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Abstract. Leakage resilient codes (LRCs) are probabilistic encoding schemes that guarantee message hiding
even under some bounded leakage on the codeword. We introduce the notion of fully leakage resilient codes
(FLRCs), where the adversary can leak some λ0 bits from the encoding process, i.e., the message and the ran-
domness involved during the encoding process. In addition the adversary can as usual leak from the codeword.
We give a simulation-based definition requiring that the adversary’s leakage from the encoding process and the
codework can be simulated given just λ0 bits of leakage from the message. For λ0 = 0 our new simulation-
based notion is equivalent to the usual game-based definition. A FLRC would be interesting in its own right and
would be useful in building other leakage-resilient primitives in a composable manner. We give a fairly general
impossibility result for FLRCs in the popular split-state model, where the codeword is broken into independent
parts and where the leakage occurs independently on the parts. We show that if the leakage is allowed to be
any poly-time function of the secret and if collision-resistant hash functions exist, then there is no FLRC for
the split-state model. The result holds only when the message length can be linear in the security parameter.
However, we can extend the impossibility result to FLRCs for constant-length messages under assumptions
related to differing-input obfuscation. These results show that it is highly unlikely that we can build FLRCs
for the split-state model when the leakage can be any poly-time function of the secret state. We then give two
feasibility results for weaker models. First, we show that for NC0-bounded leakage from the randomness and
arbitrary poly-time leakage from the parts of the codeword the inner-product construction proposed by Daví
et al. (SCN’10) and successively improved by Dziembowski and Faust (ASIACRYPT’11) is a FLRC for the
split-state model. Second, we provide a compiler from any LRC to a FLRC in the common reference string
model for any fixed leakage family of small cardinality. In particular, this compiler applies to the split-state
model but also to many other models.

Keywords. leakage-resilient cryptography, impossibility, fully-leakage resilience, simulation-based def-
inition, feasibility results

1 Introduction

Leakage-resilient codes (LRCs) (also known as leakage-resilient storages) allow to store safely a secret
information in a physical memory that may leak some side-channel information. Since their introduction
(see Davì et al. [DDV10]) they have found many applications either by their own or as building block
for other leakage and tamper resilient primitives. To mention some, Dziembowski and Faust [DF11]
proposed an efficient and continuous leakage-resilient identification scheme and a continuous leakage-
resilient CCA2 cryptosystem, while Andrychowicz et al. [AMP15] proposed a practical leakage-resilient
LPN-based version of the Lapin protocol (see Heyse et al. [HKL+12]) both relying on LRCs based on
the inner-product extractor. LRC found many applications also in the context of non-malleable codes (see
Dziembowski et al. [DPW10]), which roughly speaking can be seen as their tamper-resilience counter-
part. Faust et al. [FMVW14] showed a non-malleable code based on LRC, Aggarwal et al. [ADKO15]
proposed a construction of leakage and tamper resilient code and Faust et al. [FMNV14] showed con-
tinuous non-malleable codes based on LRC [FMNV14] (see also Jafargholi and Wichs [JW15]).

The security requirement of LRC states that given two messages, arbitrarily but bounded length leak-
age on the encoding of them is indistinguishable. Ideally, a good LRC should be resilience to a leakage
that can be much longer than the size of the message protected, however, to get such strong guarantee
some restriction on the class of leakage allowed must be set. Intuitively, any scheme where the adversary
can compute the decoding function as leakage cannot be secure. A way to fix this problem is to consider
randomly chosen LRCs. As showed in [DDV10], and successively improved in [FMVW14,JW15], for



any fixed set of leakage functions, there exists a family of efficiently computable codes such that with
high probability a code from this family is leakage resilient. From a cryptographic prospective, the re-
sults known in this direction can be interpreted as being in the “common reference string” model, where
the leakage class is set and, then, the LRC is sampled.

Another way, more relevant for our paper, is to consider the split-state model [DP08,HL11] where the
message is encoded in two (or more) codewords and the leakage happens adaptively but independently
from each codewords, thus the decoding function cannot automatically be part of the allowed leakage,
which opens the possibility of constructing a LRC.

It is easy to see that the encoding algorithm must be randomized, otherwise two fixed messages can
be easily distinguished. However, the security of LRC does not give any guarantee when there might be
leakage from the randomness used in the encoding process. In other words, while the encoded message
can be stored in a leaky device the encoding must be executed in a completely leak-free environment.
A stronger flavour of security where we allow some bounded leakage from also the encoding process is
sometimes called fully leakage resilience.

1.1 Our Contributions

We generalize the notion of LRC, namely to the setting of fully leakage resilience. Roughly speaking, a
fully leakage-resilient codes (FLRC) hide information about the secret message even when the adversary
leaked information during the encoding process. Our contributions can be summarized as follow:

1. We provide a simulation-based definition for fully leakage-resilient codes. The definition postulates
that for any adversary leaking λ0 bit from the encoding process and λ1 bits from the codewords there
exists a simulator which provide a view that is indistinguishable. The simulator is only allowed to
leak λ0 bits of information on the underlying message. Since the adversary can always just leak λ0

bits from the message, the simulator must of course also be allowed to leak λ0 bits from the message,
or the notion would be trivially impossible to instantiate. Our definition is therefore in some sense
the minimal one suitable for the fully leakage resilience setting. As a sanity check, our new notion
is implied by the indistinguishability-based definition of [DDV10] for λ0 = 0.

2. We show that there does not exist an efficient coding scheme in the split-state model that is a fully
leakage resilient code if the leakage function is allowed to be any poly-time function. Our result holds
for coding schemes where the messages length can be linear in the security parameter and under the
sole assumption that collision-resistant hash functions exist. We can generalise the impossibility
result to the case of constant-length messages under the much stronger assumption that differing-
input obfuscation exists (see [ABG+13,BCP14]).

3. We provide two feasibility results for weaker models. First, we show that, if the leakage from the
randomness is computable by bounded-depth constant fan-in circuits (i.e. NC0-computable leakage),
the inner-product extractor LRC of [DDV10] is fully leakage resilient. Secondly, we provide a com-
piler from any LRC to a fully leakage resilient code in the common reference string model for any
fixed leakage family of small cardinality.

Simulation-based Security. Consider the naive fully leakage-resilient extension of the indistinguish-
ability-based security definition of LRC. Roughly speaking, the adversary plays against a challenger
and it can leak λ0 > 0 bits from a random string ω←$ {0, 1}∗, successively the adversary sends to the
challenger two messages m0,m1, the challenger chooses a random bit b and encodes the message mb

using the randomness ω. After this, the adversary gets access to leakage from the codewords. We show
an easy attack. The attacker can compute via leakage function on the randomness the encoding of both
m0 and m1 and find a coordinate in which the two codewords differ, successively, by leaking from the
codeword only one bit, it can check whether m0 or m1 has been encoded.
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The problem is that the indistinguishability-based security definition for fully leakage resilient codes
sketched above concentrates on preserving, in the presence of leakage on the randomness, the same se-
curity guarantees of the (standard) leakage resilient definition. However, the ability of leaking before and
after the challenge generation, as showed for many other cryptographic primitive, gives to the adversary
too much power.

Following the leakage-tolerant paradigm introduced by Bitansky et al. [BCH12], we instead con-
sider a simulation-based notion of security. The definition postulates that for any adversary leaking λ0

bits from the encoding process and λ1 bits from the codewords there exists a simulator which provide
a view that is indistinguishable without knowing the underling message. Namely, the adversary chooses
one input message and forward it to the security game. After that the adversary can, sequentially, leak
from the encoding process and from the codeword. The job of the simulator is to produce an indistin-
guishable view of the leakage oracles to the adversary. It is not hard to see that, without any help, the
task is impossible. Since an adversary can in particular leak bits of the input message, if the input mes-
sage is randomly chosen the simulator trivially cannot provide an indistinguishable view. The definition
provides, therefore, oracle access on the message to the simulator. Specifically, the simulator can leak up
to λ0 bits from the message. The idea is that some information about the encoded message can unavoid-
ably leaked from the encoding process, however the amount of information about the message, even
after have seen the leakage on the codeword, does not exceed the bound on the leakage on the encoding
process.

The impossibility results. We give an impossibility result for FLRCs in the split-state model. Recall
that, in the split state model, the codeword is divided in two parts which are stored in two independent
leaky devices. Each leakage query can be any poly-time functions of the data stored in one of the parts.

In our attack we leak from the encoding process a hash of each of the two parts of the codeword. The
leakage function takes the message and the randomness, runs the encoding algorithm to compute the
two parts L ans R (the left part and the right part) and leaks two hash values hl = h(L) and hr = h(R).
Then we use succinct argument of knowledge systems to also leak an argument of knowledge of pre-
images L and R of hl and hr for which it holds that (L,R) decodes to m. Let λ0 be the length of
the two hashes and the succinct argument. After this leakage for the encoding process the adversary
uses its access to leak from L to leak, in sequence, several succinct arguments of knowledge of L such
that hl = h(L). Similarly the adversary uses its access to leak from R to leak, in sequence, several
succinct arguments of knowledge of R such that hr = h(R). By setting λ1 � λ0 we can within the
leakage bound λ1 on L and R leak for instance 12λ0 succinct arguments of knowledge of L and R.
If the code is secure there exists a simulator which can simulate the leakage of hl and hr and all the
arguments given at most λ0 bits of leakage on m. Since the arguments are accepting in the real world
and the simulator is assumed to be good it follows that the simulated arguments are accepting too with
probability close of 1. Since the simulator has access to only λ0 bits of leakage on m it follows that for
one of the 12λ0 simulated arguments produced by the simulator it uses the leakage oracle on m with
probability at most 1

4 . This means that with probability 3
4 the simulator is not even using the leakage

oracle to simulate this argument, so if we remove the access to leakage from m the argument will still
be acceptable with probability close to 3

4 . Hence if the argument systems has knowledge error just 1
2 we

can extract L from this argument with probability close to 1
4 . Similarly we can extract from one of the

arguments of knowledge of R the value R with probability 1
4 . By collision resistance and the argument

leaked from the encoding process it follows that (L,R) decodes to m. This means that we can extract
from the simulator the message m with probability 1

16 while using only λ0 bits of leakage on m. If m is
uniformly random and just λ0 + 5 bits long, this is a contradiction, as there is 5 bits on min-entropy on
m after leaking λ0 bits on m and hence m cannot be guessed with probability better than 2−5.

Similar proof techniques have been used already by Nielsen et al. [NVZ13] to prove connection
between leakage resilience and adaptive security and recently by Ostrovsky et al. [OPV15] to prove
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an impossibility result for certain flavours of leakage-resilient zero-knowledge proof systems. The way
apply this type of argument here is novel. It is in particular a new idea to use many arguments of knowl-
edge in sequence to sufficient restrict the simulators ability to leak from its leakage oracle in one of the
proofs.

The definition of FLR makes sense only when the leakage parameter λ0 is strictly smaller than the
size of the message. Notice that the proposed attack needs to leak at least a collision resistant hash
function of the codeword, which means that the length of the message needs to be super-logarithmic
in the security parameter. Thus the technique cannot be used directly to give an impossibility result
for constant-length message FLRC. We can overcome this problem relying on the concept of adaptive-
secure Predictable Argument of Knowledge (PAoK) recently proposed by Faonio et al. [FNV15]. An
adaptive-secure PAoK is an extremely succinct 2-message argument of knowledge where the prover can
first see the challenge from the verifier and then decide the instance. This allows the attacker to im-
plement the first check by just leaking a constant-length argument that the hashes of the two parts of
the codeword are well formed (without actually leaking the hash values) and then, successively, leak
the hash values from the codeword and check the validity of the argument. Adaptive-secure PAoK are
showen to imply extractable witness encryption (see Boyle et al. [BCP14]) and therefore the “implausi-
bility” result of Garg et al. [GGHW14] applies. We interpret our second impossibility result as a strong
evidence that constant-length FLRC are hard to construct.

The feasibility results. The ability to leak collision resistant hash functions of the randomness is nec-
essary for the impossibility result. A natural question follows. If we restrict the leakage class so that no
collision resistance hash function can be computed as leakage on the randomness, can we find a coding
scheme that is fully leakage resilient? We answer this question affirmatively. We consider the class NC0

of constant-depth constant fan-in circuits and we show that the LRC based on the inner-product extrac-
tor (and more general LRCs where there is an NC0 function that maps the randomness to the codeword)
are fully leakage resilient. The intuition is that NC0 leakage is not powerful enough to break all the
“independence” between the two parts of the codeword. Technically, we are able to cast every leakage
query on the randomness into two slightly bigger and independent leakage queries on the two parts
of the codeword. Notice that collision resistance hash functions cannot be computed by NC0 circuits.
This is necessary. In fact, proving a similar result for a bigger complexity class automatically implies a
lower bound on the complexity of computing either a collision resistant hash function or an argument of
knowledge. Intuitively, this provides a strong evidence that is hard to construct FLRC even for bounded
class of leakage.

A second path to avoid the impossibility results is to consider weaker models of security. We point
out that the schemes proposed by [DDV10,FMVW14,JW15] in the common reference string model can
be easily proved to be fully leakage resilient. Inspired by the above results we provide a compiler that
maps any LRC to a FLRC in the common reference string model. In this model the adversary is not
allowed to leak from the reference string during the encoding phase, while it still can leak from the
randomness. In practice one can imagine a situation in which the reference string is randomly chosen
and hardwired in the encoder using some leak-free components while the randomness can come from
a source subject to bounded-size leakage. Unfortunately, to apply this technique we still need to put
some limitation on the leakage class. However, the bound is on the cardinality of the leakage class and
not on its complexity (in principle, the leakage class could contain collision resistance hash functions).
The key idea is to apply a deterministic extractor on the randomness before using it inside the encoding
machine. Technically, we use a result of Trevisan and Vadhan [TV00] which proves that for any fixed
leakage class F a t-wise independent hash function (the parameter t depends on the cardinality of F) is
an extractor with high probability. The proof mostly follows the template given in [FMVW14].
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1.2 Related Work

Cryptographic schemes are designed under the assumption that the adversary cannot learn any informa-
tion about the secret key. However, side-channel attacks (see [Koc96,KJJ99,QS01]) have showed that
this assumption does not always hold. These attacks have motivated the design of leakage-resilient cryp-
tosystems which remain secure even against adversaries that may obtain partial information about the
secret state. Starting from the groundbreaking result of Micali and Reyzin [MR04], successively either
gradually stronger or different models have been consider (see for example [ADW09,DP08,FRR+10,NS09]).
Fully leakage resilient schemes are known for signatures [BSW13,FNV14,MTVY11], zero-knowledge
proof system [AGP14,GJS11,Pan14] and multi-party computation protocols [BDL14,BGK14]. Simi-
lar concepts of leakage resilient codes have been considered, Liu and Lysyanskaya [LL12] and suc-
cessively Aggarwal et al. [ADKO15] constructed leakage and tamper resilient codes while Dodis et
al. [DLWW11] constructed continual leakage resilient storage. Simulation-based definitions in the con-
text of leakage-resilient cryptography were also adopted in the case of zero-knowledge proof (see [AGP14,GJS11,Pan14]),
public-key encryption (see [HL11]) and signature schemes (see [NVZ14]). As mentioned already, our
proof technique for the impossibility result is inspired by the works of Nielsen et al. [NVZ13] and Ostro-
vsky et al. [OPV15], however, part of the analysis diverges, and instead resembles an information theo-
retic argument already known in leakage-resilient cryptography (see for example [ADW09,FNV14,KV09]).

2 Preliminaries

2.1 Notation and Probability Preliminaries

We let N denote the naturals and R denote the reals. For a, b ∈ R, we let [a, b] = {x ∈ R : a ≤ x ≤ b};
for a ∈ N we let [a] = {1, 2, . . . , a}. If x is a string, we denote its length by |x|; if X is a set, |X |
represents the number of elements in X . When x is chosen randomly in X , we write x← X . WhenA is
an algorithm, we write y ← A(x) to denote a run ofA on input x and output y; ifA is randomized, then
y is a random variable and A(x; r) denotes a run of A on input x and randomness r. An algorithm A is
probabilistic polynomial-time (ppt) ifA is allowed to use random choices and for any input x ∈ {0, 1}∗
and randomness r ∈ {0, 1}∗ the computation of A(x; r) terminates in at most poly(|x|) steps.

Let κ be a security parameter. A function negl is called negligible in κ (or simply negligible) if
it vanishes faster than the inverse of any polynomial in κ. For a relation R ⊆ {0, 1}∗ × {0, 1}∗, the
language associated withR is LR = {x : ∃w s.t. (x,w) ∈ R}.

For two ensemblesX = {Xκ}κ∈N, Y = {Yκ}κ∈N, we writeX
c
≈ε Y , meaning that every probabilis-

tic polynomial-time distinguisher D has ε(κ) advantage in distinguishing X and Y , i.e., 1
2 |Pr[D(Xκ) =

1]− Pr[D(Yκ) = 1]| ≤ ε(κ) for all sufficiently large values of κ.
We simply write X

c
≈ Y when there exists a negligible function ε such that X

c
≈ε Y . Similarly,

we write X ≈ε Y (statistical indistinguishability), meaning that every unbounded distinguisher has ε(κ)
advantage in distinguishing X and Y .

Given two ensembles X and Y such that X ≈ε Y the following holds:

1

2

∑
z

∣∣Pr[Xκ = z]− Pr[Yκ = z]
∣∣ 6 ε(κ).

We recall the notion of (average) conditional min-entropy. We adopt the definition given in [ADW09],
where the authors generalize the notion of conditional min-entropy to interactive predictors that partic-
ipate in some randomized experiment E. The conditional min-entropy of random variable X given any
randomized experiment E is defined as follows:

H̃∞ (X | E) = max
B

(
− logP

[
B()E = X

])
,
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where the maximum is taken over all predictors without any requirement on efficiency. Note that w.l.o.g.
the predictor B is deterministic, in fact, we can de-randomize B by hardwiring the random coins that
maximize its outcome. Sometimes we write H̃∞(X|Y ) for a random variable Y , in this case we mean
the average conditional min-entropy of X given the random experiment that gives Y as input to the
predictor.

Given a stringX ∈ {0, 1}∗ and a value λ ∈ N let the oracleOXλ (·) be the leakage oracle that accepts
as input functions f1, f2, . . . defined as polynomial-sized circuits and outputs f1(X), f2(X), . . . under
the restriction that

∑
i |fi(X)| 6 λ.

We recall here a lemma of Alwen et al. (see [ADW09]) that we make use of.

Lemma 1. For any random variableX and for any experiment E with oracle access toOXλ (·), consider
the experiment E′ which is the same as E except that the predictor does not have oracle access toOXλ (·),
then H̃∞ (X | E) > H̃∞ (X | E′)− λ.

We recall a lemma from Bellare and Rompel [BR94].

Lemma 2. Let t > 4 be an even integer. Suppose X1, . . . , Xn are t-wise independent random variables
taking values in [0, 1]. Let X :=

∑
iXi and define µ := E[X] to be the expectation of the sum. Then,

for any A > 0, Pr[|X − µ| > A] 6 8
(
tµ+t2

A2

)t/2
.

2.2 Cryptographic Primitives

Arguments of Knowledge. Our results are based on the existence of round-efficient interactive argu-
ment systems. We follow some of the notation of Wee [Wee05], the knowledge soundness definition is
taken from [OPV15].

Definition 1 (Argument of knowledge). An interactive protocol (P, V ) is an argument of knowledge
for a language L if there is a relation R such that L = LR := {x|∃w : (x,w) ∈ R}, and functions
ν, s : N→ [0, 1] such that 1− ν(κ) > s(κ) + 1/poly(κ) and the following conditions hold.

- (Efficiency): The length of all the exchanged messages is polynomially bounded, and both P and V
are computable in probabilistic polynomial time;

- (Completeness): If (x,w) ∈ R, then V accepts in (P (w), V )(x) with probability at least 1−ν(|x|).
- (Knowledge Soundness): For every ppt prover strategy P ∗, there exists an expected polynomial-time

algorithm K (called the knowledge extractor) such that for every x, z, r ∈ {0, 1}∗ if we denote by
p∗(x, z, r) the probability that V accepts in (P (z; r), V )(x), then p∗(x, z, r) > s(|x|) implies that

Pr[K(P ∗, x, z, r) ∈ R(x)] > p∗(x, z, r)− s(|x|).

The value ν(·) is called the completeness error and the value s(·) is called the knowledge error. We
say (P, V ) has perfect completeness if ν = 0. The communication complexity of the argument system
is the total length of all messages exchanged during an execution; the round complexity is the total
number of exchanged messages. We write AoKν,s(ρ(κ), λ(κ)) to denote interactive argument on knowl-
edge systems with completeness error ν, knowledge error s, round-complexity ρ(κ) and communication
complexity λ(κ). Sometimes we also write λ(κ) = λP (κ) + λV (κ) to differentiate between the com-
munication complexity of the prover and of the verifier. The protocol is called public-coin when the
verifier’s moves consist merely of tossing coins and sending their outcomes to the prover. A public-coin
argument system (P, V ) is fully described by the tuple of ppt algorithms (Prove, Judge) where:

- V on input x samples uniformly random strings y1, . . . , yρ(κ)←$ {0, 1}κ, P on inputs x,w samples
uniformly random string rP ←$ {0, 1}κ.

- For any i ∈ [ρ(κ)], V sends the message yi andP replies with the message xi := Prove(x,w, y1, . . . , yi; rP ).
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- The verifier V executes j := Judge
(
x, y1, . . . , yρ(κ), x1, . . . , xρ(κ)

)
and accepts if j = 1.

We say (P, V ) is succinct if λ(κ) is poly-logarithmic in the length of the witness and the statement being
proven.

Remark 1. The knowledge soundness property holds for any ppt prover, however, in what follows, we
execute the knowledge extractor machine on oracle machines. Abusing of notation, for a ppt oracle
prover P and deterministic polynomial time oracleO, when we say that we run the knowledge extractor
on PO, x, z, r, i.e. K(PO, x, z, r), implicitly we are defining a new ppt machine P̃ which runs internally
P and replies to the oracle queries q by running an instance of O(q) as subroutine.

Instantiations. Kilian [Kil92] constructs a 4-round public-coin succinct argument of knowledge for
NP based on a probabilistically checkable proof (PCP) system for NP and a collision-resistant function
ensemble. Gentry and Wichs [GW11] prove that non-interactive succinct arguments, so called SNARGs,
cannot exist given a black-box reduction to any falsifiable assumption. In fact, the only constructions of
SNARGs we know of are either based on the random oracle model of Bellare and Rogaway [BR93]
(as shows Micali [Mic00] by applying the Fiat-Shamir transform [FS86] to Kilian’s protocol) or under
so-called “knowledge of exponent” assumptions [BCCT12] or under so-called “extractable collision-
resistant hash functions” [BCC+14].

We remark that for our results interactive arguments are sufficient; in particular our theorems can be
based on the assumption that collision-resistant function ensembles exist.

Predictable Arguments of Knowledge. Recently, Faonio et al. [FNV15] put forward the notion of
Predictable Arguments of Knowledge (PAoK). The primitive, strictly connected with the concept of
Extractable Witness Encryption (see Ananth et al. [ABG+13]), is a 2-message argument of knowledge
system where the prover last message can be of constant size.

Specifically, we make use of an adaptive-secure PAoK. Such protocols are fully specified by a tuple
of three ppt algorithms Π = (Chall,Resp,TResp) as described below:

- V samples (c, tp)←$ Chall(1κ) and sends c to P .
(Notice that the generated tuple is independent of the instance.)

- P samples a←$ Resp(1κ, x, w, c) and sends a to V .
- V computes b := TResp(tp, x) and accepts if a = b, else rejects.

Roughly speaking, an adaptive-secure PAoK the malicious prover plays a game where it first see the
challenge c sent from the verifier and then selects the instance x and a valid answer for the instance. The
knowledge property states that for any adversary succeeding in the experiment with some non trivial
probability, there exists a knowledge extractor that outputs valid witnesses for the instances produced by
the malicious prover with roughly the same probability. We defer the security definition in Appendix B.

Collision Resistant Hash Functions. Let (GenCRH,EvalCRH) be a tuple of ppt algorithms such that upon
input 1κ the algorithm Gen outputs a evaluation key h and upon inputs h and a string x ∈ {0, 1}∗ the
deterministic algorithm EvalCRH outputs a string y ∈ {0, 1}`CRH(κ). We shorten the notation by writing
h(x) for EvalCRH(h, x).

Definition 2. A tuple (EvalCRH,GenCRH) is a collision-resistant hash function (family) with output length
`CRH(κ) if for any non-uniform polynomial time collision-finder adversary Bcoll there exists a negligible
function negl such that the following holds:

Pr
h←$ EvalCRH(1κ)

[
h(x0) = h(x1) ∧ x0 6= x1, (x0, x1) := Bcoll(h)

]
< negl(κ).

For simplicity we consider the model of non-uniform polynomial time adversaries, however, note that
our results hold also if we consider the model ppt adversaries.
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3 Definition

In this section we give the definition of fully leakage resilient code. The definition given is specialized
for the 2-split-state model, we adopt this definition instead of a more general one for simplicity. The
results given in Section 4 can be adapt to hold for the more general k-split-model (see Remark 2). LRCs
of [DDV10,FMNV14,JW15] in common reference string model can be proved to have a weak form of
fully-leakage resilience (see Section 5), in order to capture this we give a second weaker definition of
security. The syntax given allows the scheme to depends on a common reference string, so to include
the scheme of [LL12],

A (α, β)-split-coding scheme is a tuple Σ = (Gen,Enc,Dec) of ppt algorithms with the following
syntax:

- Gen on inputs 1κ outputs a common reference string crs.
- Enc on inputs crs and a message m ∈Mκ outputs a tuple (L,R) ∈ Cκ;
- Dec is a deterministic algorithm that on inputs crs and a codeword (L,R) ∈ Cκ decodes tom′ ∈Mκ.

Here Mκ = {0, 1}α(κ), Cκ =
(
{0, 1}β(κ) × {0, 1}β(κ)

)
and the randomness space of Enc is Rk =

{0, 1}p(κ) for a fixed polynomial p.
A split-coding scheme is correct if for any κ and anym ∈Mκ we have Prcrs,re [Dec(crs,Enc(crs,m; re)) =

m] = 1. In what follows, whenever it is clear from the context, we will omit the security parameter κ so
we will write α, β, etc. instead of α(κ), β(κ), etc.
Given a (α, β)-split-coding scheme Σ, for any A = (A0,A1) and any function λ0, λ1 let Realλ0,λ1A,Σ (κ)
be the following experiment:

Sampling Phase. The adversary A0 on input crs where crs←$ Gen(1κ) and randomness rA, outputs a
message m ∈ M and a state value st′. The challenger samples ω←$R and instantiates an oracle
Oω‖mλ0

.

Encoding Phase. The adversary A1 gets input st, the c̃rs and oracle access to Oω‖mλ0
. The adversary

notifies the challenger sending the message encode. The message is encoded, namely the chal-
lenger defines (L,R) = Enc(crs,m;ω) and instantiates the oracles OLλ1 , ORλ1 . The adversary A1

loses oracle access to Oω‖mλ0
and gains oracle access to OLλ1 and ORλ1 . 1

By overloading the notation, we let Realλ0,λ1A,Σ be also the tuple of random variables that describe the
view of A in the experiment:

Realλ0,λ1A,Σ :=


rA, crs,
lkω := (lk0

ω, lk
1
ω, . . . , lk

t
ω),

lkL := (lk0
L, lk

1
L, . . . , lk

t′
L),

lkR := (lk0
R, lk

1
R, . . . , lk

t′′
R )

 ,

where lkiX := OX(f iX) with X ∈ {ω‖m,L,R} and f iX is the i-th oracle query made by A to the
leakage oracle OX .
For any A and any S let Idealλ0,λ1A,S (κ) be the following experiment:

Sampling Phase. The simulator S on input 1κ produces c̃rs, the adversary A0 on input c̃rs, outputs a
message m ∈M and a state value st. The experiment instantiates an oracleOmλ0 . The simulator gets
oracle access to Omλ0 .

1 We can also consider a strong notion, where the adversary does not lose access to Oω‖m
λ0

after gaining access to OL
λ1

and
OR
λ1

.
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Encoding Phase. The adversary A1 gets input st′, the c̃rs and oracle access to the simulator S. Tech-
nically, the adversary A1 gets access first to one interface for S (i.e. the simulated Oω‖mλ0

), after the
adversary sends the message encode to the challenger it gets access to two interfaces for S (i.e.
simulated OLλ1 and simulated ORλ1).

As we did with Realλ0,λ1A,Σ we denote with Idealλ0,λ1A,S also the tuple of random variables that describe the
view of A in the experiment. To mark the distinction between the real experiment and ideal experiment
we upper script the components of the ideal experiment with a tilde, namely:

Idealλ0,λ1A,S =
(
r̃A, c̃rs, l̃kω, l̃kL, l̃kR

)
Given a class of leakage functions Λ we say that an adversary is Λ-bounded if it submits to Oω‖mλ0

only
functions f ∈ Λ.

Definition 3 (Simulation-based Λ-fully leakage resilient code). A (α, β)-split-coding scheme is said
to be (Λ, λ0, λ1, ε)-FLR-sim-secure if for any ppt adversary A that is Λ-bounded there exists a ppt
simulator S: {

Realλ0,λ1A,Σ (κ)
}
κ∈N

c
≈ε
{
Idealλ0,λ1A,S (κ)

}
κ∈N

.

Let P/poly be the set of all polynomial-sized circuits.

Definition 4 (Simulation-based fully leakage resilient code). A (α, β)-split-coding scheme is said
to be (λ0, λ1, ε)-FLR-sim-secure if it is (P/poly, λ0, λ1, ε)-FLR-sim-secure. We simply say that a split-
coding scheme is (λ0, λ1)-FLR-sim-secure if there exists a negligible function negl such that the scheme
is (λ0, λ1, negl)-FLR-sim-secure.

In Appendix A we recall the game-based definition and we prove formally that FLR-sim-security is
implied by the definition of [DDV10] for λ0 = 0.

Given a (α, β)-split-coding scheme Σ, for anyA = (A0,A1) and any function λ0, λ1 let wRealλ0,λ1A,Σ (κ)

be an experiment equivalent to Realλ0,λ1A,Σ (κ) but where the Sampling Phase is substituted by the follow-
ing:

Sampling Phase’. The adversary A0 on input 1κ and randomness rA, outputs a message m ∈ M and
a state value st′. The challenger samples ω←$R and instantiates an oracle Oω‖mλ0

.

Notice that crs is still included in the random variable wRealλ0,λ1A,Σ , however the view generated before
A1 sends the message encode is independent from it.

Similarly, for any A and any S let wIdealλ0,λ1A,S (κ) an experiment equivalent to Idealλ0,λ1A,S (κ) but
where the Sampling Phase is substituted by the following:

Sampling Phase’. The simulator S on input 1κ produces c̃rs, the adversary A0 on input 1κ outputs a
message m ∈ M and a state value st. The experiment instantiates an oracle Omλ0 . The simulator S
gets oracle access to Omλ0 .

Definition 5 (Simulation-based Λ-weak-fully leakage resilient code). A (α, β)-split-coding scheme
is said to be (Λ, λ0, λ1, ε)-weak-FLR-sim-secure if for any ppt adversary A that is Λ-bounded there
exists a ppt simulator S: {

wRealλ0,λ1A,Σ (κ)
}
κ∈N

c
≈ε
{
wIdealλ0,λ1A,S (κ)

}
κ∈N

.
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4 Impossibility Results

In this section we show the main result of this paper. Throughout the section we let the class of leakage
functions be Λ = P/poly. We prove that (α, β)-split-coding schemes that are (λ0, λ1)-FLR-sim-secure
don’t exist for many interesting parameters of α, β, λ0 and λ1. We start with the case α(κ) = Ω(κ), the
impossibility results holds under the only assumption that collision resistant hash function exists. For the
case α(κ) = O(1), the impossibility results holds under the stronger assumption that adaptive-secure
PAoK exists.

Theorem 1. If public-coin AoK1/2,negl(κ)(O(1), `AoK(κ)) for NP and collision-resistant hash functions
with output length `CRH(κ) exist then for any λ0 > `AoK(κ) + 2 · `CRH(κ) for any (α, β)-split-coding
scheme Σ with α(κ) > λ0(κ) + `CRH(κ) + 7 and if λ1(κ) > (17λ0(κ)) · `AoK(κ) then Σ is not
(λ0, λ1)-FLR-sim-secure.

Proof. We first set some necessary notation. Given a random variable x we use the notation x̄ to refer to
a possible assignment of the random variable. Let Π be in AoK1/2,negl(κ)(O(1), `AoK(κ)) and a public-
coin argument system for NP. For concreteness let ρ be the round complexity of the Π . For any i ∈ [ρ]
let POleak(x, y1, . . . , yi; rp) be a prover for Π which has oracle access to a leakage oracle O and which
queries the oracle with the function lk(w) := Prove(x,w, y1, . . . , yi; rp) and outputs the answer given
by the oracle. Let (GenCRH,EvalCRH) be a collision resistant hash function with output length `CRH(κ).
Consider the adversary A′ = (A′0,A′1) that does the following:

1. Pick a collision resistant hash function h← GenCRH(1κ);
2. Pick m←$M and send it to the challenger;
3. Compute h(m).

This ends the code ofA′0, formally,A′0(1κ) outputs m that is forwarded to the experiment which instan-
tiates a leakage oracle Omλ0 , also A′0(1κ) outputs the state st := (h, h(m)).

4. Leak from Oω‖mλ0
the value hl = h(L), hr = h(R);

5. Leak from Oω‖mλ0
an argument of knowledge for the relation

Rst :=

(xcrs, xl, xr, xm), (wl, wr) :
h(wl) = xl
h(wr) = xr

h(Dec(ccrs, wl, wr)) = xm


with instance (crs, hl, hr, h(m)). If the verification fails then abort.
Technically, let rp be a random string long enough to specify all random choices done by the prover.
For j ∈ [ρ] do the following:
(a) Sample a random string yj ←$ {0, 1}κ;

(b) Execute zj := P
Oω‖mλ0
leak

(
(hl, hr, h(m)), y1, . . . , yj ; rp

)
.

Let π0 := y1, . . . , yρ, z1, . . . , zρ, if Judge
(
(hl, hr, h(m)), π0

)
= 1 then continue, otherwise abort.

6. For τ := 17λ0 many times leak fromOLλ1 a (succinct) AoK for the relationRhash := {(y, x) : h(x) = y}
with instance hl. If the verification fails then abort.
The procedure is similar to the step above, the adversary runs the protocol as verifier with an instance

of P
OLλ1
leak (hl), let πLi be the transcript produced, the adversary aborts if Judge(hl, πLi ) = 0. Send the

message encode.
7. For τ many times leak from ORλ1 a (succinct) AoK for the relationRhash with the instance hr. If the

verification fails then abort.
As before, the adversary runs the protocol as verifier with an instance of P

ORλ1
leak (hr) the adversary

aborts if Judge(hl, πRi ) = 0 where let πRi is the transcript produced.
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Consider the following randomized experiment E:

– Pick uniformly random m←$M and h←$ GenCRH(1κ) and set st = (h, h(m)) and forward to the
predictor the state st.

– Instantiate an oracle Omλ0 and give access to the predictor to it.

Lemma 3. H̃∞(m | E) > α− `CRH − λ0.

Proof. Consider the experiment E′ which is the same as E except that the predictor’s input is h (instead
of (h, h(m))). We apply Lemma 1:

H∞ (m | E) > H∞
(
m | E′

)
− `CRH.

Consider the experiment E′′ which is the same as E′ except that the predictor’s oracle access to Oω‖mλ0
is removed. We apply Lemma 1:

H∞
(
m | E′

)
> H∞

(
m | E′′

)
− λ0.

In the last experiment E′′ the predictor has no information about m, therefore:

H∞
(
m | E′′

)
= log |M| = α.

ut

Lemma 4. If Σ is a (λ0, λ1)-FLR-sim-secure then H̃∞(m|E) 6 6.

Proof. Assume that Σ is an (λ0, λ1, ε)-FLR-sim-secure split-coding scheme for a negligible function ε.
Since A′ is ppt there exists a ppt simulator S ′ such that:

{Realλ0,λ1A′,Σ (κ)}κ
c
≈ε(κ) {Ideal

λ0,λ1
A′,S′ (κ)}κ. (1)

For the sake of the proof we first build a predictor which is given (h, h(m)) and tries to guess m.
We then use this predictor to prove the lemma. Let K be the extractor given by the knowledge soundness
property of the argument of knowledge for the relation Rhash. Consider the following predictor B that
takes as input (h, h(m)) and has oracle access to Omλ0 :

1. Pick two random tapes ra, rs for the adversary A′1 and the simulator S ′ and run both of them (with
the respective randomness ra, rs) connecting the oracle accesses of A′1 to the interfaces of S ′ and
forwarding the queries of S ′ to the oracle Omλ0 . The adversary A′1 starts by leaking the values hl, hr
and an argument of knowledge forRst.

2.L. The predictor tries to compute L′ using the knowledge extractor K. Formally, for any i ∈ [τ ], let
s̄tLi be the actual internal state of S ′ during the above run of S ′ and A′1 just before the i-th iteration
of step 6 of A′1. Let S ′i be a copy of S ′ with internal state sets to s̄tLi . Abusing notation, we use

PS
′
i

leak to denote the prover which queries the interface of S ′i for OLλ1 , i.e., the message sent by PS
′
i

leak
is computed by calling S ′i as if it was a leakage oracle and with the leakage functions being the
functions computing the messages that the prover would send in a proof of knowledge of a preimage
L′ of hl. Notice that when S ′i is run it might make an oracle query on its interface for Omλ0 . When

this happens PS
′
i

leak will intercept the query and will not try to simulate Omλ0 to S ′i. Instead, whenever

S ′i queries Omλ0 the program PS
′
i

leak will take the reply from S ′i to be some dummy string, say the

all-zero string. This ensures that PS
′
i

leak makes no further leakage queries to Omλ0 . The predictor runs

the knowledge extractor K on the prover PS
′
i

leak(hl), which outputs a value L′ or aborts. If hl = h(L′)

11



then return L′ otherwise the i-th extraction is said to abort. If all the extractions abort, the predictor
aborts. 2

2.R. The predictor computes R′ using the knowledge extractor K. The procedure is the same of step 2.L
of the predictor, for notational completeness let us denote with stRi the internal state of S ′ just before
the i-th iteration of step 7.

3. The predictor outputs m′ := Dec(L′, R′) as its own guess.

We compute the probability that B predicts m correctly. We set up some useful notation:

– Let ExtL (resp. ExtR) be the event that K successfully extracts a value L′ (resp. R′).
– Let CohSt be the event {h(Dec(L′, R′)) = h(m)} .
– Let Coll be the event {h(Dec(L′, R′)) = h(m) ∧ Dec(L′, R′) 6= m}..

Recall that m′ := Dec(L′, R′) is the guess of B. We can easily derive that:

Pr
[
m′ = m

]
= Pr

[
ExtL ∧ ExtR ∧ CohSt ∧ ¬Coll

]
(2)

In fact, ExtL and ExtR imply that L′ and R′ are well defined and the event (CohSt∧¬Coll) implies that
Dec(L′, R′) = m.

Claim 1 Pr[ExtL] > 1
4 − negl(κ).

Proof. Consider the execution of step 6 between the adversary and the simulator. Let s̄t = s̄tL1 , . . . , s̄t
L
τ ∈

{0, 1}∗ be a fixed observed value of the states of S ′ in the different rounds, i.e., s̄tLi is the observed state
of S ′ just before the i-th iteration in step 6.

We define a probability FreeL(s̄tLi ) of the simulator not asking a leakage query in round i, i.e., the
probability that the simulator queries its leakage oracle if run with fresh randomness starting in round
i. We can assume without loss of generality that the randomness rS of the simulator is part of s̄tLi .
Therefore the probability is taken over just the randomness rA of the adversary, m, h and the challenges
used in the proof in round i. Notice that even though it might be fixed in s̄t = s̄tL1 , . . . , s̄t

L
τ whether

or not the simulator leaked in round i (this information might be contained in the final state s̄tLτ ), the
probability FreeL(s̄tLi ) might not be 0 or 1, as it is the probability that the simulator will leaked in round
i if we would rerun round i with fresh randomness of the adversary consistent with s̄tLi .

Now let s̄t = s̄tL1 , . . . , s̄t
L
τ ∈ {0, 1}∗ be a fixed observed value of the states of S ′ in the different

rounds. Let Good(s̄t) be a function which is 1 if

∃i ∈ [τ ] : FreeL(s̄tLi ) >
3

4

and which is 0 otherwise. 3 After having defined Good(s̄t) relative to a fixed observed sequence of
states, we now apply it to the random variable st describing the states of S ′ in a random run. When
applied to this random variable, we write Good.

We can use the law of total probability to condition the extraction event to the event {Good = 1}:

Pr[ExtL] > Pr[ExtL |Good] · Pr[Good] . (3)

2 To get an intuition why this might work, notice that in the real world the proof given by the prover hardcoded into the
leakage function has soundness essentially 1. Hence if we ran S ′i and actually gave it access to query Om

λ0
, then S ′i we

would also return a proof which is accepted with probability close to 1. Hence, if the probability that S ′i queries Om
λ0

is for

instance less than 1
4

, then PS
′
i

leak returns a valid proof with probability negligibly close to 3
4

. So, if the proof system has error

soundness just 1
2

, then because 3
4
> 1

2
we can extract a preimage L′ of hl from PS

′
i

leak. So, the extraction fails only if S ′i
called the leakage oracle with probability more than 1

4
in each iteration. By design this would lead it to violate the leakage

bound except with negligible probability.
3 Intuitively, Good is an indicator for a good event, that, as we will show, has overwhelming probability.
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We will now focus on bounding Pr[ExtL |Good] · Pr[Good]. We first bound Pr[Good] and then bound
Pr[ExtL |Good].

We first prove that
Pr[Good] = 1− negl(κ) .

Too see this notice that the simulator by the rules of the game never queries its leakage oracle in more
than λ0 rounds: it is not allowed to leak more than λ0 bits and each leakage query counts as at least
one bit. Therefore there are at least τ − λ0 rounds in which the simulator did not query its oracle. If
Good = 0, then in each of these rounds the probability of leaking, before the round was executed, was
at least 1

4 and hence the probability of not leaking was at most 3
4 . We can use a union bound to bound

the probability of observing this event

Pr[Good = 0] ≤
(

τ

τ − λ0

)(
3

4

)τ−λ0
≤
(
τ

λ0

)
2log2(3/4)(τ−λ0) .

We now use that τ = 17λ0 and that it holds for any constant c ∈ (0, 1) that limn→∞
(
n
cn

)
= 2H2(c),

where H2 is the binary entropy function. We get that

Pr[Good = 0] ≤ 2H2(1/17)17λ02log2(3/4)16λ0 = (2H2(1/17)17+log2(3/4)16)λ0 < 2−λ0 .

We now bound Pr[ExtL |Good]. Let ExtL(i) be the event that K successfully extracts the value L′

at the i-th iteration of the step 6 of the adversary A′. Let AcceptL(i) be the event that PS
′
i

leak gives an
accepting proof. It follows from knowledge soundness of Π that

Pr
[
ExtL(i)|Good

]
> Pr

[
AcceptL(i)|Good]− 1

2 .

Let LeakL(i) be the event that the simulator queries its leakage oracle in round i. Then also holds
for all i that

Pr
[
AcceptL(i)|Good] ≥ 1− Pr

[
LeakL(i)|Good

]
− negl(κ) .

To see this assume that we would actually give the simulator access to the leakage oracle instead of
aborting when it queries the oracle. In that case it gives acceptable proof with probability 1 − negl(κ)
as the prover gives an acceptable proof in the real world and the simulator simulates the real world up
to negligible difference. Furthermore, aborting when the simulator queries its oracle can only make a
difference when it actually queries, which happens with probability Pr[LeakL(i)]

Combining the above inequalities we get that

Pr
[
ExtL(i)|Good

]
> 1− Pr

[
LeakL(i)

∣∣Good]− negl(κ)− 1
2 .

When Good = 1 there exists some round i∗ such that

FreeL(s̄tLi∗) >
3

4
,

which implies that

Pr
[
ExtL(i∗)|Good

]
>

3

4
− negl(κ)− 1

2
.

Clearly ExtL(i∗) implies ExtL, so we conclude that Pr
[
ExtL|Good

]
> 1

4 − negl(κ).

Claim 2 Pr[ExtR|ExtL] > 1
4 − negl(κ).

The proof proceeds similar to the proof of the last claim, therefore it is omitted. The reason why the con-
dition ExtL does not matter is that proof exploits essentially only the knowledge soundness of the proof
system. Whether the extraction of the of the left part succeeded or not does not remove the knowledge
soundness of the proofs for the right part, which are done after the proof for the left part.
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Claim 3 Pr[CohSt |ExtL ∧ ExtR] > 1
2 − negl(κ).

Proof. We reduce to the collision resistance property of h and the knowledge soundness of the argument
system Π , Suppose that

Pr[h(Dec(L′, R′)) 6= h(m) |ExtL ∧ ExtR] > 1/poly(κ)

Consider the following collision finder adversary Bcoll(h):

– Sample uniformly random m←$M and random h←$ GenCRH(1κ);
– Run an instance of the predictor BO

m
λ0 (h, h(m)), the predictor needs oracle access toOmλ0 which can

be simulated by Bcoll(h).
– Let L′, R′ as defined by the execution of the predictor B and let ra, rs be the same randomness

picked by B in its step 1. Simulate an execution of A′1(h, h(m); ra) and S ′(1κ; rs) and break them
just before the adversary leaks an argument of knowledge for Rst. Let S ′′ be the a copy of the
simulator with the internal state set as after the break, and oracle access to Omα .

– Run the knowledge extractor Kst on the prover PS′′leak

(
(h(L′), h(R′), h(m))

)
. Let L′′, R′′ the witness

output by the extractor.
– If L′ 6= L′′ output (L′, L′′) else (R′, R′′).

It easy to check that Bcoll simulates perfectly the randomized experiment E therefore:

Pr[h(Dec(L′, R′)) 6= h(m)] >

> Pr[h(Dec(L′, R′)) 6= h(m) |ExtL ∧ ExtR] Pr[ExtL ∧ ExtR] >

> 1/poly(κ) · ( 1
16 − negl(κ))

On the other hand, the extractor Kst succeeds with probability at least 1 − negl(κ) − 1
2 . Therefore, L′′

and R′′ are such that h(L′′) = h(L′), h(R′′) = h(R′) and h(Dec(L′′, R′′)) = h(m). The latter implies
h(Dec(L′, R′)) 6= h(Dec(L′′, R′′)) which implies that either L′′ 6= L′ or R′′ 6= R′. Lastly, notice that
Bcoll is an expected polynomial time algorithm, however we can make it polynomial time by aborting if
the number of step exceed some fixed polynomial, by setting the polynomial big enough the probability
of Bcoll finding a collision is still noticeable.

Claim 4 Pr
[
Coll |CohSt ∧ ExtL ∧ ExtR

]
6 negl(κ).

Remind that Coll is the event that h(m) = h(m′) but m 6= m′. It can be easily verified that under
collision resistance of h the claim holds, therefore the proof is omitted.

Summarizing, we have:

Pr[m′ = m] = Pr
[
ExtL ∧ ExtR ∧ CohSt ∧ ¬Coll

]
>

> ( 1
16 − negl(κ)) · (1

2 − negl(κ)) · (1− negl(κ)) > 1
64 .

which implies the statement of the lemma.

We conclude the proof of the theorem noticing that, ifΣ is (λ0, λ1)-FLR-sim-secure split-coding scheme
by the parameter given in the statement of the theorem we have that Lemma 3 and Lemma 4 are in
contraction. ut

Remark 2. The result can be generalized for a weaker version of the split-state model where the code-
word is split in many parts. It’s not hard to see that the probability that the predictor in Lemma 4 guesses
the message m degrades exponentially in the number of splits (the adversary needs to leak one hash for
each split and then executes step 6 for any split). Therefore, the impossibility holds when the number of
splits is o((α− λ0)/`CRH). We present the theorem, as stated here, for sake of simplicity.
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4.1 The case of constant-size message.

Theorem 2. If public-coin AoK1/2,negl(κ)(O(1), `AoK(κ)) for NP, adaptive-secure PAoK for NP with
answer length 1 and collision-resistant hash functions with output length 1 exist then for any λ0 > 1 for
any (α, β)-split-coding scheme Σ with α(κ) > 7 and if λ1(κ) > (17λ0(κ)) · `AoK(κ) it holds that Σ is
not (λ0, λ1)-FLR-sim-secure.

In what follows we give a sketch of the proof of Theorem 2 stressing mainly on the main differences
with the proof of Theorem 1. The formal proof is given in Appendix B.

Proof (Sketch.). Consider the adversaryA′ = (A′0,A′1) which is the same of Theorem 1 but steps 3 and
4 are substituted by the following:

3. Sample (c, tp)←$ Chall(1κ) and leak from Oω‖mλ0
the function which compute the response

f0(ω‖m) := Resp( (Enc(crs,m;ω),m), Enc(crs,m;ω), c),

in a proof for the relationR as defined below:(hl, hr,m), (L,R) :
h(L) = hl
h(R) = hr

Dec(L,R) = m

 .

Let lk0 be the oracle answer.
4. Send the message encode. Leak from OLλ1 (resp. ORλ1) the value hl = h(L) (resp. hr = h(R)).

Check if TResp(tp, (hl, hr,m)) = lk0, abort if not.

Consider the following randomized experiment E:

– Pick uniformly random m←$M and h←$ GenCRH(1κ) and forward to the predictor the value h.
– Instantiate an oracle Omλ0 and give the predictor access to to it.

Lemma 5. H∞(m|E) > |m| − λ0.

The only difference from Lemma 3 is that the experiment E does not feed the predictor with the value
h(m).

Lemma 6. If Σ is an (λ0, λ1)-FLR-sim-secure then H̃∞(m|E) 6 6.

The proof of the lemma follows the same line of Lemma 4. Notice that in the experiment E the predictor
does not get input m (which is trying to predict!), so it cannot fully emulate the adversary A′, therefore
we consider an adversaryA′′ which is equivalent toA′ but does not check that TResp(tp, (hl, hr,m)) =
lk0 (in the case the condition holds we say that lk0 is valid). The predictor, similar to Lemma 4, simulates
the interactions between A′′ and S ′ (the simulator for A′) and then extracts the values L and R.

Notice that the description of the leakage function f0 is independent of the message m as provided
by the syntax of adaptive-secure PAoK and, conditioned on lk0 is valid, the interactions between A′
and S ′ and the interactions between A′′ and S ′ are indistinguishable. Moreover, the event happens with
overwhelming probability.

5 Feasibility Results

In this section we give two feasibility results for weaker models of security.
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5.1 The Inner-Product Extractor is a NC0-Fully LR Code

We start by giving a well-known characterization of the class NC0.

Lemma 7. Let f ∈ NC0 where f :=
(
fn : {0, 1}n → {0, 1}m(n)

)
n∈N for a function m. For any n

there exists a value c = O(m), a set {i1, . . . , ic} ⊆ [n] of indexes and a function g such that for any
x ∈ {0, 1}n,

f(x) = g(xi1 , xi2 , . . . , xic).

The lemma above shows that any function in NC0 with output length m such that m(n)/n = ω(1)
cannot be collision resistant, because an adversary can guess an index i /∈ {i1, . . . , ic} and output
0n, (0i−1‖1‖0n−i) as collision.

Let F be a finite field and let ΦnF = (Enc,Dec) be as follows:

- Enc on input m ∈ F picks uniformly random L,R←$ Fn under the condition that 〈L,R〉 = m.
- Dec on input L,R outputs 〈L,R〉.

Theorem 3 (from [DF11]). The encoding schemeΦnF as defined above for |F| = Ω(κ) is a (0, 0.3·|Fn|)-
FLR-SIM-secure for n > 20.

We will show now that the scheme is also fully leakage resilient for NC0-bounded adversaries.

Theorem 4. For any n ∈ N and n > 20 there exists a positive constant δ ∈ R such that, for any λ0, λ1

such that δ · λ0 + λ1 < 0.3 · |Fn| the encoding scheme ΦnF is (NC0, λ0, λ1)-FLR-SIM-secure.

Proof. Given a vector X ∈ Fn let bit(X)i be the i-th bit of a canonical bit-representation of X . Given
A = (A0,A1) we define a new adversary A′ that works as follow:

0. Instantiate an execution of (m, st)←$A0(1κ);
1. Execute A1(st) and reply to the leakage oracle queries it makes as follow:

- Upon leakage query f toOω‖mλ0
, let I be the set of indexes such that f depends on I only. Define

IL := I ∩ [qn] and IR := I ∩ [qn+ 1, 2qn]. Leak from OL
λ1

(resp. from OR
λ1

) the values bit(L)i
for i ∈ IL (resp. bit(L)i for i ∈ IR) and hardwire such values and evaluate the function f on
input m. Namely, compute lkf := f((bit(L)i)i∈IL , (bit(R)i)i∈IR ,m) and forward it back to
A1(st).

- Upon leakage query f to OL
λ1

or OR
λ1

proxy the leakage query to the appropriate oracle.

W.l.o.g. assume that every leakage query to Oω‖mλ0
has output length 1 and that the adversary makes

exactly λ0 queries. By Lemma 7 there exists a constant δ ∈ N such that for the i-th leakage query made
by A to Oω‖mλ0

the adversary A′ leaks δ bits from OL
λ1
,OR

λ1
. By construction:

{Realλ0,λ1A,ΦnF
(κ)}κ∈N ≡ {Real0,λ1+δ·λ0

A′,ΦnF
(κ)}κ∈N .

Let S ′ be the simulator for the adversary A′ as provided by Theorem 3, thus:

{Real0,λ1+δ·λ0
A′,ΦnF

(κ)}κ∈N ≈negl(κ) {Ideal
0,λ1+δ·λ0
A′,S′ (κ)}κ∈N.

Let S be defined as the machine that runs the adversary A′ interacting with the simulator S ′ instead of
its own oracles. Notice that:

{Ideal0,λ1+δ·λ0
A′,S′ (κ)}κ∈N ≡ {Idealλ0,λ1A,S (κ)}κ∈N.

This conclude the proof of the Theorem. ut
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Remark 3. The proof exploits only marginally the structure of ΦnF. It is not hard to see that the theorem
can be generalized for any coding scheme (Gen,Enc,Dec) where for any message m ∈M the function
Enc(m; ·) is invertible in NC0. We present the theorem, as stated here, only for sake of concreteness.

Remark 4. The construction is secure under the slightly stronger definition where the adversary does
not lose access to Oω‖mλ0

after gaining access to OL
λ1

and OR
λ1

.

5.2 A Compiler from LRC to weak FLRC.

Given a (α, β)-split-coding scheme Σ = (Gen,Enc,Dec) with randomness space R, let Hr,t denote a
family of efficiently computable t-wise independent hash function with domain {0, 1}r and co-domain
R.

We define Σ′ = (Gen′,Enc′,Dec′ := Dec) as follow:

– Gen′ on input 1κ executes crs←$ Gen(1κ) and samples a function h←$Hr,t. It outputs crs′ =
(h, crs).

– Enc′ on input a message m ∈ M and (crs, h) picks a random string ω←$R′ and returns as output
Enc(crs,m;h(ω)).

Theorem 5. For any encoding scheme Σ and any leakage class F , if Σ is (0, λ1, ε)-FLR-SIM-secure
then Σ′ is (F , λ0, λ1, 3ε)-weak-FLR-SIM-secure for any 0 6 λ0 < α whenever:

r > λ0 + λ1 + 2 log(1/ε) + log(t) + 3,

t > λ0 · log |F|+ α+ λ0 + λ1 + 2 log(1/ε).

Proof. Given an adversaryA′ againstΣ′, we define an adversaryA againstΣ. LetA be a ppt adversary
defined as follow:

0. Pick at random h′←$Hr,t, run A′0(1κ) which outputs m, st and pick a random string ω←$R.
1. Run A′1(st, (crs, h′)), upon leakage oracle query f to Oω‖mλ0

from A′1 reply forwarding f(ω‖m).
When A′1 sends the message encode forward the message to the challenger. Upon leakage oracle
queries to either OL

λ1
or OR

λ1
from A′1 proxy the query to the proper oracle.

W.l.o.g. the adversaryA′ queries a sequence of λ0 functions f1, . . . , fλ0 toOω‖mλ0
. Let f ∈ Fλ0 be such

a sequence.

Claim 5
{
wRealλ0,λ1A′,Σ′(κ)

}
κ∈N ≈2ε

{
h′,f(ω‖m),Real0,λ1A,Σ(κ)

}
κ∈N.

Before proceeding with the proof of the claim we show how the theorem follows.
Let S be the simulator for the adversary A as given by the hypothesis of the theorem:

{Real0,λ1A,Σ(κ)}κ∈N
c
≈ε(κ) {Ideal

0,λ1
A,S (κ)}κ∈N. (4)

Let S ′ be defined as the adversary A which interacts with the simulator S instead of its own oracles.
Notice that S ′ does not get the message m, however can forward the functions fi(ω‖ · ) for i ∈ [λ0] to
its own oracle Omλ0 , also notice that4:

Idealλ0,λ1A′,S′ (κ) ≡
(
h′,f(ω‖m), Ideal0,λ1A,S (κ)

)
.

It follows from a simple reduction to Eq. (4) that:{
h′,f(ω‖m),Real0,λ1A,Σ(κ)

} c
≈ε(κ)

{
h′,f(ω‖m), Ideal0,λ1A,S (κ)

}
.

We conclude by applying the Claim 5 to the left hand side of the equation above. ut

4 To be precise, the equation is true if the variables are reordered properly.
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Proof (of the claim). We prove that the event{
wRealλ0,λ1A′,Σ′(κ)

∣∣h = h′
}
≈ε
{
h′,f(ω‖m),Real0,λ1A,Σ(κ)

}
holds with probability (1 − ε) over h′←$Hr,t(1κ), which implies the statement of the claim. Since
we are proving statistical closeness we can de-randomize the adversary A′ by setting the random string
that maximize the distinguishability of the two random variables. Similarly we can de-randomize the
common reference string generation algorithm Gen. Therefore, w.l.o.g. we can consider Real0,λ1A,Σ to be
the tuple of random variables (lkL, lkR).

Let Bad be the event defined over the probability spaceHr,t that:{
wRealλ0,λ1A′,Σ′(κ)

∣∣h = h′
}
6≈ε
{
h′,f(ω‖m),Real0,λ1A,Σ(κ)

}
.

Notice that the adversary A defines for A′ a hybrid environment where the leakage on the randomness
is on ω but the codeword is instantiated using fresh randomness ω′. Let Hyb be such a random variable,
i.e.,

Hyb =
(
lkω, lkL, lkR |(L,R) = Enc( (h, crs),m; ω′)

)
.

Similarly, let Real := (lkω, lkL, lkR). Notice that both random variables depend on h←$Hr,t.

Pr[Bad] ≤ Pr
h′←$Hr,t

[
∃f1, . . . , fλ0 ∈ F ,m ∈M : Real 6≈ε Hyb

]
6
∑

f∈Fλ0

∑
m∈M

Pr
h′←$Hr,t

[∑
v

∣∣Pr
ω

[Real = v]− Pr
ω,ω′

[Hyb = v]
∣∣ > 2ε

]
Let λ := λ0 + λ1 and let pv := Prω,ω′ [Hyb = v]. Define p̃v := max{pv, 2−λ}. Note that:∑

v∈{0,1}λ
p̃v 6

∑
v

pv +
∑
v

2−λ 6 2

Define the indicator random variable Yω̄,v for the event {Real = v |ω = ω̄}, where the randomness is
over the choice of h←$Hr,t.

For a fixed view v, the random variables {Yω̄,v}ω̄∈{0,1}r are t-wise independent. Moreover, E[
∑

ω̄∈{0,1}r Yω̄,v] =

2rpv. In fact, for any h̄ ∈ H, any ω̄ ∈ {0, 1}r and any v ∈ {0, 1}λ it holds that Prh[Real = v |ω = ω̄] =
Prω′ [Hyb = v |ω = ω̄, h′ = h̄].

It follows that

Pr
h′←$Hr,t

[∑
v

∣∣Pr
ω

[Real = v]− pv
∣∣ > 2ε

]
6 Pr
h′←$Hr,t

[
∃v :

∣∣Pr
ω

[Real = v]− pv
∣∣ > ε · p̃v

]
6

∑
v∈{0,1}λ

Pr
h′←$Hr,t

[∣∣Pr
ω

[Real = v]− pv
∣∣ > ε · p̃v

]
6

∑
v∈{0,1}λ

Pr
h′←$Hr,t

[∣∣∑
ω̄

Yω̄,v − 2rpv
∣∣ > 2rε · p̃v

]

6
∑

v∈{0,1}λ
8

(
t · 2rpv + t2

(2rε · p̃v)2

)t/2
(5)

6
∑

v∈{0,1}λ
8

(
2t · 2rp̃v

(2rε · p̃v)2

)t/2
(6)

6 2λ · 8
(

2t

2r−λ · ε2

)t/2
(7)
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where Eq. (5) follows by Lemma 2 and Eq. (6) and Eq. (7) follow because 2r ·p̃v > 2r−λ > t. Combining
all together we have:

Pr[Bad] 6 |F|λ0 · |M| · 2λ0+λ1 · 8
(

2t

2r−λ0−λ1 · ε2

)t/2
.

To make the above negligible we can set:

r > λ0 + λ1 + 2 log(1/ε) + log(t) + 3,

t > λ0 · log |F|+ α+ λ0 + λ1 + 2 log 1/ε.
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Supplementary Material

A Relation with the definition of [DDV10] for λ0 = 0.

We recall the indistinghuishability-based definition:

Definition 6 (Leakage-Resilient Storage [DDV10]). For any adversary A = (A0,A1) and any en-
coding scheme Σ = (Enc,Dec), consider the following experiment ExpLRind

A,Σ(κ, λ1) between A and a
challenger:

1. Upon input 1κ the adversary A0 outputs a pair of messages m0,m1 ∈ M together with a state
information st;

2. The challenger selects a random bit b and sets (L,R)←$ Enc(m0);
3. Upon input st and oracle access to OL

λ1
and OR

λ1
the adversary A1 outputs a bit b′.

4. If b = b′ then the output of the experiment is 1, else 0.

Given λ(κ) ∈ N, a (α, β)-split-coding scheme Σ is said to be (λ1, ε)-LR-ind-secure if for any un-
bounded adversary A:

Pr[ExpLRind
A,Σ(κ, λ1)] ≤ 1

2 + ε(κ)

We prove that the notion above is stronger than the FLR-sim-secure notion when the leakage parameter
λ0 = 0.

Theorem 6. Let Σ be a split-coding scheme. If Σ is (λ1, ε)-LR-ind-secure then it is (0, λ1, ε)-FLR-sim-
secure.

Proof. Suppose that exists adversary A = (A0,A1) such that for any simulator S:{
Real0,λ1A,Σ(κ)

}
κ∈N 6

c
≈ε
{
Ideal0,λ1A,S (κ)

}
κ∈N (8)

Specifically, consider the simulator S ′ that does the following:

– Upon input 1κ encodes (L,R)←$ Enc(0α).
– Upon query f from A to OL

λ1
(resp. OR

λ1
) it replies with f(L) (resp. f(R)).

By Eq. (8) there exists a ppt distinguisher D such that:

|Pr[D(Ideal0,λ1A,S′(κ)) = 1 ]− Pr[D(Real0,λ1A,Σ(κ)) = 1 ]
∣∣ > ε(κ)

Consider the following adversary A′ = (A′0,A′1) for the experiment ExpLRind
A′,Σ(κ, λ1):

– Upon input 1κ the adversary A′0 runs A0(1κ) which returns m and a state information st, A′0 sets
m0 := m,m1 := 0α and outputs (m0,m1) and st.

– Upon input st the adversaryA′1 runsA1(st) until eventually it terminates. Let v be the view defined
by A. The adversary A′1 runs the distinguisher D(v) and outputs what D returns.

We show that the adversary A′ break the LR-ind-security of Σ:

Pr[ExpLRind
A′,Σ(κ, λ1) = 1]

=1
2 Pr[D(v) = 0 |b = 0] + 1

2 Pr[D(v) = 1 |b = 1]

=1
2(1− Pr[D(Real0,λ1A,Σ) = 1 ] + Pr[D(Ideal0,λ1A,S′) = 1 ])

>1
2 +

∣∣Pr[D(Ideal0,λ1A,S′) = 1 ]− Pr[D(Real0,λ1A,Σ) = 1 ]
∣∣ > 1

2 + ε(κ)

This ends the proof of the theorem.



B Proof of Theorem 2.

We give the definition of adaptive-secure PAoK from [FNV15]. Consider the following experiment
Exp

adp
P∗,Π(κ, z) between a challenger and a prover P∗:

1. The challenger picks (c, tp)←$Π.Chall(1κ);
2. The prover P∗ upon inputs c, the auxiliary input z and randomness r←$ {0, 1}∗ produces an instance
x such that |x| = κ and an answer a;

3. The challenger computes b := TResp(tp, x). If a = b then Exp
adp
P∗,Π(κ, z) outputs accept, else 0.

Similarly, let Expadp−eP∗,K (κ, z) be the following experiment:

1. The challenger picks (c, tp)←$Π.Chall(1κ);
2. The prover P∗ upon inputs c, the auxiliary input z and randomness r←$ {0, 1}∗ produces an instance
x such that |x| = κ and an answer a;

3. The challenger computes w←$ K(tp, z). If (x,w) ∈ R then Exp
adp−e
P∗,K (κ, z) outputs accept, else 0.

Definition 7 (Adaptive-Secure PAoK). Let Π = (Chall,Resp,TResp) be as specified above, and let
R be an NP relation. Consider the properties below.

Completeness: There exists a negligible function µ such that:

Pr
c,tp

[∀(x,w) ∈ R : TResp(tp, x) = Resp(1κ, x, w, c)] > 1− µ(κ),

where the probability is taken over the outcomes of Chall(1κ).
Knowledge soundness with error ε: For all ppt provers P∗ there exists a non-uniform extractor K and

a non-zero polynomial q(·) such that for any auxiliary input z ∈ {0, 1}∗ the following holds.

Pr
[
Exp

adp−e
P∗,K (κ, z) = accept

]
> q(p(z, κ)− ε(κ)) ,

where p(κ, z) := Pr[ExpadpP∗,Π(κ, z) = accept] > ε(κ).

Let ` be the size of the prover’s answer. We call Π a adaptive-secure predictable argument of knowledge
(PAoK) forR ifΠ satisfies completeness and knowledge soundness for any efficient computable function
f , and moreover ε− 2−` is negligible. We call it a laconic adaptive-secure PAoK if ` = 1.

We are now ready to give the proof. We first recall the statement of the theorem:

Theorem 2. If public-coin AoK1/2,negl(κ)(O(1), `AoK(κ)) for NP, adaptive-secure PAoK for NP with
answer length 1 and collision-resistant hash functions with output length 1 exist then for any λ0 > 1 for
any (α, β)-split-coding scheme Σ with α(κ) > 7 and if λ1(κ) > (17λ0(κ)) · `AoK(κ) it holds that Σ is
not (λ0, λ1)-FLR-sim-secure.

Proof. We first set some necessary notation. Given a random variable x we use the notation x̄ to refer
to a possible assignment of the random variable. Let Π be in AoKnegl(κ),negl(κ)(O(1), `AoK(κ)) and a
public-coin argument system for NP. For concreteness let ρ be the round complexity of the Π . For
any i ∈ [ρ] let POleak(x, y1, . . . , yi; rp) be a prover for Π which has oracle access to a leakage oracle
O and which queries the oracle with the function lk(w) := Prove(x,w, y1, . . . , yi; rp) and outputs the
answer given by the oracle. Let (GenCRH,EvalCRH) be a collision resistant hash function with output
length `CRH(κ). Let Π ′ := (Chall,Resp,TResp) be a adaptive-secure PAoK with answer length 1.
Consider the adversary A′ = (A′0,A′1) that does the following:

1. Pick a collision resistant hash function h← GenCRH(1κ);
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2. Pick m←$M and send it to the challenger;
3. Compute h(m).

This ends the code ofA′0, formally,A′0(1κ) outputs m that is forwarded to the experiment which instan-
tiates a leakage oracle Omλ0 , also A′0(1κ) outputs the state st := (h, h(m)).

4. Sample (c, tp)←$ Chall(1κ) and leak from Oω‖mλ0
the function which compute the response

f0(ω‖m) := Resp( (Enc(crs,m;ω),m), Enc(crs,m;ω), c),

in a proof for the relationRst as defined below:(hl, hr,m), (L,R) :
h(L) = hl
h(R) = hr

Dec(L,R) = m

 .

Let lk0 be the oracle answer.
5. Send the message encode. Leak from OL

λ1
(resp. OR

λ1
) the value hl = h(L) (resp. hr = h(R)).

Check if TResp(tp, (hl, hr,m)) = lk0, abort if not.
6. For τ := 17λ0 many times leak fromOL

λ1
a (succinct) AoK for the relationRhash := {(y, x) : h(x) = y}

with instance hl. If the verification fails then abort.
The procedure is similar to the step above, the adversary runs the protocol as verifier with an instance

of P
OL
λ1

leak (hl), let πLi be the transcript produced, the adversary aborts if Judge(hl, πLi ) = 0. Send the
message encode.

7. For τ many times leak from OR
λ1

a (succinct) AoK for the relationRhash with the instance hr. If the
verification fails then abort.
As before, the adversary runs the protocol as verifier with an instance of P

OR
λ1

leak (hr), the adversary
aborts if Judge(hl, πRi ) = 0 where πRi is the transcript produced.

Consider the following randomized experiment E:

– Pick uniformly random m←$M and h←$ GenCRH(1κ) and forward h to the predictor.
– Instantiate an oracle Omλ0 and give the predictor access to it.

Lemma 8. H̃∞(m | E) > α− λ0.

Proof. Consider the experiment E′ which is the same as E except that the predictor’s oracle access to
Oω‖mλ0

is removed. We apply Lemma 1:

H∞ (m | E) > H∞
(
m | E′

)
− λ0.

In the last experiment E′′ the predictor has no information about m, therefore:

H∞
(
m | E′′

)
= log |M| = α.

ut

Lemma 9. If Σ is a (λ0, λ1)-FLR-sim-secure then H̃∞(m|E) 6 6.

Proof. Assume that Σ is an (λ0, λ1, ε)-FLR-sim-secure split-coding scheme for a negligible function ε.
Since A′ is ppt there exists a ppt simulator S ′ such that:

{Realλ0,λ1A′,Σ (κ)}κ
c
≈ε {Idealλ0,λ1A′,S′ (κ)}κ. (9)
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Consider the adversary A′′ that executes the same code of A′ but, in step 5, does not check that
TResp(tp, (hl, hr,m)) = lk0. Notice that we can implement A′′1 without providing the input m. We
have that:

{Idealλ0,λ1A′,S′ (κ)}κ ≈ {Idealλ0,λ1A′′,S′(κ)}κ. (10)

In fact, conditioned on the event [TResp(tp, (hl, hr,m)) = lk0] the two distributions are exactly the
same. On the other hand, Eq. (9) implies that the event happens with probability 1− negl(κ)− ε(κ).

For the sake of the proof we first build a predictor which is given (h, h(m)) and tries to guess m.
We then use this predictor to prove the lemma. Let K be the extractor given by the knowledge soundness
property of the argument of knowledge for the relation Rhash. Consider the following predictor B that
takes as input (h, h(m)) and has oracle access to Omλ0 :

1. Pick two random tapes ra, rs for the adversary A′′1 and the simulator S ′ and run both of them (with
the respective randomness ra, rs) connecting the oracle accesses of A′′ to the interfaces of S ′ and
forwarding the queries of S ′ to the oracle Omλ0 . The adversary A′′1 starts by leaking an argument of
knowledge forRst, then it sends the message encode and leaks the values hl, hr from OL

λ1
,OR

λ1
.

2.L. The predictor tries to compute L′ using the knowledge extractor K. Formally, for any i ∈ [τ ], let
s̄tLi be the actual internal state of S ′ during the above run of S ′ and A′′ just before the i-th iteration
of step 6 of A′′. Let S ′i be a copy of S ′ with internal state set to s̄tLi . Abusing notation, we use

PS
′
i

leak to denote the prover which queries the interface of S ′i for OL
λ1

, i.e., the message sent by PS
′
i

leak
is computed by calling S ′i as if it was a leakage oracle and with the leakage functions being the
functions computing the messages that the prover would send in a proof of knowledge of a preimage
L′ of hl. Notice that when S ′i is run it might make an oracle query on its interface for Omλ0 . When

this happens PS
′
i

leak will intercept the query and will not try to simulate Omλ0 to S ′i. Instead, whenever

S ′i queries Omλ0 the program PS
′
i

leak will take the reply from S ′i to be some dummy string, say the

all-zero string. This ensures that PS
′
i

leak makes no further leakage queries to Omλ0 . The predictor runs

the knowledge extractor K on the prover PS
′
i

leak(hl), which outputs a value L′ or aborts. If hl = h(L′)
then return L′ otherwise the i-th extraction is said to abort. If all the extractions abort, the predictor
aborts.

2.R. The predictor computes R′ using the knowledge extractor K. The procedure is the same of step 2.L
of the predictor, for notational completeness let us denote with stRi the internal state of S ′ just before
the i-th iteration of step 7.

3. The predictor outputs m′ := Dec(L′, R′) as its own guess.

We compute the probability that B predicts m correctly. We set up some useful notation:

– Let ExtL (resp. ExtR) be the event that K successfully extracts a value L′ (resp. R′).
– Let CohSt be the event {h(Dec(L′, R′) = m} .

Recall that m′ := Dec(L′, R′) is the guess of B. We can easily derive that:

Pr
[
m′ = m

]
= Pr

[
ExtL ∧ ExtR ∧ CohSt

]
(11)

Claim 6 Pr[ExtR ∧ ExtL] > 1
16 − negl(κ).

The proof proceeds similar to the proof of the correspondent lemmas in proof of Theorem 1, there-
fore it is omitted.

Claim 7 Pr[CohSt |ExtL ∧ ExtR] > 1
2 − negl(κ).
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Proof. We reduce to the collision resistance property of h and the knowledge soundness of the PAoK
Π ′, Suppose that

Pr[Dec(L′, R′) 6= m |ExtL ∧ ExtR] > 1/poly(κ)

Consider the following collision finder adversary Bcoll(h):

– Sample uniformly random m←$M and random h←$ GenCRH(1κ);
– Run an instance of the predictor BO

m
λ0 (h), the predictor needs oracle access to Omλ0 which can be

simulated by Bcoll(h).
– Consider the following adversary P∗ for the experiment ExpadpP ∗,Π′ :

1. Let ra, rs be the same randomness picked by B in its step 1;
2. Simulate an execution of A′1(m,h; ra) and S ′(1κ; rs) and break them just before the adversary

leaks an argument of knowledge forRst;
3. Continue the execution of A′1(h; ra) and S ′(1κ; rs) until A′1 has leaked the value hl and hr;
4. Output (hl, hr,m) as instance and lk0 as answer.

Run the knowledge extractor K′st given by the definition of adaptive-secure PAoK for the adversary
P∗, specifically we run K′st on the same randomness and auxiliary input of P∗. LetL′′, R′′ the witness
output by the extractor.

– If L′ 6= L′′ output (L′, L′′) else (R′, R′′).

It is easy to check that Bcoll simulates perfectly the randomized experiment E therefore:

Pr[Dec(L′, R′) 6= m] >

> Pr[Dec(L′, R′) 6= m |ExtL ∧ ExtR] Pr[ExtL ∧ ExtR] >

> 1/poly(κ) · ( 1
16 − negl(κ))

On the other hand, the extractor K′st succeeds with probability at least q(1−negl(κ)− 1
2)−negl(κ). Notice

that the definition of PAoK implies that the probability of K′st winning in Expadp−e and P∗ winning in
Expadp are related, however, in general the instance for which the two algorithm wins the games can
be different. This is not a problem for us, since P∗ wins with overwhelming probability, therefore the
ratio of the intersection of the instances for which both K′st and P∗ wins is negligible close to the set of
instance for which K′st wins, this explain why we lose an extra negl factor.

Therefore, L′′ and R′′ are such that h(L′′) = h(L′), h(R′′) = h(R′) and Dec(L′′, R′′) = m. The
latter implies Dec(L′, R′) 6= Dec(L′′, R′′) which implies that either L′′ 6= L′ or R′′ 6= R′. Lastly,
notice that Bcoll is an expected polynomial time algorithm, however we can make it polynomial time by
aborting if the number of steps exceed some fixed polynomial. By setting the polynomial big enough the
probability of Bcoll finding a collision is still noticeable.

Summarizing, we have:

Pr[m′ = m] = Pr
[
ExtL ∧ ExtR ∧ CohSt

]
>

> ( 1
16 − negl(κ)) · (1

2 − negl(κ)) > 1
64

which implies the statement of the lemma.

We conclude the proof of the theorem noticing that ifΣ is (λ0, λ1)-FLR-sim-secure split-coding scheme
by the parameter given in the statement of the theorem we have that Lemma 8 and Lemma 9 are in
contraction. ut
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