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Abstract. In CRYPTO 1999, J. An and M. Bellare proposed a Merkle-
Damgard iteration based MAC construction called NI-MAC in order to
avoid constant re-keying on multiblock messages in NMAC and to ease
the security proof. In CRYPTO 2014, Gazi et al. revisited the proof
of NI-MAC in the view of structure graph introduced by Bellare et al.
in CRYPTO 2005 and gave a tight bound of order ?—37 which is an
improvement over the trivial bound of order ZZ—Z?, for ¢ queries, each
of length at most £ blocks. But this is again restricted to the birthday
security. In order to prove the security of NI-MAC, Gazi et al. (CRYPTO
2014) introduced a variant of NI-MAC, called NI2-MAC and analyzed the
advantage of NI2 MAC. Then he showed that the same proof technique
will be applied to the security analysis of NI-MAC.

In this paper, we lift the birthday bound of NI2-MAC construction be-
yond birthday O(¢?1*/22™) by a small change in the existing construction
with one extra invocation of a independent keyed function. Finally, we
argue how to lift the security of NI-MAC beyond birthday using the
security proof for NI2-MAC.
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1 Introduction

In symmetric key paradigm, MAC (Message Authentication Code) is used for
preserving message integrity and message origin authentication. The design of
a MAC should not only consider achieving security, but also target attaining
efficiency. In the literature, three different approaches of designing a MAC exists:
(a) universal hash function based MAC, a popular example of which is UMAC [6],
(b) a compression function based MAC, like NMAC [2], HMAC [2], NI [1] etc.
(c) Block cipher based MAC, such as CBC MAC [4], PMAC [7], OMAC [12].
etc.

Most of the popular MACs are block cipher based MACs, but each one of
them suffers from the same problem - security is guaranteed up to the birthday
bound. When the block length of the underlying block cipher is 128-bit, then



birthday bound does not seem to be a problem, as we are guaranteed to have
64 bits of security which is well acceptable for many practical applications. But
when we deal with 64-bit block cipher as used in many light weight crypto
devices, then birthday bound problem becomes the main bottleneck. Throughout
the paper, we use n to denote the block-length and g to denote the number of
MAC-queries by the adversary.

Related Work on Beyond birthday Secure MAC. In recent researches,
many MAC constructions have been proposed with security beyond the birthday
barrier without degrading the performance. The first attempt was made in ISO
9797-1 [3] without security proof. But Algorithm 4 of ISO 9797-1 was attacked
by Joux et al. [15] that falsified the security bound. Algorithm 6 of ISO 9797-
1 was proven to be secure against O(22"/3) queries with restrictions on the
message length [20]. In [20] Yasuda proved that the sum of two independent
ECBC has beyond birthday bound. However, it requires four keys and it is rate
1/2 construction as it requires two block cipher calls for processing each message
block. In 2011, he proposed PMAC_Plus Construction [21] that achieves beyond
birthday security. In 2012, Zhang et al. [22] proposed a 3key version of {9 MAC
that achieves BBB.

There is also another deterministic MAC mode provides security beyond
the birthday bound. Given an n-bit to n-bit fixed-key blockcipher with MAC
security € against g queries, Dodis et al. [9] have designed a variable-length MAC
achieving O(egpoly(n)) MAC security. However, this design requires even longer
keys and more block cipher invocations. By parity method, Bellare et al. present
MACRX [3] with BBB security, conditioned on the input parameters are random
and distinct. In [13], Jaulmes et al. proposed a randomized MAC that provides
BBB security based on the ideal model (or possibly based on tweakable block
cipher). Another BBB secure randomized construction called generic enhanced
hash then MAC has been proposed in [18] by Minematsu. Recently Datta et
al. in [8] unify PMAC _Plus and 3kf9 in one key setting with beyond birthday
security.

In CRYPTO 1999, J. An and M. Bellare [1] proposed a Merkle-Damgard it-
eration based MAC construction called NI-MAC. The construction of NI-MAC
is similar to that of NMAC [2], the only difference is that in NI-MAC the com-
pression function f takes an additional input key k at each invocation. The
motivation of designing NI was to avoid constant re-keying on multi-block mes-
sages in NMAC and to allow for a security proof starting by the standard switch
from a PRF to a random function, followed by information-theoretic analysis.

In CRYPTO 2014, Gazi et al. [10] revisited the proof of NI-MAC in the view
of structure graph introduced by Bellare et al. in CRYPTO 2005 [5] and gave a

tight bound of order gz—j, which is an improvement over trivial bound of order
i—‘,{z, for ¢ queries, each of length at most ¢ blocks. But this is again restricted to
the birthday security. In order to prove the security of NI-MAC, Gazi et al. [10]
introduced a variant of NI-MAC, called NI2-MAC, and then derived the security
of NI-MAC from the security analysis of NI2-MAC. In this paper, we propose an

extension of NI12-MAC with a single invocation of an additional pseudo-random



function and prove (Section 4) that it achieves beyond-birthday security. Fur-
thermore, we make a remark at the end that if we extend the NI MAC in the
same way as we did for NI2 MAC, then also we achieve beyond birthday bound
security.

Organization: Section 2 revisits the definition of prf, mac, structure graph.
Section 3 contains the construction of NI™ and NI2T MAC. Security analysis of
NI2" is shown from Section 4 to Section 6. We conclude the paper in Section 7.

2 Preliminaries

In this section, we briefly discuss the notations and definitions used in this paper.
We also state some existing basic results.

2.1 PRF and Secure MAC

We denote |S| as the cardinality of set S and S¢ as the complement set of S. Let

z <& S denote that = is chosen uniformly at random from S. Let Func(A, B)
denote the set of all functions from A to B A function p: A — B is said to be
a random function, if p is chosen uniformly at random from the Func(A, B).
We will specify a random function by performing lazy sampling. In lazy sam-
pling initially the function p is undefined at every point of its domain. We main-
tain two sets that grows dynamically. One is domain, Dom(p) and another is
Range, Ran(p), both initialized to be empty. Dom(p), Ran(p) keeps the record
of already defined domain points and range points of function p respectively.

Therefore, if @ ¢ Dom(p) then we will choose y & B\ Ran(7) and add y in
Ran(p) and z in Dom(p). In this regard, x is said to be fresh.

We consider that an adversary A is an oracle machine with access to its
oracle O(-) and outputs either 1 or 0. Accordingly, we write A°() = 1 or 0.
The resource of A is measured in terms of the time complexity T'(n) that it
takes to interacts with its oracle O(:) and the query complexity ¢(n) which
says the number of queries and replies exchanged between the adversary and its
oracle. For practical purpose, we restrict to probabilistic polynomial time (PPT)
adversaries only.

The PRF-advantage of a function F} : A — B is defined as

AdvERF (A) = Pr [AFM —1:5 8 ic} —Pr [Af(') —1:f & FunC(AvB)} :

If this advantage is negligible in the length of the input for all PPT adversaries,
F is said to be a secure PRF. Note that the first probability is calculated over

the internal coin tosses of the algorithm .4 and randomness of k & K and second

probability is calculated over the randomness of f & Func(A, B).
The length of M in bits is denoted by len(M). When it is not a multiple of
n, we append 107~ 1—ten(M) modn 4 Nf o make len(M) a multiple of n. We



denote the maximum number of block in a query by I. We denote the partition
of a message M as M = M;||Ms]|...||M; where each M; is an n-bit block and
the number of blocks of M is denoted by .

An adversary attacking a MAC with ¢ queries obtains ¢ tags for ¢ distinct
messages and produces a valid tag of a fresh message that he has not queried
earlier. It is known [11] that any secure PRF is a secure MAC. Thus, to show that
a MAC construction is secure, one needs to show that the PRF-advantage (which
is a function of ¢, [ and n) of an adversary for the construction is negligible.

2.2 Structure Graphs

In this section, we briefly revisit the structure graph analysis of CBC-MAC [5]
by Bellare et al. and that of NI-MAC [10] by Gazi et al.

Consider an iterated/cascaded construction with a function f, where f could
be a random permutation or a random function, that works on a message M =

My ||Ms]] ... ||M; of length [ blocks as follows:
YO :0, and }/z :f()/i—hMi) for i = 1,...71.

Note that for CBC-MAC analysis, f(a, ) is taken as m(a @ ) and for the NI-
MAC analysis, f(«, ) is taken as p(«||8), where 7 is a random permutation
over n bits and p is a random function from b + n bits to n bits, where b is the
message block-length and n is the length of the chaining variable as well as the
tag.

For a set of any two fixed distinct messages M = {M ™) M (2)} and a function
f, we construct the structure graph G/(M) with {0,1}" as the set of nodes
as follows. We follow the computations for M) followed by those of M) by
creating nodes labelled by the values y; of the intermediate chaining variables Y;
with the edge (Y;,Y;11) labelled by the block M;, . In this process, if we arrive
at a vertex already labelled, while not following an existing edge, we call this
event an f-collision. An accident is an f-collision that does not close a cycle with
alternating edge-directions such that the XOR of the labels of the cycle becomes
0.

More formally, let for two distinct messages M) and M) of I; and I, blocks
respectively, where

MO = MMV MY and M@ = MP || b)) |0

Iy

the corresponding Y-values be given by

Yo(l); Y1(1)» Y2(1)7 cey ngl) and YO(Q)» Y1(2)v Y2(2)’ o Y(Q)

RN

respectively. Let 0 = [; + I5. We use the notation M; to refer to the block Mi(l),
when ¢ < [y, otherwise to refer to the block Mi(f)ll. Similarly, let Y; to refer to
0 when i = 0; ¥;", when 1 < i < &; and Y;*) , when I, +1 < i < 0. Now,
consider the mappings

[]] and [[[] on {0,...,0}



so that [[¢]] = min{j : ¥; =Y} and [[¢']] = [[¢]] for ¢ # 1 except that [[[1]]' = 0.
For any fixed f and any two distinct messages M = {M®), M®)} we define
the structure graph G (M) to be the triple G/ (M) = (V, E, L), where

V=A{l[l]:0<i<o}, E={(i—-1[l]):1<i<0o}
and L = F — {0,1}" is an edge-labeling function defined as
L((a,0)) = {M : [li = 1]} = w and [[] = v}.

Let (V;, E;, L;) be the graph obtained after processing only the first i out of
o blocks of M. We say that (i,[[{]]) is an f-collision if [[{]] < ¢ and M; ¢
L;—1([[¢ — 1], [[]]). Note that the last condition on M; implies that collision
occurred due to parallel edges with the same message label is not considered.

In [5], a general collision is called a true collision (except the collision that
occurs due to parallel edges with same label on the edges). Further, a true
collision is called an accident if it is not followed from a cycle C' with alternating
edges with the sum of the labels of the edges involved in C to 0, otherwise it is
called an induced collision. However, for NI2-MAC, all f-collisions are accidents.
In our work, we need to consider the accidents in Gf(M). Let G(M) denote the
set of all structure graphs corresponding to the set of messages M (by varying
f over a function family). For a fixed graph G, let Acc(G) denote the set of all
accidents in G. We state the following known results.

Proposition 1. [10, Lemma 2] For a fized graph G, Pr¢[G/(M) = G] <
2—n\Acc(G)|'

Proposition 2. [5, Lemma 7] Pr|G & G(M) : |Ace(G)| =2 2] < 285:

3 Proposed Construction of NI™ and NI2" for
Beyond-Birthday Secure MAC

We present the schematic diagram of NIT and NI2" in Fig. 3.1 and Fig. 3.2
followed by the description in Algorithm 1 and 2 respectively. Note that the

M, Mo, Ms M, M0

Fig. 3.1: Construction of NIT MAC



Input: fx,, fiy, fics : K1, K2, K3 < K, M « {0,1}*
Output: 7 € {0,1}"

1 My||M2]|... M; < M||10*; //l is the number of message blocks in M

2 7« 0"

3 Y« 0"
fori=1to!l do

4 Y<—fK1(Mi7Y)§

5 Z<+—2-(ZaY),
end

6 O« Z;

75 fiey (MII[10%,Y);

8 T+ fry(X,0);

9 Return T’

Algorithm 1: Algorithm for NIT™ MAC

Fig. 3.2: Construction of NI2* MAC

Input: fx,, fiy, fics : K1, K2, K3 < K, M + {0,1}*
Output: 7 € {0,1}"

1 My||Mz]|... M; < M||10*; //l is the number of message blocks in M

2 7« 0"

3 Y+ 0"
fori=1tol do

4 Y + fr, (M, Y);

5 Z<+2-(ZaY);
end

6 O« Z;

7 5 frx,(0°Y);

8 T« fk,(X,0);

9 Return T

Algorithm 2: Algorithm for NI2™ MAC




only difference between the two constructions is in the input of function fg,
where fk,, fx, and fx, are three independently chosen keyed functions such
that fx,, fi, : {0,1}" 7" = {0,1}" and fx, : {0,1}*" — {0,1}". We denote

CaSCfKI (M) = le(' . (fK1 (fK1 (fK1 (07 Ml)a M2>7 MS)a SRS )Ml>

to be the output of the last message block in the upper lane of the construction
depicted in Fig.3.2.

For any message M € {0,1}", NI2* MAC (after suitably padding with 10*
if the message length is not a multiple of the block length b) partitions M
into [ many blocks each of which is b bits long. Then the blocks are iteratively
processed as depicted in Fig.3.2. Final output Y; of Casc/*: (M) as depicted in
Fig.3.2 and 0° becomes the input of fx, (-,-) and the output of fx, (-, ) is denoted
as Y. This is the so-called NI2 construction which we extend as follows. A linear
combination of the intermediate chaining value of Casc/: (M) is denoted as ©.
The symbol ‘2’ in the construction is the root of an irreducible polynomial of
degree n. X and © are then fed into fk,(-,-) and the output is returned as tag
T.

Remark 1 NI-MAC, as originally proposed by An and Bellare in [1] replaces
the 0 block at the input of fr, with the bit length |M| of the message M. We
extend NI-MAC as depicted in Fig. 3.1 in the same way as we do for NI2-MAC
and obtain NIT-MAC.

Note: In subsequent sections all the security proofs are done for NI2* MAC.

4 Security Analysis of NI2t-MAC

Gazi et. al in [10] have shown that the advantage of distinguishing the output of

NI-MAC from random output is bounded above by g—: (l + 6515,4) and that for

NI2-MAC is & (zd’(Z) + 6;{5“) where d () = max | {d eEN: d|z’} . In this
U'e{1,..,.l}

section we analyze the advantage of our construction NI2T-MAC and show that

the advantage of our construction achieves beyond birthday bound security;

better than that of NI-MAC or NI2-MAC. Finally, we make a remark on the

achievability of BBB security of NI MAC. Thus we have the following theorem.

Theorem 1. Let f : {0,1}" x {0,1}" x {0,1}" — {0,1}" be a (e1,t,q) secure
PRF and (ea,t,1q) secure PRF. Let h: {0,1}" x {0,1}" x {0,1}" — {0,1}" be
a (e3,t,q) secure PRF. Then NIZV be a (e',t,,q,l> secure PRF, where

11¢%1*

€ §61+62+63+2T,

such that t =t + O (lg).



Proof. We give the sketch of the proof of Theorem 1 below. Let A be a adaptive
PRF-adversary against NI2T running in time ¢ and asking at most ¢ queries, each
of length at most I blocks. NI2" uses three independent keyed functions fi, fo
and hg. Now if we replace f1, fo and h3 by three different random functions 71, ro
and 3 respectively such that 11,7y < Func({0,1}" x {0,1}" x {0,1}",{0,1}")
and 73 < Func({0,1}" x {0,1}" x {0,1}",{0,1}") and call the resulting con-
struction NI2;F, then we have

AA(NI2Y, R) < € + €3 + €3 + AA(NI2H, R),

where ¢; is the PRF-advantage of f;, i = 1,2 and €3 is the PRF-advantage of hg
and R : {0,1}" — {0,1}" be a uniform random function.
Therefore to prove Theorem 1, we only need to prove

AA(NI2f, R) < UgE

In the experiment where A interacts with NI2;", let C; denotes the event that
during the first ¢ queries, the inputs to r3, i.e., (X, ©) for any two distinct queries
MU) and M®*) are also distinct. That means (X)), W) £ (£F) 0k) v1 <
J,k < i. Therefore, as long as the monotone condition [17] C = Cy,Ch,...
remains satisfied, the distribution of the responses of NI2;}' to distinct queries
will be exactly identical to the distribution of the outputs of r3 on distinct inputs
and thus to independent uniform random values. In other words, we have

NI2;|C = R.

Thus, using Lemma 1 in [10] we have, A4(NI2;, R) is upper-bounded by the
probability that a distinguisher A issuing g queries to NI2;" makes the monotone
condition C fail. This probability is denoted by Pr4[NI2;'; C]. Thus,

AA(NI2F, R) < Pry[NI2)f; 0. (1)

Now we explain how to construct a non-adaptive PRF adversary A,, from the
above adaptive PRF adversary A.

Construction of Non-adaptive PRF Adversary. Let A, be the non adap-
tive PRF adversary that we want to construct from the adaptive PRF adversary
A. A, will simulate the adaptive PRF adversary A in the following way. At
the time of i*" query, M, where 1 < i < ¢, asked by adversary A, A, will
return random string in response of it" query to A. After all the ¢ queries are
over, A, will (non-adaptively) ask all the queries that A asked during simulated
interaction.
Therefore, we have the following

Pra[NI2f; O] = Pra,, [NI2: . (2)

The maximum probability over all such non-adaptive distinguishers A,,, is given
by
Pr[NI2; C] = max Pr 4, [NI2;"; C] (3)

na



With respect to the NI2,F construction, let Coll(l) denotes the probability that
for random choice of the compression function f; and fs, results in a collision in
X and © maximized over the choice of two distinct inputs M®, MU each of
which is at most [ blocks long.

More formally, for fi, fo < Func ({O, 13" x {0,1}" x {0,1}* — {0, 1}”) we
define,

Coll(l) == pr/vf2 (20, 00) = (£0), 0W))]

max
MO MO ||MO||||MG)]||<i

Note that, (X, 00) = (£0) 0W) implies X = ¥0) and 00 = QU),
Therefore, to bound the probability of occurrence of a collision in the input of
r3 necessarily implies to bound the probability of occurrence of a collision in X
and a collision in @. That means

Prflvf2[<2(i)’@(i)) — (2@))@(]’))} — ppfufe [E(i) =y A0 = @(j)] (4)

Note that, A, violates the monotone condition C' only when the collision occurs
at the input of r5. Therefore from Equation (1), (2) and (3), and using union
bound we obtain,

2
AA(NI2S, R) < Pr[NI2H; O] < %Coll(l). (5)

In Lemma 1 of Section 4.1, we show that Coll(l) < 2222[; Therefore, plugging in
the bound of Coli(l) into Equation (5), we get the result. O

4.1 Computation of Coll(1)

Recall that, Coll(l) was defined as Pr[Y() = Y0 A ) = ©U)] maximized
over the choice of pair of distinct inputs M and M), each of length at most
[ blocks. Therefore, to establish the bound on Coll(l), we derive the bound on
pr[g(i) =y A6 = @(j)]

Lemma 1. Given two fized distinct messages M, MU | each of length is at
most | blocks, we have

(i) — 50 ' h < 221
Pr[x® = 20 A 00 = W) < o



Proof. Let Z() = Yl(l) denote the input to the function 75 for message M) (refer
to Fig.3.2). Similarly, we set ZU) = Ylgj). So, we have,

Pr[2® = 20 AW = W)

[

— Pr[E( )y A0 =@l A z>H = Z(j)] +

Pr[2®) = D A00 =W A 2O £ 7)) (6)
SPr[Z ) — 70 A0 = gld) ]+

Pr[E( )=y A0l =90 A z0) £ Z(J’)] (7)
<Pr[Zz®) = 20 A0 = W] 4

< 2(1 yD A =0l A NCOL = k|Z(i) £ Z(j)] -Pr[Z(i) £ Z(j)]>

+Pr| NC’OL > 2] (8)

< Pr[Z(” =20 A0 = @] 4

> Pr[x® = 5D A0 =0 ANCOL = k|29 # Z29)] + Pr[NCOL > 2].

k=0
Since the event Z() = Z() is a subset of the event X = X0U)_ the first term
of Equation (6) is equal to Pr[Z(") = ZU) A ©0) = 9U)],

According to Claim 1, we have Pr[Z() = ZU) A ) = 9U)] < lg;# + 52%.
From Proposition 2 we have, Prf[NCOL > 2] < 285 From Claim 2, we have,

S hoo Pr[Z® = 2O A00 = 0 ANCOL = k|2 # Z0)] < 441 Therefore,

Pr[E) = 20 A @D — )] < () 81 42+1 8

22n ﬁ 22n ﬁ
1) 1614 42+1
— 22n 2211 2271
< 20

In the next two sections, we state and prove the two claims above.

5 Details of the Proof of Claim 1

Claim 1 Fiz two distinct messages M@ MG eqch of length at most | blocks.
Then,

ld'() 84

22n T

where Z() = YZEZ), ZU) = Yl(,J), and l;,1; are the number of blocks of M@ @)
respectively. ’

Pr[Z(i) =70 A0 = @(j)] <

Proof. We prove the claim using the structure graph. After fixing two messages
M® and M) and choosing a function f uniformly at random from the set of



all functions over {0,1}" x {0,1}" — {0,1}", we analyze the structure graph

G = GI(M® M), In particular, we analyze the probability of the event

70 = 70 A6l = 6U) in view of number of collisions (say, NCOL) occurred

in the corresponding structure graph G. Therefore, we have,

Pr[Z(i) —7W A0 = Q(j)] — Pr[Z(i) =70 A0 =W A NCOL = 1]
+Pr[Zz®W = ZzD A0 =00 A NCOL > 2].

In Section 5.1, we show that

/
Pr[Z(i) =70 pn00 =0 A NCOL = 1] < 16212(75), (9)

where d'(1) is the maximum number of positive divisors of the integer I from
[1,1).
When NCOL in the graph is at least 2, then using Proposition 2 we have,

4
Pr[Zz® = ZzD A0 =0 A NCOL > 2] < Pr[NCOL > 2] < ;Ln (10)

Therefore, combining Equations (9) and (10), we get the result. O
Now the only part of the proof that remains is to prove Equation (9).

5.1 Proof of Equation (9)

We can write
Pr[(z®) = 720 AO® = 60U A NCOL = 1]

= Pr[Zz® = ZOANCOL = 1)-Pri@®W = 0V | 2 = ZUANCOL =1]. (11)

In Equation (11), there are two probabilities that need to be computed. First,
we compute Pr[Z() = ZU) A NCOL = 1] by considering different structure
graphs with NCOL = 1, corresponding to the construction NI2;\. Let G denote
the set of all structure graphs with NCOL = 1 and Z® = ZU). Without loss of
generality, let I; and [; be the lengths of the messages M () and M) respectively,
with I; > I;. Let G1 C G be the set of all structure graphs such that the M@
path does not contain any loop. The Gy = G \ G is the set of the remaining
structure graphs. For the ease of understanding blue colored path represents the
M@ path and red colored path represents the M) path.

Analysis of G;. If M) is a proper prefix of M), then |G| = 0, since in that
case Z() won’t be equal to Z). So without loss of generality, lets assume that
M) is not a prefix of M. Suppose the first p blocks constitute the common
prefix. Define t* = min {¢t > {; + p: [[t]] <[;}. Thus, the edge ([[t* — 1]], [[t*]])
in G creates the collision and from that point onwards, M) path will follow
the rest of M@ path which is nothing but the common suffix part of M and
M)

The scenario is explained in Fig. 5.1. Since there are < [ choices for t*, we have
|G1] < 1.



Fig.5.1: Structure Graph of type G,

Analysis of Gg. In graph Go, M) path creates a collision by creating a self
loop. We define t* = min{t: [[t]] <t} and let p* = [[t*]]. Therefore, (t*,p*)
denotes the collision in M® path. Now we can split M) into three mutual
disjoint strings x,y, z such that = := M11)|| .. ||Mzgi), y = M;?HH . Mt(f) and
some 2 chosen to be the smallest string so that we can write M) = z||y||z for
some a > 1.

Note that to have Z( = Z() and one collision has already been occurred
in the loop, therefore, M ()-path must be a subpath of M(9)-path and it cannot
bifurcate from M path and then collide with the last output block of M) as
that would increases the number of collisions to 2. Thus, the M)-path must
be of the form x|[y®||z, where b < a (since I; > l; in this case). Hence, the
number of blocks in y, i.e., t* — p*, in the diagram must divide [; — I;. This

Fig.5.2: Structure Graph of type Gs

scenario is explained in Fig. 5.2. There are at most ! choices for such a t* and
d'(1) choices for such a p*. Hence, |G2| < Id'(1). In the special case, when [; = [,
then obviously, |G2| = 0.

Therefore, considering G; and G2 together, by Proposition 1, we have

1d'(1)

Pr[z0) = ZU) A NCOL =1] < o

(12)

Now, we compute the second probability of Equation 11, i.e., Pr[@(i) =
OU) | zW) = ZU) A NCOL = 1]. Note that ©) = OU) gives an equation of the
form

J



The condition Z() = Z() and NCOL = 1 is equivalent to the condition Ylfl) =

Ylf_j) and Y." #* Yb(j), whenever either a < [; or b < [;. With this condition,
Equation 13 becomes

QI,Y'l(Z) + 2[7‘,—1Y2(1) 4+t 22}/}521 — 2le1(J) + 2[7’,—1Y'2(7') 4+t 22Yl§]21- (14)

Now, for both the graphs G; and G2, we will be able to find at least one Y
variable belonging to the part between p and ¢*, such that Equation (14) becomes
non-trivial for such variable Y, giving a probability of 2% for the second term of
Equation (11). When this along with Equation (12) is plugged in Equation (11),

the probability in Equation (11), i.e., in Equation (9),becomes bounded by lg;&f).

6 Details of the Proof of Claim 2

Claim 2 Fiz two distinct messages M@, M) each of length at most | blocks.
Then,

1
D Pr[x® = 5D A0W =0V ANCOL = k|20 # 2] <
k=0

42 +1
2271 ?

where Z() = Y'lgi),Z(j) = Yzij)’ li,l; is the number of blocks of M@ MG e
spectively.

Proof. It is to be noted that, under the condition Z() # z0) $() = »0) g
independent on O = QU) & NCOL = k for k = 0, 1. Therefore, we can write

1
Zpr[g(i) =y a0 =W A NCOL = I{:\Z(i) # Z(j)]
k=0

1
=Pr[x® = x| z0) 2 7)) (Z Pr[@®) = @YU A NCOL = k|2 + Z(ﬂ]) )
k=0

Now, Pr[X(®) = x0)|z0) £ z0)] < L as f3 is independent from f; and fo;

2’71
collision probability of a random function. Again from Claim 2 we have,

1
> pr[e®) =09 ANCOL = k|20 # 2V)] <
k=0

412 +1
on

(15)

Combining the collision probability of a random function and Equation (15), we
get the result. a

Therefore, we are only left with the proof of Equation (15).



6.1 Proof of Equation (15)

To prove the equation, we separately bound the following Pr[@®) = QU) A
NCOL = 0| 29 # ZU)] and Pr[@®W) = 60U A NCOL = 1| 20 £ ZU))
separately.

Again we consider two distinct messages M () and M) with lengths /; and
l;respectively, with I; > ;. Since we are given the condition Z () £ 70| the
structure graphs will have the common feature that the end-point Ylgl) of M-
path and the end-point Ylg_j) of M -path must be different, i.e., from Equa-
tion (13), we have Yl(z) @Ylgj) = ¢ # 0. Thus, Equation (13) becomes non-trivial,
with probability 2%

Now, we need to count the number of distinct structure graphs for each of
the cases NCOL =0 and NCOL = 1.

Clearly, when NCOL = 0, only such structure graph is possible, as shown in
Fig. 6.1. Thus, we have

Fig.6.1: Structure Graph of accident 0

. . . . 1
Pr[e@® =0V ANCOL =0 | 20 # 2] < o (16)
Now, let us consider the case NCOL = 1. Let G be the set of all structure
graphs with NCOL = 1 with Z(®) # ZU)_ Let G; C G be the set of all structure
graphs such that the M(-path does not contain any loop. The Gy = G'\ G| is

the set of remaining structure graphs.

Analysis of G1. For Gy, the M) path can either intersect with M) exactly
once or M) path does not intersect with M) but it creates a loop with itself.
In the first case, M) -path cannot have any loop as shown in Fig. 6.2 as that
would increase the number of collision to 2, and in the second case, the M)
path cannot intersect M ()-path at all as that would again increase the number
of collision to 2 as shown in Fig. 6.3. In either case, the number of such graphs
is at most 2.

Analysis of G3. For G5, note that M) path contains a loop. Now the M)
path may or may not intersects M (1) path. If it does, then it must follow the
same loop as M) and then exit either from the loop or afterwards, as shown



©

Fig. 6.2: Structure Graph of type G1; M® path has no loop

Fig. 6.3: Structure Graph of type G1; M path has no loop, M) path has loop

in Fig. 6.4. M) path may also bifurcate from M) path before the loop and
then it should not intersect with M path again or it should not make any self
loop with itself as both of the cases would increases the number of collision to 2.
Note that M) path cannot intersect M®) path before the loop as that would
increase the number of collision to 2.

Fig. 6.4: Structure Graph of type Go; M M) both path contain a loop

If M) path does not intersect M path, then M) path cannot make a loop
with itself as that would increase the number of collision to 2. Therefore, again
the case is similar to Fig. 6.3 where the blue colored path will then represent
the M) path and red colored path will represent M () path. In either case, the
number of such graphs is at most [2.



Thus, for the above 4/2 graphs (combined G and G5),

. . , . 412
Pr[@® =W ANCOL =1 | z® # 2] < o (17)
Therefore, from Equation (16) and (17), we get
- 412 +1
> Pr[e") =0Y ANCOL = k|20 # 2V)] < T

k=0

Remark 2 We have achieved BBB security for the NI2Zt MAC which is the
extended version of NI2 MAC. Note that NI2 MAC is a variant of NI MAC.
One can easily show that same modification on NI MAC gives BBB security. It
is to be noted that in case of NI" MAC when we calculate

Pr[Z(i) =y a0 =@l A 70O = Z(j)],

then we should consider only the structure graph that does not contain any loop
as we need to consider the it" and j" message having same length.

7 Conclusion and Future Work

Rcently, NI2-MAC was introduced in order to prove the security of NI-MAC.
In this paper, we show a modified construction of NI2-MAC and NI-MAC and
prove its security to be beyond birthday. While we use we use an extra keyed
function (fx,) in both the constructions, an interesting research problem would
be to avoid the usage of this extra keyed function and achieves beyond birthday
security.
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