
Fairness in Secure Two-Party Computation with Rational Players

Arpita Maitra1, Goutam Paul2 and Asim K. Pal1
1 Management Information Systems Group, Indian Institute of Management Calcutta, India.

Email: {arpitam, asim}@iimcal.ac.in
2 Cryptology & Security Research Unit, R. C. Bose Centre for Cryptology & Security,

Indian Statistical Institute, Kolkata, Email: goutam.paul@isical.ac.in

Abstract

A seminal result of Cleve (STOC 1986) showed that fairness, in general, is impossible to
achieve in case of two-party computation if one of them is malicious. Later, Gordon et al.
(STOC 2008) observed that there exist some functions for which fairness can be achieved even
though one of the two parties is malicious. One of the functions considered by Gordon et
al. is exactly the millionaires’ problem (Yao, FOCS 1982) or, equivalently, the ‘greater-than’
function. Interestingly, Gordon et al. (JACM, 2011) showed that any function over polynomial-
size domains which does not contain an “embedded XOR” can be converted into the greater than
function. In the same paper, they also demonstrated feasibility for certain functions that do
contain an embedded XOR. In this paper, we revisit both the classes of two-party computation
under rational players for the first time. We show that Gordon’s protocols no longer remain fair
when the players are rational. Further, we design two protocols, one without embedded XOR
(the greater-than function) and the other with embedded XOR, and show that with rational
players, our protocols achieve fairness under suitable choice of parameters.

Keywords: Cryptography, embedded XOR, Fairness, millionaires’ problem, secure computation.

1 Introduction

In a secure two-party computation, two parties or players want to compute a particular function
of their inputs along with preserving specific security notions, such as, fairness, correctness etc.
Informally, correctness means that no party computes a wrong function and complete fairness
means that either every one or no one computes the function.

In [5], Cleve showed an impossible result that certain functions cannot be computed with
complete fairness without an honest majority. From this, the community conjectured that no
function can be computed without an honest majority. However, in [3, 4] the authors showed
that absolute correctness can be achieved in case of multi-party computation with one-third faulty
players. They proposed the solution in broadcasting channel model. After more than two decades,
Gordon et al. [7] came with a set of functions for which complete fairness is possible for two-party
computation in non-simultaneous channel model, even if one of the players is malicious.

One particular function of interest in Gordon’s paper was the Yao’s millionaires’ problem [13],
or more precisely, the ‘greater than’ function. The problem deals with two millionaires, Alice and
Bob, who are interested in finding who amongst them is richer, without revealing their actual
wealth to each other. Since the subsequent work [8] by Gordon et al. showed that any function
over polynomial-size domains which does not contain an “embedded XOR” can be converted into
the greater than function, the millionaires’ problem covers all functions without embedded XOR.

1

In this paper, for the first time we study the fairness in millionaires’ problem with rational
players. Rational players are neither ‘good’ nor ‘malicious’, they are utility maximizing. Each
rational party wishes to learn the output while allowing as few others as possible to learn the
output. Thus, each rational party chooses to abort as soon as it obtains the output. We show that
with rational players, Gordon’s solution of the Yao’s millionaires’ problem no longer remains fair.
We also propose a modification in the protocol with the help of a third player so that fairness can
be established.

The work by Gordon et al. [7, 8] also studied the equality function that belong to the class of
embedded XOR. The equality function simply checks whether the inputs chosen by two players
(from a specified domain) are equal or not. They showed that under certain parameter value of a
hybrid model, fairness is achieved. In this paper, we also revisit this problem with rational players
for the first time and show that fairness is no longer guaranteed. We propose a modified version of
the protocol and prove its fairness under rational setting.

Note that we need to introduce an intermediate third party to achieve fairness for the million-
aires’ problem in rational domain. However, no such requirement is there for the embedded XOR
problem. One may think that the use of a third player is no different than the use of a dealer. But
the fact is that our third party is less restrictive in comparison with the dealer. The dealer is as-
sumed to be honest (this is a strong assumption), whereas the third party is assumed to be rational
in nature. Moreover, the dealer is a special distinct entity from the players. However, the role of
our intermediate third party can be adopted by any rational player who is not a party involved in
the problem being solved. Only assumption on this player is that it is fail-stop in nature.

1.1 Contributions

We list our key contributions one by one.

1. We revisit fairness in two prominent Secure Two-Party Computation problems, namely, Yao’s
millionaires’ problem [13] and the equality function of the Embedded XOR problems, for the
first time with rational players.

2. We show that Gordon’s protocol [7, 8] for solving the millionaires’ problem no longer remain
fair when the players are rational (Theorem 1).

3. We propose a variant of Gordon et al.’s protocol and show that fairness can be regained
(Theorem 4). We also establish correctness of the new protocol (Theorem 3).

4. In order to establish fairness of our protocol, we introduce a third player, who is also rational
and not a trusted third-party such as dealer. This helps to keep the dealer offline.

5. We show that the equality problem in the embedded XOR category [7, 8] also no longer
remains fair with rational players (Theorem 5).

6. We propose a variant of Gordon et al.’s protocol and show that fairness can be guaranteed
under certain practical assumptions (Theorem 6).

7. For both the problems, we also discuss the issues with unequal vs. equal domain sizes.

2 Preliminaries

In this section, we briefly describe the concepts of rationality, fairness, fail-stop and Byzantine
setting used in this work.

2

We define a function reconstruction protocol with rational adversary to be a pair (Γ,−→σ), where
Γ is the game (i.e., specification of allowable actions) and −→σ=(σ1, . . . , σn) denotes the strategies
followed by n number of players. We use the notations −→σ −w and (σ′w,

−→σ −w) respectively for
(σ1, . . . , σw−1, σw+1, . . . , σn) and (σ1, . . . , σw−1, σ

′
w, σw+1, . . . , σn). The outcome of the game is de-

noted by −→o (Γ,−→σ)=(o1, . . . , on). The set of possible outcomes with respect to a party Pw is as
follows. 1) Pw correctly computes f , while others do not; 2) everybody correctly computes f ; 3)
nobody computes f ; 4) others computes f correctly, while Pw does not and 5) others believe in a
wrong functional value, while Pw does not.

The output that no function is computed is denoted by ⊥ (i.e., null as in [7]) and output of
wrong computation is denoted by ⇁.

In classical domain, the adversary that controls a player may be computationally bounded.
Here, we assume the adversary has probabilistic polynomial time complexity.

2.1 Utilities and Preferences

The utility function uw of each party Pw is defined over the set of possible outcomes of the game.
The outcomes and corresponding utilities for two parties are described in Table 1. We here assume
Bernoulli utility function.

Table 1: Outcomes and Utilities for (2, 2) rational function reconstruction

P1’s outcome P2’s outcome P1’s Utility P2’s Utility
(o1) (o2) U1(o1, o2) U2(o1, o2)

o1=f o2=f UTT1 UTT2

o1=⊥ o2=⊥ UNN1 UNN2

o1=f o2=⊥ UTN1 UNT2

o1=⊥ o2=f UNT1 UTN2

o1=⊥ o2=⇁ UNF1 UFN2

o1=⇁ o2=⊥ UFN1 UNF2

Players have their preferences based on the different possible outcomes. In this work, a rational
player w is assumed to have the following preference:

R1 : UTNw > UTTw > UNNw > UNTw .

Some players may have the additional preference UNFw ≥ UTTw , whereas the rest have UNFw < UTTw .

2.2 Fairness

In non-rational setting, the security of a protocol is analyzed [11, 7, 8] by comparing what an
adversary can do in a real protocol execution to what it can do in an ideal scenario that is secure
by definition. This is formalized by considering an ideal computation involving an incorruptible
trusted party to whom the parties send their inputs. The trusted party computes the functionality
on the inputs and returns to each party its respective output. Loosely speaking, a protocol is secure
if any adversary interacting in the real protocol (where no trusted party exists) can do no more
harm than if it were involved in the above-described ideal computation.

A rational player, being selfish, desires an unfair outcome, i.e., computing the function alone.
Therefore, the basic aim of rational computation has been to achieve fairness. According to Von

3

Neumann and Morgenstern expected utility theorem [12], under natural assumptions, the individual
would prefer one prospect O1 over another prospect O2 if and only if E[U(O1) ≥ E[U(O2)]. The
work [1] implicitly uses the expected utility theorem to derive its results. We also use the same
approach and accordingly redefine fairness as follows.

Definition 1. (Fairness) A rational function reconstruction mechanism (Γ,−→σ) is said to be com-
pletely fair if a party Pw, (w ∈ {1, . . . , n}), who is corrupted by a probabilistic polynomial time
adversary, the following holds:

UTTw ≥ E[Uw(Ol)],

where Ol = {o1w, . . . , on
′
w ; p1, . . . , pn′} is any arbitrary prospect and n′ is the number of possible

outcomes.

2.3 Fail-stop and Byzantine settings

In the fail-stop setting, each party follows the protocol as directed except that it may choose to
abort at any time [9] and a party is assumed not to change its input when running the protocol.
On the other hand, in Byzantine setting, a deviating party may behave arbitrarily. It may change
the inputs or may choose to abort. For our analysis, we consider both the settings.

3 Millionaires’ Problem with Rational Players

In this section, we first describe the millionaires’ problem or, more precisely, the greater than
function, proposed by Gordon et al. [7, 8]. We, then, will show how fairness condition is affected
in the presence of the rational players having the preferences R1. Let us denote two players by P1

and P2. Suppose P1 has the secret i and P2 has the secret j, 1 ≤ i ≤ M , 1 ≤ j ≤ M . The dealer
gives an ordered list X = {x1, x2, . . . , xM} to P1 and another ordered list Y = {y1, y2, . . . , yM} to
P2. Then P1 sends xi to the dealer and P2 sends yj to the dealer. Let f be a deterministic function
which maps X × Y → {0, 1} × {0, 1}. The function f(xi, yj) can be defined as a pair of outputs,
i.e., f(xi, yj) = (f1(xi, yj), f2(xi, yj)), where f1(xi, yj) is the output of the first party and f2(xi, yj)
is the output of the second party. For millionaires’ problem, the function is defined as follows [7, 8].
For w = 1, 2,

fw(xi, yj) =

{
1 if i > j;

0 if i ≤ j.
(1)

The protocol proceeds in a series of M iterations. The dealer creates two sequences {al} and {bl},
l = 1, 2, . . . ,M , as follows.

ai = bj = f1(xi, yj) = f2(xi, yj).

For l 6= i, al =⊥ and for l 6= j, bl =⊥.
Next, the dealer splits the secret al into the shares a1l and a2l , and the secret bl into the shares

b1l and b2l , so that al = a1l ⊕a2l and bl = b1l ⊕ b2l , and gives the shares {(a1l , b1l)} to P1 and the shares
{(a2l , b2l)} to P2. In each round l, P2 sends a2l to P1, who, in turn sends b1l to P2. P1 learns the
output value f1(xi, yj) in iteration i, and P2 learns the output in iteration j. As we require three
elements, 0, 1 and ⊥, we define 0 by 00, 1 by 11 and ⊥ by 01. The algorithm for the functionality
share generation in fail-stop setting is revisited in Algorithm 1. Here we assume that the dealer
who will distribute the shares is honest and can compute the function described in Equation (1).
The protocol for computing f is described in Algorithm 2.

The algorithms in the Byzantine setting are the same as those in the fail-stop setting except
some additional steps. In Byzantine setting, the shares are signed by the dealer. Along with the

4

Inputs:
1 xi from P1 and yj from P2. If one of the received input is not in the correct domain, then both the parties are given
⊥.
Computation:
The dealer does the following:

2 Prepares a list listw of shares for each party Pw, where w ∈ {1, 2} such that
P1 receives the values of a11, a

1
2, . . . , a

1
M and b11, b

1
2, . . . , b

1
M .

P2 receives the values of a21, a
2
2, . . . , a

2
M and b21, b

2
2, . . . , b

2
M .

Output:
3 al = a1l ⊕ a

2
l .

4 bl = b1l ⊕ b
2
l .

5 For l ∈ {1, . . . ,M}, l 6= i, set al =⊥.
6 For l ∈ {1, . . . ,M}, l 6= j, set bl =⊥.
7 ai = bj = f1(xi, yj) = f2(xi, yj).

8 a1, a2, . . . , aM and b1, b2, . . . , bM correspond to the outputs of P1 and P2 respectively for 1 ≤ l ≤M .

Algorithm 1: ShareGen

Inputs:
1 P1 obtains a11, a

1
2, . . . , a

1
M and b11, b

1
2, . . . , b

1
M .

2 P2 obtains a21, a
2
2, . . . , a

2
M and b21, b

2
2, . . . , b

2
M .

Computation:
There are M number of iterations. In each iteration l ∈ {1, 2, . . . ,M} do:

3 P2 sends a2l to P1 and P1 computes al = a1l ⊕ a
2
l .

4 P1 sends b1l to P2 and P2 computes bl = b1l ⊕ b
2
l .

Output:
5 If P2 aborts in round l, i.e., does not send its share at that round and l ≤ i, P1 outputs 1. If l > i, P1 has already

determined the output in some earlier iteration. Thus it outputs that value.

6 If P1 aborts in round l, i.e., does not send its share at that round and l ≤ j, P2 outputs 0. If l > j, P2 has already

determined the output in some earlier iteration. Thus it outputs that value.

Algorithm 2: ΠCMP

5

shares of the function, the dealer also distributes some secret keys ka, kb ← Gen(1λ), where λ is
the security parameter. For 1 ≤ l ≤ M , let tal = Macka(l ‖ a2l) and tbl = Mackb(l ‖ b1l). P1

receives a11, a
1
2, . . . , a

1
M and (b11, t

b
1), (b

1
2, t

b
2), . . . , (b

1
M , t

b
M) and MAC key ka. Similarly P2 is given

(a21, t
a
1), (a22, t

a
2), . . . , (a2M , t

a
M) and b21, b

2
2, . . . , b

2
M and MAC key kb. After receiving the share in the

round l from P2, P1 verifies by the algorithm V rfyka(l ‖ a2l , tal). If V rfyka(l ‖ a2l , tal) = 0, P1

halts. Similarly, after receiving the share in the round l from P1, P2 verifies by the algorithm
V rfykb(l ‖ b

1
l , t

b
l). If V rfykb(l ‖ b

1
l , t

b
l) = 0, P2 halts. Otherwise both continues the protocol

ΠCMP which outputs ai(bj) for P1(P2).
Exploiting the MAC signature, we can resist the players to send a false share.

3.1 ΠCMP is not fair when players are rational

In this section, we revisit the fairness issue in the millionaires’ problem [7] considering the rational
players. We also assume that the players, P1 and P2 have the preferences R1. Either of the players
also has UNFw ≥ UTTw . We observed that Gordon’s protocol [7, 8] is no longer fair in this case.

Theorem 1. Provided R1 and UNFw ≥ UTTw for some player Pw, the protocol ΠCMP is not com-
pletely fair.

Proof. Suppose P1 aborts before giving its share in round l, where 1 ≤ l ≤ M . Now, if i ≤ j, we
list all possible mutually exclusive and exhaustive outcomes as follows:

1. When 1 ≤ l < i, P2 outputs 0 and correctly concludes that i ≤ j, but P1 outputs ⊥.

2. When i ≤ l ≤M , P1 obtains the function and both correctly conclude that i ≤ j.

In this case, the utility of P1 is given by

U≤1 =

{
UNT1 if 1 ≤ l < i;

UTT1 if i ≤ l ≤M ;
(2)

If i > j, all possible mutually exclusive and exhaustive outcomes are:

1. When 1 ≤ l ≤ j, P2 outputs 0 and wrongly concludes that i ≤ j, but P1 outputs ⊥.

2. When j < l < i, P1 outputs ⊥, but P2 correctly concludes that i > j.

3. When i ≤ l ≤M , both computes the function and both correctly conclude that i > j.

Thus, the corresponding utility for this event is given by

U>1 =


UNF1 if 1 ≤ l ≤ j;
UNT1 if j < l < i;

UTT1 if i ≤ l ≤M ;

(3)

Since i is known to P1, the expected utility of P1 is given by

E[U1] = Pr(i ≤ j) · E[U≤1] + Pr(i > j) · E[U>1], (4)

6

where Pr(i ≤ j) = M−i+1
M and Pr(i > j) = i−1

M . Plugging in the values from Equation (2) and (3)
into Equation (4), we get

E[U1] =

{(
M−i+1
M

)
UNT1 +

(
i−1
M

) ((
l−1
i−1

)
UNT1 +

(
i−l
i−1

)
UNF1

)
if 1 ≤ l < i;(

M−i+1
M

)
UTT1 +

(
i−1
M

)
UTT1 if i ≤ l ≤M.

=

{(
M−i+l
M

)
UNT1 +

(
i−l
M

)
UNF1 if 1 ≤ l < i;

UTT1 if i ≤ l ≤M.

Note that in the first case, i.e., for 1 ≤ l < i, the second term corresponding to i > j involves two
sub cases, namely, 1 ≤ j < l < i and l ≤ j < i.

Observe that when i ≤ l ≤ M , P1 has already obtained the secret, but by aborting it cannot
increase its utility beyond UTT1 .

However, when l < i, we may have E[U1] > UTT1 , depending on the value of UNF1 .Thus,
dependence on UNF1 prevents the protocol to achieve fairness in this case. On other words, we
can say that when a party aborts before it obtains the output, the only reason would be if he is
significantly more interested in cheating the other party rather than him not getting it.

The analysis for P2 is similar, except we have the role of i and j interchanged.

3.2 How to make ΠCMP fair when players are rational

In this section, we propose a variant of the Gordon’s [7, 8] protocol. In the earlier section, we have
observed that ΠCMP suffers from early abort. In [9] it is shown that two party fair computation is
possible. However, their scheme exploits the concepts of online dealer, which is not very practical,
as in each iteration the dealer has to interact with the players and has to ask them whether they will
choose abort. Another restriction in their scheme is that the deviating player can not escape from
its decision knowing that the round it has chosen to abort is less than or equal to the revelation
round. Exploiting the idea of the indicator bit (a bit in [10], a signal in [6]), one can make the
dealer offline. We propose a new protocol with a rational intermediate player for offline dealer and
show that the protocol is UNF -independent and hence correct [2]. We also prove fairness for our
protocol. Our protocol is described in Algorithm 3 and Algorithm 4.

Though our protocol initially addresses towards the millionaires’ problem, it is applicable for
any function which does not have any embedded XOR [8].

Here, the intermediate player, P3, is considered as a rational player who is guided by his expected
utility or revenue at the end of the game. He will participate in the game in the motivation towards
maximizing his utility. In non-rational setting, P3 is termed as an ‘untrusted third party’. Only
assumption on this player is that it is fail-stop in nature.

P3 has been given two options at the beginning of the game.

• Option 1: Follow the protocol (i.e., send the shares to both the parties) and obtain a positive
reputation value, say δ, from the dealer.

• Option 2: Before delivering the shares in any round, approach to one of the players to give
δ amount of money, in exchange of sending the share to him only.

We assume that δ ≤ UTNw − UTTw for w ∈ {1, 2}.
As P3 is rational and hence utility maximizer, he first checks whether choosing Option 2 would

be meaningful to him. Without loss of generality, we assume that P3 chooses P1 to approach. In
this case, if P1 agrees to give the money to P3, P3 will send the share to him but not to P2. The

7

Inputs:
1 xi from P1 and yj from P2. If one of the received input is not in the correct domain, then both the parties are given
⊥.
Computation:
The dealer does the following:

2 Insert an intermediate player P3.
3 Chooses r according to a geometric distribution G(γ) with parameter γ and sets r as the revelation round, i.e., the

round in which the value of f is either (0, 0) or (1, 1).
4 Chooses d according to the geometrical distribution G(γ) and sets the total number of iterations as m = r + d.
5 Prepares a list listw of shares for each party Pw, where w ∈ {1, 2, 3} such that

P1 receives the values of a11, a
1
2, . . . , a

1
m, b11, b

1
2, . . . , b

1
m and c11, c

1
2, . . . c

1
m.

P2 receives the values of a21, a
2
2, . . . , a

2
m, b21, b

2
2, . . . , b

2
m and c21, c

2
2, . . . c

2
m.

P3 receives the values of c31, c
3
2, . . . , c

3
m.

Output:
6 al = a1l ⊕ a

2
l ⊕ a

3
l , where a3l = c2l ⊕ c

3
l .

7 bl = b1l ⊕ b
2
l ⊕ b

3
l , where b3l = c1l ⊕ c

3
l .

8 ar = br = f(xi, yj), where xi and yj are parties inputs.
9 For l ∈ {1, . . . ,m}, l 6= r, set al =⊥.

10 For l ∈ {1, . . . ,m}, l 6= r, set bl =⊥.
11 a1, a2, . . . , am and b1, b2, . . . , bm correspond to the outputs of P1 and P2 respectively for 1 ≤ l ≤ m.

Algorithm 3: ShareGen for ΠCMP
fair

Inputs:
1 P1 obtains a11, a

1
2, . . . , a

1
m, b11, b

1
2, . . . , b

1
m and c11, c

1
2, . . . , c

1
m.

2 P2 obtains a21, a
2
2, . . . , a

2
m, b21, b

2
2, . . . , b

2
m and c21, c

2
2, . . . , c

2
m.

3 P3 obtains c31, c
3
2, . . . , c

3
m.

Computation:
There are m number of iterations. In each iteration l ∈ {1, 2, . . . ,m} do the following.

4 P2 sends a2l to P1 and P1 sends b1l to P2.
5 After receiving the share fromP2, P1 sends c1l to P3, else halts.
6 After receiving the share fromP1, P2 sends c2l to P3, else halts.
7 P3 computes the values of a3l and b3l and sends a3l to P1 and then b3l to P2.

Output:
8 If P2 aborts in round l, i.e., does not send its share at that round and l ≤ r, P1 outputs ⊥. If l > r, P1 has already

determined the output in some earlier iteration. Thus it outputs that value.
9 If P1 aborts in round l, i.e., does not send its share at that round and l ≤ r, P2 outputs ⊥. If l > r, P2 has already

determined the output in some earlier iteration. Thus it outputs that value.
10 If P1 or P2 does not send its share to P3, P3 outputs ⊥ to the both of the players.

11 If P3 does not send its computed share to any one of the party Pw, w ∈ {1, 2}, in a round l, Pw chooses to abort

from the very next round and the protocol will be terminated.

Algorithm 4: ΠCMP
fair

8

following result shows that P1 will not have any incentive to give the money to P3 in the motivation
to get the output by himself only provided certain conditions hold.

Theorem 2. Provided δ > 0, 0 < γ < 1 and UTNw + (1 − γ)UNNw < UTTw for all w ∈ {1, 2}, P3

always chooses Option 1 and plays the game honestly.

Proof. According to the protocol, to obtain the secret alone with the help of P3, P1 has to guess
correctly the revelation round. Otherwise, the protocol will be terminated from the very next
round and both the players get no information about the output. Suppose, P1 guesses the l-th
round to be the revelation round and gives P3 the money for that round so that P3 will not send
the corresponding share to P2 for that round. If the guess is correct, i.e., l = r, the probability of
which is γ, its utility is (UTN1 − δ). Otherwise, its utility is (UNN1 − δ), as in this case P2 will abort
from the next round. So the expected utility of P1 is given by

γ(UTN1 − δ) + (1− γ)(UNN1 − δ) = γUTN1 + (1− γ)UNN1 − δ < UTT1 − δ < UTT1 .

The last inequality follows from our assumptions that δ is positive and γUTN1 +(1−γ)UNN1 < UTT1 .
Thus P1 has no incentive to offer money to the intermediate player P3 in the motivation to get the
function alone. Similar analysis can be done for P2.

As the utility values are public and P3 knows the condition that UTNw + (1− γ)UNNw < UTTw for
all w ∈ {1, 2}, he always chooses Option 1.

In our mechanism, there are three players, namely P1, P2 and P3. For the condition of achieving
correctness and fairness, we have to assume that when one of the players deviates, others are sticking
to the protocol. From the above analysis we have seen that P3 has no incentive to deviate from the
protocol. Thus, we have to consider the following two cases.

1. P1 deviates (P2 follows the protocol).

2. P2 deviates (P1 follows the protocol).

In fail-stop setting, the deviation of P1 and P2 is considered as early abort whereas in Byzantine
setting the players behave arbitrarily. That means they can abort early as well as can send the
arbitrary inputs or can swap the inputs.

We analyze the security notions such as correctness and fairness considering all the above issues.
The following theorems show that our proposed mechanism is correct and fair.

In Byzantine setting, the shares given to the players are signed by the dealer so that no player
can send a false share to the other player. The signing procedure discussed in Section 3 remains
similar in our protocol expect M is replaced by m and with some additional steps.

• For 1 ≤ l ≤ m, P1 is given (c1l , t
c1
l), where tc1l = Mackc1 (l ‖ c1l).

• For 1 ≤ l ≤ m, P2 is given (c2l , t
c2
l), where tc2l = Mackc2 (l ‖ c2l).

• P3 is given MAC key kc1 and MAC key kc2 so that for 1 ≤ l ≤ m, it can verify the shares by
algorithm V rfykc1 (l ‖ c1l , t

c1
l) for P1 and V rfykc2 (l ‖ c2l , t

c2
l) for P2. If V rfykcw (l ‖ cwl , t

cw
l) =

0, P3 halts, else continues, where w ∈ {1, 2}.

There is no need to sign the shares given to P3, as P3 is fail-stop by nature.
The following result establishes the correctness of the protocol.

Theorem 3. The protocol ΠCMP
Fair is UNFw -independent for w ∈ {1, 2} and hence correct.

9

Proof. we should recall that the deviations of P1 and P2 are similar. Thus for simplicity, here, we
only consider the deviations of P1.

In fail-stop setting, if P1 aborts early and the round in which he aborts is less than j, according
to Gordon’s protocol, P2 will output 0 and conclude that i ≤ j. When i > j, it is the situation
when P2 is deceived by P1. However, our protocol is designed in such a way that if P1 has chosen
abort in any round before r, P2 will output ⊥ and does not conclude anything. Thus, P1 can not
deceive P2 by early abort. There is no incentive for P1 to abort in a round l > r, as P2 has already
determined the output in some earlier iteration.

In case of Byzantine setting, P1 can send arbitrary shares to both P2 and P3, so that P2 will
finally compute a wrong function. But since each share is signed by the dealer, no one can send
an arbitrary share to the other. Another important deviation of P1 in this setting is to swap the
inputs. By swapping the inputs, P1 can make P2 compute a wrong function. As all the inputs
came from the same dealer, there is no chance to catch this type of deviation by considering only
the signature scheme. However, we consider signature with tagging. P1 receives a11, a

1
2, . . . , a

1
m and

(b11, t
b
1), (b

1
2, t

b
2), . . . , (b

1
m, t

b
m) and MAC key ka. Similarly P2 is given (a21, t

a
1), (a22, t

a
2), . . . , (a2m, t

a
m)

and b21, b
2
2, . . . , b

2
m and MAC key kb. After receiving the share in the round l from P1, if V rfykb(l ‖

b1l , t
b
l) = 0, then P2 halts. Similar checking is done by P3 as well. Thus, by input swapping no one

can make the other believe in a wrong function.
Thus, assuming P1 has UNF1 > UTT1 , the mechanism is designed in such a way that it becomes

UNF1 independent and hence correct. Proceeding in the same way for P2, we can prove the UNF2

independence.

Now we are in a position to establish fairness of ΠCMP
Fair .

Theorem 4. Provided R1, the protocol ΠCMP
Fair achieves fairness.

Proof. Without loss of generality, let us assume that the player P1 is deviating. The analysis when
P2 deviates is similar.

In this case, the reason for deviation is to get the function alone. In fail-stop as well as in
Byzantine setting P1 can abort in round l.

P1 may choose three types of abort in round l.

1. It may not send its share to P2.

2. It may not send its share to P3.

3. It may not send its share to both P2 and P3.

If P1 does not send its share to P2, then P2 will not send its share to P3. As a result the protocol
will be terminated without producing any result either for P1 or P2. Similarly, if P1 does not send
its share to P3, according to the protocol P3 will output ⊥ to both the players. In the third case,
the protocol will be terminated from the beginning of the round l. Thus, there is no incentive for
P1 to abort early in the motivation to get the secret alone.

3.3 Fairness analysis of ΠCMP when players have unequal domain size

As discussed in [8, Section 3.2], when the domain sizes of the players are unequal, the analysis in
the non-rational setting does not change. It is easy to see from our analysis of Section 3.1 that even
in the rational setting, we can carry out an analogous calculation to conclude that the protocol is
UNF -dependent and hence not fair.

10

4 Secure Two-Party Computation involving Embedded XOR with
Rational Players

In this section, we first describe the embedded XOR problem or, more precisely, the equality
function, proposed by Gordon et al. [7]. We, then, will show how fairness condition is affected in
the presence of the rational players having the preferences R1. Let us denote two players by P1

and P2. Player P1 is given an ordered list {x1, x2, x3} and P2 is given an ordered list {y1, y2}. P1

randomly chooses the input from the ordered list and sends to the dealer. P2 also randomly chooses
the input from his list and delivers to the dealer. Dealer calculates the function. For convenience,
we here recall the table for f given in [7].

y1 y2
x1 0 1

x2 1 0

x3 1 1

The function can be described as

f(xi, yj) =

{
1 if i 6= j;

0 if i = j.
(5)

The protocol proceeds in a series of M iterations, where M = ω(log λ), λ is the security
parameter. Let x and y denote the inputs from P1 and P2 respectively. The dealer chooses the
revelation round l∗ according to geometric distribution with parameter γ. The dealer then creates
two sequences {al} and {bl}, l = 1, 2, . . . ,M , as follows.

For l ≥ l∗, al = bl = f(x, y).

For l < l∗, al = f(x, ŷ), bl = f(x̂, y),

where x̂ (or ŷ) is a random value of x (or y) chosen by the dealer.

Inputs:
1 x from P1 and y from P2. If one of the received input is not in the correct domain, then both the parties are given ⊥.

Computation:
The dealer does the following:

2 Chooses the l∗ according to a geometric distribution G(γ) with parameter γ. Here l∗ is the revelation round, i.e., the
round in which the value of f is either (0, 0) or (1, 1) and M = ω(log λ)

3 Prepares a list listw of shares for each party Pw, where w ∈ {1, 2} such that
P1 receives the values of a11, a

1
2, . . . , a

1
M and b11, b

1
2, . . . , b

1
M .

P2 receives the values of a21, a
2
2, . . . , a

2
M and b21, b

2
2, . . . , b

2
M .

Output:
4 al = a1l ⊕ a

2
l .

5 bl = b1l ⊕ b
2
l .

6 For l < l∗, set al = f(x, ŷ).
7 For l < l∗, set bl = f(x̂, y).
8 For l ≥ l∗, set al = al∗ .
9 For l ≥ l∗, set bl = bl∗ .

10 a1, a2, . . . , aM and b1, b2, . . . , bM correspond to the outputs of P1 and P2 respectively for 1 ≤ l ≤M .

Algorithm 5: ShareGen2

Next, the dealer splits the secret al into the shares a1l and a2l , and the secret bl into the shares
b1l and b2l , so that al = a1l ⊕a2l and bl = b1l ⊕ b2l , and gives the shares {(a1l , b1l)} to P1 and the shares
{(a2l , b2l)} to P2. In each round l, P2 sends a2l to P1, who, in turn sends b1l to P2. P1 and P2 both

11

learns the output value f(x, y) in iteration l∗, unlike the Millionaire’s problem. The algorithm for
the functionality share generation in fail-stop setting is revisited in Algorithm 5. Here we assume
that the dealer who will distribute the shares is honest and can compute the function described in
Equation (5).

The algorithms in the Byzantine setting are the same as those in the fail-stop setting except
some additional steps. In Byzantine setting, the shares are signed by the dealer. The signing
message distribution procedure is same as Section 3.

The protocol for computing f is described in Algorithm 6.

Inputs:
1 P1 obtains a11, a

1
2, . . . , a

1
M and b11, b

1
2, . . . , b

1
M .

2 P2 obtains a21, a
2
2, . . . , a

2
M and b21, b

2
2, . . . , b

2
M .

Computation:
There are M number of iterations. In each iteration l ∈ {1, 2, . . . ,M} do:

3 P2 sends a2l to P1 and P1 computes al = a1l ⊕ a
2
l .

4 P1 sends b1l to P2 and P2 computes bl = b1l ⊕ b
2
l .

Output:
5 If P2 aborts in round l, i.e., does not send its share at that round and l ≤ l∗, P1 outputs al−1 = f(x, ŷ). If l > l∗, P1

has already determined the output in some earlier iteration. Thus it outputs that value.

6 If P1 aborts in round l, i.e., P1 computes its output and does not send its share at that round and l ≤ l∗, P2 outputs

bl = f(x̂, y). If l > l∗, P2 has already determined the output in some earlier iteration. Thus it outputs that value.

Algorithm 6: ΠCEP2

4.1 ΠCEP2 is not fair when players are rational

In this subsection, we analyze the fairness condition of the function in rational setting. We assume
that the players, P1 and P2 have the preferences R1.

4.1.1 Early abort by P2

Let us first assume that P2 be corrupted by a probabilistic polynomial time adversaryA and chooses
to abort in the round l ≤ l∗. Let U2 be the utility of P2 when he aborts. We have two cases
depending on P2’s choice of y.

4.1.1.1 Case 1: y = y1

Thus, Pr(bl−1 = 0|y = y1) = Pr(x̂ = x1) = 1
3 and Pr(bl−1 = 1|y = y1) = Pr(x̂ ∈ {x2, x3}) = 2

3 .
Under this case, three different subcases are possible depending on P1’s choice of x.

Subcase 1.(a): x = x1. Now, Pr(al−1 = 0|x = x1) = Pr(ŷ = y1) = 1
2 and Pr(al−1 = 1|x = x1) =

Pr(ŷ = y2) = 1
2 . The following table enumerates the different possibilities for U2 when x = x1 and

y = y1.

(al−1, bl−1) U2 Probability

(0,0) UTT2
1
2 ·

1
3 = 1

6

(0,1) UNT2
1
2 ·

2
3 = 1

3

(1,0) UTN2
1
2 ·

1
3 = 1

6

(1,1) UNN2
1
2 ·

2
3 = 1

3

Thus, E[U2|(x1, y1)] =
[
1
6(UTN2 + UTT2) + 1

3(UNT2 + UNN2)
]
.

12

Subcase 1.(b): x = x2. Now, Pr(al−1 = 0|x = x2) = Pr(ŷ = y2) = 1
2 and Pr(al−1 = 1|x = x2) =

Pr(ŷ = y1) = 1
2 .

The following table enumerates the different possibilities for U2 when x = x2 and y = y1.

(al−1, bl−1) U2 Probability

(0,0) UNN2
1
2 ·

1
3 = 1

6

(0,1) UTN2
1
2 ·

2
3 = 1

3

(1,0) UNT2
1
2 ·

1
3 = 1

6

(1,1) UTT2
1
2 ·

2
3 = 1

3

Thus, E[U2|(x1, y2)] =
[
1
6(UNN2 + UNT2) + 1

3(UTN2 + UTT2)
]
.

Subcase 1.(c): x = x3. In this case, P1 knows the output with certainty. That means, Now,
Pr(al−1 = 0|x = x3) = 0 and Pr(al−1 = 1|x = x3) = 1.

The following table enumerates the different possibilities for U2 when x = x3 and y = y1.

(al−1, bl−1) U2 Probability

(0,0) UNN2 0 · 13 = 0

(0,1) UTN2 0 · 23 = 0

(1,0) UNT2 1 · 13 = 1
3

(1,1) UTT2 1 · 23 = 2
3

Thus, E[U2|(x3, y1)] = 1
3U

NT
2 + 2

3U
TT
2 .

Now, combining all three subcases, we get

E[U2|y1] = E[U2|(x1, y1)] · Pr(x = x1) + E[U2|(x2, y1)] · Pr(x = x2) + E[U2|(x3, y1)] · Pr(x = x3)

=
[1

6
(UTN2 + UTT2) +

1

3
(UNT2 + UNN2)

]
· 1

3
+
[1

6
(UNN2 + UNT2) +

1

3
(UTN2 + UTT2)

]
· 1

3

+
[1

3
UNT2 +

2

3
UTT2

]
· 1

3

=
1

18

[
3UTN2 + 7UTT2 + 3UNN2 + 5UNT2

]
.

If the above expression is greater than UTT2 , P2 aborts early, otherwise he plays the game.

4.1.1.2 Case 2: y = y2

The analysis is similar and we obtain the same expression for E[U2|y2]. More specifically, we have
the following observation.
Subcase 2.(a): x = x1. The analysis is exactly identical to Subcase 1.(b).
Subcase 2.(b): x = x2. The analysis is exactly identical to Subcase 1.(a).
Subcase 2.(c): x = x3. The analysis is exactly identical to Subcase 1.(c).

4.1.2 Early abort by P1

Now, we consider the aborting of P1. We assume that there is a probabilistic polynomial time
adversary A who corrupts P1 and makes P1 to choose abort in round l. Let U1 be the utility of P1

when he aborts. We have three cases depending on P1’s choice of x.

13

4.1.2.1 Case 1: x = x1

We have Pr(al = 0|x = x1) = Pr(ŷ = y1) = 1
2 and Pr(al = 1|x = x1) = Pr(ŷ = y2) = 1

2 , for l < l∗.
Note that for l = l∗, P1 will abort after receiving the exact value of y. Hence,

in case of y = y1, Pr(al∗ = 0|(x1, y1)) = 1, Pr(al∗ = 1|(x1, y1)) = 0

and
in case of y = y2, Pr(al∗ = 0|(x1, y2)) = 0, Pr(al∗ = 1|(x1, y2)) = 1.

Subcase 1.(a): y = y1. Now, we have Pr(bl = 0|y = y1) = Pr(x̂ = x1) = 1
3 and Pr(bl = 1|y =

y1) = Pr(x̂ ∈ {x2, x3}) = 2
3 .

The following table enumerates the different possibilities for U1 when x = x1 and y = y1.

(al, bl) U1 Probability
l < l∗ l = l∗

(0,0) UTT1 (1− γ) · 12 ·
1
3 = (1− γ) · 16 γ · 1 · 13 = γ · 13

(0,1) UTN1 (1− γ) · 12 ·
2
3 = (1− γ) · 13 γ · 1 · 23 = γ · 23

(1,0) UNT1 (1− γ) · 12 ·
1
3 = (1− γ) · 16 γ · 0 · 13 = 0

(1,1) UNN1 (1− γ) · 12 ·
2
3 = (1− γ) · 13 γ · 0 · 23 = 0

Thus,

E[U1|(x1, y1)] = (1− γ)
[1

3
UTN1 +

1

6
UTT1 +

1

3
UNN1 +

1

6
UNT1

]
+ γ
[2

3
UTN1 +

1

3
UTT1

]
=

(1 + γ)

6

(
2UTN1 + UTT1

)
+

(1− γ)

6

(
2UNN1 + UNT1

)
.

Subcase 1.(b): y = y2. Now, we have Pr(bl = 0|y = y2) = Pr(x̂ = x2) = 1
3 and Pr(bl = 1|y =

y2) = Pr(x̂ ∈ {x1, x3}) = 2
3 .

The following table enumerates the different possibilities for U1 when x = x1 and y = y2.

(al, bl) U1 Probability
l < l∗ l = l∗

(0,0) UNN1 (1− γ) · 12 ·
1
3 = (1− γ) · 16 γ · 0 · 13 = 0

(0,1) UNT1 (1− γ) · 12 ·
2
3 = (1− γ) · 13 γ · 0 · 23 = 0

(1,0) UTN1 (1− γ) · 12 ·
1
3 = (1− γ) · 16 γ · 1 · 13 = 1

3

(1,1) UTT1 (1− γ) · 12 ·
2
3 = (1− γ) · 13 γ · 1 · 23 = 2

3

E[U1|(x1, y2)] = (1− γ)
(1

6
UTN1 +

1

3
UTT1 +

1

6
UNN1 +

1

3
UNT1

)
+ γ
(1

3
UTN1 +

2

3
UTT1

)
=

(1 + γ)

6

(
UTN1 + 2UTT1

)
+

(1− γ)

6

(
UNN1 + 2UNT1

)
.

Now, combining all two subcases, we get

E[U1|x1] = E[U1|(x1, y1)] · Pr(y = y1) + E[U1|(x1, y2)] · Pr(y = y2)

=
[(1 + γ)

6

(
2UTN1 + UTT1

)
+

(1− γ)

6

(
2UNN1 + UNT1

)]
· 1

2

+
[(1 + γ)

6

(
UTN1 + 2UTT1

)
+

(1− γ)

6

(
UNN1 + 2UNT1

)]
· 1

2

=
1 + γ

4

(
UTN1 + UTT1

)
+

1− γ
4

(
UNN1 + UNT1

)
.

If the above expression is greater than UTT1 , P1 chooses abort.

14

4.1.2.2 Case 2: x = x2

The analysis is similar and we obtain the same expression for E[U1|x2]. More specifically, we have
the following observation.
Subcase 2.(a): y = y1. The analysis is exactly identical to Subcase 1.(b).
Subcase 2.(b): y = y2. The analysis is exactly identical to Subcase 1.(a).

4.1.2.3 Case 3: x = x3

In this case, P1 has no incentive to play as he knows in certainty that the output should be 1. For

any l ≤ l∗, P1 always has expected utility
[
2
3U

TT
1 + 1

3U
TN
1

]
, which is always greater than UTT1 .

Thus, if P1 chooses x3, he always aborts early and fairness can not be achieved.

4.1.3 Summary of the analysis

From the above analysis, it is clear that aborting of P2 does not affect fairness. If P2 aborts and
l ≤ l∗, then no one obtains the output. However, if l > l∗, then both obtain the output. Contrary
to this, aborting of P1 affects fairness, as he computes the output first from the input received from
P2. When x = x3, P1 should have no incentive to continue the game as he knows the output with
certainty. Thus, we have the following result.

Theorem 5. . The protocol ΠCEP2 cannot achieve fairness with rational players.

4.2 How to make ΠCEP2 fair when players are rational

In this subsection we suggest a variant of Gordon’s protocol with fairness in the presence of a
rational adversary. Here, we only modify the step 6 of Algorithm 6: ΠCEP2, and call the resulting
protocol ΠCEP2

Fair . When P1 aborts in any round l, instead of f(x̂, y), P2 outputs 1. Every other
steps are remain same. We now prove the fairness of the protocol.

4.2.1 Early abort by P2

The analysis in this case is exactly identical to Section 4.1.1. Thus, for fairness, we need to ensure
that

1

18

[
3UTN2 + 7UTT2 + 3UNN2 + 5UNT2

]
≤ UTT2 ,

i.e.,

UTT2 ≥ 1

11

[
3UTN2 + 3UNN2 + 5UNT2

]
. (6)

4.2.2 Early abort by P1

Now, we discuss each case one by one.

4.2.2.1 Case 1: x = x1

We have Pr(al = 0|x = x1) = Pr(ŷ = y1) = 1
2 and Pr(al = 1|x = x1) = Pr(ŷ = y2) = 1

2 , for l < l∗.
Note that for l = l∗, P1 will abort after receiving the exact value of y. Hence,

in case of y = y1, Pr(al∗ = 0|(x1, y1)) = 1, Pr(al∗ = 1|(x1, y1)) = 0

15

and
in case of y = y2, Pr(al∗ = 0|(x1, y2)) = 0, Pr(al∗ = 1|(x1, y2)) = 1.

Subcase 1.(a): y = y1. Now, we have Pr(bl = 0|y = y1) = 0 and Pr(bl = 1|y = y1) = 1.
The following table enumerates the different possibilities for U1 when x = x1 and y = y1.

(al, bl) U1 Probability
l < l∗ l = l∗

(0,0) UTT1 (1− γ) · 12 · 0 = 0 γ · 1 · 0 = 0

(0,1) UTN1 (1− γ) · 12 · 1 = (1− γ) · 12 γ · 1 · 1 = γ · 1
(1,0) UNT1 (1− γ) · 12 · 0 = (1− γ) · 0 γ · 0 · 0 = 0

(1,1) UNN1 (1− γ) · 12 · 1 = (1− γ) · 12 γ · 0 · 1 = 0

Thus,

E[U1|(x1, y1)] = (1− γ)
[1

2
UTN1 +

1

2
UNN1

]
+ γ
[
UTN1

]
=

(1 + γ)

2

(
UTN1

)
+

(1− γ)

2

(
UNN1

)
.

Subcase 1.(b): y = y2. Now, we have Pr(bl = 0|y = y2) = 0 and Pr(bl = 1|y = y2) = 1.
The following table enumerates the different possibilities for U1 when x = x1 and y = y2.

(al, bl) U1 Probability
l < l∗ l = l∗

(0,0) UNN1 (1− γ) · 12 · 0 = (1− γ) · 0 γ · 0 · 0 = 0

(0,1) UNT1 (1− γ) · 12 · 1 = (1− γ) · 12 γ · 0 · 1 = 0

(1,0) UTN1 (1− γ) · 12 · 0 = (1− γ) · 0 γ · 1 · 0 = 0

(1,1) UTT1 (1− γ) · 12 · 1 = (1− γ) · 12 γ · 1 · 1 = γ

E[U1|(x1, y2)] = (1− γ)
(1

2
UTT1 +

1

2
UNT1

)
+ γ
(
UTT1

)
=

(1 + γ)

2

(
UTT1

)
+

(1− γ)

2

(
UNT1

)
.

Now, combining all two subcases, we get

E[U1|x1] = E[U1|(x1, y1)] · Pr(y = y1) + E[U1|(x1, y2)] · Pr(y = y2)

=
[(1 + γ)

2

(
UTN1

)
+

(1− γ)

2

(
UNN1

)]
· 1

2
+
[(1 + γ)

2

(
UTT1

)
+

(1− γ)

2

(
UNT1

)]
· 1

2

=
(1 + γ)

4

(
UTN1 + UTT1

)
+

(1− γ)

4

(
UNN1 + UNT1

)
.

If the above expression is greater than UTT1 , P1 chooses abort. Thus, for fairness, we need to ensure

that UTT1 ≥ (1+γ)
4

(
UTN1 + UTT1

)
+ (1−γ)

4

(
UNN1 + UNT1

)
, i.e.,

γ ≤ 3UTT1 − UTN1 − UNN1 − UNT1

UTN1 + UTT1 − UNN1 − UNT1

. (7)

16

4.2.2.2 Case 2: x = x2

The analysis is similar and we obtain the same expression for E[U1|x2]. More specifically, we have
the following observation.
Subcase 2.(a): y = y1. The analysis is exactly identical to Subcase 1.(b).
Subcase 2.(b): y = y2. The analysis is exactly identical to Subcase 1.(a).

4.2.2.3 Case 3: x = x3

When x = x3, P1 will abort as he knows the output with certainty. In this case, he needs no
help from P2 to compute the function. However, when P1 chooses to abort, P2 outputs 1. Thus,
for x = x3, both get the correct output of the function. The utility for both the player is UTTw ,
w ∈ {1, 2}. Hence, the fairness condition in rational setting is always maintained.

4.2.3 Fairness condition

From the above analysis, we can state the following result.

Theorem 6. Provided R1, U
TT
2 ≥ 1

11

[
3UTN2 + 3UNN2 + 5UNT2

]
, (UTT1 − UNN1) + (UTT1 − UNT1) >

(UTN1 − UTT1), and

0 < γ ≤ 3UTT1 − UTN1 − UNN1 − UNT1

UTN1 + UTT1 − UNN1 − UNT1

,

the protocol ΠCEP2
Fair achieves fairness.

Proof. The proof follows from Equations (6) and (7). The additional condition

(UTT1 − UNN1) + (UTT1 − UNT1) > (UTN1 − UTT1) (8)

follows from the fact that for γ to be meaningful, the numerator 3UTT1 −UTN1 −UNN1 −UNT1 must

be ≥ 0. Further, from the condition γ ≤ 3UTT
1 −UTN

1 −UNN
1 −UNT

1

UTN
1 +UTT

1 −UNN
1 −UNT

1
, it is easy to see that the natural

restriction γ ≤ 1 always holds.

In Equation (8), all the three terms within the parentheses are non-negative according to R1.

Again, the condition UTT2 ≥ 1
11

[
3UTN2 + 3UNN2 + 5UNT2

]
can be re-written as

3(UTT2 − UNN2) + 5(UTT2 − UNT2) ≥ 3(UTN2 − UTT2). (9)

If the utilities are symmetric, i.e., if Uxy1 = Uxy2 , then Equation (8) implies Equation (9), and hence
we need one less condition. The following corollary is immediate.

Corollary 1. . Provided R1, (UTT − UNN) + (UTT − UNT) > (UTN − UTT), and

0 < γ ≤ 3UTT − UTN − UNN − UNT

UTN + UTT − UNN − UNT
,

the protocol ΠCEP2
Fair with symmetric utilities achieves fairness.

17

4.3 Fairness analysis of ΠCEP2 when players have equal domain sizes

In rational setting, the analysis of the original ΠCEP2 protocol [7, 8], is exactly the same as in
Section 4.1 except that the cases corresponding to x3 would not be there. In this situation, the
protocol need not be modified. In order to maintain fairness, we keep the original steps of [7, 8], as
in Algorithm 6, and Theorem 6 guarantees fairness. Note that the fairness condition is the same
for unequal as well as equal domain sizes.

5 Conclusion

In this paper, we revisit the ‘greater than’ function proposed by Gordon et al. [7, 8] which serves the
goal of millionaires’ problem. We observed that the protocol for computing the function suggested
by Gordon et al. no longer remains fair in the presence of the rational players having some specific
set of utilities. We proposed a variant of this protocol that can compute the function and hence
any function without embedded XOR with fairness and correctness.

We also revisit the equality problem of [8], that is an instance of the embedded XOR class. We
show that in rational domain it no longer remains fair and then we propose a variant that achieves
fairness when the players are rational.

Ours is the first attempt to study the above two problems in rational domain.

References

[1] G. Asharov, Y. Lindell. Utility Dependence in Correct and Fair Rational Secret Sharing. Journal
of Cryptology. 24, 157–202, (2010).

[2] G. Asharov, R. Canetti, C. Hazay. Towards a Game Theoretic View of Secure Computation.
EUROCRYPT 2011, LNCS 6632, 426–445, (2011).

[3] M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theorems for Non-Cryptographic
Fault-Tolerant Distributed Computation. Proc. ACM STOC 1988, (STOC), 1–10, (1988).

[4] D. Chaum, C. Crépeau, I. Damgard. Multi-party unconditionally secure protocols. Proc. ACM
STOC 1988, (STOC), 11–19, (1988).

[5] R. Cleve. Limits on the security of coin flips when half the processors are faulty (extended
abstract) Proceedings of the 18th Annual ACM symposium on Theory of Computing (STOC),
364–369, ACM Press, (1986).

[6] G. Fuchsbauer, J. Katz, D. Naccache. Efficient Rational Secret Sharing in Standard Com-
munication Networks. Proceedings of the 7th Conference on Theory of Cryptography, 419–436,
Springer-Verlag, (2010).

[7] S. D. Gordon, C. Hazay, J. Katz, Y. Lindell. Complete Fairness in Secure Two-Party Compu-
tation. Proceedings of 40th Annual ACM symposium on Theory of Computing (STOC), 413–422,
ACM Press, (2008)

[8] S. D. Gordon, C. Hazay, J. Katz, Y. Lindell. Complete Fairness in Secure Two-Party Compu-
tation. Journal of the ACM (JACM) 58, Issue 6, December 2011.

[9] A. Groce, J. Katz. Fair computation with rational players. EUROCRYPT 2012, LNCS 7237,
81–98, Springer (2012).

18

[10] G. Kol, M. Naor. Games for exchanging information. Proceedings of the 40th Annual ACM
Symposium on Theory of Computing, 423–432, (2008).

[11] Y. Lindell. Composition of Secure Multi-Party Protocols, A Comprehensive study. Springer-
Verlag, Berlin, (2003).

[12] John von Neumann, Oskar Morgenstern. Theory of Games and Economic Behavior. Princeton
University Press, 1944.

[13] A. C. Yao. Protocols for secure computations. 23rd Annual Symposium on Foundations of
Computer Science (FOCS), 160–164, (1982).

19

	Introduction
	Contributions

	Preliminaries
	Utilities and Preferences
	Fairness
	Fail-stop and Byzantine settings

	Millionaires' Problem with Rational Players
	CMP is not fair when players are rational
	How to make CMP fair when players are rational
	Fairness analysis of CMP when players have unequal domain size

	Secure Two-Party Computation involving Embedded XOR with Rational Players
	CEP2 is not fair when players are rational
	Early abort by P2

	Case 1: y = y1
	Case 2: y = y2
	Early abort by P1

	Case 1: x = x1
	Case 2: x = x2
	Case 3: x = x3
	Summary of the analysis
	How to make CEP2 fair when players are rational
	Early abort by P2
	Early abort by P1

	Case 1: x = x1
	Case 2: x = x2
	Case 3: x = x3
	Fairness condition
	Fairness analysis of CEP2 when players have equal domain sizes

	Conclusion

