We now define what it means to execute a RAM machine M = (Σ, Q, Y, C) on an initial memory configuration
s0 ∈ ΣN to obtain M(s0).

Define a0 = 0. For i > 0, iteratively define (qi, ai, vi) = C(qi−1, si−1(ai−1)) and define the ith memory
configuration si as

si(a) =

{
vi if a = ai

si−1(a) otherwise

If C(qt−1, st−1(at−1)) = y ∈ Y for some t, then we say that M(s0) = y. If there is no such t, we say that
M(s0) = ⊥. When M(s0) 6= ⊥, it is convenient to define the following functions:

• Define the running time of M on s0 as the above t, and denote it Time(M, s0).

• Define the space usage of M on s0 as maxt−1
i=0(‖si‖∞), and denote it Space(M, s0).

• Define the execution transcript of M on s0 as ((q0, a0, v0), . . . , (qt−1, at−1, vt−1), y), and denote it
T (M, s0).
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• Define the addresses accessed by M on s0 as (a0, . . . , at−1), and denote this Addr(M, s0).

• Define the resultant memory configuration of M on s0 as st, and denote it NextMem(M, s0).

2.5.4 Probabilistic RAM Machines

We will also consider RAM machines with randomized transition functions. We define a probabilistic RAM
machine as a tuple (Σ, Q, Y, C). As in deterministic RAM machines, Σ is the alphabet of symbols that can
be stored in memory, Q is the set of local states, and Y is the set of possible machine outputs.

The transition function C now maps

C : Q× (Σ ∪ {ε})× {0, 1} → (Q×OΣ) ∪ Y

For any function f : N → {0, 1}, and any probabilistic RAM machine M = (Σ, Q, Y, C), we define a
deterministic RAM machine Mf = (Σ, Q′, Y, C ′), where

Q′ = N×Q.

and
C ′((t, q), σ) = ((t+ 1, q′), op)

where (q′, op)← C(q, σ, f(t))

2.5.5 RAM Machine Concatenation

For RAM machines M1, . . . ,Mt, we let M1; . . . ;Mt denote the RAM machine which sequentially executes
M1 through Mt on the same initial memory s0, and then outputs whatever Mt outputs.

2.6 Garbled RAM

Syntax. A garbling scheme for RAM programs is a tuple of p.p.t. algorithms (KeyGen,GbPrg,GbMem,Exec).

• Key Generation: KeyGen(1λ, S) takes the security parameter λ in unary and a space bound S, and
outputs a secret key SK.

• Memory Garbling: GbMem(SK, s) takes as input a secret key SK and a memory configuration s,
and then outputs a memory configuration s̃.

• Machine Garbling: GbPrg(SK,Mi, Ti, i) takes as input a secret key SK, a RAM machine Mi, a
running time bound Ti, and a sequence number i, and outputs a RAM machine M̃i.

We are interested in garbling schemes which are correct, efficient, and secure.

Correctness. A garbling scheme is said to be correct if for all p.p.t. adversaries A and every t = poly(λ)

Pr


M̃t(s̃t−1) = Mt(st−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(s0, S)← A(1λ)
SK ← KeyGen(1λ, S)
s̃0 ← GbMem(SK, s0)
for i = 1, . . . , t

Mi, Ti ← A(s̃0, M̃1, . . . M̃i−1)

M̃i ← GbPrg(SK,Mi, Ti, i)
si = NextMem(Mi, si−1)

s̃i = NextMem(M̃i, s̃i−1)


≥ 1− negl(λ),

where

•
∑
Ti ≤ poly(λ), |s0| ≤ S ≤ poly(λ);
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• Space(Mi, si−1) ≤ S and Time(Mi, si−1) ≤ Ti for each i.

Efficiency. A garbling scheme is said to be efficient if:

1. KeyGen, GbPrg, and GbMem are probabilistic polynomial-time algorithms. Furthermore, GbMem runs
in time linear in ‖s0‖. We require succinctness for the garbled programs, which means that the size
of a garbled program M̃ is linear in the description length of the plaintext program M . The bounds
Ti and S are encoded in binary, so the time to garble does not significantly depend on either of these
quantities.

2. With M̃i and s̃i defined as above, it holds that Time(M̃i, s̃i−1) = Õ(Time(Mi, si−1)) and Space(M̃i, s̃i−1) =
Õ(S) (hiding polylogarithmic factors in S).

Security. We define the security property of GRAM as follows.

Definition 2.4. Let GRAM = (Setup,GbMem,GbPrg) be a garbling scheme. We define the following two
experiments, where each Mi is a program with time and space complexity Ti and S that is evaluated with
memory si−1 and yi = Mi(si−1), si = NextMem(Mi, si−1), and Ti = Time(Mi, si−1).

Experiment REALA(1λ) Experiment IDEALA(1λ)

(s0, S)← A(1λ) (s0, S)← A(1λ)

SK ← Setup(1λ, S), s̃0 ← GbMem(SK, s0) s̃← Sim(1λ, `)

(M1, 1
T1)← A(s̃0) (M1, 1

T1)← A(s̃0)

M̃1 ← GbPrg(SK,M1, T1, 1) M̃1 ← Sim(y1, T1)

for i = 1 to ` = poly(λ) for i = 1 to ` = poly(λ)

(Mi+1, 1
Ti+1)← A(M̃i) (Mi+1, 1

Ti+1)← A(M̃i)

M̃i+1 ← GbPrg(SK,Mi+1, Ti+1, i+ 1) M̃i+1 ← Sim(yi+1, ti+1)

Output : b← A(M̃n+1) Output : b′ ← A(M̃n+1)

The garbling scheme GRAM is ε-adaptively secure if∣∣Pr[1← REALA(1λ)]− Pr[1← IDEALA(1λ)]
∣∣ < ε.

2.7 Splittable Signatures

A splittable signature scheme for a message space M is a signature scheme whose keys are constrainable to
certain subsets ofM – namely point sets, the complements of point sets, and the empty set. These punctured
keys are required to satisfy indistinguishability and correctness properties similar to the asymmetrically
constrained encapsulation of [CHJV15]. Additionally, they must satisfy a “splitting indistinguishability”
property.

More formally, a splittable signature scheme syntactically consists of the following polynomial-time algo-
rithms. Setup and Split are randomized algorithms, and Sign and Verify are deterministic.

Setup(1λ)→ skM, vkM
Setup takes the security parameter λ in unary, and outputs a secret key skM and a verification key
vkM for the whole message space. We will sometimes write the unconstrained keys skM and vkM as
just sk and vk, respectively.
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Split(skM,m)→ sk{m}, skM\{m}, vk∅, vk{m}, vkM\{m}
Split takes as input an unconstrained secret key skM and a message m, and outputs secret keys and
verification keys which are constrained on the set {m} and its complement M\ {m}. We note that
sk{m} can just be Sign(sk,m)

Sign(skS ,m)→ σ
Sign takes a possibly constrained secret key skS and a message m ∈ S, and outputs a signature σ.

Verify(vk,m, σ)→ 0 or 1
Verify takes a possibly constrained verification key vk, a message m, and a signature σ. Verify outputs
0 or 1. If Verify outputs 1, we say that vk accepts σ as a signature of m; otherwise, we say that vk
rejects σ.

A splittable signature scheme must satisfy the following properties.

Correctness
For any message m∗, sample sk{m∗}, skM\{m∗}, skM, vk∅, vk{m∗}, vkM\{m∗}, and vkM as

(skM, vkM)← Setup(1λ)

and

(sk{m∗}, skM\{m∗}, vk∅, vk{m∗}, vkM\{m∗})← Split(skM,m
∗)

Correctness requires that with probability 1 over the above sampling:

1. For all m ∈M, Verify(vkM,m,Sign(skM,m)) = 1

2. For all sets S ∈
{
{m∗},M\ {m∗}

}
, for all m ∈ S, Sign(skS ,m) = Sign(skM,m). Furthermore,

Verify(vkS ,m, ·) is the same function as Verify(vkM,m, ·).

3. For all sets S ∈
{
∅, {m∗},M\{m∗},M

}
, for all m ∈M\S, and for all σ, Verify(vkS ,m, σ) = 0.

Verification Key Indistinguishability
Sample sk{m∗}, skM\{m∗}, skM, vk∅, vk{m∗}, vkM\{m∗}, and vkM as in the above definition of correct-
ness.

Verification Key Indistinguishability requires that the following indistinguishabilities hold:

1. vk∅ ≈ vkM

2. sk{m∗}, vk{m∗} ≈ sk{m∗}, vkM

3. skM\{m∗}, vkM\{m∗} ≈ skM\{m∗}, vkM

Splitting Indistinguishability
Sample sk{m∗}, skM\{m∗}, vk{m∗}, and vkM\{m∗} as in the above definition of correctness. Repeat this
sampling, obtaining sk′{m∗}, sk

′
M\{m∗}, vk

′
{m∗}, and vk′M\{m∗}

Splitting indistinguishability requires that

sk{m∗}, skM\{m∗}, vk{m∗}, vkM\{m∗} ≈ sk′{m∗}, skM\{m∗}, vk
′
{m∗}, vkM\{m∗}
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2.8 Cryptographic Iterators

Roughly speaking, a cryptographic iterator is a family of collision-resistant hash functions which is iO-friendly
when used to authenticate a chain of values. In particular, we think of using a hash function H to hash a
chain of values mk, . . . ,m1 as H(mk‖H(mk−1‖ · · ·H(m1‖0λ))), which we shall denote as Hk(mk, . . . ,m1).
A cryptographic iterator provides two indistinguishable ways of sampling the hash function H. In addition
to “honest” sampling, one can also sample H so that for a specific sequence of messages (m1, . . . ,mk),
Hk(mk, . . . ,m1) has exactly one pre-image under H.

Below, we give the exact same definition of cryptographic iterators as in [KLW15], only renaming Setup-Itr
to Setup and renaming Setup-Itr-Enforce to SetupEnforce. Formally, a cryptographic iterator for the message
spaceM = {0, 1}n consists of the following probabilistic polynomial-time algorithms. Setup and SetupEnforce
are randomized algorithms, but Iterate is deterministic, corresponding to our above discussion of a hash
function.

We recall that [KLW15] construct iterators from IO for circuits and puncturable PRFs.

Setup(1λ, T )→ PP, itr0
Setup takes as input the security parameter λ in unary and a binary bound T on the number of
iterations. Setup then outputs public parameters PP and an initial iterator value itr0.

SetupEnforce(1λ, T, (m1, . . . ,mk))→ PP, itr0
SetupEnforce takes as input the security parameter λ in unary, a binary bound T on the number of
iterations, and an arbitrary sequence of messages m1, . . . ,mk, each in {0, 1}n for k < T . SetupEnforce
then outputs public parameters PP and an initial iterator value itr0.

Iterate(PP, itrin,m)→ itrout
Iterate takes as input public parameters PP, an iterator itrin, and a message m ∈ {0, 1}n. Iterate then
outputs a new iterator value itrout. It is stressed that Iterate is a deterministic operation; that is, given
PP , each sequence of messages results in a unique iterator value.

We will recursively define the notation Iterate0(PP, ...) = itr0, and

Iteratek(PP, itr, (m1, . . . ,mk)) = Iterate(PP, Iteratek−1(PP, itr, (m1, . . . ,mk−1)),mk).

A cryptographic iterator must satisfy the following properties.

Indistinguishability of Setup
For any time bound T and any sequence of messages m1, . . . ,mk with k < T , it must be the case that

Setup(1λ, T ) ≈ SetupEnforce(1λ, T, (m1, . . . ,mk)).

Enforcing
Sample (PP, itr0)← SetupEnforce(1λ, T, (m1, . . . ,mk)).

The enforcement property requires that when (PP, itr0) are sampled as above, Iterate(PP, a, b) =
Iteratek(PP, itr0, (m1, . . . ,mk)) if and only if a = Iteratek−1(PP, itr0, (m1, . . . ,mk−1)) and b = mk.

3 c-Bounded Collision-Resistant Hash Functions

We say that a hash function ensemble H = {Hλ}λ∈N with H = {hk : Dλ → Rλ}k∈Kλ is c-bounded if

Pr
h←Hλ

[∀y ∈ Rλ,#{x : h(x) = y} ≤ c] ≥ 1− negl(λ)

That is, with high probability, every element in the codomain of h has at most c pre-images. In this paper
we focus on the case where Dλ = {0, 1}λ+1, Rλ = {0, 1}λ, and hope to get c as a polynomial poly(λ). For
both of the constructions presented in this section, the bounds are constant.
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Our constructions use claw-free pairs of permutations (π0, π1) on a domain D. Our starting point is
the construction of [Dam88], in which for some fixed y0, the hash h(x) is defined as (πx0 ◦ · · · ◦ πxn)(y0).
Unfortunately, this construction does not give any non-trivial bound.

However, we observe that the same techniques allow us to take an injective function ι : {0, 1}n → D
and turn it into a 2k-bounded collision-resistant function mapping {0, 1}n+k → D. As long there is such
an injection ι for large enough n (within log(λ) of the bit-length m of elements of D), then we obtain a
poly(λ)-bounded collision-resistant hash function.

Theorem 3.1. If for a random λ-bit prime p, it is hard to solve the discrete log problem in Z∗p, then there

exists a 4-bounded CRHF ensemble H = {Hλ}λ∈N where Hλ consists of functions mapping {0, 1}λ+1 →
{0, 1}λ.

Proof. Let g and h be randomly chosen generators of Z∗p. Then the permutations π0(x) = gx and π1(x) = gxh

are a claw-free pair of permutations. It is easy to see there is an injection ιin : {0, 1}λ−1 → Z∗p and an injection

ιout : Z∗p → {0, 1}λ. Define a hash function

f : {0, 1}λ−1 × {0, 1} × {0, 1} → {0, 1}λ

a, b, c 7→ ιout(πc(πb(ιin(a))))

Clearly given x 6= x′ such that f(x) = f(x′), one can find a claw (and therefore find logg h), so f is collision-
resistant. Also for any given image, there is at most one corresponding pre-image per choice of b, c, so f is
4-bounded.

Theorem 3.2. If for random λ-bit primes p and q, with p ≡ 3 (mod 8) and q ≡ 7 (mod 8), it is hard to
factor N = pq, then there exists a 64-bounded CRHF ensemble.

Proof. First, we construct injections ι0 : {0, 1}2λ−4 → [N/6] and ι1 : [N/6]→ Z∗N ∩ [N/2], using the fact that
for sufficiently large p and q, for any integer x ∈ [N/6], at least one of 3x, 3x+1, and 3x+2 is relatively prime
to N . Let ιin : {0, 1}2λ−4 → Z∗N ∩ [N/2] denote ι1 ◦ ι0. Let ιout denote an injection from Z∗n → {0, 1}2λ.

Next, following [GMR88], we define the claw-free pair of permutations π0(x) = x2 (mod N) and π1(x) =
4x2 (mod N), where the domain of π0 and π1 is the set of quadratic residues mod N .

Now we define the hash function

f : {0, 1}2λ−4 × {0, 1}5 → {0, 1}2λ

f(x, y) = (ιout ◦ πy5 ◦ · · · ◦ πy1)(ιin(x)2 mod N)

This is 64-bounded because for any given image, there is at most one pre-image under ιout ◦πy5 ◦ · · · ◦πy1 .
This accounts for a factor of 32. The remaining factor of 2 comes from the fact that every quadratic residue
has four square roots, two of which are in [N/2] (the image of ιin). The collision resistance of x 7→ ιin(x)2

follows from the fact that the two square roots are nontrivially related, i.e., neither is the negative of the
other.

Notation. For a function h : {0, 1}λ+1 → {0, 1}λ, we let h0 denote the identity function and for k > 0
inductively define

hk : {0, 1}λ+k → {0, 1}λ
hk(x) = h(x1‖hk−1(x2‖ · · · ‖xλ+k))

4 Adaptively Puncturable Hash Functions

We say that an ensemble H is adaptively puncturable if there are algorithms Verify, GenVK, and ForceGenVK
such that:
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Correctness
For all x,y,

Pr

[
Verify(vk, x, y) = 1 ⇐⇒ y = h(x)

∣∣∣∣ h← Hλvk← GenVK(1λ, h)

]
= 1

Forced Verification
For all x, x∗,

Pr

[
Verify(vk, x, h(x∗)) = 1 ⇐⇒ x = x∗

∣∣∣∣ h← Hλvk← ForceGenVK(1λ, h, x∗)

]
= 1

Indistinguishability
For all p.p.t. A1, A2

Pr

A2(s, vkb) = b

∣∣∣∣∣∣∣∣∣∣
h← Hλ
x∗, s← A1(1λ, h)
vk0 ← GenVK(1λ, h)
vk1 ← ForceGenVK(1λ, h, x∗)
b← {0, 1}

 ≤ 1

2
+ negl(λ)

Theorem 4.1. If there is a poly(λ)-bounded CRHF ensemble mapping {0, 1}λ+1 → {0, 1}λ and if iO exists,
then there is an adaptively puncturable hash function ensemble mapping {0, 1}2λ to {0, 1}λ.

Let H = {Hλ} be a poly(λ)-bounded CRHF ensemble, where Hλ is a family of functions mapping
{0, 1}λ+1 → {0, 1}λ. We define an adaptively puncturable hash function ensemble F = {Fλ}, where Fλ is a
family of functions mapping {0, 1}2λ → {0, 1}λ.

Setup
The key space for Fλ is the same as the key space for Hλ.

Evaluation
For a key h ∈ Hλ and a string x ∈ {0, 1}2λ, we define

fh(x) = hλ(x)

Verification
GenVK(1λ, fh) outputs an iO-obfuscation of a circuit which directly computes

x, y 7→

{
1 if fh(x) = y

0 otherwise

ForceGenVK(1λ, fh, x
∗) outputs an iO-obfuscation of a circuit which directly computes

x, y 7→


1 if y 6= fh(x∗) ∧ y = fh(x)

1 if (x, y) = (x∗, fh(x∗))

0 otherwise

Verify(vk, x, y) simply evaluates and outputs vk(x, y).

Claim 4.1.1. No p.p.t. adversary which adaptively chooses x∗ after seeing h can distinguish between
GenVK(1λ, h) and ForceGenVK(1λ, h, x∗).
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Proof. We present λ+1 hybrid games H0, . . . ,Hλ. In each game h is sampled from Hλ, but the circuit given
by the challenger to the adversary depends on the game and on x∗. In hybrid Hi, the challenger computes
y∗ = hλ(x∗) and yλ−i = hλ−i(x∗i+1‖ · · · ‖x∗2λ). The challenger then sends iO(Ci) to the adversary, where Ci
has y∗, yλ−i, and x∗1, . . . , x

∗
i hard-coded and is defined as

Ci(x, y) =


1 if y = y∗ ∧ x1 = x∗1 ∧ · · · ∧ xi = x∗i ∧ hλ−i(xi+1‖ · · · ‖x2λ) = yλ−i

1 if y 6= y∗ ∧ y = hλ(x)

0 otherwise

The challenger sends iO(Ci) to the adversary.
It is easy to see that C0 is functionally equivalent to the circuit produced by GenVK, and Cλ is functionally

equivalent to the circuit produced by ForceGenVK. So we only need to show that Hi ≈ Hi+1 for 0 ≤ i < λ.
We give a sequence of indistinguishable changes to the challenger, by which we transform the circuit given
to the adversary from Ci to Ci+1.

1. We first modify C so that if y 6= y∗, it does the same as before. If y = y∗, it computes y′ =
hλ−i−1(xi+2‖ · · · ‖x2λ) and outputs 1 if:

• h(xi+1‖y′) = yλ−i

• For all 1 ≤ j ≤ i, xi = x∗i .

. This change preserves functionality and hence is indistinguishable by iO.

2. Now we change C so that instead of directly checking whether h(xi+1‖y′) = yλ−i, it uses a hard-coded
helper circuit Ṽ = iO(V ), where

V : {0, 1} × {0, 1}λ × {0, 1}λ → {0, 1}

V (a, b, c) =

{
1 if c = h(a‖b)
0 otherwise

This is functionally equivalent and hence indistinguishable by iO.

3. Now we change V . We first compute yλ−i−1 = hλ−i−1(x∗i+2‖ · · · ‖x∗2λ) and yλ−i = h(x∗i+1‖yλ−i−1), and
define

V (a, b, c) =


1 if c 6= yλ−i ∧ c = h(a‖b)
1 if (a, b, c) = (x∗i+1, yλ−i−1, yλ−i)

0 otherwise

,

with yλ−i, yλ−i−1, and x∗i+1 hard-coded. The old and new Ṽ ’s are indistinguishable because:

• By the collision-resistance of h, it is difficult to find an input on which they differ.

• By the property of poly(λ)-bounded, they differ on only polynomially many points.

• iO is equivalent to diO for circuits which differ on polynomially many points.

4. C is now functionally equivalent to Ci+1 and hence is indistinguishable by iO.
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5 Adaptively Secure Positional Accumulators

Formally, an adaptive positional accumulator consists of the following polynomial-time algorithms. SetupAcc,
SetupVerify, and SetupEnforceVerify are randomized, while Update and Verify are deterministic.

SetupAcc(1λ, S)→ PP, ac0, store0

The setup algorithm takes as input the security parameter λ in unary and a bound S (in binary) on the
memory addresses accessed. SetupAcc produces as output public parameters PP, an initial accumulator
value ac0, and an initial data store store0.

Update(PP, store, op)→ store′, ac′, v, π
The update algorithm takes as input the public parameters PP, a data store store, and a memory
operation op. Update then outputs a new store store′, a memory value v, a succinct accumulator ac′,
and a succinct proof π.

In our garbling scheme, the evaluator runs Update to process the memory operations made by garbled
programs. The proof π is verified with respect to an accumulator ac which is a binding image to the
memory configuration s represented by store. π proves (in a computationally sound way) that v is the
result of executing op on s, and ac′ is a commitment of the resulting memory configuration.

Verify(vk, ac, op, ac′, v, π)→ {0, 1}
The local update algorithm takes as inputs a verification key vk, an initial accumulator value ac, a
memory operation op, a resulting accumulator ac′, a memory value v, and a proof π. Verify then
outputs 0 or 1. Intuitively, Verify checks the following statement:

π is a proof that the operation op, when applied to the memory configuration corresponding
to ac, yields a value v and results in a memory configuration corresponding to ac′.

Verify is run by a garbled program to authenticate the memory values that the evaluator gives it.

SetupVerify(PP)→ vk
SetupVerify generates a regular verification key for checking Update’s proofs. This is the verification
key that is used in the “real world” garbled programs.

SetupEnforceVerify(PP, (op1, . . . , opk))→ vk
SetupEnforceVerify takes a sequence of memory operations and a particular address, and generates a
verification key which is perfectly sound when verifying the action of opk in the sequence (op1, . . . , opk).
This type of verification key is used in the hybrid garbled programs in our security proof.

An adaptive positional accumulator must satisfy the following properties.

Correctness
Let op0, . . . , opk be any arbitrary sequence of memory operations.

Let v∗i denote the result of the ith memory operation when (op0, . . . , opk−1) are sequentially executed
on an initially empty memory.

Correctness requires that for all j ∈ {0, . . . , k}

Pr

vj = v∗j ∧ bj = 1

∣∣∣∣∣∣∣∣∣∣

PP, ac0, store0 ← SetupAcc(1λ, S)
vk← SetupVerify(PP)

For i = 0, . . . , k:
storei+1, aci+1, vi, πi ← Update(PP, storei, opi)
bi ← Verify(vk, aci, opi, aci+1, vi, πi)

 = 1
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Enforcing
Enforcing requires that for all space bounds S, all sequences of operations op0, . . . , opk−1, all accumu-
lators âc, all values v̂, and all proofs π̂, we have

Pr

b = 1 =⇒ (v̂, âc) = (vk−1, ack)

∣∣∣∣∣∣∣∣∣∣∣

PP, ac0, store0 ← SetupAcc(1λ, S)
vk← SetupEnforceVerify(PP, (op0, . . . , opk−1))

For i = 0, . . . , k − 1
storei+1, aci+1, vi, πi ← Update(PP, storei, opi)

b← Verify(PP, ack−1, opk−1, âc, v̂, π̂)

 = 1

Indistinguishability of Enforcing Verify
Now we require that the output of SetupVerify(PP) is indistinguishable from the output of SetupEnforceVerify(PP, (op1, . . . , opk)),
even when (op1, . . . , opk) are chosen adaptively as a function of PP.

More formally, for all p.p.t. A1 and A2,

Pr

A2(s, vkb) = b

∣∣∣∣∣∣∣∣∣∣
PP, ac0, store0 ← SetupAcc(1λ, S)
(op0, . . . , opk−1), s← A1(1λ,PP)
vk0 ← SetupVerify(PP)
vk1 ← SetupEnforceVerify(PP, (op0, . . . , opk−1))
b← {0, 1}

 ≤ 1

2
+ negl(λ)

Efficiency
In addition to all the algorithms being polynomial-time, we require that:

• The size of an accumulator is poly(λ).

• The size of proofs is poly(λ, logS).

• The size of a store is O(S)

Theorem 5.1. If there is an adaptively puncturable hash function ensemble H = {Hλ}λ∈N with Hλ =
{Hk : {0, 1}2λ → {0, 1}λ}k∈Kλ , then there exists an adaptive positional accumulator.

Proof. We construct an adaptive positional accumulator in which stores are low-depth binary trees, each
node of which contains a λ-bit value. The accumulator corresponding to a given store is the value held
by the root node. The public parameters for the accumulator consist of an adaptively puncturable hash
h : {0, 1}2λ → {0, 1}λ, and we preserve the invariant that the value in any internal node is equal to the
hash h applied to its children’s values. It will be convenient for us to assume the existence of a ⊥, which is
represented as a λ-bit string not in the image of h. Without loss of generality, h can be chosen to have such
a value.

Setup(1λ, S)→ PP, ac0, store0

Setup samples h ← Hλ, and sets PP = h, ac0 = h(⊥‖⊥), and store0 to be a root node with value
h(⊥‖⊥).

Update(h, store, op)→ store′, ac′, v, π
Suppose op is ReadWrite(addr 7→ v′). There is a unique leaf node in store which is indexed by a prefix
of addr. Let v be the value of that leaf, and let π be the values of all siblings on the path from the root
to that leaf.

Update adds a leaf node indexed by the entirety of addr to store if no such node already exists, and
sets the value of the leaf to v′. Then Update updates the value of ancestor of that leaf to preserve the
invariant.
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SetupVerify(h)→ vk
For i = 1, . . . , logS, SetupVerify samples

vki ← GenVK(1λ, h)

and sets vk = (vk1, . . . , vklogS).

Verify((vk1, . . . , vklogS), ac, op, ac′, v, (w1, . . . , wd))→ {0, 1}
Define zd := v. Let b1 · · · bd′ denote the bit representation of the address on which op acts. For
0 ≤ i < d, Verify computes

zi =

{
h(wi+1‖zi+1) if bi+1 = 1

h(zi+1‖wi+1) otherwise

For all i such that bi = 1, Verify checks that vki(wi+1‖zi+1, zi) = 1. For all i such that bi = 0, Verify
checks that vki(zi+1‖wi+1, zi) = 1. If all these checks pass, then Verify outputs 1; otherwise, Verify
outputs 0.

SetupEnforceVerify(h, (op1, . . . , opk))→ vk
Computes the storek−1 which would result from processing op1, . . . , opk−1. Suppose opk accesses ad-
dress addrk ∈ {0, 1}logS . Then there is a unique leaf node in storek−1 which is indexed by a prefix of
addrk; write this prefix as b1 · · · bd.
For each i ∈ {1, . . . , d}, define zi as the value of the node indexed by b1 · · · bi, and let wi denote the
value of that node’s sibling. If bi = 0, sample

vki ← ForceGenVK(1λ, h, zi‖wi).

Otherwise, sample
vki ← ForceGenVK(1λ, h, wi‖zi).

For i ∈ {d+ 1, . . . , logS}, just sample vki ← GenVK(1λ, h).

Finally we define the total verification key to be (vk1, . . . , vklogS).

All the requisite properties of this construction are easy to check.

6 Fixed-Transcript Garbling

We define fixed-transcript security via the following game.

1. The challenger samples SK ← Setup(1λ, S) and b← {0, 1}.

2. The adversary sends a memory configuration s to the challenger. The challenger sends back GbMem(SK, s).

3. The adversary repeatedly sends pairs of RAM programs (M0
i ,M

1
i ) to the challenger, along with a time

bound 1Ti , and the challenger sends back M̃ b
i ← GbPrg(SK,M b

i , Ti, i). Each pair (M0
i ,M

1
i ) is chosen

adaptively after seeing M̃ b
i−1.

4. The adversary outputs a guess b′.

Let ((M0
1 ,M

1
1 ), . . . , (M0

` ,M
1
` )) denote the sequence of pairs of machines output by the adversary. The

adversary is said to win if b′ = b and:

• Sequentially executing M0
1 , . . . ,M

0
` on initial memory configuration s yields the same transcript as

executing M1
1 , . . . ,M

1
` .

• Each M b
i runs in time at most Ti and space at most S.
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Definition 6.1. A garbling scheme is fixed-transcript secure if for all p.p.t. algorithms A, there is a negligible
function negl so that A’s probability of winning the game is at most 1

2 + negl(λ).

Theorem 6.1. Assuming the existence of indistinguishability obfuscation and an adaptive positional accu-
mulator, there is a fixed-transcript secure garbling scheme.

Proof. We give a construction and prove its security. As in [CH16], our construction follows that of [KLW15].
In addition to our adaptive positional accumulator, we use [KLW15]’s splittable signatures and cryptographic
iterators, defined in Section 2.7 and 2.8.

Setup(1λ, S) samples Acc.PP← Acc.Setup(1λ, S) and samples a PPRF F .

GbMem(SK, s)→ s̃ computes an accumulator acs corresponding to s, generates (sk, vk)← Spl.Setup(1λ;F (0, 0))
and computes σs ← Spl.Sign(sk, (⊥,⊥, acs,ReadWrite(0 7→ 0))). s̃ is then defined as a memory config-
uration which contains both (acs, σs) and store0.

GbPrg(SK,Mi, Ti, i)→ M̃i first transforms Mi so that its initial state is ⊥. Note this can be done without
loss of generality by hard-coding the “real” initial state in the transition function. GbPrg then computes
C̃i ← iO(Ci), where Ci is described in Algorithm 1. Finally, we define M̃i not by its transition function,
but by pseudocode, as the RAM machine which:

1. Reads (ac0, σ0) from memory (recall these were inserted under the names (acs, σs)). Define op0 =
ReadWrite(0 7→ 0), q0 = ⊥, and itr0 = ⊥.

2. For i = 0, 1, 2, . . .:

(a) Compute storei+1, aci+1, vi, πi ← Acc.Update(Acc.PP, storei, opi).

(b) Compute outi ← C̃i(i, qi, itri, aci, opi, σi, vi, aci+1, πi).

(c) If outi parses as (y, σ), then write (aci+1, σ) to memory, output y, and terminate.

(d) Otherwise, outi must parse as (qi+1, itri+1, aci+1, opi+1), σi+1.

We note that M̃i can be compiled from C̃i and Acc.PP. This means that later, when we prove security,
it will suffice to analyze a game in which the adversary receives C̃i instead of M̃i. This also justifies
our relatively informal description of M̃i.

Input: Time t, state q, iterator itr, accumulator ac, operation op, signature σ, memory value v, new
accumulator ac′, proof π

Data: Puncturable PRF F , RAM machine Mi with transition function δi, Accumulator verification
key vkAcc, index i, iterator public parameters Itr.PP, time bound Ti

1 (sk, vk)← Spl.Setup(1λ;F (i, t));
2 if t > Ti or Spl.Verify(vk, (q, itr, ac, op), σ) = 0 or Acc.Verify(vkAcc, ac, op, ac

′, v, π) = 0 then return ⊥;
3 out← δi(q, v);
4 if out ∈ Y then
5 (sk′, vk′)← Spl.Setup(1λ;F (i+ 1, 0));
6 return out,Sign(sk′, (⊥,⊥, ac′,ReadWrite(0 7→ 0))

7 else
8 Parse out as (q′, op′);
9 itr′ ← Itr.Iterate(Itr.PP, (q, itr, ac, op));

10 (sk′, vk′)← Spl.Setup(1λ;F (i, t+ 1));
11 return (q′, itr′, ac′, op′),Sign(sk′, (q′, itr′, ac′, op′))

Algorithm 1: Transition function for Mi, with memory verified by a signed accumulator.
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Correctness and efficiency are easy to verify.
We show that the challenger in the real security game is indistinguishable from one for which the ad-

versary’s view is independent of b. We present a sequence of hybrid games H0, . . . ,H`+1, and show that all
p.p.t. algorithms A have negligibly different advantages in adjacent games. In each hybrid, the memory
query is answered as in the real game.

Hybrid H0 In hybridH0, we add a “B”-track for execution to Ci. Instead of just checking that ((q, op, ac, itr), σ)
is accepted under vkAt , we also allow it to be accepted under vkBt , which is derived from a different punc-
turable PRF FB . In this second case, we proceed as before except that we compute with δ0

i instead of δbi ,
and we sign the eventual outputs using skBt+1 instead of skAt+1.

The indistinguishability of this change follows by O(t) applications of the indistinguishability of punctured
keys, together with the security of iO. In particular, we can add any functionality we want (by IO) under
an always-rejecting vkBi,j,∅ verification key, and then indistinguishably replace vkBi,j,∅ with vkB . We start by

modifying the last time step, and work backwards because under vkBi,j , we use the signing key skBi,j+1. By

working backwards, we avoid the issue that vkBi,j,∅ is not indistinguishable from vkBi,j if also given skBi,j .

Hybrids Hi In hybrid Hi for 1 ≤ i ≤ ` + 1, the first i − 1 program queries are answered differently. For
1 ≤ j ≤ i− 1, the circuits Cj have hard-coded the transition function for M0

j instead of M b
j . The challenger

computes sj = NextMem(M0
j (sj−1)), and hard-codes the corresponding accumulator acsj into the circuit Cj .

The resulting circuit is illustrated in Algorithm 3.
It remains to show that Hi ≈ Hi+1. This is shown using the techniques of [KLW15]. The main difference

is that in our setting the positional accumulator needs to be adaptively secure.

1. We hard-code vkAi,0 and vkBi,0, and puncture FA and FB at {(i, 0)}. This change preserves functionality
and is hence indistinguishable by iO.

2. We replace vkAi,0 and vkBi,0 by keys punctured on the setsM\{(qi,0, itri,0, aci,0, opi,0)} and {(qi,0, itri,0, aci,0, opi,0)}
respectively. These changes are indistinguishable by the (selective) indistinguishability of punctured
keys.

3. The verification key for the accumulator vkAcc is generated by SetupEnforceVerify(PP, (opi,0)) instead
of by SetupVerify(PP), so that if Acc.Verify(vkAcc, aci,0, opi,0, ac

′, v, π) = 1, then ac′ = aci,1 and v = vi,0.
This is indistinguishable by the positional accumulator’s indistinguishability of enforcing setup. We
note this holds even though opi,0 and aci,0 may be chosen adversarially after observing the positional
accumulator’s public parameters.

4. At time 0, we use δ0
i instead of δbi (on both tracks A and B). By the hypothesis that M0

i and M1
i

have the same transcripts, we know that δ0
i (qi,0, vi,0) = δ1

i (qi,0, vi,0). Because in steps 2 and 3 we have
already made our verification keys perfectly binding, this change is indistinguishable by iO.

5. The verification key for the accumulator vkAcc is generated normally as SetupVerify(PP) instead of
by SetupEnforceVerify(PP, (opi,0)). This is again indistinguishable by the positional accumulator’s
adaptively enforcing setup.

6. We modify Ci so that at time 0, instead of deciding to sign with skAi,1 or skBi,1 based on which branch

we are in, we decide by looking at (q, itr, ac, op). Namely, we use skAi,1 if and only if (q, itr, ac, op) =
(qi,0, itri,0, aci,0, opi,0). This is functionally equivalent because of how we have punctured the verification

keys vkAi,0 and vkBi,0, and hence is indistinguishable by iO. Note the ‘A’ branch and ‘B’ branch are now
identical.

7. We generate Itr.PP using SetupEnforce so that itr′ = itri,1 if and only if (q, itr, ac, op) is equal to
(qi,0, itri,0, aci,0, opi,0). This change is indistinguishable by the iterator’s (selective) setup indistin-
guishability.
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8. Instead of choosing whether to use skAi,1 or skBi,1 based on the value of (q, itr, ac, op), we choose based on

the value of (q′, itr′, ac′, op′). This is functionally equivalent because itr′ is equal to itri,1 (and in fact
(q′, ac′, op′) is equal to (qi,1, aci,1, opi,1)) if and only if (q, itr, ac, op) is equal to (qi,0, itri,0, aci,0, opi,0),
and therefore this change is indistinguishable by the security of iO.

9. We generate Itr.PP normally, which is indistinguishable by the iterator’s (selective) indistinguishability
of setup.

10. Instead of checking whether the signature σ on (q, ac, itr) verifies under one of vkA0 (which is punctured
atM\{(qi,0, itri,0, aci,0, opi,0)}) and vkB0 (which is punctured at {qi,0, itri,0, aci,0, opi,0}), we only check

that it verifies under the unpunctured vkAi,0. This is indistinguishable by the splittable signature’s
splitting indistinguishability property.

11. We unpuncture FA and FB at (i, 0) and un-hardcode vkAi,0 and vkBi,0. This is functionally equivalent
and hence indistinguishable by iO.

12. We repeat steps 1 through 11 for timestamps 1 through the worst-case running time bound T instead
of just for timestamp 0 as was described above. In this way, we progressively change the computation
from using δ0

i (M0
i ’s transition function) to δ1

i (M1
i ’s transition function), starting at the beginning of

the computation.

Input: Time t, state q, iterator itr, accumulator ac, operation op, signature σ, memory value v, new
accumulator ac′, proof π

Data: Puncturable PRFs FA and FB , RAM machine Mi with transition function δi, Accumulator
verification key vkAcc, index i, iterator public parameters Itr.PP, time bound Ti

1 (skA, vkA)← Spl.Setup(1λ;FA(i, t));

2 (skB , vkB)← Spl.Setup(1λ;FB(i, t));
3 if t > Ti or Acc.Verify(vkAcc, ac, op, ac

′, v, π) = 0 then return ⊥;
4 if Spl.Verify(vkA, (q, itr, ac, op), σ) = 1 then track:=‘A’;
5 else if Spl.Verify(vkB , (q, itr, ac, op), σ) = 1 then track:=‘B’;
6 else return ⊥;
7 out← δi(q, v);
8 if out ∈ Y then
9 (sk′, vk′)← Spl.Setup(1λ;Ftrack(i+ 1, 0));

10 return out,Sign(sk′, (⊥,⊥, ac′,ReadWrite(0 7→ 0))

11 else
12 Parse out as (q′, op′);
13 itr′ ← Itr.Iterate(Itr.PP, (q, itr, ac, op));

14 (sk′, vk′)← Spl.Setup(1λ;Ftrack(i, t+ 1));
15 return (q′, itr′, ac′, op′),Sign(sk′, (q′, itr′, ac′, op′))

Algorithm 2: Transition function for hybrid Mi, with memory verified by an accumulator.

7 Fixed-Access Garbling

Fixed-access security is defined in the same way as fixed-transcript security, but the left and right machines
produced by A do not need to have the same transcripts for A to win - they may not have the same
intermediate states, but only need to perform the same memory operations.

Definition 7.1 (Fixed-access security). We define fixed-access security via the following game.
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Input: Time t, state q, iterator itr, accumulator ac, operation op, signature σ, memory value v, new
accumulator ac′, proof π

Data: Puncturable PRFs FA and FB , RAM machine M0
j with transition function δ0

j , Accumulator
verification key vkAcc, index i, iterator public parameters Itr.PP, accumulator acsj , time bound
Ti.

1 (skA, vkA)← Spl.Setup(1λ;FA(i, t));

2 (skB , vkB)← Spl.Setup(1λ;FB(i, t));
3 if t > Ti or Acc.Verify(vkAcc, ac, op, ac

′, v, π) = 0 then return ⊥;
4 if Spl.Verify(vkA, (q, itr, ac, op), σ) = 1 then track:=‘A’;
5 else if Spl.Verify(vkB , (q, itr, ac, op), σ) = 1 then track:=‘B’;
6 else return ⊥;
7 out← δ0

j (q, v);

8 if out ∈ Y then
9 (sk′, vk′)← Spl.Setup(1λ;Ftrack(i+ 1, 0));

10 return out,Sign(sk′, (⊥,⊥, acsj ,ReadWrite(0 7→ 0))

11 else
12 Parse out as (q′, op′);
13 itr′ ← Itr.Iterate(Itr.PP, (q, itr, ac, op));

14 (sk′, vk′)← Spl.Setup(1λ;Ftrack(i, t+ 1));
15 return (q′, itr′, ac′, op′),Sign(sk′, (q′, itr′, ac′, op′))

Algorithm 3: Response to jth program query, with hard-coded final accumulator value.

1. The challenger samples SK ← Setup(1λ, S) and b← {0, 1}.

2. The adversary sends a memory configuration s to the challenger. The challenger sends back GbMem(SK, s).

3. The adversary repeatedly sends pairs of RAM programs (M0
i ,M

1
i ) to the challenger, together with a

time bound 1Ti , and the challenger sends back M̃ b
i ← GbPrg(SK,M b

i , Ti, i). Each pair (M0
i ,M

1
i ) is

chosen adaptively after seeing M̃ b
i−1.

4. The adversary outputs a guess b′.

Let ((M0
1 ,M

1
1 ), . . . , (M0

` ,M
1
` )) denote the sequence of pairs of machines output by the adversary. The

adversary is said to win if b′ = b and:

• Sequentially executing M0
1 , . . . ,M

0
` on initial memory configuration s yields the same transcript as

executing M1
1 , . . . ,M

1
` , except that the local states can be different.

• Each M b
i runs in time at most Ti and space at most S.

A garbling scheme is said to have fixed-access security if all p.p.t. adversaries A win in the game above with
probability less than 1/2 + negl(λ).

To achieve fixed-access security, we adapt the exact same technique from [CH16]: xoring the state with
a pseudorandom function applied on the local time t. The PRF keys used in different machines are sampled
independently.

Theorem 7.1. If there is a fixed-transcript garbling scheme, then there is a fixed-access garbling scheme.

Proof. Suppose (Setup′,GbMem′,GbPrg′) is a fixed-transcript garbling scheme. We define and prove the
security of a fixed-access garbling scheme (Setup,GbMem,GbPrg).

Setup(1λ, S) samples SK ′ ← Setup′(1λ, S), sets it as SK.
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GbMem(SK, s) outputs s̃′ ← GbMem′(SK ′, s).

GbPrg(SK,Mi, Ti, i) samples a PPRF Fi, and outputs M̃ ′i ← GbPrg′(SK ′,M ′i , Ti, i), where M ′i is defined as
in Algorithm 4. If Mi’s initial state is q0, the initial state of M ′i is (0, q0 ⊕ Fi(0)).

Input: State (t, cq), memory symbol σ
Data: RAM machine Mi, puncturable PRF Fi

1 q ← cq ⊕ Fi(t);
2 out←Mi(q, σ);
3 if out ∈ Y then return out;
4 Parse out as (q′, op);
5 return ((t+ 1, q′ ⊕ Fi(t+ 1)), op);

Algorithm 4: M ′i , the modified version of Mi which encrypts its state.

We introduce hybrid games H` through H0, starting with the real security game, and ending with one
in which the adversary’s view is independent of b. In hybrid Hi, the jth query (M0

i ,M
1
i ) is answered with

M̃ b
i if j ≤ i and M̃0

i otherwise. It remains to show that hybrid Hi is indistinguishable from Hi+1.
To show this, we introduce intermediate hybrids {Hi,j}j=0,...,Ti , each of which differs from Hi only in the

answer to the ith query. In Hi,j , the answer to the ith machine query is answered by GbPrg′(SK ′,M ′i,j , Ti, i),

where the machine M ′i,j is defined in Algorithm 5. Informally, M ′i,j executes M b
i for the first Ti − j steps,

and executes the next j steps with machine M0
i .

Input: State (t, cq), memory symbol σ
Data: RAM machines M0

i , M1
i , punctured PRF F ′i = Fi{Ti − j}, hard-coded state q∗, hard-coded

ciphertext c∗, bit b
1 if t = Ti − j then q ← q∗;
2 else q ← cq ⊕ F ′i (t);
3 if t < Ti − j then Mi ←M b

i ;
4 else Mi ←M0

i ;
5 out←Mi(q, σ);
6 if out ∈ Y then return out;
7 Parse out as (q′, op);
8 if t = Ti − j − 1 then return ((t+ 1, c∗), op);
9 else return ((t+ 1, q′ ⊕ F ′i (t+ 1)), op);

Algorithm 5: M ′i,j executes M b
i for ti − j steps, and then executes M0

i .

Claim 7.1.1. Hi ≈ Hi,0 and Hi−1 ≈ Hi,Ti .

Proof. This follows from the underlying fixed-transcript garbling.

Claim 7.1.2. For every j ∈ {0, . . . , Ti − 1}, Hi,j ≈ Hi,j+1

Proof. We introduce another intermediate hybrid Hi,j,0, in which c∗ = q1
i,Ti−j ⊕ Fi(Ti − j). The indistin-

guishability of Hi,j and Hi,j,0 follows from the pseudorandomness of the (selectively) puncturable PRF Fi
on Ti− j. The indistinguishability of Hi,j,0 and Hi,j+1 follows from the underlying fixed-transcript garbling.
So we have shown that Hi,j ≈ Hi,j,0 ≈ Hi,j+1.

The proof completes by combining the claims above.
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8 Fixed-Address Garbling

Fixed-address security is defined in the same way as fixed-access security, but the left and right machines
produced by A do not need to make the same memory operations for A to win - their memory operations only
need to access the same addresses. Additionally, the adversary A now provides not only a single memory
configuration s0, but two memory configurations s0

0 and s1
0. The challenger returns GbMem(SK, sb0). In

keeping with the spirit of fixed-address garbling, we require s0
0 and s1

0 to have the same set of addresses
storing non-ε values.

Definition 8.1 (Fixed-address security). We define fixed-address security via the following game.

1. The challenger samples SK ← Setup(1λ, S) and b← {0, 1}.

2. The adversary sends the initial memory configurations s0
0, s1

0 to the challenger. The challenger sends
back s̃b0 ← GbMem(SK, sb0).

3. The adversary repeatedly sends pairs of RAM programs (M0
i ,M

1
i ) to the challenger, together with a

time bound 1Ti , and the challenger sends back M̃ b
i ← GbPrg(SK,M b

i , Ti, i). Each pair (M0
i ,M

1
i ) is

chosen adaptively after seeing M̃ b
i−1.

4. The adversary outputs a guess b′.

Let ((s0
0, s

1
0), (M0

1 ,M
1
1 ), . . . , (M0

` ,M
1
` )) denote the sequence of pairs of memory configurations and machines

output by the adversary. The adversary is said to win if b′ = b and:

• {a : s0
0(a) 6= ε} = {a : s1

0(a) 6= ε}.

• The sequence of addresses accessed and the outputs during the sequential execution of M0
1 , . . . ,M

0
` on

initial memory configuration s0
0 is the same as from executing M1

1 , . . . ,M
1
` on s1

0.

• Each M b
i runs in time at most Ti and space at most S.

• |M0
i | = |M1

i |, i = 1, . . . , `.

A garbling scheme is said to have fixed-address security if all p.p.t. adversaries A win in the game above
with probability less than 1/2 + negl(λ).

Our construction of fixed-address garbling is almost the same with the two-track solution in [CH16], with a
slight modification at the way to “encrypt” the memory configuration. In [CH16], the memory configurations
are xored with different puncturable PRF values in the two tracks, where the PRFs are applied on the time
t and address a. In this work, the PRFs are applied on the execution index i and time t, not on the address
a. This is enough for our purpose, because in each execution index i and step t, the machine only writes on
a single address (for the initial memory configuration, the index is assigned as 0, and different timestamps
will be assigned on different addresses). By this modification, we are able to prove adaptive security based
on selective secure puncturable PRF, and adaptively secure fixed-access garbling.

We note that, even if the address a is included in the domain of PRF, as in [CH16], the construction
is still adaptively secure if the underlying PRF is based on GGM’s tree construction. Here we choose to
present the simplified version which suffices for our purpose.

Construction 8.1. Given a fixed-access garbling scheme (Setup′,GbMem′,GbPrg′), we define a fixed-address
garbling scheme (Setup,GbMem,GbPrg):

Setup(1λ) samples SK ′ ← Setup′(1λ) and puncturable PRFs FA and FB .

GbMem(SK, s) outputs GbMem′(SK ′, s′0), where

s′0(a) =

{
(0,−a, FA(0,−a)⊕ s0(a), FB(0,−a)⊕ s0(a)) if s0(a) 6= ε

ε otherwise
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GbPrg(SK,Mi, Ti, i) outputs GbPrg′(SK ′,M ′i , Ti, i), where M ′i is defined as in Algorithm 6. If the initial
state of Mi was q0, the initial state of M ′i is (0, q0, q0).

Input: State (tq, qA, qB), memory symbol (iin, tin, cA, cB)
Data: RAM machine Mi, puncturable PRFs FA, FB

1 out←Mi(qA, FA(iin, tin)⊕ cA);
2 if out ∈ Y then return out;
3 Parse out as (q′,ReadWrite(addr′ 7→ v′));
4 op′ := ReadWrite(addr′ 7→ (i, tq, FA(i, tq)⊕ v′, FB(i, tq)⊕ v′);
5 return (tq + 1, q′, q′), op′;

Algorithm 6: M ′i : Modified version of Mi which encrypts its memory twice in parallel.

Theorem 8.2. If (Setup′,GbMem′,GbPrg′) is a fixed-access garbling scheme, then Construction 8.1 is a
fixed-address garbling scheme.

Proof. We give a sequence of hybrid games, starting with the real game Hb, and ending with one in which
the adversary’s view is independent of b. We show that the adversary’s advantage differs negligibly in each
pair of adjacent games. This will imply that in the real security game, all adversaries have advantage at
most 1/2 + negl(λ).

The hybrid structure follows closely from [CH16]. Purely for ease of informal exposition, we think of the
machines M b

1 , . . . ,M
b
` as being concatenated into one RAM machine M = M b with running time at most T .

Recall that in our construction, if M b would write vbt to address a at time t, then M̃ writes (FA(t)⊕vbt , FB(t))
to a. Our hybrids make the following changes to the way in which the challenger generates M̃ and s̃0:

1. s̃0 is now defined as

s̃0(a) =

{
(FA(−a)⊕ sb0(a), FB(−a)⊕ s0

0(a)) if sb0(a) 6= ε

ε otherwise

This is indistinguishable by the puncturable PRF security of FB , because the contents on “B”-track
are not decrypted at all in the real garbled program.

2. Let vb1, . . . , v
b
T denote the values that M b would write when executed on sb. For i = 1, . . . , T , we have

a hybrid in which:

• On timesteps t < i, M̃ writes (FA(t)⊕ vbt , FB(t)⊕ v0
t ).

• On subsequent timesteps, M̃ writes (FA(t)⊕ vbt , FB(t)).

Here, the addresses which M̃ accesses are determined by the implicit internal execution of M b.

These hybrids are indistinguishable by puncturable PRF security together with fixed-access security:
one can freely puncture FB at i and hard-code its value because no other point in the computation
uses FB(i).

3. Now that M b and M0 are both being implicitly executed in parallel, we determine where M̃ writes by
following M0. This is indistinguishable by fixed-access security because M0 and M b access the same
addresses.

4. Symmetrically to step 1, we define another sequence of hybrids for i = T, . . . , 1, in which:

• On timesteps t < i, M̃ writes (FA(t)⊕ vbt , FB(t)⊕ v0
t ).

• On subsequent timesteps, M̃ writes (FA(t), FB(t)⊕ v0
t ).
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5. Finally, we remove M b from M̃ altogether. As it is no longer used, this change is indistinguishable by
security of the fixed-access garbling scheme. Thus, in this hybrid the adversary’s view is independent
of b.

Formally we define the hybrids with full exposition.

Hybrids Hi,z,b,0 In Hi,z,b,0, where the subscripts represent the execution index i ∈ {1, 2, ..., `}, timestep
z ∈ {0, 1, ..., Ti}, initial memory configuration on track-“A” and “B” being the encryption of sb0 and s0

0.

1. The challenger samples SK ′ ← Setup′(1λ, S) and b← {0, 1}.

2. The adversary sends the initial memory configurations s0
0, s1

0 to the challenger. The challenger sends
back s̃′0,0,b,0 ← GbMem′(SK ′, s′0,0,b,0), where s′0,0,b,0(a) is constructed as:

s′0,0,b,0(a) =

{
(0,−a, FA(0,−a)⊕ sb0(a), FB(0,−a)⊕ s0

0(a)) if sb0(a) 6= ε

ε otherwise

3. The adversary sends pairs of RAM programs (M0
1 ,M

1
1 ), . . . , (M0

` ,M
1
` ) to the challenger, each pair

chosen adaptively after seeing the garbling of previous programs. In the RAM machine M ′i,z,b,0 defined

by algorithm 7, for the first z steps, the resulting memory configurations of M b
i evaluated on sbi−1 are

written on track A, those of M0
i evaluated on s0

i−1 are written on track B; for the next Ti − z steps,
the resulting memory configuration of M b

i on sbi−1 is written on both tracks.

The response of the challenger is the fixed-access garbling of machine M ′j,z,b,0, set up in different ways
depending on the relation of j and i:

(a) For j ∈ {1, . . . , i− 1}, the challenger sends back M̃ ′j,T1,b,0
← GbPrg′(SK,M ′j,T1,b,0

, j);

(b) For j = i, the challenger sends back M̃ ′i,z,b,0 ← GbPrg′(SK,M ′i,z,b,0, i);

(c) For j ∈ {i+ 1, . . . , `}, the challenger sends back M̃ ′j,0,b,0 ← GbPrg′(SK,M ′j,0,b,0, j).

4. The adversary outputs a guess b′.

Input: State (tq, qA, qB), memory symbol (iin, tin, cA, cB)
Data: i, z, RAMs M b

i , M0
i , PPRFs FA, FB

1 outA ←M b
i (qA, FA(iin, tin)⊕ cA);

2 if outA ∈ Y then return outA;
3 Parse outA as (q′A,ReadWrite(addr′ 7→ v′A));
4 if tq < z then
5 outB ←M0

i (qB , FB(iin, tin)⊕ cB);
6 Parse outB as (q′B ,ReadWrite(addr′ 7→ v′B));
7 op′ := ReadWrite(addr′ 7→ (i, tq, FA(i, tq)⊕ v′A, FB(i, tq)⊕ v′B);

8 else
9 op′ := ReadWrite(addr′ 7→ (i, tq, FA(i, tq)⊕ v′A, FB(i, tq)⊕ v′A);

10 return (tq + 1, q′A, q
′
B), op′;

Algorithm 7: M ′i,z,b,0

Lemma 8.3. Hb ≈ H1,0,b,0.
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Proof. The initial memory configurations in Hb and H0,0,b,0 differ in the “B”-track. Because M ′b1 and M ′1,0,b,0
don’t “decrypt” the contents in the “B”-track, sb(a)⊕FB(0,−a) and s0(a)⊕FB(0,−a) are indistinguishable
by the pseudorandomness of FB on (0,−a), a ∈ {a : s0(a) 6= ε}.

The RAM machine M ′b1 and M ′1,0,b,0 have the exact same functionality and are accessing the same memory
configuration, so the garbling of them are indistinguishable following the fixed-access security.

Lemma 8.4. For i ∈ {2, ..., `}, Hi−1,Ti−1,b,0 ≈ Hi,0,b,0.

Proof. This follows directly from the underlying fixed-access security.

Lemma 8.5. For i ∈ {1, 2, ..., `}, z ∈ {0, 1, ..., Ti − 1}, Hi,z,b,0 ≈ Hi,z+1,b,0.

Proof. For each i and z, we introduce one more intermediate hybrid Hi,z,b,0,0, where the adversary receives

s̃′0,0,b,0, M̃
′
1,T1,b,0, ..., M̃

′
i−1,Ti−1,b,0, M̃

′
i,z,b,0,0, M̃

′
i+1,0,b,0, ..., M̃

′
`,0,b,0.

The RAM machine M ′i,z,b,0,0 is defined by algorithm 8. The hard-coded ciphertext c∗ in Hi,z,b,0,0 is FB(i, z)⊕
v′B . The difference of Hi,z,b,0 and Hi,z,b,0,0 are

1. The ith RAM machine M ′i,z,b,0 versus M ′i,z,b,0,0.

2. In the other RAM machines, FB is also punctured on (i, z). Note that this won’t change the function-
ality of M ′1,T1,b,0

, ..., M ′i−1,Ti−1,b,0
, M ′i+1,0,b,0, ..., M

′
`,0,b,0, since the first i− 1 machines won’t read or

write with index i, and the last `− i ones won’t read “B”-track or write with index i.

Input: State (tq, qA, qB), memory symbol (iin, tin, cA, cB)
Data: i, z, RAMs M b

i , M0
i , PPRFs FA, F ′B = FB{i, z}, ciphertext c∗.

1 outA ←M b
i (qA, FA(iin, tin)⊕ cA);

2 if outA ∈ Y then return outA;
3 Parse outA as (q′A,ReadWrite(addr′ 7→ v′A));
4 if tq < z then
5 outB ←M0

i (qB , F
′
B(iin, tin)⊕ cB);

6 Parse outB as (q′B ,ReadWrite(addr′ 7→ v′B));
7 op′ := ReadWrite(addr′ 7→ (i, tq, FA(i, tq)⊕ v′A, F ′B(i, tq)⊕ v′B);

8 else if tq = z then
9 outB ←M0

i (qB , F
′
B(iin, tin)⊕ cB);

10 Parse outB as (q′B ,ReadWrite(addr′ 7→ v′B));
11 op′ := ReadWrite(addr′ 7→ (i, tq, FA(i, tq)⊕ v′A, c∗);
12 else
13 op′ := ReadWrite(addr′ 7→ (i, tq, FA(i, tq)⊕ v′A, F ′B(i, tq)⊕ v′A);

14 return (tq + 1, q′A, q
′
B), op′;

Algorithm 8: M ′i,z,b,0,0.

Note that Hi,z,b,0,0 ≈ Hi,z+1,b,0 by the underlying fixed-access garbling. If we define c∗ = FB(i, z)⊕ v′A,
the RAM machines has the same functionality with those in hybrid Hi,z,b,0. By the pseudorandomness of
the punctured PRF FB on (i, z), Hi,z,b,0,0 ≈ Hi,z,b,0. This shows that Hi,z,b,0 ≈ Hi,z,b,0,0 ≈ Hi,z+1,b,0.

Combining Lemma 8.3, 8.4 and 8.5, we obtain that Hb ≈ H1,0,b,0 ≈ ... ≈ H`,0,b,0 ≈ H`,T`,b,0.
The rest of the proof can be done symmetrically: First, instead of returning outA, return outB , by the

underlying fixed-access garbling. Then switch the computation on “A”-track from running M b on sb into
running M0 on s0, and prove the indistinguishability of them analogously via the puncturability FA and the
underlying fixed-access security. Finally b is not in the view of the adversary.
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9 Full Garbling

In order to construct a fully secure garbling scheme, we will need to make use of an oblivious RAM
(ORAM) [GO96] to hide the addresses accessed by the machine.

9.1 Oblivious RAMs

An ORAM is a probabilistic scheme for memory storage and access that provides obliviousness for access
patterns with sublinear access complexity. It is convenient for us to model an ORAM scheme as follows. We
define a deterministic algorithm OProg so that for a security parameter 1λ, a memory operation op, and a
space bound S, OProg(1λ, op, S) outputs a probabilistic RAM machine Mop. More generally, for a RAM
machine M , we can define OProg(1λ,M, S) as one which executes OProg(1λ, op, S) for every operation op
output by M .

We also define OMem, a procedure for making a memory configuration oblivious, in terms of OProg, as
follows: Given a memory configuration s with n non-empty addresses a1, . . . , an, all less than or equal to a
space bound S, OMem(1λ, s, S) iteratively samples

s′0 ← εN

and
s′i = NextMem(OProg(1λ,ReadWrite(ai 7→ s(ai)), S), s′i−1)

and outputs s′n.

Correctness An ORAM is said to be correct if for all memory operations op1, . . . , op` accessing addresses
less than or equal to S, it holds with high probability that

(Mop1 ; . . . ;Mop`)(ε
N) = (op1; . . . ; op`)(ε

N)

That is, when one sequentially executes Mop1 , . . . ,Mop` on the initially empty memory, Mop` outputs the
same result as opn when executing op1, . . . , op` from the initially empty memory.

Efficiency An ORAM is said to have multiplicative space overhead ζ : N × N → N if for all memory
operations op accessing an address less than or equal to a space bound S, and for all memory configurations
s, it holds with probability 1 that

Space(Mop, s) ≤ ζ(S, λ) · S

An ORAM is said to have multiplicative time overhead η : N × N → N if for all memory operations op
and all memory configurations s, it holds with probability 1 that

Time(Mop, s) = η(S, λ)

Security (Strong Localized Randomness). We now define a notion of strong localized randomness1 for
an ORAM, which is satisfied by the ORAM construction of [CP13].

Informally, we consider obliviously executing operations op1, . . . , opt on a memory of size S, i.e. executing

machines Mop1 ; . . . ;Mopt using a random tape R ∈ {0, 1}N. This yields a sequence of addresses ~A =
~a1‖ · · · ‖~at. There should be a natural way to decompose each ~ai (in the Chung-Pass ORAM, we consider
each recursive level of the construction) such that we can write ~ai = ~ai,1‖ · · · ‖~ai,m. Our notion of strong
localized randomness requires that (after having fixed op1, . . . , opt), each ~ai,j depends on some small substring
of R, which does not influence any other ~ai′,j′ . In other words:

• There is some αi,j , βi,j ∈ N such that 0 < βi,j − αi,j ≤ poly(logS) and such that ~ai,j is a function of
Rαi,j , . . . , Rβi,j .

• The collection of intervals [αi,j , βi,j) for i ∈ {1, . . . , t}, j ∈ {1, . . . ,m} is pairwise disjoint.

1This notion is similar but stronger to the “localized randomness” defined in [CH16]
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Formally, we say that an ORAM with multiplicative time overhead η has strong localized randomness if:

• For all λ and S, there exists m and τ1 < τ2 < · · · < τm with τ1 = 1 and τm = η(S, λ) + 1, and there
exist circuits C1, . . . , Cm, such that for all memory operations op1, . . . , opt, there exist pairwise disjoint
intervals I1, . . . , Im ⊂ N such that:

– If we write
~A1‖ · · · ‖ ~At ← addr(MR1

op1
; . . . ;MRt

opt
, εN)

where R = R1‖ · · · ‖Rt denotes the randomness used by the oblivious accesses and each ~Ai denotes

the addresses accessed by MRi
opi

, then ( ~At)[τj ,τj+1) = Cj(RIj ) with high probability over R. Here
RIj denotes the contiguous substring of R indexed by the interval Ij ⊂ [|R|].

– With high probability over the choice of RN\Ij ,
~A1, . . . , ~At−1 does not depend on RIj as a function.

• τj and the circuits Cj are computable in polynomial time given 1λ, S, and j.

• Ij is computable in polynomial time given 1λ, S, op1, . . . , opt, and j.

Definition 9.1. An S-ORAM is an ORAM where correctness, efficiency, and security need hold only if the
space bound is at most S.

Claim 9.0.1. For any c, there is a c-ORAM with multiplicative space overhead of 1 and multiplicative time
overhead of c.

Proof. This is just the brute-force ORAM which accesses the entire memory for each underlying memory
operation. Since this ORAM is deterministic, the localized randomness property is trivial.

Claim 9.0.2. There is an ORAM with polylogarithmic time and space overhead and localized randomness.

Proof. Suppose we have an S-ORAM with multiplicative space overhead ζ and time overhead η. We show how
to build a 2S-ORAM with multiplicative space overhead ζ ′(N) = ζ(N) + poly(logN,λ), and multiplicative
time overhead η′(N) = η(N) + poly(logN,λ). Our base case will be the brute-force ORAM.

Next we construct an ORAM with strong localized randomness.

Construction 9.1 (Chung-Pass). Given a memory operation op = ReadWrite(a 7→ v′) with alphabet Σ, we
construct a RAM machine Mop, which we describe with pseudocode:

Mop’s view of memory has two parts:

• A memory M with ζ(S) · S addresses, which we think of as a smaller ORAM.

• A complete binary tree T of depth logS. Each node in T is a bucket with capacity sufficient to hold
λ tuples of the form (addr, pos, σ0, σ1) ∈ [S]× [S]× Σ× Σ.

Mop does the following:

1. Samples a random position pos′, and executes pos← OProg(1λ,ReadWrite(ba2 c 7→ pos′), S) on M.

2. On the path from the root of T to the posth leaf, Mop searches for a tuple (addr, pos, σ0, σ1) such that
addr = ba2 c. If such a tuple is found, Mop records σ0 and σ1, and then overwrites the tuple with ⊥.

3. Adds a tuple (ba2 c, pos
′, σ′0, σ

′
1) to the root bucket, where

σ′b =

{
v′ if b ≡ a (mod 2)

σb otherwise

4. Traverses a path from the root to a random leaf of T , moving every tuple (addr, pos, σ0, σ1) to the
deepest node on the path which is a prefix of pos.
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5. Returns σa mod 2.

Correctness and efficiency of Construction 9.1 are easy to see, assuming the following lemma, which is
proved in [CP13].

Lemma 9.2. For all memory operations op1, . . . , opt, with high probability, Construction 9.1 will not exceed
the capacity of any of its buckets.

Claim 9.2.1. Construction 9.1 has strong localized randomness.

Proof. We show how each of the chunks of addresses accessed by Construction 9.1 are functions of prior
contiguous chunks of randomnesses.

• In step 1, we access the addresses that the S-ORAM would access; hence we get localized randomness
for free.

• In step 2, we access all nodes on the path to pos, where pos was retrieved from the S-ORAM in step
1. pos was chosen at random and written to the S-ORAM on the last time that M accessed a (or a′

with ba
′

2 c = ba2 c).

• In step 4, we simply choose a fresh random path and access all of the nodes on that path.

Remark 1. A more usual definition of obliviousness requires that if two machines M0 and M1 have the same
running time, then the addresses accessed by OProg(M0) and OProg(M1) will be statistically close. Although
it is not immediately clear, our definition of strong localized randomness in fact implies this definition.

9.2 Full Garbling Construction

Theorem 9.3. If there is an efficient fixed-address garbling scheme, then there is an efficient full garbling
scheme.

Proof. Suppose we are given a fixed-address garbling scheme (Setup′,GbMem′,GbPrg′) and an oblivious RAM
OProg with space overhead ζ and time overhead η. We construct a full garbling scheme (Setup,GbMem,GbPrg).

Setup(1λ, T, S) samples SK ′ ← Setup′(1λ, η(S, λ) ·T, ζ(S, λ) ·S) and samples a PPRF F : {0, 1}λ×{0, 1}λ →
{0, 1}`R , where `R is the length of randomness needed to obliviously execute one memory operation.
We will sometimes think of the domain of F as [22λ].

GbMem(SK, s0) outputs GbMem′(SK ′,OMem(1λ, s0, S)).

GbPrg(SK,Mi, i) outputs GbPrg′(SK ′,OProg(1λ,Mi, S)F (i,·), i).

Simulator To show security of this construction, we define the following simulator.

1. The adversary provides S, and an initial memory configuration s0. Say that s0 has n non-ε addresses.
The simulator samples SK ′ ← Setup′(1λ, ζ(S, λ) ·S) and sends GbMem′(SK ′,OMem(1λ, 0n, S)) to the
adversary.

2. When the adversary makes a query Mi, 1
Ti , the simulator computes si = NextMem(Mi, si−1), ti =

Time(Mi, si−1), and yi = Mi(si−1), and outputs GbPrg′(SK ′, Di, η(S, λ) ·Ti, i), where Di is a “dummy
program”. As described in Algorithm 9, Di independently samples addresses to access for ti steps, and
then outputs yi.
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Data: Underlying running time ti, output value yi, PPRF Gi, circuits C1, . . . , Cm guaranteed by
localized randomness

1 for t = 1, . . . , ti do
2 for k = 1, . . . ,m do
3 rk ← Gi(t, k);
4 Access addresses given by Ck(rk)

5 return yi.

Algorithm 9: Pseudocode for a dummy RAM machine which simulates pseudorandom addresses to
access using the circuits C1, . . . , Cm given in the definition of localized randomness, and then outputs
yi.

The rest of this section is devoted to proving that this simulator is indistinguishable from the real challenger.

Hybrid Hi,j We show indistinguishability by giving a sequence of “hybrid” challengers Hi,j for i = 1, . . . , `
and j = 1, . . . , T , and show that they are all indistinguishable. In hybrid Hi,j , the challenger:

• Answers the memory query s0 with GbMem′(SK ′,OMem(1λ, s0, S)) as in the real game.

• For k < i, the kth query Mk, 1
Tk is answered with GbPrg′(SK ′,OProg(1λ,Mk, S), η(S, λ) · Tk, k), just

as in the real game.

• The ith query Mi, 1
Ti is answered with GbPrg(SK ′, Ni,j , η(S, λ) · Ti, i), where Ni is a RAM machine

which acts like Mi for the first j underlying steps, and acts like Di for the rest of the steps. Ni,j is
described more precisely in Algorithm 10.

• For k > i, the kth query Mk, 1
Tk is answered with GbPrg′(SK ′, Dk, η(S, λ)·Tk, k) for a dummy program

Dk, just as in the simulator.

Data: RAM machine Mi, Underlying running time ti, output value yi, PPRFs F and Gi
1 op := ReadWrite(0 7→ 0);
2 for t = 1, . . . , j do
3 Execute OProg(op)F (i,t), yielding a result v;
4 Run one step of Mi with memory input v, yielding a new value for op;

5 for t = j + 1, . . . , ti do
6 for k = 1, . . . ,m do
7 rk := Gi(t, k);
8 Access addresses given by Ck(rk)

9 return yi.

Algorithm 10: Pseudocode for a RAM machine Ni,j which starts acting like a dummy machine after
j steps.

H`+1,0 is identical to the real world, so it remains to show the following three claims:

Claim 9.3.1. Hi,T ≈ Hi+1,0.

Proof. This follows directly from fixed-address security, because the semi-dummy machine Ni,0 accesses the
same addresses and has the same output as the dummy machine Di.

Claim 9.3.2. H1,0 is indistinguishable from the simulator.
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Proof. This follows from fixed-address security, and from the fact that the set of non-empty addresses in
OMem(1λ, s, S) is simulatable given ‖s‖0.

Our main claim is the following:

Claim 9.3.3. Hi,j ≈ Hi,j+1.

Proof. Recall the definition of an ORAM with strong localized randomness. The addresses accessed in the
oblivious exeution of opi,j consist of m different chunks ~a1, . . . ,~am. Each ~ak depends on some contiguous
substring of the random tape R, indexed by an interval Ik, via a circuit Ck. The interval Ik depends on the
underlying operations being executed.

We present m+ 1 hybrids Hi,j,m through Hi,j,0. In hybrid Hi,j,k, the addresses ~a1, . . . ,~ak are generated
honestly, and addresses ~ak+1, . . . ,~am are simulated as Ck+1(rk+1), . . . , Cm(rm) for pseudorandomly chosen
rk+1, . . . , rm.

We prove that no adversaryA can distinguish between Hi,j,k and Hi,j,k−1 ifA first commits to 2 log(T ·`R)
bits about what it is going to do. Specifically, we suppose that A initially sends Ik (which depends on the
machines M1, . . . ,Mi). In this case, we can show the indistinguishability of Hi,j,k and Hi,j,k−1 by making a
sequence of indistinguishable changes.

1. The puncturable PRF F sampled during Setup is punctured at Ik, and has the values F (Ik) hard-coded
in all machines. This is indistinguishable because of fixed-address security of the underlying garbling
scheme.

2. The machine M ′i has ~ak, the addresses accessed in the kth chunk of Mi’s j
th operation, hard-coded.

This also is indistinguishable because of fixed-address security.

3. The hard-coded values F (Ik) are replaced by truly random values rk, and ~ak is replaced by Ck(rk).
This is indistinguishable by the security of the punctured PRF F .

4. rk is replaced by F (Ik) and F is unpunctured. By localized randomness properties – namely, no other
~Ai depends on RIk and I1, . . . , Im are pairwise disjoint – this doesn’t affect the addresses accessed by
M ′1, . . . ,M

′
i . So this is indistinguishable by fixed-address security.

5. Ck(rk) is replaced by Ck(Gi(j, k)). This is indistinguishable by the puncturable PRF security of Gi.

It suffices to analyze this semi-selective game because (by a usual complexity leveraging technique) if no
adversary has advantage ε in this game, then no adversary has advantage ε′ = ε/(T`R)2 in distinguishing
Hi,j,k from Hi,j,k−1. Since T , `R, and S are polynomial in the security parameter, if ε is negligible then ε′

is as well.

10 Database delegation

We define security for the task of delegating a database to an untrusted server. Here we have a database
owner that wishes to keep the database on a remote server. Over time, the owner wishes to update the
database and query it. Furthermore, the owner wishes to enable other parties to do so as well, perhaps
under some restrictions. Informally, the security requirements from the scheme are:

Verifiability: The data owner should be able to verify the correctness of the answers to its queries, relative
to the up-to-date state of the database following all the updates made so far.
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Secrecy of database and queries: For queries made by the database owner and honest third parties, the
adversary does not learn anything other than the size of the database, the sizes and runtimes of the
queries, and the sizes of the answers. This holds even if the answers to the queries become partially or
fully known by other means.

For queries made by adversarially controlled third parties, the adversary learns in addition only the
answers to the queries.

(We note that these two secrecy requirement are incomparable and complementary. In the case of
honest third parties the adversary does not see the processing done on the receiver side, but then she
should not learn anything. In the case of dishonest third parties the adversary sees all the computation
involved in the evaluation of the query, but then the answer is not protected. This distinction will
become clearer in the actual definition.)

More precisely, a database delegation scheme consists of the following algorithms:

DBDelegate: Initial delegation of the database. Takes as input a plaintext database, and outputs an en-
crypted database (to be sent to the server), public verification key vk and private master key msk to
be kept secret.

Query: Delegation of a query or database update. Takes a RAM program and the master secret key msk,
and outputs a delegated program to be sent to the server and a secret key skenc that allows recovering
the result of the evaluation from the returned response.

Eval: Evaluation of a query or update. Takes a delegated database D̃ and a delegated program M̃ , runs M̃
on D̃. Returns a response value a and an updated database D̃′.

AnsDecVer: Local processing of the server’s answer. Takes the public verification key vk, the private decryp-
tion key skenc and outputs either an answer value or ⊥.

Security. Essentially, the security requirement is that the scheme UC-emulates the database delegation
ideal functionality Fdd defined as follows. (For simplicity, it is assumed that the database owner is uncor-
rupted.)

1. When activated for the first time, Fdd expects to obtain from the activating party (the database owner)
a database D. It then records D and discloses |D| to the adversary.

2. In each subsequent activation by the owner, that specifies a program M and party P , run M on D,
obtain an answer a and a modified database D′, store D′ and disclose P and the length of a to the
adversary. If the adversary returns ok then output (M,a) to P .

To make the requirements imposed by Fdd more explicit, we also formulate the definition in terms of a
distinguishability game. Specifically, we require that there exists a simulator Sim such that no adversary
(environment) A will be able to distinguish whether it is interacting with the real or the ideal games as
described here:

Real game REALA(1λ):

1. A provides a database D, receives the public outputs of DBDelegate(D).

2. A repeatedly provides a program Mi and a bit that indicates either honest or dishonest. In
response, Query is run to obtain skienc and M̃i. A obtains M̃i, and in the dishonest case also the
decryption key skienc.

3. In the honest case A provides the server’s output outi for the execution of Mi, and obtains in
response the result of AnsDecVer(vk, skenc, outi).
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Ideal game IDEALA(1λ):

1. A provides a database D, receives the output of Sim(|D|).
2. A repeatedly provides a program Mi and either honest or dishonest. In response, Mi runs on

the current state of the database D to obtain output a and modified database D′. D′ is stored
instead of D. In the case of dishonest, A obtains Sim(a, s, t), where s is the description size of M
and t is the runtime of M . In the case of honest, A obtains Sim(s, t).

3. In the honest case A provides the server’s output outi for the execution of Mi, and obtains in
response Sim(outi), where here Sim(outi) can take one out of only two values: either a or ⊥.

Definition 10.1. We say that a delegation scheme (DBDelegate,Query,Eval,AnsDecVer) is secure if there
exists a simulator Sim such that no A can guess with non-negligible advantage whether it is interacting in
the real interaction or in the ideal interaction with Sim.

Theorem 10.1. If there exist adaptive succinct garbled RAM schemes with persistent memory, unforge-
able signature schemes and symmetric encryption schemes with pseudorandom ciphertexts, then there exist
secure database delegation schemes with succinct queries and efficient delegation, query preparation, query
evaluation, and response verification.

Proof. Let (Setup,GbMem,GbPrg) be an adaptively secure garbling scheme for RAM with persistent memory.
We construct a database delegation scheme as follows:

DBDelegate(1λ): Run SK ← Setup(1λ, D) and D̃ ← GbMem(SK,D, |D|). Generate signing and verification
keys (vksign, sksign) for the signature scheme. Set msk← (SK, sksign) and vk← vksign.

Query(Mi,msk, pk): Generate a symmetric encryption key skenc. Generate the extended version of M ′i of Mi

as in Algorithm 11.
Output M̃ ← GbPrg(SK,M ′i [sksign, skenc], i)

Input: State q, memory value v
Data: RAM program Mi with transition function δi and output space Y , and signing and encryption

keys sksign, skenc
1 out← δi(q, v);
2 if out ∈ Y then
3 ctout ← Enc(skenc, out)
4 σout ← Sign(sksign, ctout‖i)
5 return (ctout, σout);

6 return out

Algorithm 11: M ′i : modified version of Mi which encrypts and signs its final output

Eval: Run M̃ on D̃ and return the output value a and an updated database D̃′.

AnsDecVer(i, out, vk, sk): Parse out = (ct, σ). If Verify(vk, ct‖i, σ) 6= 1, output ⊥. Else output Dec(sk, ct).

We construct a simulator Sim for the delegation scheme as follows:

DBDelegate: Sim generates signing and verifications keys sksign, vksign. Sim runs the simulator SimGRAM for a GRAM

scheme to obtain a simulated garbled database D̃. It provides D̃ and vksign as output to the adversary
A.
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Query: If Sim is executed with inputs (a, s, t) on the i-th iteration, it generates symmetric encryption key
skenc. It computes ct = Enc(skenc, a), σ ← Sign(sksign, ct | i) and runs the simulator SimGRAM with

inputs (ct | i, σ) to obtain simulated garbled RAM M̃i. It returns M̃i and skenc to A.

If Sim is executed with inputs (s, t) on the i-th iteration, it generates a random value ct, computes
σ ← Sign(sksign, ct | i) and runs the simulator SimGRAM with inputs (ct | i, σ) to obtain simulated

garbled RAM M̃i. It returns M̃i to A.

AnsDecVer: If Sim executes on input outi then it outputs AnsDecVer(vk, skenc, outi).

To show validity of Sim, We construct the following hybrids.

H0: This is the real world execution.

H1: In this hybrid we start using the simulator for the GRAM SimGRAM to generate simulated database
D̃′. We generate the signature scheme keys (vksign, sksign) honestly. We also use SimGRAM to generate
the garbling for the programs M ′i given inputs cti ← Enc(pkenc, out) | i , σi ← Sign(sksign, cti) and out
is the result of the evaluation of Mi with the memory state after the previous i− 1 evaluations.

The indistinguishability of H0 and H1 follows from the simulation security of the GRAM scheme.

H2: In this hybrid for all honest executions for machines Mi where the adversary A does not get skenc, we
run SimGRAM to generate the garbling for the programs M ′i with inputs cti ← r, where r is a random
value, and σi ← Sign(sksign, cti‖i).
The indistinguishability of H1 and H2 follows from the pseudorandom property of symmetric encryp-
tion ciphertexts.

Now, consider the event where, in execution H2, the adversary provides a value outi such that
AnsDecVer(vk, skenc, outi) = a′ and a 6= a′ 6=⊥, where a is the correct answer for the i-th query in
this execution. We argue that:

– Conditioned on this event not happening, A’s view of H2 is identical to its view in the ideal
interaction.

– The event happens with at most negligible probability. Otherwise A can be used to break the
unforgeability of the signature scheme. To see this consider an interaction between A and Sim that
is the same as H2 except that Sim queries the signature scheme challenger C to obtain verification
key vksign and signatures σi for the values cti. Then outi, which A returns, contains a signature
of a message that Sim has not queried. Hence, Sim breaks the unforgeability property of the
signature scheme.

11 Reusable GRAM with Persistent Memory

Our basic construction of adaptively secure garbled RAM can naturally support program/input reusability.
That is, the garbler is able to garble the RAM machines or the inputs once, and reuse them for many times.
In the previous works [GKP+13, GHRW14], reusability is viewed as a security feature. The techniques are
built up in order to reuse the resulting garbled program.

In this work, we are not trying to reuse the garbled program. Instead, we take the advantage of the
persistent memory, and simply store the plaintext code of the RAM program/input into the memory. To
evaluate, garble an universal RAM machine that executes the specific machine and input in the memory.
Since the size of universal RAM machine is independent of the sizes of the input and program it takes [CR73],
the size of garbled universal RAM is only dependent on the security parameter. So the reusability we achieve
is essentially an efficiency feature, which shares the same spirit with previous works but instantiated in a
way that is closer to the real world scenario.
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Definition 11.1 (Reusable garbled RAM). A garbling scheme is said to be reusable if the total time of
garbling the program M to be reused for d times is O(|M |,poly(λ)) + d · poly(λ); the total time of garbling
the input x to be reused for d times is O(|x|,poly(λ)) + d · poly(λ).

Our construction use the basic adaptively secure garbled scheme (Setup′,GbMem′,GbPrg′) as a black-
box. Without loss of generality, we store the plaintext code of machines and inputs under an index system
I = (I.setup, I.store, I.fetch), where I.setup outputs initialization parameter ι, I.store(i, z) stores z under
index i, I.fetch(i) outputs the content stored at index i. There is a data structure where the size of store(i, z)
and fetch(i) are log(|i|), and they run in time log(|i|) + |z|.

Construction 11.1 (Reusable garbled RAM). Let (Setup′,GbMem′,GbPrg′) be an adaptively secure garbled
RAM with persistent memory, we construct one that is reusable (Setup,GbMem,GbInp,GbPrg,GbExe) as
follows:

• Setup(1λ, S) runs SK ′ ← Setup(1λ, S), ι← I.setup.

• GbMem(SK,⊥, S) by default, runs s̃′0 ← GbMem′(SK ′,⊥, S) to garble an empty memory for initial-
ization.

• GbInp(SK, xi, i) runs W̃ ′i ← GbPrg′(SK ′,Wx,i, i), where the functionality of Wx,i is “I.store(i, xi),
outputs ⊥.” Then evaluate W̃ ′i on memory s̃′i−1.

• GbPrg(SK,Mj , j) runs W̃ ′j ← GbPrg′(SK ′,WM,j , j), where the functionality of WM,j is “I.store(j,Mj),

outputs ⊥.” Then evaluate W̃ ′j on memory s̃′j−1.

• GbExe(SK, i, j, g) runs Ũ ′i,j,g ← GbPrg′(SK ′, Ui,j , g), evaluate Ũ ′i,j,g on the garbled memory configura-
tion s̃′g−1. The functionality of Ui,j is “U(I.fetch(j), I.fetch(i))”, where U a universal RAM machine.

Correctness, (simulation-based) adaptive security, persistence of the memory follows directly from the
basic scheme. The time cost of garbling a program or input is the same with the basic scheme. That is,
the running time of the garbler is linear w.r.t. the size of the program or input. The total size of garbled
programs produced to reuse a machine M for d times is

|GbPrg(SK,Mj , j)|+ |GbExe(SK, i, j, g)| = O(|M |,poly(λ)) + d · poly(λ)

The total size of garbled programs produced to reuse an input x for d times is

|GbPrg(SK, xi, i)|+ |GbExe(SK, i, j, g)| = O(|x|,poly(λ)) + d · poly(λ)

The definition and construction can be easily generalized to the setting where a universal RAM machine
takes more than 1 RAM machine, 1 input (cf. the decomposable garbling studied in [AIK11, AIKW15]).
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