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Abstract

In this paper, we study the security of multi-prime RSA whose modulus is N = p1p2 · · · pr
for r ≥ 3 with small prime difference of size Nγ . In ACISP 2013, Zhang and Takagi showed a
Fermat-like factoring attack, which can directly factor N for γ < 1

r2
. We improve this bound to

theoretically achieve γ < 2
r(r+2)

by a new factoring attack. Furthermore, we also analyse specific
MPRSA with imbalanced prime factors. Experimental results are provided to show the efficiency
of our attack.
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1 Introduction

1.1 Background

RSA [24] is a famous public key cryptosystem that has been widely used in various settings. However,

the original RSA is not fit for constrained environments. Since people need faster and more efficient

RSA encryption/decryption processes, several fast variants have been proposed and surveyed [4]. In

this paper, we focus on multi-prime RSA (MPRSA) and some related attacks (mainly factoring attack

with small prime difference) on MPRSA.

The MPRSA variant is based on modifying the RSA modulus to N = p1p2 · · · pr for r ≥ 3. It is

first patented by Compaq [6], using a modulus of the form N = p1p2p3. We describe its key generation,

encryption, and decryption algorithms and also the performance of MPRSA.

Algorithm 1 (Key Generation)

INPUT: A security parameter n and a size parameter r.

1: Generate r distinct primes p1, p2, . . . , pr of n/r bit-size and set the modulus N =
∏r

i=1 pi.

2: Pick a random number that is relatively coprime to φ(N) =
∏r

i=1(pi − 1) as the public key e (e.g.

e = 65537) and compute the private key d = e−1 mod φ(N).

OUTPUT: An RSA public/private key pair.
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Algorithm 2 (Encryption)

INPUT: A message M and an RSA public key (N, e).

1: Transform the string M into an integer M ∈ ZN and compute the ciphertext as C = Me mod N .

OUTPUT: The corresponding ciphertext C.

Algorithm 3 (Decryption with CRT)

INPUT: A ciphertext C and an RSA private key d.

1: Let di ≡ d mod pi − 1 amd compute Mi = Cdi mod pi for each i, 1 ≤ i ≤ r.

2: Combine Mi’s by the Chinese Remainder Theorem (CRT) to obtain the corresponding plaintext

M = Cd mod N .

OUTPUT: The corresponding message M .

Throughout previous analysis, there are the following assumptions on primes of MPRSA modulus

N = p1p2 · · · pr for r ≥ 3.

1. p1 < p2 < · · · < pr,

2. 1
2N

1
r < p1 < N

1
r < pr < 2N

1
r .

This second assumption indicates that all the primes are balanced. That is, all primes p1, p2, . . . , pr

are roughly of the same bit-size. The small prime difference ∆ of p1, p2, . . . , pr is defined as ∆ =

maxi ̸=j |pi − pj | = pr − p1 = Nγ where 0 < γ < 1
r .

The advantage of MPRSA is its efficiency when using Chinese Remainder Theorem (CRT) in its

decryption process. From [4], we know that the speedup of MPRSA with N = p1p2 · · · pr for r ≥ 3 over

the standard RSA is approximately r2

4 . Moreover, several attacks (such as small private exponent attack,

partial key exposure attack etc.) are less effective as r increases. But r should not be unrestrictedly

large because of the Elliptic Curve Method (ECM) [21]. Since factoring an MPRSA modulus using

ECM (i.e., 256-bit prime factors are considered within the factoring bound of ECM) is much easier with

increasing r, one should choose r = 3, 4 or 5 for most MPRSA settings. Generally speaking, MPRSA

might be a practical alternative for reducing the decryption costs.

1.2 Related Work

Suppose that N is an MPRSA modulus with r balanced primes p1, p2, . . . , pr. Let e ≈ N be a valid

public exponent and d = N δ be its corresponding private exponent. Many researchers have investigated

the security of MPRSA for small private exponent [5, 13, 16, 14, 15, 26] and small prime difference

[1, 27, 28, 26]. Below we review some previous results and point out the existing drawbacks. Since

lattice method is always better than continued fraction approach, we just provide the results using

lattice method.
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Ciet et al.’s Atttack [5]

Given the public key (N, e), then d can be recovered in time polynomial in logN if

δ <
4

3
− 1

3r
− 2

3r

√
4r2 − 5r + 1.

This attack is reduced to the Small Inverse Problem (SIP), namely k(A + s) + 1 ≡ 0 mod e, which is

proposed by Boneh and Durfee [3]. In general, |k| and |s| are bounded by eδ and N1− 1
r , respectively.

Ciet et al. applied the original Boneh-Durfee lattice construction in [3] and obtained above result.

Hinek et al.’s Attack [13, 16, 15]

Given the public key (N, e), then d can be recovered in time polynomial in logN if

δ <
6

5r
− 4

5
+

2

5r

√
4r2 − 7r + 4,

δ < 1−
√
1− 1

r
.

Hinek et al. [16] applied an extension of the Boneh-Durfee lattice proposed by Blömer and May [2] and

provided the first improved bound. Later, the second improved bound is obtained by stronger lattice

construction stated in [3].

Zhang and Takagi’s Attack [27, 28]

Let ∆ = pr −p1 = Nγ , 0 < γ < 1
r be small prime difference of the prime factors of N . Given the public

key (N, e), then d can be probabilistically found in time polynomial in logN , if γ and δ satisfy

δ < 1−
√
1 + γ − 2

r
.

Zhang and Takagi presented it in [27] by bounding |k| ≤ eδ and |s| ≤ N1+γ− 2
r . Later, they [28] improved

the result by applying a tighter bound for |s|.

δ < 1−
√
1 + 2γ − 3

r
for γ ≥ 3

2r
− 1 + δ

4
,

δ <
3

r
− 1

4
− 2γ for γ <

3

2r
− 1 + δ

4
.

We note that for the second case, there exists a better factoring attack for quite small γ. The

advantage is that factoring attack does not require any restriction on δ.
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Takayasu and Kunihiro’s Attack [26]

Given the public key (N, e), then d can be probabilistically found in time polynomial in logN , if γ and

δ satisfy

δ < 1−
√
1 + 2γ − 3

r
for

3

2

(
1

r
− 1

4

)
≤ γ <

1

r
,

δ < 1− 2

3

(√
(7 + 8γ − 12

r
)(1 + 2γ − 3

r
)− 1− 2γ +

3

r

)
for 0 < γ <

3

2

(
1

r
− 1

4

)
,

Takayasu and Kunihiro summarized previous lattice-based methods to provided an improved lattice

construction for solving SIP. It covers broader family of lattice construction and previous results. Due

to this improvement, they also presented the insecure situation of MPRSA with small prime difference.

We note that only for r = 3, the second condition 3
2 (

1
r − 1

4 ) makes sense. While r ≥ 4, the latter

vanishes and it degenerates to δ < 1−
√
1 + 2γ − 3

r for γ < 1
r . Hence, there exists factoring attack for

quite small γ without any restriction on δ as well.

Remark 1 Boneh and Durfee [3] have noted that solving SIP is heuristic because the polynomials

derived from lattice reduction algorithm are not guaranteed to be algebraically independent. If it is not

the case, the private exponent d or the factorization of N cannot be recovered. Thus, we provide an

assumption for algebraically independent polynomials.

Assumption 1 (Algebraic Independence) The polynomials derived from lattice reduction algorith-

m (e.g. LLL algorithm) in our lattice-based method are algebraically independent.

1.3 Our Contributions

In this paper, we study the factoring attack on MPRSA with small prime difference. Small prime

difference was first introduced by de Weger [12] to improve the bound for solving SIP. In ACISP

2013, Zhang and Takagi [27] presented a Fermat-like factoring attack on MPRSA, which can directly

lead to the factorization of N for γ < 1
r2 . However, their work just utilizes partial advantage of

the balanced primes. In our method, we show an improvement on factoring attack from γ < 1
r2 to

γ < 2
r(r+2) . Contrast to previous, we use the knowledge of all balanced primes to solve an r-variate

integer polynomial.

Furthermore, we consider specific MPRSA with imbalanced primes. Since the prime factors of

the modulus are imbalanced, small private exponent attacks do not work any more and factoring

attack becomes more important. In this paper, we consider the imbalanced MPRSA with the following

assumptions on primes of the modulus N = p1p2 · · · pr for r ≥ 3.
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1. p1 < p2 < · · · < pr,

2. 1
2N

1−β
r−1 < p1 < N

1−β
r−1 < pr−1 < 2N

1−β
r−1 ,

3. pr = Nβ for 1
r < β < 1.

This third assumption indicates that all primes are imbalanced while the second indicates that the

smaller r − 1 primes are still balanced. We show that given the public key (N, e) of an imbalanced

MPRSA with pr = Nβ , then N can be probabilistically factored in time polynomial in logN , if γ

satisfies

γ <
2(1− β)(r − 2 + β)

(r − 1)(r2 + 2β − 3)
.

1.4 Organizations

In Sect. 2, we introduce lattice-based methods to solve modular and integer equations. In Sect. 3, we

present our improved factoring attack on balanced MPRSA with small prime difference. In Sect. 4,

we further describe factoring attack on MPRSA with imbalanced primes. In Sect. 5, we analyse the

performance of our attacks by experiments and comparisons.

2 Preliminaries

In this section, we briefly introduce the LLL algorithm [20] and Coppersmith’s technique [8, 7, 9] (also

referred as Howgrave-Graham’s lemma [17] and Coron’s reformulation [10, 11]). One can refer to [22, 23]

for more details.

The LLL algorithm proposed by Lenstra, Lenstra and Lovász [20] is practically used for finding

approximately small lattice vectors due to its efficient polynomial-time running results. We provide the

following substratal lemma for our method.

Lemma 1 (LLL [20]) Let L be a lattice spanned by a basis (⃗b1, b⃗2, . . . , b⃗m). The LLL algorithm outputs

a reduced basis (v⃗1, v⃗2, . . . , v⃗m) of L in polynomial time, that satisfies

∥v⃗1∥, ∥v⃗2∥, . . . , ∥v⃗i∥ ≤ 2
m(m−1)

4(m+1−i) det(L)
1

m+1−i ,

for reduced basis vectors v⃗i, 1 ≤ i ≤ m.

The main idea of Coppersmith’s technique is to transform finding small roots of a modular equation

(or an integer equation) to extracting roots over the integers. To do so, one can collect polynomials

sharing a common root modulo Rm for some well-chosen integer R and m. Then one can apply the

polynomials’ coefficient vectors to construct a lattice basis. Using lattice reduction algorithms (i.e., the
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LLL algorithm [20]), one can obtain a collection of equations over the integers with sufficiently small

norm. Thus, one finally solve the desired root.

The following lemma presented by Howgrave-Graham [17] gives a criterion for judging whether

the desired root of a modular equation is also a root over Z. To a given polynomial g(x1, . . . , xn) =∑
ai1,...,inx

i1
1 · · ·xin

n , its norm is defined by ∥g(x1, . . . , xn)∥2 :=
∑

|ai1,...,in |2.

Lemma 2 (Howgrave-Graham [17]) Let g(x1, . . . , xn) ∈ Z[x1, . . . , xn] be an integer polynomial that

is a sum of at most m monomials. Suppose that

1. g(x
(0)
1 , . . . , x

(0)
n ) ≡ 0 (mod R), where |x(0)

1 | < X1, . . . , |x(0)
n | < Xn,

2. ∥g(x1X1, . . . , xnXn)∥ < R√
m
.

Then we have g(x
(0)
1 , . . . , x

(0)
n ) = 0 over the integers.

Below we introduce a useful lemma for solving a linear equation modulo an unknown divisor of the

modulus N by combining Lemma 1 and 2. This lemma directly leads to previous factoring attack.

Lemma 3 (Coppersmith [9]/May [23]) Let N be an integer of unknown factorization, which has

an unknown divisor p ≥ Nτ , 0 < τ ≤ 1. Let fp(x) be a univariate monic polynomial of degree n and

ϵ > 0. Then for a sufficiently large N , we can find all solutions x(0) in time O(ϵ−7n5 log9 N) for the

equation

fp(x) ≡ 0 mod p for |x(0)| ≤ N
τ2

n −ϵ.

In our method, we want to solve an r-variate integer polynomial by the following lemma [18]. First,

let Xi = Nηi for positive integer N and real positive number ηi for i = 1, 2, . . . , r. Then, we also define

∥f(·)∥∞ as the largest coefficient (in absolute value form) of all the monomials in polynomial f(·).

Lemma 4 (Jochemsz [18]) Given the polynomial

f(x1, x2, . . . , xr) =
r∏

i=1

(xi + p)−N ∈ Z[x1, x2, . . . , xr].

For any ϵ > 0, the root (x
(0)
1 , x

(0)
2 , . . . , x

(0)
r ) satisfying |x(0)

i | < Xi for such bounds Xi (i = 1, 2, . . . , r)

can be discovered if N is sufficiently large and

X1X2 · · ·Xr < W
2

r+1−ϵ,

where W = ∥f(x1X1, x2X2, . . . , xrXr)∥∞. The running time is polynomial in logN and 1/ϵ.

6



One can see [18] for detailed analysis. The first special case was showed by Coppersmith in [9] for

finding the bound XY < W
2
3 of the polynomial f(x, y) = (p0 + x)(q0 + y) −N to factor the modulus

N with known bits of prime factors p, q. Later, Jochemsz [19, 18] provided a generalized strategy for

finding roots of such polynomials.

3 Improved Factoring Attack with Balanced Primes

For an MPRSA instance with a balanced modulus N = p1p2 · · · pr for r ≥ 3, where p1 < p2 < · · · < pr.

Define the small prime difference of p1, p2, . . . , pr by ∆ = pr−p1 = Nγ , 0 < γ < 1
r . We know that there

exists |pi − p| < pr − p1 = Nγ for p = ⌊N 1
r ⌋. Thus, let xi = pi − p for i = 1, 2, . . . , r and define a monic

linear modular polynomial fpi(x) = x+ p mod pi, which has a root xi modulo pi. According to Lemma

3, we can efficiently find every xi by solving r many linear modular equations fpi(x) ≡ 0 mod pi if γ is

small enough. We show the following proposition for this factoring attack.

Proposition 1 (Zhang and Takagi [27]) Let N = p1 · · · pr be an MPRSA balanced modulus, where

p1 < p2 < · · · < pr, pr − p1 = Nγ , 0 < γ < 1
r . If γ < 1

r2 , then N can be factored in time polynomial in

logN .

The proof is straightforward when applying Lemma 3 to each fpi(xi) = xi + p ≡ 0 mod pi for τ = 1
r .

Opposite to previous method of making use of fpi(xi) separately, we gather them together to solve an

r-variate integer polynomial. More concretely, we present the following factoring attack.

Attack 1 Let N = p1 · · · pr be an MPRSA balanced modulus, where p1 < p2 < · · · < pr, pr − p1 = Nγ ,

0 < γ < 1
r . If γ < 2

r(r+2) , then N can be factored in time polynomial in logN .

Notice that fpi(xi) = xi + p = pi. We have

f(x1, x2, . . . , xr) =
r∏

i=1

(xi + p)−N =
r∏

i=1

fpi(xi)−N =
r∏

i=1

pi −N = 0.

Before we apply Lemma 4 to above polynomial, we must figure out ηi for i = 1, . . . , r and W . It is

clear that ηi = γ since |xi| = |pi − p| < pr − p1 = Nγ . However, it may be a little complicated for W .

We roughly have W = max{N − pr, pr−1Nγ} by the definition. Since all primes have a small difference

Nγ , N and pr differ from each other in Nγr least significant bits. Hence, we have

W = max{Nγr, N
r−1
r +γ} = N

r−1
r +γ .

It can be easily inferred because

γ <
1

r
⇔ γ(r − 1) <

r − 1

r
⇔ γr <

r − 1

r
+ γ.
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From Lemma 4, the condition reduces to (we omit the tiny term ϵ therein)

γr <
2

r + 1

(
r − 1

r
+ γ

)
⇔ γ

(
r(r + 1)

2
− 1

)
<

r − 1

r
⇔ γ <

2

r(r + 2)
.

Thus, the final condition is

γ <
2

r(r + 2)
.

Figure. 1 shows that our bound is more optimized. Experimental results will be given in Sect. 5.

A

B

C

Figure 1: Curve AB and AC represent γ = 2
r(r+2) and γ = 1

r2 , respectively

Next we provide concrete lattice construction for solving this polynomial f(x1, x2, . . . , xr). Define

two sets S and SR for a positive integers s.

S =
∪{

xi1
1 xi2

2 · · ·xir
r |xi1

1 xi2
2 · · ·xir

r is a monomial of fs−1
}
,

SR =
∪{

xi1
1 xi2

2 · · ·xir
r |xi1

1 xi2
2 · · ·xir

r is a monomial of fs
}
.

By calculating the expansion of fs−1 (or fs), we know the relation of every element in S (or SR) to its

exponent ij for j = 1, 2, . . . , r.

xi1
1 xi2

2 · · ·xir
r ∈ S ↔ ij = 0, . . . , s− 1, for j = 1, 2, . . . , r,

xi1
1 xi2

2 · · ·xir
r ∈ SR ↔ ij = 0, . . . , s, for j = 1, 2, . . . , r.
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For R = W
∏r

i=1 X
s−1
i = N

r−1
r +γ+γr(s−1), we then define f ′ = (pr −N)−1f mod R and shift polyno-

mials below,

g : xi1
1 xi2

2 · · ·xir
r f ′ · R

W
∏r

j=1 X
ij
j

, for xi1
1 xi2

2 · · ·xir
r ∈ S,

g′ : xi1
1 xi2

2 · · ·xir
r ·R, for xi1

1 xi2
2 · · ·xir

r ∈ SR\S.

Notice that above shift polynomials g and g′ modulo R are equal to zero. Afterwards, we use the

LLL algorithm to search several integer linear combinations of g and g′, whose norm is ensured to be

sufficiently small. (This has been mentioned in Sect. 2.) The lattice L is constructed by the coefficient

vectors of g and g′ by substituting xiXi for each xi. It is always represented by a square basis matrix

whose rows are corresponding vectors.

Before showing an example of such a basis matrix, we first define the monomial order ≺ in our

method as xi1
1 xi2

2 · · ·xir
r ≺ xj1

1 xj2
2 · · ·xjr

r if i1 + i2 + · · ·+ ir < j1 + j2 + · · ·+ jr or
∑r

k=1 ik =
∑r

k=1 jk,∑t
k=1 ik >

∑t
k=1 jk for t = 1, 2, . . . , r− 1. Then a simple example is showed in Table 1, where non-zero

off-diagonal entries are marked by −.

Table 1: A simple example with s = 1 and r = 3

1 x1 x2 x3 x1x2 x1x3 x2x3 x1x2x3

g0,0,0 1 – – – – – – –

g′1,0,0 RX1

g′0,1,0 RX2

g′0,0,1 RX3

g′1,1,0 RX1X2

g′1,0,1 RX1X3

g′0,1,1 RX2X3

g′1,1,1 RX1X2X3

When γ < 2
r(r+2) and a suitable s is chosen, we can obtain r − 1 many polynomials f1, f2, . . . , fr−1

apart from f . Moreover, they share a common root (p1 − p, p2 − p, . . . , pr − p) over the integers. We

can solve pi for 1 ≤ i ≤ r under Assumption 1, which directly lead to the factorization of N .

The running time depends on reducing the basis matrix and extracting the common root. Both

of them can be done in polynomial time. The LLL algorithm can output the desired polynomials

in time polynomial in logN . The Gröbner basis computation for finding the common root is often

polynomial time computable in practice. Furthermore, we assume that the running time of the Gröbner

basis computation is negligible compared to the LLL algorithm. Additionally, one could have more
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polynomials than required amount after the LLL algorithm. Hence, we usually use the Gröbner basis

computation rather than resultant computation.

Remark 2 Though we obtain a broader bound on small prime difference, there exist some disadvan-

tages like success rate and lattice dimension. In Sect. 5, we will implement experiments and succeed to

extract our desired roots in practice. From our lattice construction, the dimension can be calculated as

(s+ 1)r, which is exponential in r. Fortunately, r is usually set 3, 4 and 5. When s is also fixed small

(i.e., 1,2), our method is still efficient.

4 Factoring Attack with Imbalanced Primes

In this section, we further analyze factoring attack on MPRSA with imbalanced primes. The reason why

we need MPRSA with imbalanced primes is that one cannot efficiently perform previous small private

exponent attacks on imbalanced MPRSA. Below we recall our assumptions on imbalanced MPRSA

stated in Sect. 1.

We consider the imbalanced MPRSA with the following assumptions on the primes of the modulus

N = p1p2 · · · pr for r ≥ 3.

1. p1 < p2 < · · · < pr,

2. 1
2N

1−β
r−1 < p1 < N

1−β
r−1 < pr−1 < 2N

1−β
r−1 ,

3. pr = Nβ for 1
r < β < 1.

The small prime difference ∆ of p1, p2, . . . , pr−1 is defined as ∆ = pr−1 − p1 = Nγ where 0 < γ < 1−β
r−1 .

Another small prime difference ∆̄ of pr and Nβ is defined as ∆̄ = |pr −Nβ | = N γ̄ where 0 < γ̄ < β. In

fact, γ̄ can be determined with high probability.

For this imbalanced MPRSA, one can find r − 1 balanced primes by Lemma 3 provided

γ <

(
1− β

r − 1

)2

.

This knowledge is enough to factor the modulus N . Moreover, we can perform similar factoring attack

on imbalanced MPRSA, which is analogous to Attakc 1 in Sect. 3.

Attack 2 Let N = p1 · · · pr be an MPRSA imbalanced modulus, where p1 < p2 < · · · < pr, pr−1 − p1 =

Nγ , 0 < γ < 1−β
r−1 and pr = Nβ, 1

r < β < 1. If γ < 2(1−β)(r−2+β)
(r−1)(r2+2β−3) , then N can be factored in time

polynomial in logN .
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Similarly, we have

f̄(x1, x2, . . . , xr) = (xr + p̄)
r−1∏
i=1

(xi + p)−N =
r∏

i=1

pi −N = 0,

where p = ⌊N
1−β
r−1 ⌋, p̄ = ⌊ N

pr−1 ⌋, xr = pr − p̄ and xi = pi − p for i = 1, 2, . . . , r − 1.

We also should figure out ηi for i = 1, . . . , r and W stated in Lemma 4. Since we know that ηi = γ

for 1 ≤ i ≤ r−1, we have ηr = γ̄ = βγ(r−1)
1−β . We roughly have W = max{N − p̄pr−1, pr−1N γ̄ , p̄pr−2Nγ}

for W . From our assumptions, N and p̄pr−1 differ from each other in N
γ(r−1)
1−β least significant bits.

Hence, we have

W = max{N
γ(r−1)
1−β , N1−β+

βγ(r−1)
1−β , Nβ+γ+

(r−2)(1−β)
r−1 } = Nβ+γ+

(r−2)(1−β)
r−1 .

It can be inferred by

γ <
1− β

r − 1
⇔ γ(r − 1) < 1− β ⇔ γ(r − 1)

1− β
< 1− β +

βγ(r − 1)

1− β
,

and

1− β +
βγ(r − 1)

1− β
< β + γ +

(r − 2)(1− β)

r − 1

⇔ 1− β

r − 1
+

βγ(r − 1)

1− β
< β + γ

⇔ γ(βr − 1)

1− β
<

βr − 1

r − 1
(
1

r
< β ⇔ βr − 1 > 0)

⇔ γ <
1− β

r − 1
.

Thus, the condition reduces to (we omit the tiny term ϵ therein)

γ(r − 1) +
βγ(r − 1)

1− β
<

2

r + 1

(
β + γ +

(r − 2)(1− β)

r − 1

)
⇔ γ <

2(1− β)(r − 2 + β)

(r − 1)(r2 + 2β − 3)
.

Eventually, the condition is

γ <
2(1− β)(r − 2 + β)

(r − 1)(r2 + 2β − 3)
.

Our bounds for various r and β = 0.4, 0.5 are showed in Figure. 2.

Remark 3 When β is exactly equal to 1
r , this bound γ < 2(1−β)(r−2+β)

(r−1)(r2+2β−3) reduces to γ < 2
r(r+2) . It

means that factoring attack with balanced primes can be viewed as a special case of that with imbalanced
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Figure 2: Upper and lower curves represent γ = 2(1−β)(r−2+β)
(r−1)(r2+2β−3) and γ =

(
1−β
r−1

)2
, respectively

primes. For imbalanced MPRSA, we must control the bit-size of the smaller primes. In other words,

the primes should be chosen outside the factoring bound of ECM.

5 Experimental Results

In this section, we state some experimental results to show the practical performance of our method.

These experiments were carried out under Ubuntu 14.04 running on a computer with Intel(R) CoreTM

i5 CPU 2.40 GHz, 2 GB RAM. We used the LLL implementation available in the NTL library [25] to

reduce a basis matrix. The numbers used in each experiment were chosen uniformly at random.

During the experiments, we collected three polynomials satisfying our requirements for s = 1. In

other words, after running the LLL algorithm, we obtained enough sufficiently short vectors. Hence, we

could extract the common root by the Gröbner basis computation and finally factored the modulus N .

We give experimental results on two distinct attacks according to Sect. 3 and Sect. 4, respectively.

More details are stated below. The γt-column provides the asymptotic bound on γ for given β and

r (the imbalanced case indicates that β = 1
r ) when lattice dimension goes to infinity. The γe-column

provides the observed experimental bound on γ for chosen β, r, s and log2 N in our lattice setting.

The γp-column provides the previous experimental bound on γ. We denote the bit-size of N , the LLL

algorithm running time and our lattice dimension by log2 N , T and D, respectively.
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Attack 1

For our factoring attack on balanced MPRSA with r = 3, we choose s = 1 and s = 2. It implies that we

should reduce 8-dimensional and 27-dimensional lattices by the LLL algorithm. The results about the

comparison of previous bound [27] and our asymptotic and experimental bounds are showed in Table 2.

Table 2: The comparison of previous bound and our asymptotic, experimental bounds on γ

for our factoring attack on balanced MPRSA with r = 3, s = 1, 2

log2 N
r = 3 s = 1 D = 8

γp log2 N
s = 2 D = 27

γt log2 N γe log2 N T (second) γe log2 N T (second)

900 120 99 1.056 97 99 478.436

1200 160 132 2.524 129 132 973.197

1500 200 165 4.016 162 165 2052.38

1800 240 199 7.196 194 199 3316.72

2100 280 232 10.544 227 232 4725.13

2400 320 265 15.248 259 265 6737.62

2700 360 298 21.464 291 299 9697.17

3000 400 332 28.638 324 332 14804.44

We first comment on the results for D = 8. For N of all bit-sizes, we collect three polynomials

sharing a common root over the integers in the experiments. Then we take them into the Gröbner

basis computation and finally obtain the right values of p1 − p, p2 − p, and p3 − p, which lead to the

factorization of N = p1p2p3. As the modulus increases in this case, we observe that the upper bound

γe has a tiny rise from 0.11 to 0.1106. When we turn to the Gröbner basis computation, the common

roots can be successfully extracted in less than one second.

For D = 27, we collect more polynomials satisfying our condition in each experiment. Unfortu-

nately, although there are more than three polynomials (actually eight polynomials), we cannot find

the common root for γe > 0.111. From Table 2, we observe that the upper bound γe almost remains

unchanging for the same settings except a higher lattice dimension. Thus, our attack is confirmed under

Assumption 1 for γ < 0.111, which almost reaches previous theoretical bound 1
9 .

For r > 3, we do not carry out experiments since the corresponding lattice dimension is huge

(D = (s + 1)r). There always exist three algebraically independent polynomials in our experiment

(including r = 4) for s = 1. These polynomials are sufficient to factor N for N = p1p2p3 while we need

more polynomials for r > 3. In addition, above experimental results already show our improvement.
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Attack 2

We choose s = 1 for our factoring attack on imbalanced MPRSA with r = 3. Then we should reduce

an 8-dimensional lattice by the LLL algorithm. The results about our asymptotic and experimental

bounds are showed in Table 3.

Table 3: Our asymptotic and experimental bounds on γ

for factoring attack on imbalanced MPRSA with r = 3, s = 1

log2 N β log2 N
r = 3 s = 1 D = 8

γt log2 N γe log2 N γp log2 N

1200 420 157 129 122

1200 480 148 119 104

1200 540 138 93 88

2400 840 314 259 245

2400 960 296 239 209

2400 1080 277 187 176

4800 1680 628 519 491

4800 1920 592 479 419

4800 2160 554 375 352

The experimental results demonstrate the efficiency of our factoring attack on imbalanced MPRSA.

As showed in Table 3, our experimental bounds cover previous theoretical bounds. But this factoring

attack becomes less effective as β increases. The reason may be that the small difference between p3

and p̄ is no longer “small” for larger β (i.e., β > 0.48 for r = 3). As the modulus increases, the upper

bound γe has a tiny rise as well. Moreover, the Gröbner basis computation quickly yields the common

roots in less than one second.

To summarize, our factoring attack makes a theoretical improvement by taking full advantage of

the small prime difference. We then verify it by later experiments. The conclusion is that small prime

difference is also a vulnerable feature for MPRSA. Especially for much smaller prime difference (i.e.,

1
r2 < γ < 2

r(r+2) ), our factoring attack is better than small private exponent attack and previous

factoring attack.
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