libgroupsig: An extensible C library for group
signatures

Jesus Diaz, David Arroyo, and Francisco B. Rodriguez

Escuela Politécnica Superior
Universidad Auténoma de Madrid
{j.diaz,david.arroyo,f.rodriguez}@uam.es

Abstract. One major need in the context of Privacy Enhancing Tech-
nologies (PETs) is to bridge theoretical proposals and practical imple-
mentations. In order to foster easy deployment of PETs, the crux is on
proposing standard and well-defined programming interfaces. This need
is not completely fulfilled in the case of group signatures. Group sig-
natures are key cryptographic primitives to build up privacy respectful
protocols and endorsing fair management of anonymity. To the best of
our knowledge, currently there exists no abstract and unified program-
ming interface definition for group signatures. In this work we address
this matter and propose a programming interface definition enclosing the
functionality of current group signatures schemes. Furthermore, for the
sake of abstraction and generalization, we have also endowed our inter-
face with the means to include new group signatures schemes. Finally, we
have considered three well known group signature schemes to implement
an open source library of the interface using C programming language.
We have also performed an analysis of the software implementation with
respect to different values of the key size and other parameters of the
group signatures interface.

1 Introduction

While the general principles of cryptographic primitives may be clear to pro-
grammers, their internal details are not usually so well understood [19]. In ad-
dition, most theoretical proposals in cryptography are oriented to very specific
scenarios which makes difficult their inclusion in a wider set of practical con-
texts. Certainly, in most cases where a software implementation is provided to
backup a theoretical contribution, it is very difficult to adapt it and (re-)use it in
more complex systems demanding the functionality that this software provides
[1]. An example of this situation is depicted by the creation and use of group
signatures schemes [14]. Although there exist some implementations, either they
seem to be currently unmaintained (like 1ibg); or they just implement specific
schemes (like the FTMGS librarylg) and thus they are only suitable for contexts

! http://www.ing.unibs.it/ntw/tools/pp2db/. Last access on August 5th, 2015.
2 http://www.lcc.uma.es/ vicente/swprj/index.html#libftmgs. Last access on
December 18th, 2014.

http://www.ing.unibs.it/ntw/tools/pp2db/
http://www.lcc.uma.es/~vicente/swprj/index.html#libftmgs

consistent with the properties of the implemented scheme. In order to overcome
this problem we have adopted the recommendations in [31], and thus we have
analyzed the most relevant works in the field of group signatures to extract the
underlying principles and the involved functionalities. Correspondingly, we have
designed an Application Programming Interface (API) and implemented a pro-
totype using C programming language. As we will discuss, our the abstraction
we have defined is basically an extension of the one described in the ISO/IEC
standards |24, 25]. Regarding the implementation, we have used three types of
group signatures as bottom line. Nevertheless, in the API design we have taken
into account that specific group signature schemes may bear only a subset of
the functionalities associated to the group signature primitive. As a result, our
library supports the addition of new schemes without the need of modifying the
existing code. On the basis of the main conclusions in [21], our implementation
is open sourcd] to enable its use in advanced privacy respectful systems, and to
promote its revision and improvement through the collaboration of the whole
PETs community.

The remainder of this work is organized as follows. In Section 2l we summa-
rize the main advancements in the functionality of group signatures, by some
of the most important schemes and make a review of existing implementations
and standards on group signatures. In Section [B] we extrapolate this main func-
tionality in order to create a unified interface which should be adaptable to
the most important variants. Section Ml introduces the API of libgroupsig,
detailing its architecture and main functions, and also pointing out some imple-
mentation notes. Section [] describes the results of the performed benchmarks,
and references further work in which we have also tested libgroupsig. Sec-
tion [B concludes with some future work. [Alincludes some code snippets showing
the invocation of several main functions, and [Bl briefly describes how to extend
the library by adding new schemes. Additionally, further (and constantly up-
dated) documentation on the library is available at bitbucket .org/jdiazvico/
libgroupsig/.

2 Related work

Group signatures were first proposed in [14] and, like conventional digital sig-
natures, they are used to prove that the owner of a specific secret has been
the source of some information. However, unlike their conventional counterpart,
group signatures hide this owner among a set (group) of possible owners. Hence,
group signatures can be used as a means to provide some sort of anonymity.

Group signatures basics After the initial proposal by Chaum and van Heyst
[14], group signatures were further formalized including a security model [5].
This formalization assumed static groups, meaning that the group members
are defined during the setup phase. This setting was subsequently extended to

3 Available at https://bitbucket.org/jdiazvico/libgroupsig/. Last access on Au-
gust 5th, 2015.

bitbucket.org/jdiazvico/libgroupsig/
bitbucket.org/jdiazvico/libgroupsig/
https://bitbucket.org/jdiazvico/libgroupsig/

the case of dynamic groups in [6] and, independently, in [28, [27] both defining
equivalent security models.

Focusing on the functionality provided by group signatures, several varia-
tions have been proposed to add new features around the central property of
anonymity. For instance, there is typically a Group Manager who controls some
secret information that allows her to revoke this anonymity and fetch the iden-
tity of the issuer of a group signature (this is called opening a group signature).
But there also exist schemes, like ring signatures [34], that provide uncondi-
tional anonymity, meaning that the signature-opening functionality cannot be
performed. Schemes as those in |27, 15] add an extra trapdoor besides the one
used for opening group signatures, so that an authority (either the Group Man-
ager or some subsidiary authority) is able to link signatures made by the same
group member. In those schemes the authority performs this tracing using a
tracing trapdoor instead of using her identity. This type of signatures are conse-
quently named traceable signatures. It is also possible to apply Zero-Knowledge
protocols [22] to claim having issued a specific group signature [27]. Even though
the term is not used in the original paper, we could name variations supporting
this functionality claimable group signatures. In [8] the trust placed in the Group
Manager is divided across several authorities, which need to combine their se-
crets in order to be able to open some group signature. The authors call the
result fair signatures or, rather, fair traceable signatures, since their proposal is
based on traceable signatures (and also supports tracing). Besides these exten-
sions to their functionality, their efficiency has also been refined in many ways.
A detailed overview of the evolution of the computational and communication
costs of the different schemes of group signatures is available at [29, Sec. 1.1].

Standards and implementations of group signatures Group signatures
have been standardized in ISO/IEC 20008, which defines the general setting
and main operations [24], and a total of 7 schemes with opening and linking ca-
pabilities [25]. Several implementations of different group signature schemes are
currently available online. The group signature scheme in [36] is implemented as
an example of use of the PBC libraré, and the proposal in [9] is implemented in
C within the PBC_sig libraryfl. The group signature defined in [9] and [16] are
implemented in Python within the Charm frameworkd |1]. The scheme intro-
duced in [§] is implemented in C in the FTMGS library{l, whereas the signatures
described in [11] and [4] are implemented in the libgs library using Java, as
part of the PP2db projectﬁ. The Java framework in [33] implements group sig-
natures given in [13], [10] and |26]. A variant of the group signature scheme in

4 http://crypto.stanford.edu/pbc/. Last access on August 5th, 2015.

® http://crypto.stanford.edu/pbc/sig/. Last access on August 5th, 2015.

5 https://code.google.com/p/charm-crypto/. Last access on August 5th, 2015.

" http://www.lcc.uma.es/ vicente/swprj/index.html#libftmgs. Last access on
December 18th, 2014.

8 http://www.ing.unibs.it/ntw/tools/pp2db/. Last access on August 5th, 2015.

http://crypto.stanford.edu/pbc/
http://crypto.stanford.edu/pbc/sig/
https://code.google.com/p/charm-crypto/
http://www.lcc.uma.es/~vicente/swprj/index.html#libftmgs
http://www.ing.unibs.it/ntw/tools/pp2db/

[20] is provided in the cryptonote’s libraryﬁ. Finally, the group signature scheme
defined in [30] is included in the Crypto-book prototypel%

From the previous implementations, it is worth noting that most of them are
ad hoc implementations of specific schemes, programmed without the require-
ment of providing a common API for other equivalent schemes. In this concern
the Charm framework is an exception. This framework has been created for
rapid prototyping of cryptographic systems. In the specific case of group (or
ring) signatures, however, it implements only the schemes in 9] and [16]. Those
proposals only provide a subset of the functionality available from more general
group signature schemes (see Section [3)). Therefore, it is necessary to implement
schemes with a richer functionality set in order to test whether or not the pro-
vided API would be practical enough for complex systems or applications. It
is also worth noting the Java framework in [33]. However, in this case, despite
implementing three different schemes within the ISO/IEC 20008 standard |25],
the provided API is not uniform among schemes, and the functionality for inter-
acting with each scheme depends on its internals. Thus, despite being a relevant
effort for comparing the performance of different schemes, it does not provide
an appropriate interface for practical systems or applications.

3 The basis for a common interface

According to the previous introduction to group signatures, the different oper-
ations may imply subtle differences through their implementation in different
schemes. For example, it is possible to find differences in the way those oper-
ations are performed, or the implications of those operations with respect to
the privacy of the group member. In other cases, some group signature schemes
may just implement a subset of the above mentioned functionality. However, it
is possible to abstract the functionality from the study of the main primitives.
In Figure [Il we sketch an abstraction of all the operations provided by group
signatures, mostly matching the ones described in [27, 24, 25]. Each operation
is described as follows:

Setup. Generates and initializes the group and manager keys for any arbitrary
group. All operations below are always related to a group initialized with
this operation.

Join. The process by means of which new members join the group. It is typically
divided in a phase run by the new member, who obtains a member key, and
a phase run by the group manager, who updates the Group Membership List
(GML).

Sign. The process of issuing a group signature.

Verify. The process for verifying a group signature.

Claim. The process for claiming ownership of a group signature.

9 https://github.com/AlbertWerner/cryptonotecoin. Last access on August 5th,
2015.
10 https://github.com/jyale/crypto-book/, Last access on August 5th, 2015.

https://github.com/AlbertWerner/cryptonotecoin
https://github.com/jyale/crypto-book/

Equality proving. The process by means of which the issuer of a set of
group signatures proves that she has issued all the signatures within the
set. This may be seen as a generalization of the claiming process, and
is specially interesting in schemes allowing Zero-Knowledge claims, like
(27, [15].

Claim Verify. The process of verifying a claim of a group signature.

Verification of equality. The verification counterpart for equality prov-
ing.

Open. Used for extracting the identity of the issuer of a specific group signature,
possibly producing a proof of opening.

Open verify. Optionally, some schemes implement this operation, for ver-
ifying the correctness of the proof produced by the open process.

Reveal. Employed for extracting the tracing trapdoor of a group member.
Trace. Checks whether a group signature has been issued by a group member
who has been somehow revoked, e.g., included in a Certificate Revocation

List (CRL).

It is worth emphasizing that this abstraction is basically an extension of the
one proposed in [24, 25]. In the ISO/IEC standards, a general model is given for
anonymous digital signature mechanisms using a group public key (i.e., group
signatures) and anonymous digital signature mechanisms using multiple public
keys (i.e., ring signatures). For group signatures, the operations defined in |24, 125]
are:

Key generation. In [24,25], this process covers both our setup and join pro-
cesses.

Signature. Equivalent to our sign process.

Verification. Equivalent to our verify process.

Opening. Equivalent to our open process. In |24, 25], there is an optional
process related to open that allows to verify the correctness of the output
of open. We have named here this process open verify.

Linking. Equivalent to our trace process.

Revocation. In our interface, this functionality is incorporated within the open
and reveal processes, depending on the received parameters. Through the
former it is possible to revoke the anonymity of a group member, and through
the latter it is possible to revoke the unlinkability of a group member.

Additionally, we have included support for several additional operations that
are not described in |24, 125], but are implemented by some schemes, like [27, [15].

Claiming. Allows a group member to claim, in Zero Knowledge, ownership of

a group signature.

Equality proving. A generalization of the claiming operation, where the
issuer of a group signature is able to claim ownership of two or more
group signatures.

Claim verification. Allows any third party to verify a claim produced using
the claiming operation.

gk

Mk

GML
(c) Sign.

(a) Setup.
(b) Join.

sig

Claim Verify

(d) Verify. (e) Claim. (f) Claim Verify.

. . gk CRL
7 y tra;

- GML Reveal v

gk GML id proof index

(g) Open. (h) Open verify. (i) Reveal.

Mk gk
sig [

Trace

GML CRL

(j) Trace.

mk

sig proof
Claim

gk

Mk id,
proof

revoked?

Fig. 1: Main operations in group signatures. Incoming arrows depict inputs and
outgoing arrows depict outputs. Mk stands for Group Manager key, gk for group
key, mk for member key, where mk is a partially complete member key. The input
config depicts arbitrary configuration parameters, id is any arbitrary secret
allowing the identification of group members and trap is the trapdoor used for
tracing group members. The other tokens are self-explanatory.

Equality proof verification. The verification counterpart of the equality
proving operation.

Finally, concerning the revocation capabilities of group signature schemes
(i.e., the Revocation functionality), it is also worth noting that from the previous
description we can distinguish two types of privacy properties built upon group
signature schemes: anonymity and unlinkability |32]. First, anonymity is the
property ensuring that no one will be able to learn the real identity of the issuer
of a group signature. This property may be revoked (for the schemes that support
it) through the open action. Second, unlinkability is the property guaranteeing

that no one will be able to determine whether two or more group signatures have
been issued by the same signer. Equivalently, this property may be revoked by
revealing the tracing trapdoor via the reveal action, and then using this trapdoor
as an input parameter to the trace action.

4 Group signatures API

Next, we briefly describe the general interface that we have defined for inter-
acting with the functionality provided by the 1ibgroupsig library, according to
the main operations introduced in Section Bl Figure 2 shows an UML-like class
diagram, that depicts the described API in a component-wise manner. The main
component is the one aimed to the interaction with group signature schemes,
named groupsig in Figure[2l The functions defined within this component are:

groupsig

+ groupsig_handles | |

+ init(seed)

+ clear()

+ setup(code, grpkey, mgrkey, gml, config)
+ join_mem(memkey, grpkey)

+ join _mgr(memkey, mgrkey, grpkey)

** + sign(sig, msg, memkey, grpkey, seed)

t verify(ok, sig, msg, grpkey) * K

+ claim(proof, memkey, grpkey, sig)

+ claim_ verify(ok, proof, sig, grpkey)

+ open(id, proof, crl, sig, grpkey, mgrkey, gml)

+ open_ verify(ok, id, proof, sig, grpkey)

+ reveal(trap, crl, gml, index)

+ trace(ok, sig, grpkey, crl, mgrkey, gml)

+ prove equality(proof, memkey, grpkey, sigs)

+ prove_equality verify(ok, proof, grpkey, sigs)

gml crl

-+ gml handles | | + crl_handles | |
+ init(code) + init(code)
+ free(gml) + free(crl)
+ insert(gml, entry) + insert(crl, entry)
+ remove(gml, index) + remove(crl, index)
+ get(gml, index) + get(crl, index)

Fig.2: UML-like class diagram for the libgroupsig API. For readability, we
omit variable types.

groupsig_init. Initializes the library environment, including the internal Pseudo
Random Number Generator.

groupsig_clear. Frees the internal variables initialized in the previous func-
tion.

groupsig_setup. Initializes the scheme with the specified code, filling the group
key, manager key and GML. Uses the input parameters contained in the
specified configuration structure for controlling the generation process.

groupsig_join_mem. Executes the join member part of the scheme. The mem-
ber key will be updated with the member side generated keying information.
Note that, in most schemes, there is typically a member side and a manager
side of the join process, which may be used to prevent the manager from
learning private tokens. If, nevertheless, the manager runs all the joining
functionality, this function could just be left as a stub.

groupsig_join_mgr. Runs the manager side of join of the scheme. With it, the
member key is completed, and a new entry related to the new member is
added to the GML.

groupsig_sign. Runs the signing algorithm of the scheme and stores the re-
sulting group signature in sig. The seed parameter is useful when reseeding
the internal Pseudo Random Number Generator is necessary.

groupsig_verify. Verifies the given signature with the received message and
group key.

groupsig_claim. Issues a Zero-Knowledge proof claiming having issued the
specified signature for the given group and member keys.

groupsig_claim_verify. Verifies whether the given claim is correct for the
specified group signature and group key.

groupsig_open. Returns the real identity of the issuer of the given signature
and, optionally, a proof of opening. In our library, this may imply the addition
of the identity into a CRL for members with revoked anonymity.

groupsig_open_verify. Verifies the proof of opening returned by groupsig_open.

groupsig_reveal. Reveals the tracing trapdoor of the member in position index
within the given GML. In our library, this may imply the inclusion of the
tracing trapdoor into a CRL for members with revoked unlinkability.

groupsig_trace. Determines whether or not the issuer of the specified signature
has been revoked according to the given CRL.

groupsig_prove_equality. Creates a proof of equality of all the group signa-
tures within the given set, using the specified member and group keys.

groupsig_prove_equality_verify. Verifies the given proof of equality, asso-
ciated to the specified set of group signatures.

Besides the core functionality for group signatures, the library also includes
two components for managing Group Membership Lists (GMLs) and Certificate
Revocation Lists (CRLs). Also, for the sake of achieving a uniform API for all
the schemes, we have not been completely strict on some matters. The following
subsections summarize this.

4.1 GMLs and CRLs

The modules gml and crl are intended for the management of Group Member-
ship Lists (GMLs) and Certificate Revocation Lists (CRLs), respectively. GMLs
are lists of members, typically set up during the group initialization and updated
each time a new member is added (or permanently removed). They contain im-
portant information that may be used when either anonymity or unlinkability
revocation is required. CRLs are named after their equivalents in the X.509 in-
frastructure |35], but in this case they are employed within the extended setting
created by group signatures |18]. That is, they are used for keeping a list of
member keys for which either their anonymity or their unlinkability properties
(or both) have been revoked (see Section B]).

The main operations provided within the gml and crl components are the
ones typical of a list-like structure. Therefore, we allow the creation and liber-
ation of these structures, the insertion (resp. removal) of new (resp. existing)
elements through the insert (resp. remove) action, and the access to elements in
the list through the get action.

4.2 Implementation notes

In the library, we have followed the abstraction outlined in Section Bl as interface
for the group signatures functionality. Currently, the library incorporates three
group signature schemes: KTY04 [27] and CPY06 |15], which are both traceable
(group) signatures in the dynamic setting; and BBS04 [9], which is a group
signature scheme in the dynamic setting, but without support for the (privacy
respectful) tracing functionality. However, the library has been prepared so that
adding and using new schemes is possible through the same interface. In this
regard we have to take into account that not all group signatures actually provide
the same functionality set. For the sake of a more unified API, we have been
slightly loose when assigning names to each function, and simultaneously we
have been cautious to avoid misleading potential users of our library.

For instance, in KTY04 and CPYO06 there are two revocation functions: open,
which given a group signature and (part of) the join transcript of a group member
(stored within the Group Membership List in libgroupsig), returns the real
identity of the signer; and reveal, which given (part of) the join transcript of
a specific group member, returns a trapdoor that allows tracing him. In our
library we refer to the respective parts of the join transcripts as open trapdoor and
tracing trapdoor. However, BBS04 does not natively provide the same revocation
options like that of KTY04 or CPY06, since it does not contain what we call
tracing trapdoors. Nevertheless, tracing is still possible in BBS04, although in
a less privacy respectful way. Indeed, what it is called tracing in BBS04 implies
executing the open procedure (thus obtaining what we named open trapdoor)
and looking for the signer’s identity within a list of revoked members. Thus, it is
not actually precise to use the term reveal with BBS04 to refer to the procedure
defined with this name in KTY04 or CPY06. Nevertheless, in 1libgroupsig we
use the term reveal to name a procedure that, given the part of the join transcript

of a specific group member used as tracing trapdoor, includes it within a CRL,
which will be subsequently used for tracing. This allows us to create a unified API
for similar functionality, although the inner cryptographic details (and privacy
implications) may not be equivalent.

The library also contains additional modules for implementing functionality
not directly related to group signatures, GMLs, or CRLs. This code is basically
divided in mathematical functions (mostly some number theory algorithms) in a
module named math; the sys module, which defines system-wide functions such
as memory management functions, global constants and environment variables;
and the misc module, which implements functionality for reading and printing
information, type conversions, etc. There is also a component of the library for
the management of group member identities in an abstract manner, i.e., for
making GMLs independent on whether the programmer wants to include full
names, job positions, etc. within the data stored in each GML entry.

libgroupsig is available under GNU LGPL at Bitbucketl. We have tested
and applied it in our prototypes, but its development is still in an alpha stage
and, by opening its source to the community, we expect to receive useful feedback
to improve it.

5 Experimental evaluation

The acceptability of a software library is very dependent on the functionality
achieved, but also on the efficiency of the final implementation. Therefore, after
defining the interface, we have implemented it using the C programming language
in order to analyze the costs associated to each of the supported actions explained
in Section A3. Since BBS04 and CPY06 use elliptic curve cryptography while
KTY04 is RSA-based, we show the costs associated to key sizes providing roughly
the same security level. Specifically, according to the NIS, the equivalences
are as shown in Table[Il All the measurements have been obtained with a desktop
PC (Intel Core i7-2600, 16GB DDR3 running Debian Wheezy), iterating 1000
times for each operation and using different keys in each iteration.

Figures 30 through [@ depict the costs associated to each of the main opera-
tions excluding tracing, for each of the implemented group signature schemes in
our library. In all cases, the evolution starts to differ notably for keys larger than
3072 bits (for KTY04) and keys larger than 256 bits (for BBS04 and CPY06),
with differences of at most a few tenth of seconds for smaller keys. Specifically,

" https://bitbucket.org/jdiazvico/libgroupsig/. Last access on August 5th,
2015.

12 We do not include measurements for the prove equality functionality (and its verifi-
cation counterpart), which is a generalization of the claim action (resp., claim verify
action). Thus, the specific cases give a good idea of the costs related to their more
general counterparts.

13 http://www.nsa.gov/business/programs/elliptic_curve.shtml. Last access on
August 5th, 2015.

https://bitbucket.org/jdiazvico/libgroupsig/
http://www.nsa.gov/business/programs/elliptic_curve.shtml

RSA key size| ECC key size
1024 160
2048 224
3072 256
7680 384

Table 1: Approximate key sizes providing equivalent security for ECC and RSA
schemes.

for keys of size 7680 bits the costs of KTY04 increase abruptly, while the equiv-
alent in BBS04 and CPY06 (384 bit keys) maintain a reasonable growth. The
increase in KTY04 is most probably due to the costs associated of operating with
larger numbers. Indeed, the three schemes rely on GNU aMmpH (KTY04 uses
it directly, while BBS04 and CPY06 through Ben Lynn’s PBC librar). To
verify this, we performed a profiling of GMP, based on the size of the employed
numbers. Figure [3a shows the result. The profiling of GMP was performed in the
same system as the one used for the analysis of 1ibgroupsig. The tests involved
1000 iterations of GMP numbers ranging from 1000 to 10000 bits, increasing 100
bits per iteration (X-axis). Each iteration includes the basic operations: addi-
tion, multiplication, exponentiation and random number selection. The values
in the Y-axis are the average running time for each iteration. It can be seen that
the evolution of the CPU time in the profiling of GMP and that of the group
signature schemes confirm our hypothesis.

10 T T T T T T T T 60

BBS04 ———
KTY04 +—=—
50 | CPY06

40 -

30

20 +

Average CPU time (s)

10 +

o

_—
— 10

L L L L L L - L L
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000160,/1024 224/2048 256/3072 384/7680

o = w w & o

Numbers size (bits) Key size (bits)

(a) Profiling of the GMP library. (b) Costs of Join.

Fig. 3: Profiling of the GMP library (left) and costs of Join operations in KTY04,
BBS04 and CPY06 (right). The increase in the costs of computing with GMP,
depending on the size of the numbers is reflected in KTY04 in the Join operation
(as well as in the operations shown below).

" https://gmplib.org/. Last access on August 5th, 2015.
15 http://crypto.stanford.edu/pbc/. Last access on August 5th, 2015.

https://gmplib.org/
http://crypto.stanford.edu/pbc/

1.4 T 1.8 T
BBS04 ——— BBS04 +———
KTY04 +—a 16 KTY04 —=— |
1.2 CPY06
1.4
L
1.2
= 0.8 = 1
H H
3 0.6 1 08
0.6
0.4
0.4
0.2 02
’/7777777,/”’77777 N _— I
0 b— 2 v 0 !
160,/1024 224/2048 256/3072 384/7680 160/1024 224/2048 256/3072 384/7680
Key size (bits) Key size (bits)
(a) Sign. (b) Verity.
Fig.4: Costs of Sign and Verify operations in KTY04, BBS04 and CPYO06.

0.045

0.04 -

0.035 -

0.03

0.025 +

Time (s)

0.015 +

0.01 |-

0.005

0

-0.005

160,/1024

0.02 |

CPY06

TKTY04 =

L
Time (s)

L L
224/2048 256/3072

Key size (bits)

(a) Claim.

384/7680

0.05

0.045

0.015 -
0.01 |

0.005 {

0 k,,,,,,,,,,,,T;,,,,,,,,,,

TKTY04 =
CPY06

.005 s
160,/1024 224/2048

Key size (bits)

(b) Claim Verify.

L
256/3072

384/7680

Fig.5: Costs of Claim and Claim Verify operations in KTY04, BBS04 and

CPYO06.

For analyzing the costs of tracing, we need to consider both the size of the
Certificate Revocation Lists (CRLs) and the keys. The graphs in Figure [7] show
the evolution of the associated costs, given these parameters. BBS04 is by far
the most efficient one (nevertheless, consider the observation made in Section
[M2), with costs always less than 0.008 seconds; KTY04 is also quite efficient up
to keys of 3072 bits, but increases steeply from less than 5 seconds per tracing
operation to more than 20 seconds when using keys of 7680 bits; finally, CPY06
is the most expensive in this operation, growing uniformly depending on the key
and CRL size from 2 seconds to 18 seconds per tracing operation.

0.08

0.01
' BBS04 s " BBSO4 e
0.07 KTY04 —=—
CPY06
0.06 0.005 1
0.05
= 0.04 =
2 0 }
= 0.03 =t
0.02
0.01 -0.005 —
N
-0.01 L L -0.01 L L
160,/1024 224/2048 256/3072 384/7680 160,/1024 224/2048 /3 384/7680
Key size (bits)
(a) Open. (b) Reveal.
Fig. 6: Costs of Open and Reveal operations in KTY04, BBS04 and CPY06.
BT 1 : | T :
0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0 5 10 20 25
0.008
. 0.007 . 20
Z 0006 =
£ 0005 g 15
= 0,004 =
£ o003 H 10
g 0.002 g
g O 006" 5 000
0.001 50
0 00 0 00
160 CRL size 1024 2048 CRL size
24 o0 3072
Key &5 Key size
384
(a) BBS04. (b) KTY04.
I 0]
0 2 4 6 8 10 12 14 16 18

. 14

=

:’ 12

£ 10

;;., 8

3 6

& 4
2
0
16

(c) CPYO06.

00

CRL size

Fig. 7: Costs of Trace in 1libgroupsig, for increasing key and CRL sizes.

Besides the tests summarized here, 1ibgroupsig has also been employed in
other research works where group signatures play a central role. Among other
projects, we have used it for implementing a proof of concept of the extensions
to X.509 in |17, 18].

6 Conclusion and future work

The current state of Information and Communication technologies demands the
creation and proper implementation of new procedures to manage digital identi-
ties [3]. As we have underlined in [2], there is a lack of standard and thoroughly
evaluated cryptographic libraries for the creation and use of non-conventional
digital signatures. In this paper we have tackled this need for the concrete case
of group signatures. This being the case, we have presented libgroupsig, a C
library that provides a uniform API for different group signature schemes. As
pointed out in Section [3 this API is basically an extension of the group signa-
tures functionality described in the ISO/IEC standards [24, [25]. Moreover, the
library supports the addition of new group signature schemes without needing to
modify the already implemented code. This offers very interesting possibilities.
For instance, new schemes may be seamlessly incorporated into our library (see
B)); or complex systems where privacy is of concern may use our library with
a group signature scheme A, but switch to another scheme B if needed with
just updating a few tenths of lines of code at most (see [Al). To the best of our
knowledge, no existing open source library provides equivalent possibilities.

Given the usefulness of group signatures as a building block for providing
privacy, and the features of our library, we consider that our contribution may
help in the development of advanced privacy respectful systems. In the past,
open source libraries corresponding to advanced cryptographic primitives have
served as catalysts for prototypes and complex cryptographic systems (see, e.g.,
the PBC library and all the projects that depend on 1@) Keeping in mind
the future work still pending we expect that our library might thus help in the
creation of new advanced privacy respectful systems. The possibilities are many.
For instance, we have already employed our library to implement the prototype of
a comprehensive and privacy respectful e-commerce system, suitable for current
e-commerce infrastructures. Also, one of the final applications we have in mind
for this library is to conform the basis for X.509 extensions like the ones proposed
in |7,[18]. This would undoubtedly suppose a great improvement of the X.509 PKI
[35] towards supporting privacy respectful systems and applications. In |17, [1§]
we already applied this library for implementing a prototype of the mentioned
extensions.

Nevertheless, as with every programming project, despite the library has
reached a fully functional state, more work is required to improve it. First, the
library is still in an alpha stage, and much testing is necessary for guaranteeing
its correct functioning, including tests in as many different platforms as possi-
ble. In addition, the implementation of the currently supported schemes could

16 http://crypto.stanford.edu/pbc/who.html. Last access on August 5th, 2015.

http://crypto.stanford.edu/pbc/who.html

probably be improved (through code optimization) towards achieving better ef-
ficiency, and the inclusion of more schemes in the library will help in testing
and refining its extensibility, and also help creating a richer range of schemes to
choose from. For instance, note that none of the implemented schemes actually
provides the functionality for verifying opening proofs. Although our API does
support it, it is advisable to actually implement schemes (like [23]) that sup-
port this functionality. Future work will be also focused in incorporating more
computationally schemes as those in [12] (where revocation is based on accumu-
lators) and |29]. Finally, given that the final aim of this library is to be employed
within cryptographic systems, a source code security audit is mandatory. In this
regard it is relevant to underline that the publication of the library as open
source contributes not only to its inclusion in more complex projects, but also
its evaluation through the open source community.

Acknowledgments

This work was supported by Comunidad de Madrid (Spain) under the project
S2013/ICE-3095-CM (CIBERDINE), and by MINECO TIN2010-19607, TIN2012-
30883, TIN2014-54580-R.

References

[1] Joseph A. Akinyele, Christina Garman, Ian Miers, Matthew W. Pagano,
Michael Rushanan, Matthew Green, and Aviel D. Rubin. Charm: a frame-
work for rapidly prototyping cryptosystems. J. Cryptographic Engineering,
3(2):111-128, 2013.

[2] David Arroyo, Jesus Diaz, and VActor Gayoso. On the difficult tradeoff be-
tween security and privacy: Challenges for the management of digital iden-
tities. In Alvaro Herrero, Bruno Baruque, Javier Sedano, Héctor Quintian,
and Emilio Corchado, editors, International Joint Conference, volume 369
of Advances in Intelligent Systems and Computing, pages 455-462. Springer
International Publishing, 2015.

[3] David Arroyo, Jesus Diaz, and FranciscoB. Rodriguez. Non-conventional
digital signatures and their implementations-a review. In Alvaro Herrero,
Bruno Baruque, Javier Sedano, Héctor Quintian, and Emilio Corchado, ed-
itors, International Joint Conference, volume 369 of Advances in Intelligent
Systems and Computing, pages 425-435. Springer International Publishing,
2015.

[4] Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A prac-
tical and provably secure coalition-resistant group signature scheme. In
Advances in Cryptology - CRYPTO 2000, 20th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 20-24, 2000,
Proceedings, pages 255-270, 2000.

[5]

19]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of
group signatures: Formal definitions, simplified requirements, and a con-
struction based on general assumptions. In Advances in Cryptology - EU-
ROCRYPT 2003, International Conference on the Theory and Applications
of Cryptographic Techniques, Warsaw, Poland, May 4-8, 2003, Proceedings,
pages 614-629, 2003.

Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of group sig-
natures: The case of dynamic groups. In Topics in Cryptology - CT-RSA
2005, The Cryptographers’ Track at the RSA Conference 2005, San Fran-
cisco, CA, USA, February 14-18, 2005, Proceedings, pages 136—-153, 2005.
Vicente Benjumea, Seung Geol Choi, Javier Lopez, and Moti Yung.
Anonymity 2.0 - X.509 extensions supporting privacy-friendly authentica-
tion. In CANS, pages 265281, 2007.

Vicente Benjumea, Seung Geol Choi, Javier Lopez, and Moti Yung. Fair
traceable multi-group signatures. In Financial Cryptography, pages 231—
246, 2008.

Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures.
In CRYPTO, pages 41-55, 2004.

Ernest F. Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous
attestation. In Proceedings of the 11th ACM Conference on Computer and
Communications Security, CCS 2004, Washington, DC, USA, October 25-
29, 2004, pages 132-145, 2004.

Jan Camenisch and Jens Groth. Group signatures: Better efficiency and
new theoretical aspects. In Security in Communication Networks, 4th In-
ternational Conference, 2004, Italy, September 8-10, 2004, Revised Selected
Papers, pages 120-133, 2004.

Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and appli-
cation to efficient revocation of anonymous credentials. In CRYPTO, pages
61-76, 2002.

Sébastien Canard, Berry Schoenmakers, Martijn Stam, and Jacques Traoré.
List signature schemes. Discrete Applied Mathematics, 154(2):189-201,
2006.

David Chaum and Eugéne van Heyst. Group signatures. In EUROCRYPT,
pages 257-265, 1991.

Seung Geol Choi, Kunsoo Park, and Moti Yung. Short traceable signatures
based on bilinear pairings. In IWSEC, pages 88-103, 2006.

Sherman SM Chow, Siu-Ming Yiu, and Lucas CK Hui. Efficient identity
based ring signature. In Applied Cryptography and Network Security, pages
499-512. Springer, 2005.

Jesus Diaz, David Arroyo, and Francisco B. Rodriguez. Anonymity revoca-
tion through standard infrastructures. In EuroPKI, pages 112-127, 2012.
Jesus Diaz, David Arroyo, and Francisco B. Rodriguez. New X.509-
based mechanisms for fair anonymity management. Computers & Security,
46(0):111 — 125, 2014.

Niels Ferguson and Bruce Schneier. Practical Cryptography. John Wiley &
Sons, Inc., New York, NY, USA, 1 edition, 2003.

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Eiichiro Fujisaki and Koutarou Suzuki. Traceable ring signature. In Public
Key Cryptography - PKC 2007, 10th International Conference on Practice
and Theory in Public-Key Cryptography, China, April 16-20, 2007, Pro-
ceedings, pages 181-200, 2007.

Jaap henk Hoepman and Bart Jacobs. Increased security through open
source. Communications of the ACM, 50:79-83, 2007.

Ryan Henry. Efficient Zero-Knowledge Proofs and Applications, August
2014.

Jung Yeon Hwang, Sokjoon Lee, Byung ho Chung, Hyun Sook Cho, and
DaeHun Nyang. Short group signatures with controllable linkability. In
Lightweight Security Privacy: Devices, Protocols and Applications (Light-
Sec), 2011 Workshop on, pages 44-52, March 2011.

ISO/IEC 20008-1: Information technology — Security techniques — Anony-
mous digital signatures — Part 1: General, 2013.

ISO/IEC 20008-2: Information technology — Security techniques — Anony-
mous digital signatures — Part 2: Mechanisms using a group public key,
2013.

Toshiyuki Isshiki, Kengo Mori, Kazue Sako, Isamu Teranishi, and Shoko
Yonezawa. Using group signatures for identity management and its im-
plementation. In Proceedings of the 2006 Workshop on Digital Identity
Management, Alexandria, VA, USA, November 3, 2006, pages 73-78, 2006.
Aggelos Kiayias, Yiannis Tsiounis, and Moti Yung. Traceable signatures.
In EUROCRYPT, pages 571-589, 2004.

Aggelos Kiayias and Moti Yung. Secure scalable group signature with dy-
namic joins and separable authorities. IJSN, 1(1/2):24-45, 2006.

Benoit Libert, Thomas Peters, and Moti Yung. Group signatures with
almost-for-free revocation. In CRYPTO, pages 571-589, 2012.

Joseph K Liu, Victor K Wei, and Duncan S Wong. Linkable spontaneous
anonymous group signature for ad hoc groups. In Information Security and
Privacy. Springer, 2004.

P. Neumann. Principled assuredly trustworthy composable architectures.
Technical report, Computer Science Laboratory, SRI International, Menlo
Park, California, 2004.

Andreas Pfitzmann and Marit Hansen. A terminology for talking about pri-
vacy by data minimization: Anonymity, unlinkability, undetectability, un-
observability, pseudonymity, and identity management.

Klaus Potzmader, Johannes Winter, Daniel Hein, Christian Hanser, Pe-
ter Teufl, and Liqun Chen. Group signatures on mobile devices: Practical
experiences. In Trust and Trustworthy Computing - 6th International Con-
ference, TRUST 2013, London, UK, June 17-19, 2013. Proceedings, pages
47-64, 2013.

Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In
ASTACRYPT, pages 552-565, 2001.

ITU-T Recommendation X.509. Information technology — open systems
interconnection — the directory: Public-key and attribute certificate frame-
works. Technical report, 11 2008.

[36] Fangguo Zhang and Kwangjo Kim. Id-based blind signature and ring sig-
nature from pairings. In Advances in cryptology-ASIACRYPT 2002, pages
533-547. Springer, 2002.

A Using libgroupsig

In this section we explain how to configure, compile and make use of the library
through a few simple code snippets for the main actions. libgroupsig requires
glib (version 2.33 or compatible), openssl (version 1.0.1e-2 or compatible) for
hashing functions, libgmp (version 2:5.0.5 or compatible) and the PBC librar
(0.5.12 or compatible). Therefore, in order to use it, these libraries must be
installed in the system. Also, the library uses the GNU build systen@. Thus,
in order to check the environment and generate the proper compilation scripts,
the configure script must be run. Afterwards, the library is compiled with
make and optionally installed with make install. A minimal set of auxiliary
tools (located under the tools folder) for testing the library may be compiled
with make check. Below we include a few code snippets, mostly extracted from
the mentioned tools programs, showing some of the main functionality of the
library. A detailed API documentation is available within the library’s home
page at Bitbucket™

Group creation The code snippet in Listing [§] shows how to create a group.
Specifically, it creates the group and manager keys and an empty GML, using
predefined configuration values for each supported group signature scheme. The
initial groupsig_init call sets up library-wide structures (currently, it seeds
random number generators). Subsequently, the group and manager keys, and
GML are initialized. Finally, the group is created by filling up the initialized
cryptographic tokens and setting scheme-wide data structures (e.g., PBC data
structures for pairing based group signature schemes).

Adding group members This operation typically requires some precomputation
by the new member and a finalization by the group manager. Thus, we have
divided it accordingly. The result of each operation may just be transmitted
over the network. However, for brevity, we include it in the snippet in Listing
as part of the same program. After successfully adding a new member, the GML
(required parameter to the group manager side of the process) will be updated
with the new member information.

' http://crypto.stanford.edu/pbc/. Last access on August 5th, 2015.

18 http://en.wikipedia.org/wiki/GNU_build_system. Last access on August 5th,
2015.

!9 https://bitbucket.org/jdiazvico/libgroupsig/. Last access on August 5th,
2015.

http://crypto.stanford.edu/pbc/
http://en.wikipedia.org/wiki/GNU_build_system
https://bitbucket.org/jdiazvico/libgroupsig/

OO0~ Uk W~

OO U W~

Ju

/* Initialize environment =/
if (groupsig init (time(NULL)) = IERROR) { return IERROR; }

/* Set group signature scheme configuration parameters. x/
if (cfg—>scheme == GROUPSIG_KTY04 CODE) {
KTY04 CONFIG_SET DEFAULTS((kty04 config t=) cfg—>config ,key format)
} else if(cfg—>scheme = GROUPSIG_BBS04 CODE ||
cfg—>scheme = GROUPSIG_CPY06 CODE) {
CPY06_CONFIG_SET DEFAULTS((cpy06 config t=) cfg—>config 6 key format)

/+ Initialize the group key, manager key and GML variables x/

if (! (mgrkey = groupsig mgr key init(cfg—>scheme))) { return IERROR; }
if (!(grpkey = groupsig_grp_ key init(cfg—>scheme))) { return IERROR; }
if (!(gml = gml_ init(cfg—>scheme))) { return IERROR; }

/* ¢¢‘Construct’’ the group x/

if (groupsig setup(cfg—>scheme, grpkey, mgrkey, gml, cfg) = IERROR) {
return [ERROR;

}

Fig.8: Group creation.

/+* Initialize member key structure x*/
if (! (memkey = groupsig mem key init(cfg—>scheme))) { return IERROR;}

/* Member side of join x*/
if (groupsig_join mem (memkey, grpkey) = IERROR) { return IERROR; }

/* Group manager side of join x*/

if (groupsig_join_mgr (gml, memkey, mgrkey, grpkey) = IERROR) {
return [ERROR;

}

Fig.9: Addition of new group members.

Signing messages and signature verification Listing [I0] shows the process for
creating a group signature. It is worth emphasizing the last parameter which, in
case of being other than UINT_MAX, specifies that the random number generator
must be re-seeded using the specified value. Verification of a group signatures is
shown in Listing [Tl

Opening signatures With the open function, the real identity of the signer of a
group signature is obtained. It requires the group signature itself and the group
membership list besides, of course, the group manager key. Listing [I2 shows how
to call the function. Once obtained the identity of the signer, its member key
may be revoked by including it in a CRL which, in turn, may be used to trace
dishonest users, and even made public.

Other functions The previous functions represent the core of group signature
schemes. However, specific schemes may implement additional functionality, like
tracing dishonest users and claiming group signatures. For implementing these
functions, the library provides handlers following the same style than the already

OO0~ Uk W~

~NoO Utk WwnN

Tk W N~

/* Initialize the group signature object x*/
if (!(sig = groupsig signature init(scheme))) {
fprintf(stderr,
"Error: failed to initialize the group signature.\n");
return IERROR;

}

/* Sign the message: setting the seed to UINT MAX forces to
get a new pseudo random number for this signature instead
of using a pre—fixed random number. x/
if (groupsig sign(sig, msg, memkey, grpkey, UINT MAX) — IERROR) {
fprintf(stderr, "Error: signing failure.\n");
return IERROR;

Fig. 10: Issuing group signatures.

/* Verify group signature x/
if (groupsig verify(&bool, sig, msg, grpkey) == IERROR) {
fprintf(stderr, "Error: verification failure.\n");

return [ERROR;

}
if (!bool) { fprintf(stdout, "WRONG signature.\n"); }
else { fprintf(stdout, "VALID signature.\n"); }

Fig. 11: Verifying group signatures.

/+* Open group signature */
if ((rc = groupsig open(id,proof,sig,grpkey ,mgrkey,gml)) = IERROR) {
fprintf(stderr, "Error opening signature.\n");

return [ERROR;
}

Fig. 12: Opening group signatures.

introduced ones. Also, miscellaneous functionality is provided for importing, ex-
porting and copying keys and signatures.

B Extending libgroupsig

The library includes a script, named libgroupsig.sh and located under the

tools directory, which allows the automated creation of the skeleton of a new

group signature scheme. This option is invoked with the command . /1ibgroupsig.sh
addscheme <scheme name>, and creates a new subdirectory $1ibroot$/groupsig/<scheme
name> containing this “empty” skeleton and updating a few library wide data
structures. After running this command, the programmer would have to imple-

ment the actual functionality within the files created inside the new subdirectory

(e.g. setup.c, sign.c, etc.).

	libgroupsig: An extensible C library for group signatures

