
Recon�gurable Cryptography:

A �exible approach to long-term security∗

Julia Hesse and Dennis Hofheinz and Andy Rupp†

Karlsruhe Institute of Technology, Germany

{julia.hesse, dennis.hofheinz, andy.rupp}@kit.edu

October 28, 2015

Abstract

We put forward the concept of a recon�gurable cryptosystem. Intuitively, a recon�gurable
cryptosystem allows to increase the security of the system at runtime, by changing a single central
parameter we call common reference string (CRS). In particular, e.g., a cryptanalytic advance does
not necessarily entail a full update of a large public-key infrastructure; only the CRS needs to be
updated. In this paper we focus on the recon�gurability of encryption and signature schemes, but
we believe that this concept and the developed techniques can also be applied to other kind of
cryptosystems.

Besides a security de�nition, we o�er two recon�gurable encryption schemes, and one recon-
�gurable signature scheme. Our �rst recon�gurable encryption scheme uses indistinguishability
obfuscation (however only in the CRS) to adaptively derive short-term keys from long-term keys.
The security of long-term keys can be based on a one-way function, and the security of both the
indistinguishability obfuscation and the actual encryption scheme can be increased on-the-�y, by
changing the CRS. We stress that our scheme remains secure even if previous short-term secret
keys are leaked.

Our second recon�gurable encryption scheme has a similar structure (and similar security
properties), but relies on a pairing-friendly group instead of obfuscation. Its security is based on
the recently introduced hierarchy of k-SCasc assumptions. Similar to the k-Linear assumption, it
is known that k-SCasc implies (k + 1)-SCasc, and that this implication is proper in the generic
group model. Our system allows to increase k on-the-�y, just by changing the CRS. In that sense,
security can be increased without changing any long-term keys.

We also o�er a recon�gurable signature scheme based on the same hierarchy of assumptions.

Keywords: long-term security, security de�nitions, public-key cryptography.

1 Introduction

Motivation. Public-key cryptography plays an essential role in security and privacy in wide networks
such as the internet. Secure channels are usually established using hybrid encryption, where the
exchange of session keys for fast symmetric encryption algorithms relies on a public key infrastructure
(PKI). These PKIs incorporate public keys from large groups of users. For instance, the PKI used
by OpenPGP for encrypting and signing emails consists of roughly four million public keys. This
PKI is continuously growing, especially so since the Snowden leaks multiplied the amount of newly
registered public keys.

∗This work will appear in the proceedings of TCC 2016.
†The authors were supported by DFG grants GZ HO 4534/2-2 and GZ HO 4534/4-1

1

One drawback of large PKIs is that they are slow to react to security incidents. For instance,
consider a PKI that predominantly stores 2048-bit RSA keys, and imagine a sudden cryptanalytic
advance that renders 2048-bit RSA keys insecure. In order to change all keys to, say, 4096-bit keys,
every user would have to generate new keypairs and register the new public key. Similarly, expensive
key refresh processes are necessary in case, e.g., a widely deployed piece of encryption software turns
out to leak secret keys, the assumed adversarial resources the system should protect from suddenly
increase (e.g., from the computing resources of a small group of hackers to that of an intelligence
agency), etc.

In this paper, we consider a scenario where key updates are triggered by a central authority for
all users/devices participating in a PKI (and not by the individuals themselves), e.g., such as a large
company maintaining a PKI for its employees who wants the employees to update their keys every
year or when new recommendations on minimal key lengths are released. Other conceivable examples
include operators of a PKI for wireless-sensor networks or for other IoT devices. We do not consider
the problem of making individually initiated key updates more e�cient.

Recon�gurable Cryptography. This paper introduces the concept of recon�gurable cryptography.
In a nutshell, in a recon�gurable cryptographic scheme, there are long-term and short-term public
and secret keys. Long-term public and secret keys are generated once for each user, and the long-term
public key is publicized, e.g., in a PKI. Using a central and public piece of information (the common
reference string or CRS), long-term keys allow to derive short-term keys, which are then used to
perform the actual operation. If the short-term keys become insecure (or leak), only the central CRS
(but not the long-term keys) needs to be updated (and certi�ed). Note that the long-term secret
keys are only needed for the process of deriving new short-term secret keys and not for the actual
decryption process. Thus, they can be kept �o�ine� at a secure place.

We call the process of updating the CRS recon�guration. An attack model for a recon�gurable
cryptography scheme is given by an adversary who can ask for short-term secret keys derived from
the PKI and any deprecated CRSs. After that, the adversary is challenged on a fresh short-term key
pair. This models the fact that short-term key pairs should not reveal any information about the
long-term secret keys of the PKI and thus, after their leakage, the whole system can be rescued by
updating only the central CRS. Note that for most such schemes (except some trivial ones described
below), the entity setting up the CRS needs to be trusted not to keep a trapdoor allowing to derive
short-term secret keys for all users and security levels. In order to mitigate this risk however, a CRS
could also be computed in a distributed fashion using MPC techniques.

Related concepts and �rst examples. An objection to our approach that might come to mind
when �rst thinking about long-term secure encryption is the following: why do we not follow a
much simpler approach like letting users exchange su�ciently long symmetric encryption keys once
(which allow for fast encryption/decryption), using a (slow) public key scheme with comparable
security? Unfortunately, it quickly turns out that there are multiple drawbacks with this approach:
advanced encryption features known only for public-key encryption (e.g., homomorphic encryption)
are excluded; each user needs to maintain a secure database containing the shared symmetric keys
with his communication partners; the long-term secret key of the PKE scheme needs to be kept
�online� in order to be able to decrypt symmetric keys from new communication partners, etc. Hence,
we do not consider this a satisfying approach to long-term security.

A �rst attempt to create a scheme which better complies with our concept of recon�gurable
encryption could be the following: simply de�ne the long-term keys as a sequence of short-term keys.
For instance, a long-term public key could consist of RSA keys of di�erent lengths, say, of 2048,
4096, and 8192 bits. The CRS could be an index that selects which key (or, keylength) to use as
a short-term key. If a keylength must be considered broken, simply take the next. This approach
is perfectly viable, but does not scale well: only an a-priori �xed number (and type) of keys can be

2

stored in a long-term key, and the size of such a long-term key grows linearly in the number of possible
short-term keys.

A second attempt might be to use identity-based techniques: for instance, the long-term public
and secret key of a user of a recon�gurable encryption scheme could be the master public and secret
key of an identity-based encryption (IBE [21, 17, 6]) scheme. The CRS selects an IBE identity (used
by all users), and the short-term secret key is the IBE user secret key for the identity speci�ed by the
CRS. Encryptions are always performed to the current identity (as speci�ed by the CRS), such that
the short-term secret key can be used to decrypt. In case (some of) the current short-term secret
keys are revealed, simply change the identity speci�ed in the CRS. This scheme scales much better
to large numbers of recon�gurations than the trivial scheme above. Yet, security does not increase
after a recon�guration. (For instance, unlike in the trivial example above, there is no obvious way to
increase keylengths through recon�guration.)

Finally, we note that our security requirements are somewhat orthogonal to the ones found in
forward security [10, 4, 9]. Namely, in a forward-secure scheme, we would achieve that revealing
a current (short-term) secret key does not harm the security of previous instances of the scheme.
In contrast, we would like to achieve that revealing the current (and previous) short-term secret
keys does not harm the security of future instances of the scheme. Furthermore, we are interested
in increasing the security of the scheme gradually, through recon�gurations (perhaps at the cost of
decreased e�ciency).

Our contribution. We introduce the concept of recon�gurable cryptography. For this purpose, it is
necessary to give a security de�nition for a cryptographic scheme de�ned in two security parameters.
This de�nition needs to capture the property that security can be increased by varying the short-term
security parameter. As it turns out, �nding a reasonable de�nition which captures our notion and is
satis�able at the same time is highly non-trivial. Ultimately, here we present a non-uniform security
de�nition based on an asymptotic version of concrete security introduced by Bellare et al. in [3, 2].
The given de�nition is intuitive and leads to relatively simple proofs. Consequently, also our building
blocks need to be secure against non-uniform adversaries (what can be assumed when building on
non-uniform complexity assumptions). Alternatively, also a uniform security de�nition is conceivable
which, however, would lead to more intricate proofs.

Besides a security de�nition, we o�er three constructions: two recon�gurable public-key encryption
schemes (one based on indistinguishability obfuscation [1, 12, 20], the other based on the family of
SCasc assumptions [11] in pairing-friendly groups), and a recon�gurable signature scheme based on
arbitrary families of matrix assumptions (also in pairing-friendly groups).

To get a taste of our solutions, we now sketch our schemes.

Some notation. We call λ ∈ N the long-term security parameter, and k ∈ N the short-term
security parameter. λ has to be �xed at setup time, and intuitively determines how hard it should
be to retrieve the long-term secret key from the long-term public key. (As such, λ gives an an upper
bound of the security of the whole system. In particular, we should be interested in systems in which
breaking the long-term public key should be qualitatively harder than breaking short-term keys.) In
contrast, k can (and should) increase with each recon�guration. Intuitively, a larger value of k should
make it harder to retrieve short-term keys.

Our obfuscation-based recon�gurable encryption scheme. Our �rst scheme uses indistin-
guishability obfuscation [1, 12, 20], a pseudorandom generator PRG, and an arbitrary public-key
encryption scheme PKE. As a long-term secret key, we use a value x ∈ {0, 1}λ; the long-term public
key is PRG(x). A CRS consists of the obfuscation of an algorithm Gen, that inputs either a long-term
public key PRG(x) or a long-term secret key x, and proceeds as follows:

• Gen(PRG(x)) generates a PKE public key, using random coins derived from PRG(x) for PKE key
generation,

3

• Gen(x) generates a PKE secret key, using random coins derived from PRG(x).

Note that Gen(x) outputs the matching PKE secret key to the public key output by Gen(PRG(x)).
Furthermore, we use λ+ k as a security parameter for the indistinguishability obfuscation, and k for
the PKE key generation. (Hence, with larger k, the keys produced by Gen become more secure.)

We note that the long-term security of our scheme relies only on the security of PRG. Moreover,
the short-term security (which relies on the obfuscator and PKE) can be increased (by increasing k
and replacing the CRS) without changing the PKI. Furthermore, we show that releasing short-term
secret keys for previous CRSs does not harm the security of the current instance of the scheme. (We
remark that a similar setup and technique has been used by [7] for a di�erent purpose, in the context
of non-interactive key exchange.)

Recon�gurable encryption in pairing-friendly groups. We also present a recon�gurable en-
cryption scheme in a cyclic group G = 〈g〉 that admits a symmetric pairing e : G × G → GT into
some target group GT = 〈gT 〉. Both groups are of prime order p > 2λ. The long-term assumption is
the hardness of computing discrete logarithms in G, while the short-term assumption is the k-SCasc
assumption from [11] over G (with a pairing).1 To explain our scheme in a bit more detail, we adopt
the notation of [11] and write [x] ∈ G (resp. [x]T ∈ GT) for the group element gx (resp. gxT), and
similarly for vectors [~u] and matrices [A] of group elements.

A long-term secret key is an exponent x, and the corresponding long-term public key is [x]. A
CRS for a certain value k ∈ N is a uniform vector [~y] ∈ Gk of group elements. The induced short-term
public key is a matrix [Ax] ∈ G(k+1)×k derived from [x], and the short-term secret key is a vector
[~r] ∈ Gk+1 satisfying ~r> ·Ax = ~y. An encryption of a message m ∈ GT is of the form

c = ([Ax · ~s], [~y> · ~s]T ·m)

for a uniformly chosen [~s] ∈ Gk. Intuitively, the k-SCasc assumption states that [Ax · ~s] is computa-
tionally indistinguishable from a random vector of group elements. This enables a security proof very
similar to that for (dual) Regev encryption [18, 13] (see also [8]).

Hence, the long-term security of the above scheme is based on the discrete logarithm problem. Its
short-term security relies on the k-SCasc assumption, where k can be adapted at runtime, without
changing keys in the underlying PKI. Furthermore, we show that revealing previous short-term keys
[~r] does not harm the security of the current instance.2

We remark that [11] also present a less complex generalization of ElGamal to the k-SCasc assump-
tion. Although they do not emphasize this property, their scheme allows to dynamically choose k at
encryption time. However, their scheme does not in any obvious way allow to derive a short-term
secret key that would be restricted to a given value of k. In other words, after, e.g., a key leakage,
their scheme becomes insecure for all k, without the possibility of a recon�guration.

Our recon�gurable signature scheme. We also construct a recon�gurable signature scheme in
pairing-friendly groups. Its long-term security is based on the Computational Di�e-Hellman (CDH)
assumption, and its short-term security can be based on any matrix assumption (e.g., on k-SCasc). Of
course, e�cient (non-recon�gurable) signature schemes from the CDH assumption already exist (e.g.,

1The k-SCasc assumption states that it is hard to distinguish vectors of group elements from a certain linear subspace
from vectors of independently uniform group elements. Here, the parameter k determines the size of vectors, and �
similar to the k-Linear assumption �, it is known that the k-SCasc assumption implies the (k + 1)-SCasc assumption.
In the generic group model, the (k + 1)-SCasc assumption is also strictly weaker than the k-SCasc assumption [11].
Hence, increasing k leads to (at least generically) weaker assumptions.

2Currently, the best way to solve most problems in cyclic groups (such as k-SCasc or k-Linear instances) appears to
be to compute discrete logarithms. In that sense, it would seem that the long-term and short-term security of our scheme
are in a practical sense equivalent. Still, we believe that it is useful to o�er solutions that give progressively stronger
provable security guarantees (such as in our case with the k-SCasc assumption), if only to have fallback solutions in
case of algorithmic advances, say, concerning the Decisional Di�e-Hellman problem.

4

Waters' signature scheme [23]). Compared to such schemes, our scheme still o�ers recon�gurability
in case, e.g., short-term secret keys are leaked.

Roadmap. We start with some preliminaries in Section 2, followed by the de�nition of a recon�g-
urable encryption scheme and the security experiment in Section 3. In Section 4, we give the details
of our two constructions for recon�gurable encryption. Finally, we treat recon�gurable signature
schemes in Section 5.

2 Preliminaries

Notation. Throughout the paper, λ, k, ` ∈ N denote security parameters. For a �nite set S, we
denote by s ← S the process of sampling s uniformly from S. For a probabilistic algorithm A, we
denote with RA the space of A's random coins. y ← A(x; r) denotes the process of running A on
input x and with uniform randomness r ∈ RA, and assigning y the result. We write y ← A(x) for
y ← A(x; r) with uniform r. If A's running time, denoted by T(A), is polynomial in λ, then A is
called probabilistic polynomial-time (PPT). We call a function η negligible if for every polynomial p
there exists λ0 such that for all λ ≥ λ0 holds |η(λ)| ≤ 1

p(λ) .

Concrete security. To formalize security of recon�gurable encryption schemes, we make use of the
concept of concrete security as introduced in [3, 2]. Here one considers an explicit function for the
adversarial advantage in breaking an assumption, a primitive, a protocol, etc. which is parameterized
in the adversarial resources. More precisely, as usual let AdvxP,A(λ) denote the advantage function
of an adversary A in winning some security experiment ExpxP,A(λ) de�ned for some cryptographic
object P (e.g., a PKE scheme, the DDH problem, etc.) in the security parameter λ. For an integer
t ∈ N, we de�ne the concrete advantage CAdvxP(t, λ) of breaking P with runtime t by

CAdvxP(t, λ) := max
A
{AdvxP,A(λ)}, (1)

where the maximum is over all A with time complexity t. It is straightforward to extend this de�nition
to cryptographic objects de�ned in two security parameters which we introduce in this paper. In the
following, if we are given an advantage function AdvxP,A(λ) for a cryptographic primitive P that we
consider, the de�nition of the concrete advantage can then be derived as in (1). Asymptotic security
(against non-uniform adversaries and when only one security parameter is considered) then means
that CAdvxP(t(λ), λ) is negligible for all polynomials t in λ. Hence, if we only give the usual security
de�nition for a cryptographic building block in the following its concrete security is also de�ned
implicitly as described above.

Implicit representation. Let G be a cyclic group of order p generated by g. Then by [a] := ga we
denote the implicit representation of a ∈ Zp in G. To distinguish between implicit representations in
two groups G and GT , we use [·] and [·]T , respectively. The notation naturally extends to vectors and
matrices of group elements.

Matrix-vector products. Sometimes, we will need to perform simple operations from linear
algebra �in the exponent�, aided by a pairing operation as necessary. Concretely, we will use the
following operations: If a matrix [A] = [(ai,j)i,j] ∈ Gm×n is known �in the exponent�, and a vector
~u = (ui)i ∈ Znp is known �in plain�, then the product [A · ~u] ∈ Gm can be e�ciently computed as

[(vi)i] for [vi] =
∑n

j=1 uj · [ai,j]. Similarly, inner products [~u> · ~v] can be computed from [~u] and ~v (or
from ~u and [~v]). Finally, if only [A] and [~u] are known (i.e., only �in the exponent�), still [A · ~u]T can
be computed in the target group, as [(vi)i]T for [vi]T =

∑n
j=1 e([ai,j], [uj]).

Symmetric pairing-friendly group generator. A symmetric pairing-friendly group generator is
a probabilistic polynomial time algorithm G that takes as input a security parameter 1λ and outputs
a tuple G := (p,G, g,GT , e) where

5

• G and GT are cyclic groups of prime order p, dlog2(p)e = λ and 〈g〉 = G

• e : G×G −→ GT is an e�ciently computable non-degenerate bilinear map

The Matrix Di�e-Hellman assumption ([11]). Let k, q ∈ N and Dk be an e�ciently samplable

matrix distribution over Z
(k+1)×k
q . The Dk-Di�e-Hellman assumption (Dk-MDDH) relative to a

pairing-friendly group generator G states that for all PPT adversaries A it holds that

AdvDk-MDDH

G,A (λ) := |Pr[A(G, [A,A~w]) = 1]− Pr[A(G, [A, ~u]) = 1]|

is negligible in λ, where the probability is over the random choices A← Dk, ~w ← Zkq and ~u← Zk+1
q ,

G := (p,G, g,GT , e) ← G and the random coins of A. Examples of Dk-MDDH assumptions are the
k-Lin assumption and the compact symmetric k-cascade assumption (k-SCasc or SCk-MDDH). For
the latter the matrix distribution SCk samples matrices of the form

Ax :=


x 0 ... 0 0
1 x ... 0 0
0 1 0 0
.
.
.

.
.
.

.
.
.

0 0 ... 1 x
0 0 ... 0 1

 ∈ Z(k+1)×k
n (2)

for uniformly random x ← Zn. In Section 4.2, we will consider a version of the SCasc assumption
de�ned in two security parameters, λ (which de�nes the group order) and k.

PKE schemes. A public-key encryption (PKE) scheme PKE with message space M consists
of three PPT algorithms Gen,Enc,Dec. Key generation Gen(1`) outputs a public key pk and a
secret key sk . Encryption Enc(pk ,m) takes pk and a message m ∈ M, and outputs a ciphertext
c. Decryption Dec(sk , c) takes sk and a ciphertext c, and outputs a message m. For correctness, we
want Dec(sk , c) = m for all m ∈M, all (pk , sk)← Gen(1`), and all c← Enc(pk ,m).

IND-CPA and IND-CCA security. Let PKE be a PKE scheme as above. For an adversary A,
consider the following experiment: �rst, the experiment samples (pk , sk) ← Gen(1k) and runs A on
input pk . Once A outputs two messages m0,m1, the experiment �ips a coin b ← {0, 1} and runs A
on input c∗ ← Enc(pk ,mb). We say that A wins the experiment i� b′ = b for A's �nal output b′. We

denote A's advantage with Advind-cpaPKE,A(k) := |Pr [A wins]− 1/2| and say that PKE is IND-CPA secure

i� Advind-cpaPKE,A(k) is negligible for all PPT A. Similarly, write Advind-ccaPKE,A(k) := |Pr [A wins]− 1/2| for
A's winning probability when A additionally gets access to a decryption oracle Dec(sk , ·) at all times.
(To avoid trivialities, A may not query Dec on c∗, though.)

PRGs. Informally, a pseudorandom generator (PRG) is a deterministic algorithm that maps a
short random bit string (called seed) to a longer pseudo-random bitstring. More formally, let p(·)
be a polynomial such that p(λ) > λ for all λ ∈ N and let PRG be a deterministic polynomial-time
algorithm which on input of a bit string in {0, 1}λ returns a bit string in {0, 1}p(λ) (also denoted by
PRG : {0, 1}λ → {0, 1}p(λ)). The security of PRG is de�ned through the advantage

AdvprgPRG,D(λ) := |Pr[1← D(PRG(x))]− Pr[1← D(r)]| ,

where D is a distinguisher, x← {0, 1}λ and r ← {0, 1}p(λ).
Indistinguishability Obfuscation (iO). For our construction in Section 4.1, we make use of
indistinguishability obfuscators for polynomial-size circuits. Intuitively, such an algorithm is able to
obfuscate two equivalent circuits in a way such that a PPT adversary who receives the two obfuscated
circuits as input is not able to distinguish them. The following de�nition is taken from [12].

De�nition 2.1 (Indistinguishability Obfuscator). A uniform PPT machine iO is called an indistin-

guishability obfuscator for a circuit class {C`} if the following conditions are satis�ed:

6

• For all security parameters ` ∈ N, for all C ∈ C`, for all inputs x, we have that

Pr[C ′(x) = C(x) : C ′ ← iO(`, C)] = 1

• For any (not necessarily uniform) PPT distinguisher D, there exists a negligible function α such

that the following holds: For all security parameters ` ∈ N, for all pairs of circuits C0, C1 ∈ C`,
we have that if C0(x) = C1(x) for all inputs x, then

AdvioiO,D(`) := |Pr[1← D(iO(`, C0))]− Pr[1← D(iO(`, C1))]| ≤ α(`)

Note that an iO candidate for circuit classes {C`}, where the input size as well as the maximum
circuit size are polynomials in ` has been proposed in [12].

Puncturable PRF. Informally speaking, a puncturable (or constrained) PRF FK : {0, 1}n(`) →
{0, 1}p(`) is a PRF for which it is possible to constrain the key K (i.e., derive a new key KS) in order
to exclude a certain subset S ⊂ {0, 1}n(`) of the domain of the PRF. (Note that this means that
FKS (x) is not de�ned for x ∈ S and equal to FK(x) for x 6∈ S.) Given the punctured key KS , an
adversary may not be able to distinguish FK(x) from a random y ∈ {0, 1}p(`) for x ∈ S. The following
de�nition adapted from [19] formalizes this notion.

De�nition 2.2. A puncturable family of PRFs F is given by three PPT algorithms GenF , PunctureF ,
and EvalF , and a pair of computable functions (n(·), p(·)), satisfying the following conditions:
• For every S ⊂ {0, 1}n(`), for all x ∈ {0, 1}n(`) where x 6∈ S, we have that:

Pr[EvalF (K,x) = EvalF (KS , x) : K ← GenF (1`),KS ← PunctureF (K,S)] = 1

• For every PPT adversary A such that A(1`) outputs a set S ⊂ {0, 1}n(`) and a state state,
consider an experiment where K ← GenF (1`) and KS = PunctureF (K,S). Then the advantage

AdvpprfF,A(`) of A de�ned by∣∣Pr[1← A(state,KS ,EvalF (K,S))]− Pr[1← A(state,KS , Up(`)·|S|)]
∣∣

is negligible, where EvalF (K,S) denotes the concatenation of EvalF (K,xi), i = 1, ...,m, where

S = {x1, . . . , xm} is the enumeration of the elements in S in lexicographic order, and Ut denotes
the uniform distribution over t bits.

To simplify notation, we write FK(x) instead of EvalF (K,x). Note that if one-way functions exist,
then there also exist a puncturable PRF family for any e�ciently computable functions n(`) and p(`).

3 De�nitions

The idea behind our concept of a recon�gurable public key cryptosystem is very simple: instead of
directly feeding a PKI into the algorithms of the cryptosystem, we add some precomputation routines
to derive a temporary short-term PKI. This PKI is then used by the cryptosystem. Instructions on
how to derive and when to update the short-term PKI are given by a trusted entity. Our concept is
quite modular and, thus, is applicable to other cryptosystems as well. In this section, we consider the
case of recon�gurable encryption.

In De�nition 3.1, we give a formal description of a recon�gurable public key encryption (RPKE)
scheme. An RPKE scheme is a multi-user system which is setup (once) by some trusted entity gen-
erating public system parameters given a long-term security parameter 1λ. Based on these public
parameters, each user generates his long-term key pair. Moreover, the entity uses the public param-
eters to generate a common reference string de�ning a certain (short-term) security level k. Note

7

that only this CRS is being updated when a new short-term security level for the system should be
established. The current CRS is distributed to all users, who derive their short-term secret and public
keys for the corresponding security level from their long-term secret and public keys and the CRS.
Encryption and decryption of messages works as in a standard PKE using the short-term key pair of
a user.

De�nition 3.1. A recon�gurable public-key encryption (RPKE) scheme RPKE consists of the follow-

ing PPT algorithms:

• Setup(1λ) receives a long-term security parameter 1λ as input, and returns (global) long-term

public parameters PP.
• MKGen(PP) takes the long-term public parameters PP as input and returns the long-term public

and private key (mpk ,msk) of a user.

• CRSGen(PP, 1k) is given the long-term public parameters PP, a short-term security parameter

1k, and returns a (global) short-term common reference string CRS . We assume that the message

spaceM is de�ned as part of CRS .

• PKGen(CRS ,mpk) takes the CRS CRS as well as the long-term public key mpk of a user as

input and returns a short-term public key pk for this user.

• SKGen(CRS ,msk) takes the CRS CRS as well as the long-term secret key msk of a user as

input and returns a short-term secret key sk for this user.

• Enc(pk ,m) receives a user's short-term public key pk and a message m ∈ M as input and

returns a ciphertext c.

• Dec(sk , c) receives a user's short-term secret key sk and a ciphertext c as input and returns

m ∈M∪ {⊥}.
We call RPKE correct if for all λ, k ∈ N, PP ← Setup(1λ), (mpk ,msk) ← MKGen(PP), CRS ←
CRSGen(PP, 1k), m ∈M, pk ← PKGen(CRS ,mpk), sk ← SKGen(CRS ,msk), and all c← Enc(pk ,m),
it holds that Dec(sk , c) = m.

Security. Our security experiment for RPKE systems given in Figure 1 is inspired by the notion of
IND-CCA (IND-CPA) security, extended to the more involved key generation phase of a recon�gurable
encryption scheme. Note that we provide the adversary with a secret key oracle for deprecated short-
term keys. The intuition behind our security de�nition is that we can split the advantage of an
adversary into three parts. One part (called f1 in De�nition 3.2) re�ects its advantage in attacking
the subsystem of an RPKE that is only responsible for long-term security (λ). Another part (f2)
represents its advantage in attacking the subsystem that is only responsible for short-term security
(k). The remaining part (f3) stands for its advantage in attacking the subsystem that links the long-
term with the short-term security subsystem (e.g., short-term key derivation). We demand that all
these advantages are negligible in the corresponding security parameter, i.e., part one in λ, part two
in k, and part three in both λ (where k is �xed) and in k (where λ is �xed).

Note that it is not reasonable to simply demand that the overall advantage is negligible in λ and in
k. For instance, consider the advantage function CAdv(t(λ, k), λ, k) ≤ 2−λ+2−k+2−(λ+k). Intuitively,
we would like to call an RPKE exhibiting this bound as secure. Unfortunately, it is neither negligible
in λ nor in k.

De�nition 3.2. Let RPKE be an RPKE scheme according to De�nition 3.1. Then we de�ne the

advantage of an adversary A as

Advr-ind-ccaRPKE,A(λ, k) :=

∣∣∣∣Pr[Expr-ind-ccaRPKE,A(λ, k) = 1]− 1

2

∣∣∣∣
8

Experiment Expr-ind-ccaRPKE,A(λ, k)

PP ← Setup(1λ)

(mpk ,msk)← MKGen(PP)

state ← ABreak(PP,msk ,·)(1λ, 1k,PP,mpk , �learn�)

CRS ∗ ← CRSGen(PP, 1k)
sk∗ ← SKGen(CRS ∗,msk)

pk∗ ← PKGen(CRS ∗,mpk)

(m0,m1, state
′)← ADec(sk∗,·)(CRS ∗, state, �select�)

b← {0, 1}
c∗ ← Enc(pk∗,mb)

outA ← ADec(sk∗,·)(c∗, state ′, �guess�)

Let k1, . . . , k` be the inputs sent to the Break-Oracle by A. On input ki, the Break-Oracle returns
CRSki ← CRSGen(PP, 1ki) as well as skki ← SKGen(CRSki ,msk) to A.
Return 1 if ki < k for all i, |m0| = |m1|, outA = b, and c∗ has never been sent as input to the
Dec-Oracle. Otherwise, return 0.

Figure 1: R-IND-CCA experiment for recon�gurable PKE.

where Expr-ind-ccaRPKE,A is the experiment given in Figure 1. The concrete advantage CAdvr-ind-ccaRPKE (t, λ, k) of
adversaries against RPKE with time complexity t follows canonically (cf. Section 2).

An RPKE scheme RPKE is then called R-IND-CCA secure if for all polynomials t(λ, k), there
exist positive functions f1 : N2 → R+

0 , f2 : N2 → R+
0 , and f3 : N3 → R+

0 as well as polynomials

t1(λ, k), t2(λ, k), and t3(λ, k) such that

CAdvr-ind-ccaRPKE (t(λ, k), λ, k) ≤ f1(t1(λ, k), λ) + f2(t2(λ, k), k) + f3(t3(λ, k), λ, k)

for all λ, k, and the following conditions are satis�ed for f1, f2, f3:

• For all k ∈ N it holds that f1(t1(λ, k), λ) is negligible in λ

• For all λ ∈ N it holds that f2(t2(λ, k), k) is negligible in k

• For all k ∈ N it holds that f3(t3(λ, k), λ, k) is negligible in λ

• For all λ ∈ N it holds that f3(t3(λ, k), λ, k) is negligible in k

We de�ne R-IND-CPA security analogously with respect to the modi�ed experiment Expr-ind-cpaRPKE,A (λ, k),

which is identical to Expr-ind-ccaRPKE,A(λ, k) except that A has no access to an Dec-Oracle.

In Section 1 we already sketched an IBE-based RPKE scheme that would be secure in the sense
of De�nition 3.2. However, for this RPKE it is obvious that f2 and f3 can be set to be the zero
function, meaning that the adversarial advantage cannot be decreased by increasing k. In this paper
we are not interested in such schemes.

Of course, one can think of several reasonable modi�cations to the security de�nition given above.
For instance, one may want to omit the �learn� stage in the experiment and instead give the algorithm
access to the Break-Oracle during the �select� and �guess� stages. Fortunately, it turned out that most
of these reasonable, slight modi�cations lead to a de�nition which is equivalent to the simple version
we chose.

9

4 Constructions

4.1 Recon�gurable Encryption from Indistinguishability Obfuscation

We can build a R-IND-CCA (R-IND-CPA) secure recon�gurable encryption scheme from any IND-
CCA (IND-CPA) secure PKE using indistinguishable obfuscation and puncturable PRFs. The basic
idea is simple: We obfuscate a circuit which on input of the long-term public or secret key, where the
public key is simply the output of a PRG on input of the secret key, calls the key generator of the
PKE scheme using random coins derived by means of the PRF. It outputs the public key of the PKE
scheme if the input to the circuit was the long-term public key and the secret key if the input was
the long-term secret key.

Ingredients. Let PKECCA = (GenCCA,EncCCA,DecCCA) be an IND-CCA secure encryption scheme.
Assuming the �rst component of the key pair that GenCCA(1`) outputs is the public key, we de�ne
the PPT algorithms PKGenCCA(1`) := #1(GenCCA(1`)) and SKGenCCA(1k) := #2(GenCCA(1k)) which
run GenCCA(1`) and output only the public key or only the secret key, respectively. By writing
GenCCA(1k; r), PKGenCCA(1k; r), SKGenCCA(1k; r) we will denote the act of �xing the randomness
used by GenCCA for key generation to be r, a random bit string of su�cient length. For instance, r
could be of polynomial length p(k), where p equals the runtime complexity of GenCCA. We allow r to be
longer than needed and assume that any additional bits are simply ignored by GenCCA.

3 Furthermore,
let PRG : {0, 1}λ → {0, 1}2λ be a pseudo-random generator and F be a family of puncturable PRFs
mapping n(`) := 2` bits to p(`) bits. For i ∈ N we de�ne padi : {0, 1}∗ → {0, 1}∗ as the function
which appends i zeroes to a given bit string. As a last ingredient, we need an indistinguishability
obfuscator iO(`, C) for a class of circuits of size at most q(`), where q is a suitable polynomial in
` = λ+ k which upper bounds the size of the circuit Gen(a, b) to be de�ned as part of CRSGen.4

Our scheme. With the ingredients described above our RPKE RPKEiO can be de�ned as in Figure
2. Note that the security parameter ` used in the components for deriving short-term keys from long-
term keys, i.e., F and iO, is set to λ + k. That means, it increases (and the adversarial advantage
becomes negligible) with both, the long-term and the short-term security parameter. (Alternative
choices with the same e�ect like ` = λ

2 + k are also possible.) Since the components which generate
and use the short-term secrets depend on k, the security of the scheme can be increased by raising k.
As a somewhat disturbing side-e�ect of our choice of `, the domain of F, which is used to map the
long-term public key mpk ∈ {0, 1}2λ to a pseudo-random string to be used by GenCCA, is actually too
large. Hence, we have to embed 2λ-bit strings into 2(λ+ k)-bit strings by applying pad2k.

Security. R-IND-CCA security of RPKEiO follows from the following Lemma.

Lemma 4.1. Let a t ∈ N be given and let t′ denote the maximal runtime of the experiment

Expr-ind-ccaRPKEiO,·(λ, k) involving arbitrary adversaries with runtime t. Then it holds that

CAdvr-ind-ccaRPKEiO
(t, λ, k) ≤ 1

2λ
+ CAdvprgPRG(s1, λ) + CAdvind-ccaPKECCA

(s2, k)

+ CAdvpprfF (s3, λ+ k) + CAdvioiO(s4, λ+ k)
(3)

where t′ ≈ s1 ≈ s2 ≈ s3 ≈ s4.

Proof. The following reduction will be in the non-uniform adversary setting. Consider an adver-
sary A against RPKEiO for �xed security parameters λ and k who has an advantage denoted by
Advr-ind-ccaRPKEiO,A(λ, k). We will �rst show that A can be turned into adversaries

3Equivalently, we could apply a truncate function truncp(k) : {0, 1}∗ → {0, 1}p(k) which outputs the p(k) most
signi�cant bits of a given input.

4Note that actually q must be chosen as an upper bound of both Gen and Gen′, where the latter is de�ned in the
security proof.

10

Setup(1λ)

return PP := (1λ)

MKGen(PP)

x← {0, 1}λ

mpk := PRG(x)

msk := x

return (mpk ,msk)

CRSGen(PP, 1k)

K ← GenF(1λ+k)

Gen(a, b) :=


PKGenCCA(1k;FK(pad2k(a))), b = 0 ∧ a ∈ {0, 1}2λ

SKGenCCA(1k;FK(pad2k(PRG(a)))), b = 1 ∧ a ∈ {0, 1}λ

⊥, else

iOGen← iO(λ+ k,Gen(a, b))

return CRS := (iOGen)

PKGen(CRS ,mpk)

parse iOGen := CRS

return iOGen(mpk , 0)

SKGen(CRS ,msk)

parse iOGen := CRS

return iOGen(msk , 1)

Enc(pk ,m)

return EncCCA(pk ,m)

Dec(sk , c)

return DecCCA(sk , c)

Figure 2: Our iO-based RPKE scheme RPKEiO

• B against PRG for �xed security parameter λ with advantage AdvprgPRG,Bk(λ),

• C against iO for �xed security parameter λ+ k with advantage AdvioiO,C(λ+ k),

• D against F for �xed security parameter λ+ k with advantage AdvpprfF,D (λ+ k), and

• E against PKECCA for �xed security parameter k with advantage Advind-ccaPKECCA,E(k)

such that the advantage Advr-ind-ccaRPKEiO,A(λ, k) is upper bounded by

1

2λ
+ AdvprgPRG,B(λ) + Advind-ccaPKECCA,E(k) + AdvioiO,C(λ+ k) + AdvpprfF,D (λ+ k). (4)

After that, we will argue that from Equation 4 the upper bound on the concrete advantage stated
in Equation 3 from our Lemma follows.

Throughout the reduction proof, let AdvGameiRPKEiO,A(λ, k) denote the advantage of A in winning
Game i for �xed λ, k.

Game 1 is the real experiment Expr-ind-ccaRPKEiO,A. So we have

Advr-ind-ccaRPKEiO,A(λ, k) = AdvGame1RPKEiO,A(λ, k). (5)

Game 2 is identical to Game 1 except that a short-term secret key returned by the Break-Oracle
on input k′ < k is computed by executing

SKGenCCA(1k
′
;FK(pad2k′(mpk)))

instead of calling SKGen(CRSk′ ,msk), where CRSk′ ← CRSGen(PP, 1k′) and K ← GenF(1λ+k
′
) is

the corresponding PRF key generated in the scope of CRSGen(PP, 1k′). Similarly, the challenge secret

11

key sk∗ is computed by the challenger by executing

SKGenCCA(1k;FK∗(pad2k(mpk))),

and not by calling SKGen(CRS ∗,msk), where CRS ∗ denotes the challenge CRS and K∗ the PRF key
used in the process of generating CRS ∗ by applying CRSGen(PP, 1k). In this way, msk is not used
in the game anymore after mpk = PRG(msk) has been generated. Obviously, this change cannot be
noticed by A and so we have

AdvGame2RPKEiO,A(λ, k) = AdvGame1RPKEiO,A(λ, k). (6)

Game 3 is identical to Game 2 except that the challenge long-term public key is no longer
computed as mpk = PRG(msk) but set to be a random bit string r ← {0, 1}2λ. Note with the change
introduced in Game 2, we achieved that this game only depended on PRG(msk) but not on msk itself.
Hence, we can immediately build an adversary B against PRG for (�xed) security parameter λ from
a distinguisher between Games 1 and 2 with advantage

AdvprgPRG,Bk(λ) =
∣∣∣AdvGame2RPKEiO,A(λ, k)− AdvGame3RPKEiO,A(λ, k)

∣∣∣ . (7)

As a consequence, in Game 3 nothing at all is leaked about msk .
The PRG adversary B receives a bit string y ∈ {0, 1}2λ from the PRG challenger which is either

random (as in Game 3) or the output of PRG(x) for x ← {0, 1}λ (as in Game 2). It computes
PP ← Setup(1λ), CRS ∗ ← CRSGen(PP, 1k), and sets mpk := y. Note that due to the changes
in Game 2 the key msk (which would be the unknown x) is not needed to execute the experiment.
Then it runs A on input PP and mpk . A Break-Query is handled as described in Game 2, i.e., sk is
computed by B based on mpk . The challenge short-term key sk∗ is computed in the same way from
mpk . In this way, B can perfectly simulate the Dec-Oracle when it runs A on input CRS ∗. When
receiving two messages m0 and m1 from the adversary, B returns c∗ ← Enc(pk∗,mb) for random b
where pk∗ has been generated as usual from mpk . Then B forwards the �nal output of A. Clearly, if
y was random B perfectly simulated Game 3, otherwise it simulated Game 2.

To introduce the changes in Game 4, let

K∗{pad2k(mpk)} := PunctureF(K∗, {pad2k(mpk)})

denote the key K∗ (used in the construction of CRS ∗) where we punctured out mpk (represented
as an element of {0, 1}2(λ+k)). This implies that FK∗{pad2k(mpk)}

(a) is unde�ned for a = pad2k(mpk).

Now, we set r := FK∗(pad2k(mpk)) and the challenge short-term keys pk∗ := PKGenCCA(1k; r) and
sk∗ := SKGenCCA(1k; r). Those keys are computed in the experiment immediately after the generation
of the long-term key pair (mpk ,msk). This is equivalent to the way these keys have been computed
in Game 3. Additionally, we replace Gen(a, b) in CRSGen for the challenge security level k by

Gen′(a, b) :=


pk∗, b = 0 ∧ a = mpk

PKGenCCA(1k;FK∗{pad2k(mpk)}
(pad2k(a))), b = 0 ∧ a ∈ {0, 1}2λ \ {mpk}

SKGenCCA(1k;FK∗{pad2k(mpk)}
(pad2k(PRG(a)))), b = 1 ∧ a ∈ {0, 1}λ

⊥, else

CRS ∗ will now include the obfuscated circuit iOGen′ ← iO(λ+ k,Gen′(a, b)).
We now verify that the circuits Gen and Gen′ are indeed equivalent (most of the time). Obviously, it

holds that Gen(a, 0) = Gen′(a, 0) for all a ∈ {0, 1}2λ: the precomputed value pk∗ results from running

12

PKGenCCA(1λ+k; FK∗(pad2k(mpk))) which is exactly what Gen(mpk , 0) would run too. Moreover, we
have

FK∗(pad2k(a)) = FK∗{pad2k(mpk)}
(pad2k(a))

for all a ∈ {0, 1}2λ \ {mpk}. Let us now consider Gen′(a, 1) for a ∈ {0, 1}λ. Remember that starting
with Game 3, mpk is a random element from {0, 1}2λ. That means, with probability at least 1− 1

2λ

we have that mpk is not in the image of PRG and, thus,

FK∗(pad2k(PRG(a))) = FK∗{pad2k(mpk)}
(pad2k(PRG(a)))

for all a ∈ {0, 1}λ. Hence, with probability 1 − 1
2λ

the circuits Gen and Gen′ are equivalent for all
inputs. So a distinguisher between Game 4 and Game 3 can be turned into an adversary C against
iO for security parameter λ+ k with advantage

AdvioiO,C(λ+ k) ≥
∣∣∣AdvGame3RPKEiO,A(λ, k)− AdvGame4RPKEiO,A(λ, k)

∣∣∣− 1

2λ
. (8)

C computes PP ← Setup(1λ) and mpk ← {0, 1}2λ. Then it chooses a PPRF F : {0, 1}2(λ+k) →
{0, 1}p(λ+k) and a corresponding key K∗ ← GenF(1λ+k). Using these ingredients it sets up circuits
C0 := Gen according to the de�nition from Game 3 and C1 := Gen′ according to the de�nition from
Game 4. As explained above, with probability 1− 1

2λ
these circuits are equivalent for all inputs. CRS ∗

is then set as the output of the iO challenger for security parameter λ+ k on input of the circuits C0

and C1.
5 sk∗ and pk∗ can either be computed as de�ned in Game 3 or as in Game 4. As both ways

are equivalent, it does not matter for the reduction. The remaining parts of Game 3 and Game 4 are
identical. In particular, Break-Queries of A can be handled without knowing msk . The output bit of
the third and �nal execution of A is simply forwarded by C to the iO challenger.

Game 5 is identical to Game 4 except that the value r is chosen as a truly random string from
{0, 1}p(λ+k) and not set to FK∗(pad2k(mpk)). As besides r, Game 4 did not depend on K∗ anymore
but only on K∗{pad2k(mpk)}, a distinguisher between Game 4 and Game 5 can directly be turned into
an adversary D against the pseudorandomness of the puncturable PRF family for security parameter
λ+ k. Thus, we have

AdvpprfF,D (λ+ k) =
∣∣∣AdvGame4RPKEiO,A(λ, k)− AdvGame5RPKEiO,A(λ, k)

∣∣∣ . (9)

D computes PP ← Setup(1λ),mpk ← {0, 1}2λ, and chooses a PPRF F : {0, 1}2(λ+k) → {0, 1}p(λ+k).
Then it sends pad2k(mpk) to its challenger who chooses a key K∗ ← GenF(1λ+k) and computes
the punctured key K∗{pad2k(mpk)}. Furthermore, the challenger sets r0 := FK∗(pad2k(mpk)) and

r1 ← {0, 1}p(λ+k). It chooses b ← {0, 1} and sends rb along with K∗{pad2k(mpk)} to D. D sets r := tb,

pk∗ := PKGenCCA(1k; r) and sk∗ := SKGenCCA(1k; r). Using the given punctured key K∗{pad2k(mpk)},

D can also generate CRS ∗ as described in Game 4. The rest of the reduction is straightforward. The
output bit of the �nal execution of A is simply forwarded by C to its challenger. If b = 0, D perfectly
simulates Game 4, otherwise it simulates Game 5.

Now, observe that in Game 5, the keys pk∗ and sk∗ are generated using GenCCA with a uniformly
chosen random string r on its random tape. In particular, pk∗ and sk∗ are completely independent of
the choice of mpk and msk . After the generation of these short-term keys, the adversary has access
to the Break-Oracle, which, of course, will also not yield any additional information about them since
the output of this oracle only depends on independent random choices like mpk and the PRF keys
K. The remaining steps of Game 5 correspond to the regular IND-CCA game for PKECCA except

5C0 and C1 are assumed to be of the same size, otherwise the smaller one is padded accordingly.

13

that the adversary is given the additional input CRS ∗, which however only depends on pk∗, and the
independent choices mpk and K∗. So except for pk∗ (which is the output of PKGen(CRS ∗,mpk)),
the adversary does not get any additional useful information from CRS ∗ (which he could not have
computed by himself). Hence, it is easy to construct an IND-CCA adversary E against PKECCA for
security parameter k from A which has the same advantage as A in winning Game 5, i.e.,

Advind-ccaPKECCA,E(k) = AdvGame5RPKEiO,A(λ, k). (10)

E computes PP ← Setup(1λ) and mpk ← {0, 1}2λ. Break-Queries from A can be answered by
E only based on mpk (as described in Game 2). Then E receives pk∗ generated using GenCCA(1k)
from the IND-CCA challenger. To compute CRS ∗, E chooses a PPRF F : {0, 1}2(λ+k) → {0, 1}p(λ+k),
the corresponding key K∗ ← GenF(1λ+k) and sets the punctured key K∗{pad2k(mpk)}. Using these

ingredients, Gen′ can be speci�ed as in Game 4 and its obfuscation equals CRS ∗. When E runs A on
input CRS ∗, A's queries to the Dec-Oracle are forwarded to the IND-CCA challenger. Similarly, the
messagesm0 andm1 that A outputs are sent to E 's challenger. When E receives c∗ from its challenger,
it runs A on this input, where Dec-Oracle calls are again forwarded, and outputs the output bit of A.

Putting Equations 5-10 together, we obtain Equation 4.

From Eq. 4 to Eq. 3. Let t denote the runtime of A and t′ the maximal runtime of the
experiment Expr-ind-ccaRPKEiO,·(λ, k) involving an arbitrary adversary with runtime t. Furthermore, note that
the reduction algorithms B, C, D, E are uniform in the sense that they perform the same operations
for any given adversary A of runtime t. Let s1, s2, s3, and s4 denote the maximal runtime of our PRG,
IND-CCA, PPRF, and iO reduction algorithm, respectively, for an RPKE adversary with runtime
t. As all these reduction algorithms basically execute the R-IND-CCA experiment (including minor
modi�cations) with the RPKE adversary, we have that t′ ≈ s1 ≈ s2 ≈ s3 ≈ s4. Clearly, the runtime
of our reduction algorithms are upper bounded by the corresponding values ti and thus it follows

Advr-ind-ccaRPKEiO,A(λ, k) ≤ 1
2λ

+ CAdvprgPRG(s1, λ) + CAdvind-ccaPKECCA
(s2(λ, k), k)

+CAdvpprfF (s3(λ, k), λ, k) + CAdvioiO(s4, λ+ k).
(11)

Finally, since the same upper bound (on the right-hand side of Eq. 11) on the advantage holds for
any adversary A with runtime t, this is also an upper bound for CAdvr-ind-ccaRPKEiO

(t, λ, k).

Theorem 4.2. Let us assume that for any polynomial s(`), the concrete advantages CAdvprgPRG(s(`), `),

CAdvioiO(s(`), `), CAdvpprfF (s(`), `) and CAdvind-ccaPKECCA
(s(`), `) are negligible. Then RPKEiO is R-IND-

CCA secure.

Proof. Let t(λ, k) be a polynomial and let us consider the upper bound on CAdvr-ind-ccaRPKEiO
(t(λ, k), λ, k)

given by Lemma 4.1. First, note that since RPKE is e�cient there is also a polynomial bound t′(λ, k)
on the runtime complexity of the experiment and thus s1(λ, k), s2(λ, k), s3(λ, k), and s4(λ, k) will be
polynomial as t′(λ, k) ≈ s1(λ, k) ≈ s2(λ, k) ≈ s3(λ, k) ≈ s4(λ, k) for all λ, k ∈ N. Furthermore, let
t1(λ, k) := s1(λ, k), t2(λ, k) := s2(λ, k), and t3(λ, k) be a polynomial upper bound on s3(λ, k) and
s4(λ, k). Now, consider the following partition of CAdvr-ind-ccaRPKEiO

(t(λ, k), λ, k) as demanded in De�nition

3.2: f1(t1(λ, k), λ) := 1
2λ

+ CAdvprgPRG(t1(λ, k), λ), f2(t2(λ, k), k) := CAdvind-ccaPKECCA
(t2(λ, k), k), and

f3(t3(λ, k), λ, k) := CAdvioiO(t3(λ, k), λ+ k) + CAdvpprfF (t3(λ, k), λ+ k).

Obviously, for all �xed k ∈ N, t1(λ, k) is a polynomial in a single variable, namely λ, and thus
f1(t1(λ, k), λ) is negligible in λ by assumption. Similarly, for all �xed λ ∈ N, f2(t2(λ, k), k) is
negligible in k by assumption. Moreover, for all �xed k ∈ N and for all �xed λ ∈ N, t3(λ, k)
becomes a polynomial in λ and in k, respectively, and the advantages CAdvioiO(t3(λ, k), λ + k) and

CAdvpprfF (t3(λ, k), λ+ k) are negligible in λ and in k by assumption.

14

Versatility of our iO-based construction. As one can easily see, the iO-based construction
of an RPKE we presented above is very modular and generic: there was no need to modify the
standard cryptosystem (the IND-CCA secure PKE) itself to make it recon�gurable but we just added
a component �in front� which fed its key generator with independently-looking randomness. Thus,
the same component may be used to make other types of cryptosystems recon�gurable in this sense.
Immediate applications would be the construction of an iO-based R-IND-CPA secure RPKE from an
IND-CPA secure PKE or of an R-EUF-CMA secure recon�gurable signature scheme (cf. De�nition
5.2) from an EUF-CMA secure signature scheme. The construction is also very �exible in the sense
that it allows to switch to a completely di�erent IND-CCA secure PKE (or at least to a more secure
algebraic structure for the PKE) on-the-�y when the short-term security level k gets increased. One
may even use the same long-term keys to generate short-term PKIs for multiple di�erent cryptosystems
(e.g., a signature and an encryption scheme) used in parallel. We leave the security analysis of such
extended approaches as an open problem.

4.2 Recon�gurable Encryption from SCasc

Our second construction of a R-IND-CPA secure recon�gurable encryption scheme makes less strong
assumptions than our construction using iO. Namely, it uses a pairing-friendly group generator G as
introduced in Section 2 and the only assumption is (a suitable variant of) the SCk-MDDH assumption
with respect to G. Our construction is heavily inspired by Regev's lattice-based encryption scheme
[18] (in its �dual variant� [13]). However, instead of computing with noisy integers, we perform similar
computations �in the exponent�. (A similar adaptation of lattice-based cryptographic constructions to
a group setting was already undertaken in [8], although with di�erent constructions and for a di�erent
purpose.)

A two-parameter variant of the SCk-MDDH assumption. For our purposes, it will be useful to
consider the SCk-MDDH assumption as an assumption in two security parameters, λ and k. Namely,
let

AdvSCG,B(λ, k) := AdvDk-MDDH

G,A (λ)

where Dk = SCk as de�ned by Equation 2 in Section 2. Note that this also de�nes the concrete
advantage CAdvSCG (t, λ, k) (generically de�ned in Section 2).

It is not immediately clear how to de�ne asymptotic security with this two-parameter advantage
function. To do so, we follow the path taken for our recon�gurable security de�nition, with λ as a
long-term, and k as a short term security parameter: We say that the SCasc assumption holds relative
to G i� CAdvSCG (t, λ, k) can be split up into three components, as follows. We require that for every
polynomial t = t(λ, k), there exist nonnegatively-valued functions f1 : N2 → R+

0 , f2 : N2 → R+
0 , f3 :

N3 → R+
0 and polynomials t1(λ, k), t2(λ, k), t3(λ, k) such that

CAdvSCG (t(λ, k), λ, k) ≤ f1(t1(λ, k), λ) + f2(t2(λ, k), k) + f3(t3(λ, k), λ, k)

and the following conditions are satis�ed for f1, f2, f3:

• For all k ∈ N it holds that f1(t1(λ, k), λ) is negligible in λ

• For all λ ∈ N it holds that f2(t2(λ, k), k) is negligible in k

• For all k ∈ N it holds that f3(t3(λ, k), λ, k) is negligible in λ

• For all λ ∈ N it holds that f3(t3(λ, k), λ, k) is negligible in k.

The interpretation is quite similar to recon�gurable security: we view λ (which determines, e.g., the
group order) as a long-term security parameter. On the other hand, k determines the concrete com-
putational problem considered in this group, and we thus view k as a short-term security parameter.
(For instance, it is conceivable that an adversary may successfully break one computational problem

15

in a given group, but not a potentially harder problem. Hence, increasing k may be viewed as in-
creasing the security of the system.) It is not hard to show that CAdvSCG (t, λ, k) holds in the generic
group model, although, the usual proof technique only allows for a trivial splitting of the adversarial
advantage into the f1, f2 and f3.

Choosing subspace elements. We will face the problem of sampling a vector [~r] ∈ Gk+1 satisfying

~r> · Ax = ~y> for given Ax ∈ Z(k+1)×k
p (of the form of Eq. 2) and [~y] ∈ Gk. One e�cient way to

choose a uniform solution [~r] = [(ri)i] is as follows: choose r1 uniformly, and set [ri+1] = [yi]− x · [ri]
for 2 ≤ i ≤ k + 1.

Our scheme RPKESC . Now our encryption scheme has message space GT and is given by the
following algorithms:

Setup(1λ): sample (p,G, g,GT , e)← G(1λ) and return PP := (p,G, g,GT , e).

MKGen(PP): sample x← Zp and return mpk := [x] ∈ G and msk := x.

CRSGen(PP, 1k): sample ~y ← Zkp and return CRS := (1k,PP, [~y>] ∈ Gk).
PKGen(CRS ,mpk): compute [Ax] from mpk = [x] and return pk := (CRS , [Ax] ∈ G(k+1)×k).

SKGen(CRS ,msk): compute Ax from msk = x and sample a uniform solution [~r] ∈ Gk+1 of ~r> ·Ax =
~y>, and return sk := (CRS , [~r]).

Enc(pk ,m): sample ~s← Zkp, and return

c = ([~R], [S]T) = ([Ax · ~s], [~y> · ~s]T ·m) ∈ Gk+1 ×GT .

Dec(sk , c): return m = [S]T − [~r> · ~R]T ∈ GT .

Correctness and security. Correctness follows from

Dec(sk , c) = [S]T − [~r> · ~R]T =
(

[~y> · ~s]T − [~r> ·Ax · ~s]T
)
·m,

since ~y> = ~r> ·Ax by de�nition. For security, consider

Lemma 4.3. Let t ∈ N be given and let t′ denote the maximal runtime of the experiment

Expr-ind-ccaRPKESC ,·(λ, k) involving arbitrary adversaries with runtime t. Then it holds that

CAdvr-ind-cpaRPKESC
(t, λ, k) ≤ 1

2λ
+ CAdvSCG (s, λ, k) (12)

where t′ ≈ s.

Proof. Similar to the proof of lemma 4.1, the following reduction will be in the non-uniform setting,
where we consider an adversary A against RPKESC for �xed security parameters λ and k. We show
that A can be turned into an algorithm B solving SCasc for �xed λ and k with advantage AdvSCG,B(λ, k)
such that

Advr-ind-cpaRPKESC ,A(λ, k) ≤ 1

2λ
+ AdvSCG,B(λ, k). (13)

We proceed in games, with Game 1 being the Expr-ind-cpaRPKESC ,A experiment. Let AdvGameiRPKESC ,A(λ, k)
denote the advantage of A in Game i. Thus, by de�nition,

Advr-ind-ccaRPKESC ,A(λ, k) = AdvGame1RPKESC ,A(λ, k). (14)

In Game 2, we implement the Break(PP,msk , ·) oracle di�erently for A. Namely, recall that in
Game 1, upon input k′ < k, Break chooses a CRS CRSk′ = (1k

′
,PP, [~y>] ← Gk

′
), then computes a

secret key skk′ = [~r] ∈ Gk′+1 with ~r>Ax = ~y>, and �nally returns CRSk′ and skk′ to A.

16

Instead, we will now let Break �rst choose ~r ∈ Zk′+1
p uniformly, and then compute [~y>] = [~r>Ax]

from ~r and set CRSk′ = (1k
′
,PP, [~y>]). This yields exactly the same distribution for skk′ and CRSk′ ,

but only requires knowledge about [Ax] (and not Ax). Hence, we have

AdvGame1RPKESC ,A(λ, k) = AdvGame2RPKESC ,A(λ, k). (15)

In Game 3, we prepare the challenge ciphertext c∗ di�erently for A. As a prerequisite, we let the
game also choose CRS ∗ like the Break oracle from Game 2 chooses the CRSk′ . In other words, we set

up CRS ∗ = [~y>] = [~r∗
>
Ax] for uniformly chosen ~r∗. This way, we can assume that sk∗ = (CRS ∗, [~r∗])

is known to the game, even for an externally given [Ax].
Next, recall that in Game 2, we have �rst chosen ~s ← Zkp and then computed c∗ = ([~R], [S]T) =

([Ax · ~s], [~y> · ~s]T ·mb). In Game 3, we still �rst choose ~s and compute [~R] = [Ax · ~s]. However, we
then compute [S]T = [~r∗

> ·R]T ·mb in a black-box way from [~R], without using ~s again.
These changes are again purely conceptual, and we get

AdvGame2RPKESC ,A(λ, k) = AdvGame3RPKESC ,A(λ, k). (16)

Now, in Game 4, we are �nally ready to use the SCasc assumption. Speci�cally, instead of
computing the value [~R] of c∗ as [~R] = [Ax · ~s] for a uniformly chosen ~s ∈ Zkp, we sample [~R] ∈ Gk+1

independently and uniformly. (By our change from Game 3, then [S]T is computed from [~R] using
sk∗.)

Our change hence consists in replacing an element of the form [Ax ·~s] by a random vector of group
elements. Besides, at this point, our game only requires knowledge of [Ax] (but not of Ax). Hence,
a straightforward reduction to the SCasc assumption yields an adversary B with

AdvSCG,B(λ, k) =
∣∣∣AdvGame4RPKESC ,A(λ, k)− AdvGame3RPKESC ,A(λ, k)

∣∣∣ . (17)

Finally, it is left to observe that in Game 4, the challenge ciphertext is (statistically close to)
independently random. Indeed, recall that the challenge ciphertext is chosen as c∗ = ([~R], [S]T) for

uniform ~R ∈ Zk+1
p , and [S]T = [~r∗

> ·R]T ·mb. Suppose now that ~R does not lie in the image of Ax.

(That is, ~R cannot be explained as a combination of columns of Ax.) Then, for random ~r, the values

~r∗
>
Ax and ~r∗

> · R are independently random. In particular, even given [Ax] and CRS ∗, the value

[~r∗
> ·R]T looks independently random to A.
Hence, A's view is independent of the encrypted message mb (at least when conditioned on ~R not

being in the image of Ax). On the other hand, since ~R is uniformly random in Game 4, it lies in the
image of Ax only with probability 1/p. Thus, we get

AdvGame4RPKESC ,A(λ, k) ≤ 1

p
. (18)

Putting Eq. 14-18 together (and using that p ≥ 2λ), we obtain Equation 13.

From Eq. 13 to Eq. 12. Let t denote the runtime of A and t′ the maximal runtime of the
experiment Expr-ind-ccaRPKESC ,·(λ, k) involving an arbitrary adversary with runtime t. Note that the reduction
algorithm B is uniform in the sense that it performs the same operations for any given adversary A
of runtime t. Let s denote the maximal runtime of our SCasc algorithm for an RPKE adversary with
runtime t. As the SCasc algorithm basically executes the R-IND-CCA experiment (including minor
modi�cations) with the RPKE adversary, we have that t′ ≈ s. Clearly, the runtime of B is upper
bounded by s and thus it follows

Advr-ind-ccaRPKESC ,A(λ, k) ≤ 1

2λ
+ CAdvSCG (s, λ, k). (19)

17

Finally, since the same upper bound (on the right-hand side of Eq. 19) on the advantage holds for
any adversary A with runtime t, this is also an upper bound for CAdvr-ind-ccaRPKESC

(t, λ, k).

Theorem 4.4. If the two-parameter variant of the SCasc assumption holds, then RPKESC is R-IND-

CPA secure.

Proof. Let t(λ, k) be a polynomial. Since RPKESC is e�cient, t′(λ, k) will be polynomial and so
s(λ, k). As s(λ, k) is polynomial, according to the SCasc assumption there exist functions g1, g2, and
g3 as well as polynomials s1(λ, k), s2(λ, k), and s3(λ, k) such that

CAdvSCG (s(λ, k), λ, k) ≤ g1(s1(λ, k), λ) + g2(s2(λ, k), k) + g3(s3(λ, k), λ, k).

Now, consider the following partitioning of CAdvr-ind-ccaRPKESC
(t(λ, k), λ, k) as speci�ed in De�nition 3.2:

f1(s1(λ, k), λ) := 1
2λ

+ g1(s1(λ, k), λ, k), f2(s2(λ, k), k) := g2(s2(λ, k), λ, k), and f3(s3(λ, k), λ, k) =
g3(s3(λ, k), λ, k). Clearly, the properties demanded for f1, f2, f3 by De�nition 3.2 immediately follow
from the SCasc assumption.

5 Recon�gurable Signatures

The concept of recon�guration is not restricted to encryption schemes. In this section, we consider the
case of recon�gurable signatures. We start with some preliminaries, de�ne recon�gurable signatures
and a security experiment (both in line with the encryption case) and �nally give a construction.

5.1 Preliminaries

Signature schemes. A signature scheme SIG with message space M consists of three PPT algo-
rithms Setup,Gen, Sig,Ver. Setup(1λ) outputs public parameters PP for the scheme. Key generation
Gen(PP) outputs a veri�cation key vk and a signing key sk . The signing algorithm Sig(sk ,m) takes
the signing key and a message m ∈ M, and outputs a signature σ. Veri�cation Ver(vk , σ,m) takes
the veri�cation key, a signature and a message m and outputs 1 or ⊥. For correctness, we require
that for all m ∈M and all (vk , sk)← Gen(1k) we have Ver(sk ,Sig(sk ,m),m) = 1.

EUF-CMA security. The EUF-CMA-advantage of an adversary A on SIG is de�ned by
Adveuf-cma

SIG,A (λ) := Pr[Expeuf-cma
SIG,A (λ) = 1] for the experiment Expeuf-cma

SIG,A described below. In Expeuf-cma
SIG,A ,

�rst, PP ← Setup(1λ) and (pk , sk)← Gen(PP) is sampled. The we run A on input pk , where A also
has access to a signature oracle. The experiment returns 1 if for A's output (σ∗,m∗) it holds that
Ver(pk, σ∗,m∗) = 1 and m∗ was not sent to the signature oracle. A signature scheme SIG is called
EUF-CMA-secure if for all PPT algorithms A the advantage Adveuf-cma

SIG,A (λ) is negligible.

Non-interactive proof systems. A non-interactive proof system for a language L consists of three
PPT algorithms (CRSGen,Prove,Ver). CRSGen(L) gets as input information about the language and
outputs a common reference string (CRS). Prove(CRS , x, w) with statement x and witness w outputs
a proof π, and Ver(CRS , π, x) outputs 1 if π is a valid proof for x ∈ L, and ⊥ otherwise. The proof
system is complete if Ver always accepts proofs if x is contained in L, and it is perfectly sound if Ver
always rejects proofs if x is not in L.
Witness indistinguishability (WI). Suppose a statement x ∈ L has more than one witness. A
proof of membership can be generated using any of the witnesses. If a proof π ← Prove(CRS , x, w)
information theoretically hides the choice of the witness, it is called perfectly witness indistinguishable.

Groth-Sahai (GS) proofs. In [15], Groth and Sahai introduced e�cient non-interactive proof
systems in pairing-friendly groups. We will only give a high level overview of the properties that are

18

needed for our recon�gurable signature scheme and refer to the full version [15] for the details of their
construction.

In GS proof systems, the algorithm CRSGen takes as input a pairing-friendly group
G := (p,G, g,GT , e) and outputs a CRS suitable for proving satis�ability of various types of equations
in these groups. Furthermore, CRSGen has two di�erent modes of operation, producing a CRS that
leads to either perfectly witness indistinguishable or perfectly sound proofs. The two types of CRS
can be shown to be computationally indistinguishable under di�erent security assumptions such as
subgroup decision, SXDH and 2-Linear.

In both modes, CRSGen additionally outputs a trapdoor. In the WI mode, this trapdoor can be
used to produce proofs of false statements6. In the sound mode, the trapdoor can be used to extract
the witness from the proof. To easily distinguish the two operating modes, we equip CRSGen with an
additional parameter mode ∈ {wi, sound}.

Statements provable with GS proofs have to be formulated in terms of satis�ability of equations in
pairing-friendly groups. For example, it is possible to prove the statement X := ”∃s ∈ Zn : [s]1 = S”
for an element S ∈ G1. A witness for this statement is a value s satisfying the equation [s] = S, i.e.,
the DL of S to the basis g1. Furthermore, GS proofs are nestable and thus admit proving statements
about proofs, e.g., Y := ”∃π : Ver(CRS , π,X) = 1”.

5.2 De�nitions

Similar to the case of RPKE, we can de�ne recon�gurable signatures.

De�nition 5.1. A recon�gurable signature (RSIG) scheme RSIG consists of algorithms Setup, MKGen,
CRSGen, PKGen, SKGen, Sig and Ver. The �rst �ve algorithms are de�ned as in De�nition 3.1. Sig
and Ver are the signature generation and veri�cation algorithms and are de�ned as in a regular signa-

ture scheme. RSIG is called correct if for all λ, k ∈ N, PP ← Setup(1λ), (mpk ,msk)← MKGen(PP),
CRS ← CRSGen(PP, 1k), messages m ∈ M, sk ← SKGen(CRS ,msk) and pk ← PKGen(CRS ,mpk)
we have that Ver(pk ,Sig(sk ,m),m) = 1.

We de�ne R-EUF-CMA security for an RSIG scheme RSIG analogously to R-IND-CCA security
for RPKE, where the security experiment Expr-euf-cma

RSIG,A (λ,k) is de�ned in Figure 3.

De�nition 5.2. Let RSIG be an RSIG scheme according to De�nition 5.1. Then we de�ne the

advantage of an adversary A as

Advr-euf-cma
RSIG,A (λ, k) := Pr[Expr-euf-cma

RSIG,A (λ, k) = 1]

where Expr-euf-cma
RSIG,A (λ, k) is the experiment given in Figure 3. The concrete advantage CAdvr-euf-cma

RSIG (t, λ, k)
of adversaries against RSIG with time complexity t follows canonically (cf. Section 2).

An RSIG scheme RSIG is then called R-EUF-CMA secure if for all polynomials t(λ, k), there exist
positive functions f1 : N2 → R+

0 , f2 : N2 → R+
0 , and f3 : N3 → R+

0 as well as polynomials t1(λ, k),
t2(λ, k), and t3(λ, k) such that

CAdvr-euf-cma
RSIG (t(λ, k), λ, k) ≤ f1(t1(λ, k), λ) + f2(t2(λ, k), k) + f3(t3(λ, k), λ, k)

for all λ, k, and the following conditions are satis�ed for f1, f2, f3:

• For all k ∈ N it holds that f1(t1(λ, k), λ) is negligible in λ

6Actually, the original paper only describes a method for generating proofs for speci�c false statements. Arbitrary
statements can be proven at the cost of slightly larger proofs and CRSs, using known methods that apply to WI proofs
[14].

19

Experiment Expr-euf-cma
RSIG,A (λ,k)

PP ← Setup(1λ)

(mpk ,msk)← MKGen(PP)

state ← ABreak(PP,msk ,·)(1λ, 1k,PP,mpk , �learn�)

CRS ∗ ← CRSGen(PP, 1k)
sk∗ ← SKGen(CRS ∗,msk)

pk∗ ← PKGen(CRS ∗,mpk)

(m∗, σ∗)← ASig(sk∗,·)(CRS ∗, state)

Let k1, . . . , k` be the inputs sent to the Break-Oracle by A. On input ki, the Break-Oracle returns
CRSki ← CRSGen(PP, 1ki) as well as skki ← SKGen(CRSki ,msk) to A.
Return 1 if ki < k for all i, Ver(pk∗, σ∗,m∗) = 1, and m∗ was not an input to the Sig-Oracle.
Otherwise, return 0.

Figure 3: R-EUF-CMA experiment for a recon�gurable signature scheme RSIG.

• For all λ ∈ N it holds that f2(t2(λ, k), k) is negligible in k

• For all k ∈ N it holds that f3(t3(λ, k), λ, k) is negligible in λ

• For all λ ∈ N it holds that f3(t3(λ, k), λ, k) is negligible in k

5.3 Recon�gurable Signatures from Groth-Sahai Proofs

The intuition behind our scheme is as follows. Each user of the system has a long-term key pair,
consisting of a public instance of a hard problem and a private solution of this instance. A valid
signature is a proof of knowledge of either knowledge of the long-term secret key or a valid signature
of the message under another signature scheme. The proof system and signature scheme for generating
the proofs of knowledge are published, e.g. using a CRS. We are now able to recon�gure the scheme
by pdating the CRS with a new proof system and a new signature scheme. This way, old short-term
secret keys of a user (i.e., valid proofs of knowledge of the user's long-term secret key under deprecated
proof systems) become useless and can thus be leaked to the adversary.

Our recon�gurable signature scheme RSIG has message space M = {0, 1}m. It makes use of
a symmetric pairing-friendly group generator G, a family of GS proof systems PS := {PSk :=
(CRSGenPSk ,ProvePSk ,VerPSk)}k∈N for proving equations in the groups generated by G(1λ) and a fam-
ily of EUF-CMA-secure signature schemes SIG := {SIGk := (SetupSIGk ,GenSIGk ,SigSIGk ,VerSIGk)}k∈N
with message spaceM, where SetupSIGk(1λ) outputs G with G← G(1λ) for all k ∈ N (i.e., each SIGk
can be instantiated using the same symmetric pairing-friendly groups G).

Two-parameter families of GS proofs and EUF-CMA-secure signatures. Let us view
PS as a family of GS proof systems and SIG a family of EUF-CMA-secure signature schemes de-
�ned in two security parameters λ and k. Such families may be constructed based on the (two
parameters variant) of the SCasc assumption or other matrix assumptions. Consequently, we con-
sider a security experiment where the adversary receives two security parameters and has advan-
tage Advind-crsPS,A (λ, k) and Adveuf-cma

SIG,B (λ, k), respectively. Note that this also de�nes the concrete ad-

vantages CAdvind-crsPS (t, λ, k) and CAdveuf-cma
SIG (t, λ, k) (as generically de�ned in Section 2). We de-

�ne asymptotic security for these families following the approach taken for our recon�gurable se-
curity de�nition. That means, we call PS (SIG) secure if for every polynomial t(λ, k) the advantage
CAdvind-crsPS (t(λ, k), λ, k) (CAdveuf-cma

SIG (t(λ, k), λ, k)) can be split up into nonnegatively-valued functions

20

Setup(1λ)

(p,G, g,GT , e)← G(1λ)

return PP := (p,G, g,GT , e)

MKGen(PP)

parse PP := (p,G, g,GT , e)

x, y ← Zn

return mpk := ([x], [y]), msk := [xy]

CRSGen(PP, 1k)

(CRSPSk
, tdk)← CRSGenPSk

(wi,PP)

(s̃kk, ṽkk)← GenSIGk
(PP)

return CRSk := (CRSPSk
, ṽkk,PP, k)

PKGen(CRSk,mpk)

return pkk := (CRSk,mpk)

SKGen(CRSk,msk)

parse CRSk as (CRSPSk
, ṽkk,PP, k)

set X := ”∃z : e(mpk1,mpk2) = e(z, [1])”

πk ← ProvePSk
(CRSPSk

,X ,msk)

return skk := (CRSk, πk)

Sig(m, skk)

parse skk as (CRSk, πk) and CRSk as

(CRSPSk
, ṽkk,PP, k)

set Yk := ”∃(πk,Σk) : VerPSk
(CRSPSk

, πk,X) = 1 ∨
VerSIGk

(ṽkk,Σk,m) = 1”

πm ← ProvePSk
(CRSPSk

,Yk, skk)

return σ := (πm,Yk)

Ver(pkk, σ,m)

parse pkk as (CRSk,mpk) and CRSk as

(CRSPSk
, ṽkk,PP, k)

parse σ := (πm,Yk)

verify that Yk contains m and X and X contains
mpk

return VerPSk
(CRSPSk

, πm,Yk)

Figure 4: Our recon�gurable signature scheme

f1 : N2 → R+
0 , f2 : N2 → R+

0 , f3 : N3 → R+
0 such that for some polynomials t1(λ, k), t2(λ, k), t3(λ, k)

the sum f1(t1(λ, k), λ) + f2(t2(λ, k), k) + f3(t3(λ, k), λ, k) is an upper bound on the advantage. Fur-
thermore, the following conditions need to be satis�ed for f1, f2, f3:

• For all k ∈ N it holds that f1(t1(λ, k), λ) is negligible in λ

• For all λ ∈ N it holds that f2(t2(λ, k), k) is negligible in k

• For all k ∈ N it holds that f3(t3(λ, k), λ, k) is negligible in λ

• For all λ ∈ N it holds that f3(t3(λ, k), λ, k) is negligible in k.

Correctness of RSIG, in terms of De�nition 5.1, directly follows from the completeness of the
underlying proof system.

Lemma 5.3. Let a t ∈ N be given and let t′ denote the maximal runtime of the experiment

Expr-euf-cma
RSIG,· (λ, k) involving arbitrary adversaries with runtime t. Then it holds that

CAdvr-euf-cma
RSIG (t, λ, k) ≤ 2 · CAdvind-crsPS (s1, λ, k) + CAdvcdhG (s2, λ) + CAdveuf-cma

SIG (s3, λ, k) (20)

where t′ ≈ s1 ≈ s2 ≈ s3.

Theorem 5.4. Let us assume that PS is a secure two-parameter family of Groth-Sahai proof systems,

SIG a secure two-parameter family of EUF-CMA secure signature schemes and the CDH assumption

holds with respect to G. Then RSIG is R-EUF-CMA secure.

21

We omit the proof of Theorem 5.4 as it is analogous to the proof of Lemma 4.4. In the remainder
of this section, we sketch a proof for Lemma 5.3.

Proof sketch: We use a hybrid argument to prove our theorem. Starting with the R-EUF-CMA
security game, we end up with a game in which the adversary has no chance of winning. It follows
that Advr-euf-cma

RSIG,ARSIG
(λ, k) is smaller than the sum of advantages of adversaries distinguishing between all

subsequent intermediate games. Throughout the proof, AdvGiARSIG
(λ, k) denotes the winning probability

of ARSIG when running in game i.

Game 0: This is the original security game Expr-euf-cma
RSIG,ARSIG

. Note that the signature oracle of ARSIG is
implemented using skk and thus, implicitly, msk as a witness. We have that

Advr-euf-cma
RSIG,ARSIG

(λ, k) = AdvG0
ARSIG

(λ, k) (21)

Game 1: Here we modify the implementation of the signature oracle by letting the experiment use the
formerly unused signing key of the signature scheme SIGk. More formally, let state denote the output of

ARSIG
Break(PP,mpk , �learn�). While running (CRS ∗, ṽk

∗
,PP, k)← CRSGen(PP, 1k), the experiment

learns s̃k
∗
, the signing key corresponding to ṽk

∗
. We now let the experiment answer ARSIG's oracle

queries Sigk(sk
∗,m) for m ∈ M with signatures ProvePSk(CRS ∗,Y∗, τ), where τ ← SigSIGk(s̃k

∗
,m)

and Y∗ := ”∃(π∗,Σ∗) : VerPSk(CRS ∗, π∗,X) = 1 ∨ VerSIGk(ṽk
∗
,Σ∗,m) = 1”.

Since the proofs generated by PSk are perfectly WI, the ARSIG's view in game 0 and game 1 is
exactly the same and thus we have AdvG1

ARSIG
(λ, k) = AdvG0

ARSIG
(λ, k)

Game 2: In this game, we want to switch the CRS for which ARSIG forges a message from witness in-
distinguishable to sound mode. For this, the experiment runs (CRSPSk , tdk)← CRSGenPSk(sound,PP)

and (s̃k
∗
, ṽk
∗
)← GenSIGk(PP) and sets CRS ∗ := (CRSPSk , ṽk

∗
,PP, k).

Claim 5.5. For every λ and k and adversary ARSIG, there is an adversary APSk with T(ARSIG) ≈
T(APSk) and

Advind-crsPS,APSk
(λ, k) :=

∣∣∣∣12 − Pr [APSk(CRSPSk)→ mode]

∣∣∣∣ =

∣∣∣∣∣AdvG1
ARSIG

(λ, k)− AdvG2
ARSIG

(λ, k)

2

∣∣∣∣∣ (22)

where (CRSPSk , tdk)← CRSGenPSk(mode,PP) and mode ∈ {wi, sound}.

Proof. Note that ARSIG's view in game 1 and 2 is exactly the same until he sees CRS ∗. We construct
APSk as follows. APSk gets CRSPSk and then plays game 1 with ARSIG until ARSIG outputs state.

Now APSk sets CRS ∗ := (CRSPSk , ṽk
∗
,PP, k) and proceeds the game. Note that this is possible

since APSk does not make use of a trapdoor for CRSPSk . APSk �nally outputs wi if ARSIG wins the
game. If ARSIG loses, B outputs sound.

We now analyze the advantage of APSk in guessing the CRS mode. For this, note that if mode = wi,
then ARSIG's view is as in game 1, and if mode = sound, then ARSIG's view is as in game 2. Let Xi

22

denote the event that ARSIG wins game i, and thus AdvGiARSIG
(λ, k) = Pr [Xi]. We have that

Pr [APSkwins] = Pr [APSk wins |mode = wi] + Pr [APSk wins |mode = sound]

=
1

2

2∑
i=1

(Pr [APSk wins |Xi] + Pr [APSk wins |¬Xi])

=
1

2
(1 · AdvG1

ARSIG
(λ, k) + 0 · (1− AdvG1

ARSIG
(λ, k)) + 0 · AdvG2

ARSIG
(λ, k) + 1 · (1− AdvG2

ARSIG
(λ, k))

=
1

2
(AdvG1

ARSIG
(λ, k) + 1− AdvG2

ARSIG
(λ, k)) =

1

2
+

AdvG1
ARSIG

(λ, k)− AdvG2
ARSIG

(λ, k)

2

⇒Pr [APSkwins]−
1

2
=

AdvG1
ARSIG

(λ, k)− AdvG2
ARSIG

(λ, k)

2

⇒
∣∣∣∣Pr [APSkwins]−

1

2

∣∣∣∣ =

∣∣∣∣∣AdvG1
ARSIG

(λ, k)− AdvG2
ARSIG

(λ, k)

2

∣∣∣∣∣
Game 3: Now, the experiment no longer uses knowledge of msk to produce answers skk ←
SKGen(CRSPSk ,msk) to Break-queries. Instead, we let the experiment use the trapdoor of the CRS
to generate the proofs. This can be done since the experiment always answers Break-oracle queries
by running (CRSPSk , tdk) ← CRSGenPSk(wi,PP) and, since in wi mode, tdk can be used to sim-
ulate a proof skk without actually using msk . Moreover, the proofs are perfectly indistinguishable
from the proofs in Game 2 and thus ARSIG's view in Games 2 and 3 are identical and we have
AdvG3

ARSIG
(λ, k) = AdvG2

ARSIG
(λ, k)

Game 4: We modify the winning conditions of the experiment: ARSIG loses if sk∗, i.e., a solution to
a CDH instance, can be extracted from the forgery.

Claim 5.6. For every λ and k, and every adversary ARSIG, there exists a AG with T(ARSIG) ≈ T(AG)
and

AdvcdhG,AG (λ) := Pr [AG(G, [x], [y]) = [xy]] ≥
∣∣AdvG3

ARSIG
(λ, k)− AdvG4

ARSIG
(λ, k)

∣∣ (23)

where G← G(1λ) and the probability is over the random coins of G and AG.

Proof. First note that ARSIG's view is identical in both games, since we only modi�ed the winning
condition. Let E denote the event that sk∗ can be extracted from the forgery produced by ARSIG. Let
X3, X4 denote the random variables describing the output of the experiment in Game 3 and Game
4, respectively. From the de�nition of the winning conditions of both games it follows that

Pr [X3 = 1|¬E] = Pr [X4 = 1|¬E] =⇒ |Pr [X3 = 1]− Pr [X4 = 1]| ≤ Pr [E]

≤ Pr [AG(G,mpk) = msk]

where the �rst inequality follows from the di�erence lemma [22] and the latter holds because, since
msk is not needed to run the experiment, AG can run ARSIG and, since E happened, extract the CDH
solution from the forgery.

Game 5: We again modify the winning conditions of ARSIG by: ARSIG loses the game if a valid
signature under SIGk can be extracted from the forgery.

Claim 5.7. For every λ and k, and every adversary ARSIG, there exists a ASIGk with T(ARSIG) ≈
T(ASIGk) and

Adveuf-cma
SIGk,ASIGk

(λ) := Pr
[
Expeuf-cma

SIGk,ASIGk
(λ) = 1

]
≥ AdvG4

ARSIG
(λ, k)− AdvG5

ARSIG
(λ, k) (24)

23

Proof. The proof proceeds similar to the proof of the last claim. Note that the signature oracle
provided by the EUF-CMA experiment can be used to answer ARSIG's queries to the oracle Sigk(sk

∗, ·).

So far, we made the following changes to the original security experiment.

Game 0: the Expr-euf-cma
RSIG,ARSIG

security experiment

Game 1: experiment uses signatures from SIGk to implement Sigk(sk
∗, ·)

Game 2: experiment switches last CRS to sound mode

Game 3: experiment simulates answers to Break-queries (from here, the experiment does not need to
know msk)

Game 4: ARSIG loses if he solves a CDH instance

Game 5: ARSIG loses if he breaks EUF-CMA security

Now let us determine the chances of ARSIG in winning game 5. If ARSIG does not know any of
the two witnesses, it follows from the perfect soundness of CRS ∗ that ARSIG can not output a valid
proof and therefore never wins game 5. Putting together equations 21-24 concludes our proof sketch
of Theorem 5.3.

5.3.1 Instantiation based on SCasc

Towards an instantiation of our scheme, we need to choose a concrete family PSk of NIWI proof
systems and a family SIGk of EUF-CMA signature schemes. We seek an interesting instantiation
where recon�guration of the PKI using a higher value of k (i.e., publishing a new CRS) leads to a
system with increased security.

For this purpose, PSk and SIGk should be based on a family of assumptions that (presumably)
become weaker as k grows such as the Dk-MDDH assumption families from [11]. The k-SCasc as-
sumption family seen in Section 2 is one interesting member of this class.

In the uniform adversary setting, [11, 16] shows that any Dk-MDDH assumption family is enough
to obtain a family of GS proof system PSk := (CRSGenPSk ,ProvePSk ,VerPSk) with computationally
indistinguishable CRS modes. More formally, one can show for any k that if Dk-MDDH holds w.r.t.
G, then for all PPT adversaries A, the advantage Advind-crsPSk,A(λ) := |Pr [A(CRSPSk) = mode] − 1

2 | is
negligible in λ, where CRSPSk ← CRSGenPSk(G) and G ← G(1λ). If we base the construction in
[11, 16] on the two-parameter variant of SCasc as de�ned in Section 4.2 (or of any other Dk-MDDH
assumption, which can be de�ned in a straightforward manner), we obtain a family of GS proof
systems as required by our RSIG scheme.

Very recently, the concept of a�ne MACs was introduced in [5]. Basing their construction on the
Naor-Reingold PRF, whose security follows from any Dk-MDDH assumption, we can now construct
a family of signature schemes SIGk, where for each k we have that SIGk is is EUF-CMA secure under
Dk-MDDH using the well-known fact that every PR-ID-CPA-secure IBE system implies an EUF-
CMA-secure signature system.7 Furthermore, we claim that using the same construction we can
obtain a family of signature schemes as required by using the two-parameter variant of SCasc (or of
any other Dk-MDDH assumption) as the underlying assumption.

7In fact, [5] constructs an IB-KEM. It is straightforward to verify that a PR-IDKEM-CPA secure IB-KEM scheme
also implies an EUF-CMA-secure signature scheme.

24

References

[1] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On
the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)

[2] Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of symmetric
encryption. In: Proceedings of FOCS 1997. pp. 394�403. IEEE Computer Society (1997)

[3] Bellare, M., Kilian, J., Rogaway, P.: The security of the cipher block chaining message authen-
tication code. J. Comput. Syst. Sci. 61(3), 362�399 (2000)

[4] Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Proceedings of CRYPTO
1999. pp. 431�448. No. 1666 in Lecture Notes in Computer Science, Springer (1999)

[5] Blazy, O., Kiltz, E., Pan, J.: (hierarchical) identity-based encryption from a�ne message au-
thentication. In: Proceedings of CRYPTO (1) 2014. pp. 408�425. No. 8616 in Lecture Notes in
Computer Science, Springer (2014)

[6] Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. In: Proceedings of
CRYPTO 2001. pp. 213�229. No. 2139 in Lecture Notes in Computer Science, Springer (2001)

[7] Boneh, D., Zhandry, M.: Multiparty key exchange, e�cient traitor tracing, and more from
indistinguishability obfuscation. In: Proceedings of CRYPTO (1) 2014. pp. 480�499. No. 8616
in Lecture Notes in Computer Science, Springer (2014)

[8] Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole in the bucket:
Public-key cryptography resilient to continual memory leakage. In: Proceedings of FOCS 2010.
pp. 501�510. IEEE Computer Society (2010)

[9] Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. J. Cryptology
20(3), 265�294 (2007)

[10] Di�e, W., van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated key exchanges.
Des. Codes Cryptography 2(2), 107�125 (1992)

[11] Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.L.: An algebraic framework for di�e-
hellman assumptions. In: Proceedings of CRYPTO (2) 2013. pp. 129�147. No. 8043 in Lecture
Notes in Computer Science, Springer (2013)

[12] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguisha-
bility obfuscation and functional encryption for all circuits. In: Proceedings of FOCS 2013. pp.
40�49. IEEE Computer Society (2013)

[13] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic
constructions. In: Proceedings of STOC 2008. pp. 197�206. ACM (2008)

[14] Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size group sig-
natures. In: Proceedings of ASIACRYPT 2006. pp. 444�459. No. 4284 in Lecture Notes in
Computer Science, Springer (2006)

[15] Groth, J., Sahai, A.: E�cient non-interactive proof systems for bilinear groups. In: Proceedings
of EUROCRYPT 2008. pp. 415�432. No. 4965 in Lecture Notes in Computer Science, Springer
(2008)

25

[16] Herold, G., Hesse, J., Hofheinz, D., Ràfols, C., Rupp, A.: Polynomial spaces: A new framework
for composite-to-prime-order transformations. In: Proceedings of CRYPTO (1) 2014. pp. 261�
279. No. 8616 in Lecture Notes in Computer Science, Springer (2014)

[17] Maurer, U.M., Yacobi, Y.: A non-interactive public-key distribution system. Des. Codes Cryp-
tography 9(3), 305�316 (1996)

[18] Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Pro-
ceedings of STOC 2005. pp. 84�93. ACM (2005)

[19] Sahai, A., Waters, B.: How to use indistinguishability obfuscation: Deniable encryption, and
more. Cryptology ePrint Archive, Report 2013/454 (2013), http://eprint.iacr.org/2013/454

[20] Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and
more. In: Proceedings of STOC 2014. pp. 475�484. ACM (2014)

[21] Shamir, A.: Identity-based cryptosystems and signature schemes. In: Proceedings of CRYPTO
1984. pp. 47�53. No. 196 in Lecture Notes in Computer Science, Springer (1984)

[22] Shoup, V.: Sequences of games: a tool for taming complexity in security proofs. IACR Cryptology
ePrint Archive 2004, 332 (2004), http://eprint.iacr.org/2004/332

[23] Waters, B.: E�cient identity-based encryption without random oracles. In: Proceedings of
EUROCRYPT 2005. pp. 114�127. No. 3494 in Lecture Notes in Computer Science, Springer
(2005)

26

http://eprint.iacr.org/2013/454
http://eprint.iacr.org/2004/332

	Introduction
	Preliminaries
	Definitions
	Constructions
	Reconfigurable Encryption from Indistinguishability Obfuscation
	Reconfigurable Encryption from SCasc

	Reconfigurable Signatures
	Preliminaries
	Definitions
	Reconfigurable Signatures from Groth-Sahai Proofs
	Instantiation based on SCasc

