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Abstract

Security parameters and attack countermeasures for Lattice-based cryptosystems have
not yet matured to the level that we now expect from RSA and Elliptic Curve imple-
mentations. Many modern Ring-LWE and other lattice-based public key algorithms
require high precision random sampling from the Discrete Gaussian distribution. The
sampling procedure often represents the biggest implementation bottleneck due to its
memory and computational requirements. We examine the stated requirements of pre-
cision for Gaussian samplers, where statistical distance to the theoretical distribution
is typically expected to be below 2−90 or 2−128 for 90 or 128 “bit” security level. We
argue that such precision is excessive and give precise theoretical arguments why half
of the precision of the security parameter is almost always sufficient. This leads to
faster and more compact implementations; almost halving implementation size in both
hardware and software. We further propose new experimental parameters for practical
Gaussian samplers for use in Lattice Cryptography.

Keywords: Post-Quantum Cryptography, Lattice Public Key Cryptography, Gaussian
Sampling

1. Introduction

Most modern Ring-LWE and other lattice-based cryptographic algorithms require
variables to be sampled from the Discrete Gaussian distribution. For many implemen-
tations the sampling procedure represents the biggest performance bottleneck due to its
memory or computational requirements. This is especially the case for embedded or
lightweight targets such as smart cards [1, 2, 3, 4, 5].

Structure of this paper and our contributions. In Sections 2 and 3 we discuss the dis-
crete Gaussian distribution, sampling, and precision. In Section 4 we argue that the
common requirements for precision in Gaussian sampling are excessive; essentially
only half of the bits are required, enabling faster and more compact implementations.
We conclude with new, more efficient sampler parameters in Section 5.
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1



..
-8

.
-7

.
-6

.
-5

.
-4

.
-3

.
-2

.
-1

.
0
.

1
.

2
.

3
.

4
.

5
.

6
.

7
.

8
. x.

Pr(X = x) = ρσ(x)

Figure 1: The Discrete Gaussian distribution Dσ (Equation 3) is defined for all x ∈ Z and satisfies∑∞
x=−∞ ρσ(x) = 1. The green discrete bars illustrate the probability mass and the blue line is the corre-

sponding continuous probability density function.

2. The Discrete Gaussian Distribution

For simplicity we use zero mean c = 0 throughout this paper. Discrete Gaussian
distributions Dσ are then defined solely by deviation parameter σ. The probabilities
for x ∈ Z (Figure 1) are proportional to

fσ(x) = e−
x2

2σ2 . (1)

We define a one-sided cumulative function Sσ(b) for b ≥ 0 as Sσ(0) = 0,

Sσ(b) =

b−1∑
k=−b+1

fσ(k) for b ≥ 1. (2)

Due to symmetry fσ(x) = fσ(−x) we have Sσ(b) = 1+2
∑b−1

k=1 e
− k2

2σ2 for b ≥ 1.
Since the limit for total scaling mass Sσ(∞) is very closely approximated by σ

√
2π

when σ grows, we may use this scaling value in practical computations. Let P be a
discrete random variable on sample space Z. The probability mass for any x ∈ Z is

ρσ(x) = Pr(P = x) =
fσ(x)

Sσ(∞)
≈ e−

x2

2σ2

σ
√
2π

. (3)

Discrete Sampling. Sampling algorithms convert unbiased random bits into non-uniformly
distributed integer samples from a given distribution. In case of Gaussian distribu-
tion, this is fully characterised by the deviation parameter σ. There is no closed,
non-approximate algebraic formula for sampling that does not require evaluation of
integrals or series. Hence specialist algorithms are needed.
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Sampling Precision. Let P and Q be two discrete random variables on the same do-
main. We use shorthand P (x) = Pr(P = x) and Q(x) = Pr(Q = x) for their
distributions. The total variation distance δ between P and Q is defined as:

ϵ = δ(P,Q) =
1

2
||P −Q||1 =

1

2

∑
x

|P (x)−Q(x)|. (4)

If we set P as the theoretical distribution (“perfect sampler”) and Q as the actually
generated distribution, we may use the statistical distance between the two to quantify
the quality of the Q sampler.

Tail cutting. In tail cutting we ignore the “tail” portion of distribution with |x| > βσ
that has very small total mass, under target distance ϵ or related precision 2−λ. A
typical tail cutting bound for cryptographic applications is β = 13.2 as it is easy to
show that for any σ ≥ 1 we have a negligible tail mass:

1− Sσ(13.2σ)

Sσ(∞)
< 2−128. (5)

It is easy to see that ϵ < 2−λβσ where βσ is the tail cutting bound.

Required distance. It has been widely assumed that for cryptographic applications the
sampling distance should be roughly the inverse of the security parameter [6]:

It is necessary for the rigorous security analysis that the statistical dif-
ference between the actual distribution being sampled and the theoretical
distribution (as used in the security proof) is negligible, say around 2−90

to 2−128.

This is also the precision typically now being implemented (See e.g. [7, 8, 9, 10]). In
this paper we set out to show that such precision is essentially unnecessary since no
algorithm will be able to detect the difference from the non-tail portion of samples;
only about half of this precision is actually required in almost all cases.

Other metrics and related work. Recently, proofs of some Lattice based schemes have
been reworked using Rényi distance [11, 12] to require less precision in implemen-
tations. Furthermore, Pöppelmann, Ducas, and Güneysu used the Kullback-Leibler
divergence to reduce storage requirements in a hardware sampler implementation [10].

3. Approximate Sampling

Perfect sampler. First consider an arbitrary-precision sampler that converts an uni-
formly random number x ∈ R, 0 ≤ x < 1 into the Discrete Gaussian distribution by
finding the “bin” i ∈ Z, i ≥ 0 in Cumulative Distribution Table (CDT) satisfying

Sσ(i)

Sσ(∞)
≤ x <

Sσ(i+ 1)

Sσ(∞)
. (6)

If i = 0, output 0, otherwise i or −i, depending on a single additional random bit. It is
easy to show that this creates samples exactly from the distribution Dσ.
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Approximate sampler with precision λ. We define an approximation where we use a
λ-bit uniform random integer j ∈ Z, 0 ≤ j < 2λ to approximate the discrete Gaussian
Distribution. Here we again find the correct bin i via

Sσ(i)

Sσ(∞)
≤ 2−λj <

Sσ(i+ 1)

Sσ(∞)
. (7)

Now for a sampling error to occur at all, 2−λj must fit exactly on one of the thresh-
old values i so that λ leftmost bits match with the cumulative distribution function:

2−λj ≤ Sσ(i)

Sσ(∞)
≤ 2−λ(j + 1). (8)

In practice, the probability of sampling error is almost directly proportional to sam-
pling precision 2−λ and total variation distance ϵ (Equation 4). See Figure 2 for an
illustration of sampling error and the resulting statistical distance.

Binary Search in Cumulative Distribution Table. Since each half of the distribution
function is monotonically decreasing (or increasing), we may perform a binary search
on it in with at most ⌈log2 n⌉ < λ steps, where n is the number of entries in the table
(integers with greater than “tail cutting” probability). This approach is widely used in
real-life implementations [7, 10].

Other Gaussian Sampling Algorithms. High precision non-uniform continuous ran-
dom sampling is a classic problem [13]. Many of the algorithms of the continuous case
also apply to discrete cryptographic applications. Methods such as Inversion Sampling
[14], Knuth-Yao Sampling [6, 15], The Ziggurat Method [1, 16, 17, 18], Kahn-Karney
Sampling [19], and “Bernoulli” sampling [2] have also been proposed for lattice cryp-
tography. For more (non-cryptographic) methods, see [20].

4. Distinguishing Distributions

When determining the appropriate sampling precision λ, we are led to ask “What is
the minimum statistical distance or precision λ that can be detected by an adversary?”.
If an approximation cannot be distinguished from true distribution with reasonable
effort, there should not be any reason not to use it.

Tight bounds for distribution identity testing. We quote the following definitions and a
recent result (Theorem 1 from [21, 22]) which offers very tight asymptotic bounds for
the sample complexity of distribution identity testing:

Definition 1. For a distribution P , let P−max denote the vector of probabilities ob-
tained by removing the entry corresponding to the element of largest probability.

Definition 2. For a vector P and ϵ > 0, define P−ϵ as the vector obtained from P
by iteratively removing the smallest domain elements and stopping before more than ϵ
probability mass is removed.
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Figure 2: Sampling the discrete Gaussian distribution with σ = 7 and sampling precision 0.1. The curve
corresponds to the discrete, mirrored, scaled, cumulative distribution function that approaches 1 as x grows.
This can be used to convert uniform random 0 ≤ y < 1 to the distribution; for example any 0.6 ≤ y < 0.7
would correspond to x = ±7. The red (rounded up) and green (rounded down) areas illustrate the statistical
distance ϵ between the ideal distribution and the approximation. All y > 0.9 and |x| ≥ 14 are “tail”.

We observe that Definition 1 corresponds to removing the distribution centre (c =
0) and Definition 2 corresponds to tail cutting (Section 2). Therefore these cases need
to be handled specially.

Theorem 1 (Theorem 1 of [21, 22]). There exist constants c1, c2 such that for any ϵ >
0 and any known distribution P , for any unknown distribution Q on the same domain,
our tester will distinguish P = Q from ||P−Q||1 ≥ ϵ with probability 2/3 when run on

a set of at least c1
||P−max

−ϵ/16
||2/3

ϵ2 samples and no tester can do this task with probability

at least 2/3 with a set of fewer than c2
||P−max

−ϵ ||2/3
ϵ2 samples.

The tight Θ
( ||p||2/3

ϵ2

)
sample complexity of “Valiant-Valiant” (Theorem 1) not only

implies bounds for traditional computational complexity, but also the minimum ora-
cle query complexity of attack regardless of the computational model used. This is
essentially an information theoretic bound.

On binary hypothesis testing and randomised rounding. Consider a table of λ-precision
approximations T [0, 1, . . . , 2λ − 1]:

T [i] =

⌊
2λ

Sσ(i)

Sσ(∞)

⌋
. (9)

Theorem 1 requires distribution Q to be unknown but at most ϵ - distant from true
distribution P . A static table at exactly ϵ will not be unknown to a distinguisher and will
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essentially yield a case of binary hypothesis testing. If the table is held in RAM, it is
possible to randomise it by adding +1 to each entry during initialisation with probability
1
2 ; here one comes up with the precise case of an unknown static distribution that has
maximum total variation distance ϵ < 2−λβσ.

In practice we define the precision 2−λ to have a few more bits of precision than
corresponding ϵ; we are actually distinguishing a very large family of distributions
from the true one. If an implementor still feels that this is a concern for some severely
limited λ, rounding can be further randomised. If the condition of Equation 8 holds and
the given random integer j matches all bits of T [i], a randomised rounding sampler will
output either i or i+ 1, depending on an additional random bit.

The tail detector test and conjecture. We note that the potentially infinite tail spread
of the Gaussian distribution makes the P−ϵ term problematic. Indeed, with tail cut at
ϵ level (tail mass of ϵ) one could simply test if any of the values of tail appear; such
a “tail detector” test would have complexity O(1/ϵ). This problem is sidestepped by
Theorem 1 and we and also ignore this special case in current work. We conjecture
that lack of tail has only marginal effect on the entropy of random quantities and the
security of the resulting cryptosystem.

Recursive application of Theorem 1 on the tail. An inverse-CDT type generator “knows”
when it is supposed to generate values from the tail; in a straightforward implemen-
tation the λ-bit random integer j is at the 2λ − 1 maximum or close to it. One can
apply Theorem 1 recursively on the tail by defining P ′ as the tail portion of the main
distribution, and adjusting ϵ′ accordingly.

Example 1. Here P ′ = P \ P−ϵ/16 would be a natural choice. Corresponding ad-
justed precision would be ϵ′ = ϵ2/16. First step of such a sampling algorithm is to test
if uniformly random j satisfies j ≥ 2λ − r where r is relatively small. If this is a case,
we randomise an another j′ and utilise a search algorithm on a table of tail values.
Otherwise we proceed normally with the main table. Overall required precision will
still be λ bits but the two-step approach removes the problem of tail distinguishers.
Naturally the condition makes constant-time implementation more difficult. Note that
the secondary tail table will be invoked with very low probability; this part of the code
and its tables are quite probably never actually used with the parameters proposed in
Section 5. This is why we conjecture that it is unnecessary.

Impact on sampling precision in private key operations. In a lattice public key al-
gorithm (such as Ring-LWE based encryption or signature algorithm), the bounds of
Theorem 1 directly indicate (up to a constant factor) the number of times the private
key oracle must be invoked before any algorithm, quantum or non-quantum, can de-
termine whether the samples it uses were drawn from perfectly sampled distribution
or from one with total variation distance ϵ to it. Since O(ϵ−2) probes are necessarily
required, one can generally set the sampling precision to λ = s/2 where 2s is the target
security level. This greatly simplifies implementation in many cases.
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5. Conclusions and Experimental Parameters for Lattice Cryptography

From the theory of Statistical Identity Testing we know that Θ
( ||p||2/3

ϵ2

)
samples

are required to determine if a sampled distribution differs from an ideal one by total
variation distance ϵ (and we ignore samples from the distribution “tail” of weight ϵ).
Therefore an appropriate selection for sampling precision is 2−

s
2 where s is the desired

security level. We conjecture that the ϵ tail has negligible effect on the entropy of
secret quantities and the security of Lattice-based cryptosystems of interest, especially
signature algorithms.

Based on our findings, we propose the following implementation parameters that
allow standard, significantly more efficient data types to be used. Here we conserva-
tively claim that the new parameters maintain the original security against all offline
attacks if no more than 2λ private key oracle queries are allowed for any given private
key. This is a reasonable assumption as private key queries cannot be parallelised or
performed without the consent of the holder of the private key. We further assume that
ring polynomials are of relatively small degree n.

Security Precision Tailcut Possible data type
2100 λ = 50 |x| < 8.1σ IEEE 754 floating point (double)
2128 λ = 64 |x| < 9.2σ 64-bit fixed point (uint64_t)
2192 λ = 96 |x| < 11.4σ IEEE 754 quadruple-precision
2256 λ = 128 |x| < 13.2σ 128-bit unsigned integer type

Example. BLISS-I [2, 10] with σ = 215.75 and claimed 128-bit security can equiva-
lently use λ = 64 and a CDT table of size n = 2048 entries (9.5σ) in constant-time
binary search. The total size of the CDT table is therefore 16kB in this case and 12
simple comparisons are required to produce each sample in constant time (if we ignore
memory cache variation).
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