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Abstract. Multilinear maps have many cryptographic applications. The first candidate
construction of multilinear maps was proposed by Garg, Gentry, and Halevi (GGH13)
in 2013, and a bit later another candidate was suggested by Coron, Lepoint, and Ti-
bouchi (CLT13) over the integers. However, both of them turned out to be insecure
from so-called zeroizing attack (HJ15, CHL+15). As a fix of CLT13, Coron, Lepoint,
and Tibouchi proposed another candidate of new multilinear maps over the integers
(CLT15).

In this paper, we describe an attack against CLT15. Our attack shares the essence of
cryptanalysis of CLT13 and exploits low level encodings of zero as well as other public
parameters. As in the CHL+15, this leads to find all the secret parameters of κ-multiliear
maps in polynomial time of security parameter.
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1 Introduction

Multilinear maps. Cryptographic multilinear map has plenty of applications includ-
ing non-interactive key exchange, general program obfuscation and efficient broadcast
encryption. After the first candidate construction of Garg, Gentry and Halevi [GGH13]
(GGH13, for short), it received enormous attentions. Shortly afterwards, Coron, Le-
point and Tibouch proposed another candidate of multilinear maps [CLT13](CLT13,
for short). It is constructed over the integers and gives the first implementation of
multilinear maps [CLT13]. The last candidate is suggested by Gentry, Gorbunov and
Halevi using a directed acyclic graph [GGH15].

Attack and revisions of CLT13. In [CLT13], it was claimed to resist against zeroiz-
ing attack. Hence CLT13 supports the Graded Decisional Diffie-Helman assumption
(GDDH) and the subgroup membership (SubM) and decisional linear (DLIN) problems
are hard in it, while GGH13 supports only the GDDH. However, Cheon, Han, Lee, Ryu
and Stehlé proposed an attack on the scheme [CHL+15], which runs in polynomial time
and recovers all secrets. As in the zeroizing attack of GGH13, the attack utilizes public
low level encodings of zero which enables to generate an encoding without knowing
secret values. The core of the attack is to compute several zero-testing values related
to one another. Then one can construct a matrix whose eigenvalues consists of CRT
component of x, which is x (mod pi) for some encoding x where p1, · · · , pn are secret
values of the scheme. Then it reveals all the secrets of the scheme.

In response, there are two attempts to make CLT13 secure against CHLRS at-
tack [GGHZ14,BWZ14]. However, both are shown to be insecure in [CGH+15]. At the
same time, another fix of CLT13 is proposed at Crypto15 by Coron, Lepoint and Ti-
bouch [CLT15](CLT15, for short). It is almost the same as the original scheme, except
in zero-testing parameter and procedure. To prevent obtaining zero-testing values in
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CLT13, they do not publish the modulus x0 and do zero-testing in independent modu-
lus N . They claim that it is secure against CHLRS attack, because a zero-testing value
of an encoding x depends on the CRT components of x in a non-linear way.

New multilinear maps over the integers. We briefly introduce CLT15 scheme.
It is a graded encoding scheme and its level-t encoding c is an integer satisfying c ≡
ritgi+mi

zt (mod pi) for 1 ≤ i ≤ n, where p1, · · · , pn are secret primes, (m1, · · · ,mn) ∈
Zg1 × · · · × Zgn is a plaintext for secret moduli g1, · · · , gn, and r1t, · · · , rnt are ran-
dom noises. Then it can be written as

∑n
i=1[rit + mi/gi]piuit + atx0 for some in-

teger at, where uit =
[ gi
zt

(
x0
pi

)−1]
pi

x0
pi

for 1 ≤ i ≤ n. The zero-testing of level-κ
encoding works as follows: For a zero-testing parameter pzt and a level-κ encoding
x =

∑n
i=1[ri +mi/gi]piuiκ + ax0, which is smaller than x0,

pzt · x ≡
n∑
i=1

[ri +mi/gi]N · vi + av0 (mod N),

where vi = [pzt · uiκ]N and v0 = [pzt · x0]N . The right hand side is small if all mi’s are
zero, and so it is used to determine whether it is an encoding of zero or not.

Note that the zero-testing works only when the encoding x is small. However, the
size of encodings almost doubled up through multiplication and is too large to get a
correct zero-testing value. CLT15 publishes encodings of zero of various size (called,
ladder) to reduce the size of encodings.

Proposed attack. Let x be a level-κ encoding of zero which is a product of two
lower level encodings. Then it can be written as

∑n
i=1 ri1ri2uiκ + ax0 for some in-

tegers a, ri1, ri2, 1 ≤ i ≤ n and its bit size is roughly 2γ. Let x′ be an encoding of
the same plaintext with x, whose size is reduced using ladder, then it is of the form∑n

i=1(ri1ri2 + si)uiκ + a′x0, for some integer s1, · · · , sn and another integer a′. In that
case, the zero-testing value gives the following:

n∑
i=1

(ri1ri2 + si)vi + a′v0.

It has additional terms s1, · · · , sn and a′ from the zero-testing value
∑n

i=1 ri1ri2v̂i of
CLT13, where v̂i is common to all the encoding we use in the attack. Since s1, · · · , sn
and a′ are heavily depending on the input encoding, we can not related it to constitute
a quadratic form and adapt CHLRS attack.

To detour this obstacles, we define a function ψ from the integers to the integers,
which is identical to a zero-testing value when the input is a level-κ encoding of zero of
small size, and compute the ψ-values of an encoding (even larger than N) using ladder.
First, we compute ψ-values of ladder from the smallest one to the largest one, induc-
tively. Then, we show how to get ψ-values of level-κ encodings of large size. Finally,
we prepare (n+ 1)2 encodings of zero from from (n+ 1) level-1 encodings and (n+ 1)
level-κ encodings of zero, and constitute matrix equations only consists of a product
of matrices. As similar in [CHL+15], we can have a matrix whose eigenvalues consists
of CRT components of an encoding. From those, we can recover all secret parameters
of [CLT15] scheme. Our attack only needs ladders and 2 level-0 encodings and runs in
polynomial time.
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Organization. In section 2, we introduce CLT15 and briefly explain the CHLRS at-
tack. In Section 3, we examine the zero-testing process of CLT15 and give a description
of our attack by splitting into three steps. We conclude in Section 4

2 Multilinear Maps over the Integers

Notations. We use Zq to denote the ring Z/qZ. For a, b,N ∈ Z, a ≡ b (mod N) or
a ≡N b means that a is congruent to b modulo N . Additionally we use the notation a
(mod N) or [a]N to denote the reduction of a modulo N into the interval (−N/2, N/2].
We denote CRT(p1,p2,...,pn)(r1, r2, . . . , rn) as the unique integer in [0,

∏n
i=1 pi) which is

congruent to ri (mod pi) for all i = 1, · · · , n. For short, we denote it as CRT(pi)(ri).
For a finite set S, we use s← S to denote the operation of uniformly choosing an

element s from S.
For an n× n square matrix H, we use (hij) to represent a matrix H, whose (i, j)

component is hij . Similarly, for a vector v ∈ Rn, we define (v)j as the j-th component
of v. Let HT be the transpose of H and ‖H‖∞ be the maxi

∑n
j=1 |hij |. We denote by

diag(d1, · · · , dn) the diagonal matrix with diagonal coefficients equal to d1, · · · , dn.

2.1 CLT15 Scheme

First, we briefly recall the Coron et al.’s new multilinear maps. We refer to the original
paper [CLT15] for a complete description. The scheme relies on the following parame-
ters.

λ: the security parameter
κ: the multilinearity parameter, i.e. the proposed map is κ- linear
ρ: the bit length of the initial noise used for encodings
α: the bit length of the primes gi
η: the bit length of the secret primes pi
n: the number of distinct secret primes
γ: the bit length of encodings (= nη)
τ : the number of level-1 encodings of zero in public parameters
`: the number of level-0 encodings in public parameters
ν: the bit length of the image of the multilinear map
β: the bit length of the entries of the zero-test matrix H

Coron et al. suggested to set the parameters according to the following conditions:

• ρ = Ω(λ): to avoid brute force attack on the noise.
• α = λ : to prevent that the order of message ring Zg1 × . . .× Zgn does not have a

small prime factor.
• n = Ω(ηλ): to thwart lattice reduction attacks.
• ` ≥ nα+ 2λ: to apply the leftover hash lemma from [CLT15].
• τ ≥ n(ρ+ log2(2n)) + 2λ: to apply the leftover hash lemma from [CLT15].
• β = 3λ: as a conservative security precaution.
• η ≥ ρκ+2α+2β+λ+8, where ρκ is the maximum bit size of the noise ri of a level-κ

encoding. When computing the product of κ level-1 encodings and an additional
level-0 encoding, one obtains ρκ = κ(2α+ 2ρ+ λ+ 2 log2 n+ 3) + ρ+ log2 `+ 1.
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• ν = η − β − ρf − λ− 3: to ensure correctness of zero-testing.

The constraints are the same as [CLT13], the only different condition is β.

Instance generation: (params,pzt) ← InstGen(1λ, 1κ). Set the scheme parameters
as explained above. For 1 ≤ i ≤ n, generate η-bit odd primes pi, α-bit primes gi,

and compute x0 =
n∏
i=1

pi. Generate a random prime integer N of size γ + 2η + 1

bits. Using LLL algorithms in dimension 2, special pairs of nonzero integers (αi, βi)
n
i=1

are chosen to satisfy |αi| < 2η−1, |βi| < 22−η · N , βi ≡ αiu
′
ip
−1
i (mod N), where

u′i =

[
gi
zκ

(x0
pi

)−1]
pi

x0
pi
. Finally, generate H = (hij) ∈ Zn×n such that H is invertible

and ‖HT ‖∞ ≤ 2β, ‖(H−1)T ‖∞ ≤ 2β and for 1 ≤ i ≤ n, 1 ≤ j ≤ `, mij ← [0, gi) ∩ Z.
Then define:

y = CRT(pi)

(
ri · gi + 1

z

)
,

xj = CRT(pi)

(rij · gi
z

)
, for 1 ≤ j ≤ τ,

x′j = CRT(pi)(r
′
ijgi +mij) for 1 ≤ j ≤ `,

X
(t)
j = CRT(pi)

(
r
(t)
ij gi

zt

)
+ q

(t)
j x0 for 0 ≤ j ≤ γ + blog2 `c, 1 ≤ t ≤ κ,

Πj =
n∑
i=1

$ijgi

[
z−1
(x0
pi

)−1]
pi

x0
pi

+$n+1,jx0, and

(pzt)j =

n∑
i=1

hijαip
−1
i (mod N) for 1 ≤ j ≤ n,

where ri, r
′
ij , r

(t)
ij ← (−2ρ, 2ρ)∩Z, q

(t)
j ← [2γ+j−1/x0, 2

γ+j/x0)∩Z and $ij ← (−2ρ, 2ρ)∩
Z if i 6= j, $ii ← ((n+ 1)2ρ, (n+ 2)2ρ) ∩ Z. Then output

params = (n, η, α, ρ, β, τ, `, µ, y, {xj}τj=1, {x′j}`j=1, {X
(j)
i }, {Πj}n+1

j=1 , s) and pzt.

In this paper we use only one zero-testing parameter. Hence, from now on, we use a

notation pzt =
n∑
i=1

hiαip
−1
i (mod N) instead of a vector (pzt)j , if there is no confusion.

Multiplying encodings: For two encodings, its multiplication is done in Z. To do a
zero-testing, its size must be reduced until γ bits. However, we can not reduce its size
because x0 is secret. For that reason [CLT15] provides a ladder of level-t encodings

of zero X
(t)
j . Since the size of X

(t)
j is (γ + j)-bit, we can progressively reduce the size

down to γ bits.

Zero-testing: isZero(params, pzt, x)
?
= 0/1. Given a level-κ encoding x, return 1 if

‖pzt · x (mod N)‖∞ < N · 2−ν , and return 0 otherwise.

We omit description of some procedures such as sampling level-zero encodings, en-
coding at higher levels, re-randomization and extraction which is not required in this
paper.
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2.2 CHLRS Attack

In this section, we briefly present Coron et al. original multilinear maps [CLT13] (for
short, CLT13) and its cryptanalysis [CHL+15]. CLT13 is almost the same as the new
multilinear map. The main difference between two schemes are two parts: One is that

CLT13 makes public x0 =
n∏
i=1

pi. Instead of x0, [CLT15] publishes a ladder of encodings

of zero at each level. The other is that CLT13 uses a different zero-testing vector. The
zero-testing value of a level-κ encoding is a linear sum of secret value. Namely, original

zero-testing vector p′zt is defined as
n∑
i=1

hi[z
κg−1i ]pi · x0pi (mod x0) for some small integer

hi. When x is a level-κ encoding, it is denoted by CRT(pi)

( rigi+mi
zκ

)
=
[ rigi+mi

zκ

]
pi

+qipi
for some small integer ri and integer qi. Hence, [p′zt · x]x0 has the following form:[

n∑
i=1

hi(ri +mi[g
−1
i ]pi)

x0
pi

]
x0

.

If mi = 0 for 1 ≤ i ≤ n, its value is a linear sum of hi, ri, x0/pi over Z not modulo x0.
Hence it is a small integer compared to x0. From this property, one can check whether
x is an encoding of zero or not.

The original CLT scheme is broken by CHLRS attack. Its idea is following that: If
cjl is a multiplication of three encodings Xj , c and Yl such that

Xj = CRT(pi)

(rij
z

)
c = CRT(pi) (ci)

Yl = CRT(pi)

(
r′′ilgi
zκ−1

)

then its zero-testing value is denoted by
n∑
i=1

hi(rijcir
′′
il)
x0
pi
. By spanning 1 ≤ j, l ≤ n,

one can construct a matrix M c = Y · diag(c1, · · · , cn) · X, where X = (rij), and
Y = (r′′il)

T . By replacing c as 1, we can also construct a matrix M1 = Y ·X. Then a
matrix M−1

1 ·M c = X−1 · diag(c1, · · · , cn) ·X has an eigenvalue ci and we can obtain
all of that by solving the characteristic polynomial of matrix M−1

1 ·M c. It implies
that we can recover all pi by computing gcd(x0, c− ci) in polynomial time.

CHLRS attack, however, is not directly adapted to new CLT scheme. It keeps x0
as a secret value, we cannot reduce the size of cjl = Xj · c · Yl using x0. Instead, we

lower the size by using level-κ ladder {X(κ)
j }. Then the size reduced cjl can be written

as
n∑
i=1

(
rijcir

′′
il + sijl

)
u′i + ajlx0,

for some integers sijl and ajl. Compared to CLT13, it has additional terms sijl and ajl.
Its zero-testing value in [CLT15] is represented by

∑n
i=1 (rijcir

′′
il + sijl) vi+ajlv0, where

vi = [pzt · u′i]N and v0 = [pzt · x0]N . By spanning 1 ≤ j, l ≤ n, one can deduce matrix
equations like as M c = Y · diag(c1, · · · , cn) ·X + S +A · v0, where S = (

∑n
i=1 visijl)
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and A = (ajl). Due to S +A · v0 part, it looks hard to extract any useful information
about diag(c1, · · · , cn).

3 A Zeroizing Attack on CLT15

3.1 Understanding of Zero-testing Procedure

Let us explain how the zero-testing works. Let pzt =
∑

i hiαip
−1
i mod N , and x =

CRT(pi)

(rigi +mi

zκ

)
=
∑

i [ri +mi/gi]pi u
′
i+ax0, where u′i =

[ gi
zκ

(x0
pi

)−1]
pi
· x0
pi
. Then,

x · pzt ≡
∑
i,j

hj [ri +mi/gi]pi u
′
iαjp

−1
j + ax0pzt (mod N).

The zero-testing asks whether [pzt · x]N is much smaller than the modulus N . To
identify zero, mi’s (in that case, the bit size of [ri +mi/gi]pi is much smaller than η),

the size of [u′iαjp
−1
j ]N should be close to N/2η, and [pzt · ax0]N must be much smaller

than N .

Let us examine the size of each term. For i 6= j, [u′iαjp
−1
j ]N is equal to αj

x0
pipj

[
gi
zκ

(x0
pi

)−1]
pi

.

So it is at most a γ-bit integer, if |αj | < pj . Define βi = [u′iαip
−1
i ]N , which is ex-

pected to be a (γ + η)-bit integer. By the Euclidean Algorithm on u′j [p
−1
j ]N and N ,

one can take βi to be an (γ + η)-bit integer for a η-bit integer αi [Sho09]. Note that
[pzt ·ax0]N =

∑
i ahiαi

x0
pi

, so it is (γ+β+log2 a+log2 n)-bit. Let us state more precisely
the result, so called the zero-testing lemma.

Lemma 1 (Zero testing lemma). Let x be a level-κ encoding of zero with x =∑n
i=1 riu

′
i+ax0, (r1, · · · , rn, a ∈ Z). Then the following equation holds over the integers:

[pzt · x]N =
n∑
i=1

rivi + av0,

if |a| < 22η−β−log2 n−1 and |ri| < 2η−β−log2 n−6 for 1 ≤ i ≤ n.

Proof. By the construction of zero-testing element, we have pzt · x ≡
n∑
i=1

rivi + av0

(mod N). It is enough to show that the right hand side is smaller than N/2. For
1 ≤ i ≤ n,

vi ≡
n∑
j=1

hjαjp
−1
j u′i ≡ hiβi +

∑
j 6=i

hjαj

[
gi
zκ

(x0
pi

)−1]
pi

x0
pipj

(mod N),

and so |vi| < 2γ+η+β+4 for 1 ≤ i ≤ n. Moreover v0 =
∑n

j=1 hjαj
x0
pj

and |v0| < n2γ+β−1.
ut

3.2 Idea of the Attack

We define a function ψ as follows:

ψ : Z→ Z

x 7→
n∑
i=1

[
x · z

κ

gi

]
pi
vi +

x−
∑n

i=1[x ·
zκ

gi
]piu

′
i

x0
v0,
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where vi = [pzt · u′i]N (1 ≤ i ≤ n) and v0 = [pzt · x0]N . Note that, x ≡
∑n

i=1[x ·
zκ

gi
]piu

′
i

(mod pj) for 1 ≤ j ≤ n. Hence the constant multiplied by v0 is an integer and the
function is well-defined.

Proposition 1. Let x be an integer such that x ≡ ri·gi
zκ (mod pi) for 1 ≤ i ≤ n. If

|ri| < pi/2 for each i, then x can be uniquely expressed as
∑n

i=1 riu
′
i + ax0 for some

integer a, and ψ(x) =
∑n

i=1 rivi + av0.

Proof. We can see that x ≡
∑n

i=1 riu
′
i (mod pi) for each i and so there exists an integer

a such that x =
∑n

i=1 riu
′
i + ax0. For uniqueness, suppose x can be written as x =∑n

i=1 r
′
iu
′
i + a′x0 for integers r′1, · · · , r′n, a′ with |r′i| < pi/2. Then x ≡ r′i[

gi
zκ

(
x0
pi

)−1
]pi ≡

r′igi
zκ (mod pi), which implies ri ≡ r′i (mod pi). Since |ri − r′i| < pi, we have r′i = ri for

each i and so a′ = a, which proves the uniqueness. ut

Proposition 2. Let x1, · · · , xm be level-κ encodings of zero such that xj ≡
rijgi
zκ

(mod pi) and |rij | < pi/2 for all 1 ≤ i ≤ n, 1 ≤ j ≤ m. Then the following equality
holds

ψ(

m∑
j=1

xj) =
m∑
j=1

ψ(xj),

if
∣∣∣ m∑
j=1

rij

∣∣∣ < pi
2

, for all 1 ≤ i ≤ n.

Proof. From Proposition 1, each xj can be uniquely written as xj =
n∑
i=1

riju
′
i + ajx0

for some integer aj , and ψ(xj) =
n∑
i=1

rijvi + ajv0. Then

m∑
j=1

ψ(xj) =
n∑
i=1

( m∑
j=1

rij

)
· vi +

( m∑
j=1

aj

)
· v0

= ψ
(( m∑

j=1

rij

)
· u′i +

( m∑
j=1

aj

)
· x0
)

= ψ
( m∑
j=1

xj

)
,

where the second equality comes from Proposition 1 since
∣∣∑m

j=1 rij
∣∣ < pi/2. ut

Our strategy to attack CLT 15 is similar to [CHL+15]. We multiply a level-κ
encoding of zero and a zero-testing parameter pzt to derive a linear combination of
v0, v1, · · · , vn over Z. It is only possible when the size of an encoding is smaller than
γ. However, we can extend the range by using a ladder in the scheme.

The goal is to construct a matrix equation over Q by applying zero-testing to
several products of level-0, 1, and (κ− 1) encodings, fixed on level-0 encoding. Due to
its size, original zero-testing cannot be applied directly. We try to compute their ψ
values instead of their zero-testing values and proceed in the following three steps.

(Step 1) Compute the ψ-value of level-κ ladder.
(Step 2) Compute the ψ-value of level-κ encodings of large size.
(Step 3) Construct matrix equations over Q

Using matrix equations in Step 3, we have a matrix whose eigenvalues are residue
modulo pi of level-0 encoding. From this, we deduce a secret modulus pi.
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3.3 Computing the ψ-value of X
(κ)
j

To apply the zero-testing lemma to an encoding, its size of ri and a has to be bounded
by some fixed values. By the parameter setting, η is larger than the maximum bit
size of the noise ri of a level-κ encoding obtained from multiplication of lower level
encodings. Hence what we need is to reduce the size of x so that a satisfy the zero
testing lemma.

Let us consider a ladder of level-κ encodings of zero {X(κ)
j }. It is provided to reduce

the size of encodings down to the size of x0. More precisely, given a level-κ encoding x

of size less than 22γ+blog2 `c, one can compute x′ = x−
∑γ′

j=0 bjX
(κ)
j for γ′ = γ+blog2 `c,

which is an encoding of the same plaintext and its size is less than 2x0. As noted in
[CLT15], the sizes of consequent moduli in the latter differ only a bit and so bj ∈ {0, 1},
which implies the noise grows additively. We can reduce a to an integer much less than
22η−β−1/n so that the zero testing lemma can be applied. We denote such x′ as [x]X(κ) .
More generally, we use the following notation:

[x]X(t) := [· · · [[x]
X

(t)

γ′
]
X

(t)

γ′−1

· · · ]
X

(t)
0

for X(t) = (X
(t)
0 , X

(t)
1 , . . . , X

(t)
γ′ ), 1 ≤ t ≤ κ.

Note that, if x satisfies the condition in the Lemma 1, i.e., it is an encoding of zero
of small size, then ψ(x) is exactly the same as [pzt · x]N . However, if the size of x is
large, it is only congruent to [pzt · x]N modulo N . Now we will show we can compute
the integer value ψ(x) for an encoding x of zero, even though x does not satisfy the
condition in the Lemma 1.

At first, we adapt the size reduction process to level-κ ladder itself. We can compute
binary bij for each i, j satisfying

[X
(κ)
0 ]X(κ) = X

(κ)
0

[X
(κ)
1 ]X(κ) = X

(κ)
1 − b10 ·X(κ)

0

[X
(κ)
2 ]X(κ) = X

(κ)
2 −

1∑
k=0

b2k ·X
(κ)
k

...

[X
(κ)
j ]X(κ) = X

(κ)
j −

j−1∑
k=0

bjk ·X
(κ)
k .

Each [X
(κ)
j ]X(κ) is an encoding of zero at level κ and so can be written as [X

(κ)
j ]X(κ) =∑n

i=1 r
′
iju
′
i + a′jx0 for some integer r′ij and a′j . Moreover, its bit size is at most γ and

so a′j are small enough to satisfy the condition in the Lemma 1. Therefore

ψ([X
(κ)
j ]X(κ)) = [pzt · [X(κ)

j ]X(κ) ]N =
n∑
i=1

r′ijvi + a′jv0.

If we write X
(κ)
j =

∑n
i=1 riju

′
i + ajx0 for some integer r1j , . . . , rnj , aj , we have

r′ij = rij −
∑j−1

k=0 bjkrik for each i and a′j = aj −
∑j−1

k=0 bjkak since all the coefficients
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of u′i are small enough than pi for each i. So the following equation holds over the
integers:

n∑
i=1

r′ijvi + a′jv0 =
n∑
i=1

rijvi + ajv0 −
j−1∑
k=0

bjk

( n∑
i=1

rikvi + akv0

)
.

Hence we have the following inductive equations for 0 ≤ j ≤ γ′

ψ(X
(κ)
j ) =

[
pzt · [X(κ)

j ]X(κ)

]
N

+

j−1∑
k=0

bjk · ψ
(
X

(κ)
k

)
,

which gives all ψ(X
(κ)
0 ), ψ(X

(κ)
1 ), . . . , ψ(X

(κ)
γ′ ), inductively. The computation consists

of (γ′ + 1) zero testing and O(γ2)-times comparisons and subtractions of (γ + γ′)-bit
integers, and so the total computation cost is Õ(γ2) by using fast Fourier transform.
Hence we obtain the following lemma:

Lemma 2. Given the public parameters of CLT15 scheme, one can compute

ψ(X
(κ)
j ) =

[
pzt · [X(κ)

j ]X(κ)

]
N

+

j−1∑
k=0

bjk · ψ
(
X

(κ)
k

)
in Õ(γ2) bit computations.

3.4 Computing the ψ-value of Level-κ Encodings of Large Size

Using the ψ values of the κ-level ladder, we can compute the ψ value of any κ-level
encoding of zero whose bit size is between γ and γ + γ′.

Lemma 3. Let x be a level-κ encoding of zero, x = CRT(pi)

(rigi
zκ

)
+qx0 =

∑n
i=1 riu

′
i+

ax0 for some integer r1, . . . , rn, a satisfying |ri| < 2η−β−log2 n−7 for each i and |a| < 2γ
′
.

Given the public parameters of CLT15 scheme, one can compute the value ψ(x) =∑n
i=1 rivi + av0 in Õ(γ2) bit computations.

Proof. Let x be a level-κ encoding of zero satisfying the above conditions. As in Sec-

tion 3.3, we can find binary bj ’s satisfying [x]X(κ) = x −
∑γ′

j=0 bj · X
(κ)
j . Then we

have

ψ(x) = ψ([x]X(κ)) +

γ′∑
j=0

bj · ψ(X
(κ)
j ).

Since [x]X(κ) is a κ-level encoding of zero of at most γ-bit and the size of noise is
bounded by (η− β − log2 n− 6)-bit, we can compute the value ψ([x]X(κ)) via the zero
testing procedure. Finally, the ψ value of the κ-level ladder gives the value ψ(x). The
complexity comes from Lemma 2. ut

We apply Lemma 3 to obtain the ψ value of a κ-level encoding of zero that is a
product of two encodings of (γ + γ′)-bit size.

Lemma 4. Let X be a level-1 encoding and Y a level-(κ − 1) encoding of zero of bit
size at most γ + γ′. Then one can compute ψ(XY ) in Õ(γ3) bit computations.
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Proof. We apply Lemma 3 to a product of two γ-bit encodings. From [X
(1)
1 ]X(1) =

X
(1)
1 − b ·X

(1)
0 for some b ∈ {0, 1}, we find ψ(X

(1)
1 ·X

(κ−1)
0 ) = ψ([X

(1)
1 ]X(1) ·X(κ−1)

0 ) +

b ·ψ(X
(1)
0 ·X

(κ−1)
0 ), since [X

(1)
1 ]X(1) is γ-bit. In this way, we can get all ψ(X

(1)
j ·X

(κ−1)
k )

for each j, k from inductively ψ(X
(1)
lj
·X(κ−1)

lk
), 0 ≤ lj ≤ j, 0 ≤ lk ≤ k, (lj , lk) 6= (j, k).

Let [X]X(1) = X −
∑γ′

j=0 bj ·X
(1)
j and [Y ]X(κ−1) = Y −

∑γ′

j=0 b
′
j ·X

(κ−1)
j . Then,

[X]X(1) · [Y ]X(κ−1) = XY −
∑

j bj ·X
(1)
j · Y

−
∑

j b
′
j ·X

(κ−1)
j ·X +

∑
j,k bjb

′
k ·X

(1)
j ·X

(κ−1)
k .

Note that the noise of [[X]X(1) · [Y ]X(κ−1) ]X(κ) is bounded by 2ρ+α+2 log2(γ
′)+2 and

η > κ(2α+ 2ρ+λ+ 2 log2 n+ 3), so we can adapt Proposition 2. Therefore if we know
ψ-value of each term, we can compute the ψ-value of XY . Finally Lemma 3 enables
to compute ψ([X]X(1) · [Y ]X(κ−1)). The second and third terms of the right hand side

can be computed using [X
(1)
j ]X(1) , [X

(κ−1)
j ]X(κ−1) , and we know the ψ-value of the

last one. Since we perform zero testings for O(γ2) encodings of zero, the complexity
becomes Õ(γ3). ut

Note that the above Lemma can be applied to a level-t encoding X and a level-(κ− t)
encoding of zero Y . The proof is exactly the same except the indexes.

3.5 Constructing Matrix Equations over Q

We reach the last stage. The following theorem is the our result.

Theorem 1. Given the [CLT15]’s public instances and pzt, sampled from InstGen(1λ, 1κ),
one can find all the secret parameters of [CLT15] in Õ(κω+4λ2ω+6) bit computations
with ω ≤ 2.38.

Proof. We construct a matrix equation by collecting several ψ-values of product of
level-0, 1 and (κ−1) encodings. Let c,X, Y be a level-0, 1, (κ−1) encoding, respectively,
and additionally we assume Y is an encoding of zero. Let us express them as follows:

c = CRT(pi)(ci),

X = CRT(pi)

(xi
z

)
= xi

[
z−1
]
pi

+ qipi,

Y = CRT(pi)

( yigi
zκ−1

)
=

n∑
i=1

yi

[
gi
zκ−1

(x0
pi

)−1]
pi

· x0
pi

+ ax0.

Assume that each of its size is less than 2x0. The product of c and X can be written
as cX = cixi

[
z−1
]
pi

+ q′ipi for some integer q′i.
By multiplying cX and Y , we have the following:

cXY

=

n∑
i=1

(
cixiyi

[
z−1
]
pi

[
gi
zκ−1

(x0
pi

)−1]
pi

· x0
pi

+ yi

[
gi
zκ−1

(x0
pi

)−1]
pi

q′ix0

)
+ (cX)(ax0)

=

n∑
i=1

cixiyiu
′
i +

n∑
i=1

(cixiyisi + yiθiq
′
i)x0 + acXx0,
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where θi =

[
gi
zκ−1

(x0
pi

)−1]
pi

, θi
[
z−1
]
pi

x0
pi

= u′i + six0 for some integer si ∈ Z. Then

we can get ψ(cXY ) =
∑n

i=1 cixiyivi +
∑n

i=1(cixiyisi + yiθiq
′
i)v0 + acXv0 by Lemma 4.

By plugging q′i = 1
pi

(cX − cixi[z−1]pi) into the equation, we obtain

ψ(cXY ) =
n∑
i=1

yi(vi + siv0 −
θiv0
pi

[z−1]pi)cixi +
n∑
i=1

yi
θiv0
pi

cX + av0cX

=
n∑
i=1

yiwicixi +
n∑
i=1

yiw
′
icX + av0cX,

where wi = vi + siv0− θi
pi

[z−1]piv0 and w′i = θiv0
pi

. It can be written (over Q) as follows:

ψ(cXY ) =
(
y1 y2 · · · yn a

)


w1 0 w′1
w2 w′2

. . .
...

wn w
′
n

0 v0





c1x1

c2x2
...

cnxn

cX


. (1)

Since piwi = pi(vi + siv0)− θi
[
z−1
]
pi
v0 ≡ −θi

[
z−1
]
pi
v0 6≡ 0 (mod pi) wi is not equal

to zero. Therefore v0
∏n
i=1wi 6= 0 and so the matrix in Equation (1) is non singular.

By applying Equation (1) to various X,Y :taking for 0 ≤ j, k ≤ n,

X = [X
(1)
j ]X(1) = CRT(pi)

(xij
z

)
,

Y = [X
(κ−1)
k ]X(κ−1) =

n∑
i=1

yikθi
x0
pi

+ akx0,

we obtain the following matrix equation, finally:

W c =



y10 · · · yn0 a0

. . .
...

y1n · · · ynn an





w1 0 w′1
w2 w′2

. . .
...

wn w
′
n

0 v0





c1 0

c2
. . .

cn

0 c





x10 · · · x1n

. . .
...

xn0 xnn

X0 · · · Xn


= Y W diag(c1, · · · , cn, c) X.

We perform the same computation on c = 1, which is a level-0 encoding of 1 =
(1, 1, · · · , 1), then it implies

W 1 = Y ·W · I ·X.

From W c and W 1, we have a matrix which is similar to diag(c1, · · · , cn, c):

W−1
1 ·W c = X−1 · diag(c1, · · · , cn, c) ·X.
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Then by computing the eigenvalues ofW−1
1 ·W c, we have c1, · · · , cn satisfying pi|(c−ci)

for each i. Using another level-0 encoding c′, we get W−1
1 ·W c′ , and so c′1, · · · , c′n with

pi|(c′c′i) for each i. Computing gcd(c− ci, c′ − c′i) gives the secret prime pi.
Using p1, · · · , pn, we can recover all the other parameters. By definition of y and

X
(1)
j , the following equations are satisfied: y/[X

(1)
j ]x0 ≡ (rigi + 1)/(r

(1)
ij gi) (mod pi).

Since rigi + 1 and r
(1)
ij gi are smaller than

√
pi and are co-prime, one can recover them

by rational reconstruction up to sign. Therefore we can obtain gi by computing the

gcd of r
(1)
i0 gi, · · · , r

(1)
imgi. Moreover, using r

(1)
ij gi and [X

(1)
j ]x0 , we can compute [z]pi for

each i and so z. Any other parameters are computed by using z, gi, and pi.

Our attack consists of following arithmetics: computing ψ(X
(κ)
j ), ψ(X

(1)
j ·X

(κ−1)
k ),

constructing a matrixW c andW 1, matrix inversing and multiplying, computing eigen-
values and greatest common divisor. All of them is bounded by Õ(γ3+nωγ) = Õ(κ6λ9)
bit computations with ω ≤ 2.38.. To success this algorithm, we need a property that
W 1 is non-singular. If we use the fact that the rank of a matrix A ∈ Z(n+1)×(n+1) can
be computed in time Õ ((n+ 1)ω log ‖A‖∞) (see [Sto09]), we can find that X,Y ·W ∈
Q(n+1)×(n+1) are non-singular in Õ(2(γ + log `)(nω logN)) = Õ(κω+4λ2ω+6) by con-

sidering another (n+ 1) subsets of X
(1)
0 , · · · , X(1)

γ′ for X and also for Y . Therefore the

total complexity of our attack is Õ(κω+4λ2ω+6). ut

4 Conclusion

In this paper, we cryptanalysis the new multilinear maps over the integers [CLT15]. It
was modified to prevent a zeroizing attack [CHL+15] on its original scheme [CLT13].
The zero-testing element is defined over the independent modulus N so that the result-
ing value is expressed non-linear way. They did not publish x0 =

∏n
i=1 pi for security

reason, but we can compute all the secret primes pi in polynomial time. Therefore the
modified scheme is vulnerable to zeroizing attack also.

As other analysis of multilinear maps [CGH+15,CHL+15,HJ15], our analysis is
based on zeroizing attack. To construct a matrix equation, we need encodings of zero.
It is worth to consider analyzing multilinear maps without encodings of zero. To con-
struct a graded encoding scheme which the subgroup membership and decision linear
problems are hard for is another open problem.
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