
Are you The One to Share?
Secret Transfer with Access Structure

Yongjun Zhao and Sherman S.M. Chow⋆

Department of Information Engineering
The Chinese University of Hong Kong, Hong Kong

{zy113, sherman}@ie.cuhk.edu.hk

Abstract. Sharing information to others is common nowadays, but the question is with
whom to share. To address this problem, we propose the notion of secret transfer with
access structure (STAS). STAS is a two-party computation protocol that enables the server
to transfer a secret to a client who satisfies the prescribed access structure.
In this paper, we focus on the case of STAS for threshold access structure, i.e. threshold secret
transfer (TST). We also discuss how to replace it with linear secret sharing to make the access
structure more expressive. Our proposed TST scheme enables a number of applications
including a simple construction of oblivious transfer with threshold access control, and (a
variant of) threshold private set intersection (t-PSI), which are the first of their kinds in the
literature to the best of our knowledge. Moreover, we show that TST is useful a number of
applications such as privacy-preserving matchmaking with interesting features.
The underlying primitive of STAS is a variant of oblivious transfer (OT) which we call OT
for sparse array. We provide two constructions which are inspired from state-of-the-art PSI
techniques including oblivious polynomial evaluation and garbled Bloom filter (GBF). We
implemented the more efficient construction and provide its performance evaluation.

Keywords: oblivious transfer, access structure, secret sharing, private set-intersection, garbled
Bloom filter, oblivious polynomial evaluation, privacy

1 Introduction

Many people are disseminating information everyday, ranging from short tweet to video. While
sharing about oneself is certainly a trend, information can be personal or sensitive. Deciding whom
to share becomes an important question, especially when the counter-party may make abusive use
of the information. For example, location based services in which sharing information makes sense
only when two users are in proximity, or dating apps in which users may only want to share
information based on (mutual) interests of the profiled attributes. Yet, the criteria of whom to
share may be sensitive as well. Users may not want to reveal their whereabouts or their attributes.
Moreover, one may not expect an exact match in many cases, e.g., it may be difficult to find
someone via dating apps who matches every single desired attributes.

In this paper, we propose the notion of secret transfer with access structure (STAS), such that
a secret from one user will only be transferred to another user who satisfies the prescribed access
structure, with the aim of revealing as little information about the access structure as possible.

To illustrate, STAS can be considered as a general case of threshold private set intersection
(PSI), where the secret to be shared is the intersection of two sets of the respective parties, and
the access structure is a threshold policy on the two sets, which only reveals the intersection set
if the size of the intersection is larger than a pre-defined threshold, Privacy guarantee offered by
a typical PSI protocol is that, all the elements outside the intersection remain unknown to the
counter-party.

⋆ Sherman Chow is supported by the Early Career Scheme and the Early Career Award of the Research
Grants Council, Hong Kong SAR (CUHK 439713), and Direct Grant (4055018) of the Chinese University
of Hong Kong.

Computing the intersection of two sets is useful in many scenarios, e.g., two Facebook users
may check who are their common friends before accepting add-friend request; two companies want
to find the number of common customers before launching a joint promotion; or apps like tworlds
which share photos to a random stranger across the globe simply based on the supplied hashtags.
A straightforward approach requires two parties to reveal their sets and then compute the result
locally. However, the sets might contain valuable information that should not be disclosed for
economic reasons or too sensitive to reveal. Revealing only the intersection, while protecting the
confidentiality of elements which are not in the intersection, is an important task.

PSI is proposed to solve the above problem. It involves two parties: a client and a server,
each holding a private set C and S respectively. At the end of the protocol, the client learns the
intersection C ∩ S of their sets. The usual treatment in the literature is that the server learns
nothing. If both parties need to learn C ∩ S, they could switch roles and engage in a second PSI
instance1. In a variant called PSI-CA, only the cardinality |C ∩ S| is revealed (e.g. [12, 20]). Very
efficient PSI protocols have been proposed (e.g. [18, 38,39]).

1.1 PSI with Access Structure

This paper considers a general PSI which only reveals the sets when the intersection satisfies a
certain structure. A notable example is threshold PSI (t-PSI), which only reveals the intersection
set C ∩ S when the size of the intersection |C ∩ S| is larger than a pre-agreed threshold t. When
t = 0, t-PSI reduces to PSI. When t = |C|, t-PSI reduces to PSI-CA. We consider t-PSI as a
natural and useful extension to PSI.

Designing an efficient t-PSI protocol (without resorting to generic secure multiparty compu-
tation) is not an easy task, as observed by Pinkas et al. [39]. Using a generic secure computation
protocol is probably not efficient especially when the datasets are large. Constructing t-PSI based
on other techniques with better efficiency is non-trivial. To the best of authors’ knowledge, there
is no such protocol in the literature, not to say access structure more general than threshold pol-
icy, e.g., weighted threshold, in which different elements carry different weights counting towards
the final threshold. Apart from the technical challenge, we believe that t-PSI is an interesting
primitive that deserves further investigation. Other important cryptographic primitives also have
their threshold version, e.g., signature [7,44], password-based authenticated key exchange [35,40],
and attribute-based encryption. Existing threshold cryptosystems have shown their applicability
in many scenarios. We foresee the same will hold for t-PSI.

1.2 Technical Overview of Our Results

We focus on threshold secret transfer (TST), as a special case of STAS. TST allows a server
to transfer a secret κ to a client if and only if their respective private sets have more than t
common elements. We define appropriate security definitions for this new primitive, and provide
two constructions, one based on oblivious polynomial evaluation (OPE) [20], and the other based
on a variant of garbled Bloom filter (GBF) [18], both were used to construct state-of-art (vanilla)
PSI protocols. For building TST, we introduce oblivious transfer for a sparse array (OTSA), in
which the selection strings are from a large domain. This helps us to achieve privacy in threshold
matching. In contrast, typical OT only works on an array indexed by polynomially many numbers.

We first show how to solve a variant of t-PSI problem which we call t-PSI-CA. t-PSI-CA differs
from t-PSI as it allows the client to always learn the size of the intersection |C ∩ S|. This may
suffice for some application scenarios and actually can also be regarded as a feature (see Sec. 8).

With TST, t-PSI-CA is readily achievable. The server and the client engage in a TST with
their respective sets. The client will obtain a secret κ only if there are more than t overlappings.
Conceptually κ can be considered as a “proof token” to show that the client indeed holds a set
containing at least t common elements. We stress that which elements belong to the set remains

1 In a malicious model, one may require both parties to first commit to the sets and carry out a zero-
knowledge proof asserting that both instances are using the same sets as input.

hidden at this point. Then the server appends κ to every element in its set S, and executes another
PSI with the client using this new set.

Our construction blueprint is readily extensible to other access structures by replacing the
polynomial-based threshold secret sharing to other schemes. For example, we can obtain secret
transfer for weighted threshold and weighted t-PSI-CA. We also discuss how to construct STAS
by replacing threshold secret sharing with linear secret sharing, which supports more expressive
access control policy.

All the constructions in this paper are proven to be secure in the semi-honest model (sometimes
called honest-but-curious), in which the adversary is assumed to follow the protocol exactly as
specified, but may try to learn as much as possible about the input of the other party. We focus on
semi-honest constructions because they are often more efficient than their fully secure counterparts.
We leave it as an open question to propose efficient constructions in stronger security model.

1.3 Roadmap

The next section discusses primitives related to TST including PSI. Sec. 3 introduces notations
and important building blocks of our protocol. In Sec. 4, we introduce OTSA, which may be of
independent interests. We then define TST and construct TST from OTSA in Sec. 5. Our generic
construction of t-PSI-CA is presented in Sec. 6 and we provide evaluation results in Sec. 7. Finally,
we conclude our paper with further applications and future work.

OPPRF oblivious permuted pseudorandom function
OTSA oblivious transfer for a sparse array
TST threshold secret transfer
(ST)2 strong threshold secret transfer
STAS secret transfer with access structure
t-PSI threshold private set-intersection
t-PSI-CA threshold private set-intersection cardinality

OPE oblivious polynomial evaluation
OPRF oblivious pseudorandom function
OT oblivious transfer
BF Bloom filter
GBF garbled Bloom filter
LSSS linear secret sharing scheme
PSI private set-intersection
PSI-CA private set-intersection cardinality

Table 1: List of major acronyms: the upper table contains acronyms introduced in this paper; the
lower one contains existing acronyms in the literature.

2 Related Work

2.1 Private Set Intersections

As far as we know, the first rigorous treatment for PSI was done by Freedman et al. [20], who
proposed a protocol based on oblivious polynomial evaluation (OPE). The key idea is that the
client uses additive homomorphic encryption to encrypt the coefficients of a polynomial p(x)
whose roots are the elements in the set. The server obliviously evaluates the polynomial rp(x)+x
for each element si ∈ S. The evaluation results are then sent to the client, who could decrypt and

OTSA
(OPE-based)
(GBF-based)

+ threshold secret sharing −→ TST

OTSA
(OPE-based)
(GBF-based)

+ LSSS −→ STAS

TST + PSI −→ t-PSI-CA

STAS + PSI −→ PSI with Access Structure

Fig. 1: Roadmap of Our Constructions

compare with its own set. Using similar technique, Kissner and Song [30] constructed multi-party
PSI protocol. More efficient PSI protocols in the malicious model are also proposed [15,23].

Another common approach of constructing PSI is using oblivious pseudorandom function
(OPRF) [19, 22, 27]. The idea is very simple: the server sends to the client fk(si) for each ele-
ment si ∈ S, where f(·) is a pseudorandom function and k is a random key. The client and the
server then engage in an OPRF protocol such that the client learns fk(ci) for each ci ∈ C while
the server learns nothing except the size of C. PSI protocols based on OPRF can achieve linear
computational and bandwidth complexity.

Very recently, Dong et al. [18] introduced new techniques for PSI. The core component is a
variant of Bloom Filter, which they called garbled Bloom filter (GBF). We will give a more detailed
description of GBF in the next section. Combining GBF and oblivious transfer (OT), Dong et al.
constructed a very efficient PSI in both semi-honest and malicious models. Inspired by their paper,
we construct PSI with access structure with linear complexity in the semi-honest model. We remark
that their technique of constructing malicious model PSI might be useful in constructing PSI with
access structure in the malicious model. Their PSI protocol is further improved [38,39].

Researchers have considered variants of PSI. Some reveal only the size (cardinality) of intersec-
tion but not the set itself [2,12,20,25,30,45], which we call PSI-CA. Some achieve more features.
For example, Camenisch and Zaverucha [11] and De Cristofaro et al. [13,14] considered authorized
PSI (APSI) which requires the input sets to be signed by a trusted party. Ateniese et al. [3]
and D’Arco et al. [16] proposed size-hiding PSI which hides the size of the client’s input set.
Outsourcing the computation of PSI to an oblivious cloud is considered by Abadi et al. [1] and
Kerschbaum [29]. Kissner and Song [30] considered threshold set union and its variants in multi-
user setting: all n players learn which elements appear more than t times in the union (which is a
multiset) of their private input set.

2.2 Fuzzy Vault

A fuzzy vault, introduced by Juels and Sudan [28], allows a server to “lock” a small secret value
κ using a set S, such that a client holding another set C which is similar to S could recover κ
efficiently. This primitive looks very much like TST, but we would like to highlight the differences
here.

We first briefly recall the existing construction [28]: the elements in the server set S are encoded
as distinct x-coordinate values. The server selects a random polynomial p(·) that encodes κ in some
way (say p(0) = κ), and evaluates p(·) on these coordinates. To hide κ, the server adds a number
of random “noisy” points that do not lie on p(·), and publishes the set of both real and noisy
points in clear.

If the client holds a set C that substantially overlaps with S, it can identify and use the
common x-coordinates to reconstruct (the polynomial and) κ. If the intersection |C ∩ S| is not

large enough, then the client is not able to identify enough “correct” x-coordinates to perform
polynomial interpolation.

Even if the polynomial (say, of degree k) cannot be reconstructed when the size of the intersec-
tion |C ∩S| is k (i.e. one more point is needed), an adversary can still launch the following attack
to reveal the rest of the set S. Consider the server set is of size ns, and the number of noisy points
is N . The client could simply try reconstructing κ by choosing one of the (ns +N − k) remaining
points. The probability of success is ns−k

ns+N−k
.

One might consider this as a feature: the more similar the client set is, the more likely to
recover κ. However, in TST, we aim to impose a sharp distinction between “over threshold” and
“below threshold”. Again, the client only knows that |C ∩ S| is not greater than the threshold,
but not exactly which elements in C lie in the intersection. To achieve the same guarantee using
fuzzy vault, an exponential number of noisy points must be added, which is impractical.

2.3 Attribute-Based Encryption

Attribute-based encryption (ABE) [41] is a generalization of public key encryption, which allows
sharing of encrypted content to people according to some prescribed access control policy, without
the need of knowing all public keys of those people. Anyone in possession of attributes satisfying the
access policy can use their secret keys for decryption. Early ABE schemes suffer from the weakness
of revealing the access policy of ciphertexts to everyone, which might be sensitive. Anonymous
ABE [31,36] is then proposed.

One might attempt to implement STAS as follows: encrypt the secret value using anonymous
ABE, then send the ciphertext to the receiver. This solution seems plausible. Yet, ABE requires
a trusted authority to set up the whole system, and issue secret keys to participants according
to their attributes. Such requirement somewhat trivializes the two-party computation since both
parties need to trust the authority not to reveal the attributes to others. ABE constructions also
typically make extensive use of rather expensive pairing operations.

Furthermore, the anonymity offered by practical anonymous ABE schemes nowadays are not
ideal. Having a closer look of existing works, the size of public key and ciphertext in the first
scheme [36] are both linear in the size of the attribute universe U . Li et al. [34] reduced the public
key size to O(1) and the ciphertext size to O(log |U|), but unfortunately their scheme is inse-
cure [33]. These two constructions only support limited form of policies. Lai et al. [31] constructed
an anonymous ABE which supports more expressive policy in the form of LSSS (see Sec. 3.2), yet
sacrifices anonymity to some extent. In more details, each attribute is a category-value (e.g. Title:
Professor, Department: CS) pair in their construction. The LSSS matrix is defined over the cate-
gories, and this matrix is public. Only the attribute values are anonymized. That is to say, a policy
“(Title: Professor) AND (Department: CS)” is anonymized as “(Title: ∗) AND (Department: ∗)”.
In contrast, such an access policy is anonymized as “A AND B” in our STAS construction where A
and B are predicates. To conclude, anonymous ABE is not a good fit for our problem.

3 Preliminary

3.1 Notations

For a binary string x, |x| denotes its length. The ith bit of x is x[i] and x[i, j] denotes x[i] . . . x[j]

for 1 ≤ i ≤ j ≤ |x|. For a finite set S, |S| denotes its size and s
$
←− S denotes picking an element

uniformly at random from the set S. For i ∈ N, we let [1, i] = {1, . . . , i}. We write {si}n as a
shorthand for the set S = {s1, . . . , sn} of n elements. We drop the subscript n if it is clear from
context. We denote the security parameter by λ ∈ N and its unary representation by 1λ.

Algorithms are polynomial time (PT) and randomized unless otherwise indicated. By y
$
←−

A(x1, . . . ;R) we denote running algorithm A on input x1, . . . using randomness R, and assigning
the output to y. We may omit R for brevity.

A probability ensemble indexed by I is a sequence of random variables indexed by a countable
index set I. Namely, X = {Xi}i∈I where Xi is a random variable. Two distribution ensembles

X = {Xn} and Y = {Yn} are computationally indistinguishable, denoted by X
c
≡ Y , if for every

probabilistic polynomial-time (PPT) algorithm D, there exists a negligible function negl(·) such
that for every n ∈ N,

|Pr[D(Xn, 1
n) = 1]− Pr[D(Yn, 1

n) = 1]| ≤ negl(n).

We let G = 〈g〉 be a group of order p, a λ bit-prime number.

3.2 Secret Sharing

Threshold secret sharing is a fundamental cryptographic primitive and it could be considered as the
most basic tool for threshold cryptography. It allows a dealer to split a secret κ into n shares, such
that κ can be recovered efficiently with any subset of t or more shares. Any subset of size less than
t reveals no information about the secret value. Shamir’s secret-sharing scheme [43], which is based
on polynomial interpolation, is such a (t, n)-secret sharing scheme. We denote SecretSharing(t,n)(κ)
and Reconstruct(t,n)({κi}n′) as its sharing algorithm and reconstruction algorithm.

When t = n, an efficient (n, n)-secret sharing scheme can be obtained from ⊕ (XOR) opera-
tions [42]. It works by picking random |κ|-bit strings κ1, κ2, . . . , κn−1 as the first n−1 shares. The

last share is computed by κn =
(

⊕n−1
i=1 κi

)

⊕ κ. We will use this simple scheme extensively.

We can extend threshold secret sharing scheme to support more general access structure. Let
{κ1, . . . , κn} be a set of secret shares. An access structure [5] is a collection A of non-empty subsets
of {κ1, . . . , κn}, i.e., A ⊆ 2{κ1,...,κn} \ {∅}. We denote SecretSharingA(κ) and ReconstructA({κi}n′)
as the sharing algorithm and reconstruction algorithm in a secret sharing scheme implementing
access structure A. Any monotone access structure can be realized by a linear secret sharing scheme
defined below [5].

Definition 1 (Linear Secret-sharing Schemes (LSSS)) A secret sharing scheme Π over a
set of parties P is called linear over Zp if

1. The shares of each party form a vector over Zp.
2. There exists a matrix M called the share-generating matrix for Π. The matrix M has ℓ rows

and n columns. For a column vector v = (κ, r2, . . . , rn), where κ ∈ Zp is the secret to be shared
and r2, . . . , rn ∈ Zp are randomly chosen, then Mv is the vector of ℓ shares of the secret κ
according to Π. The share (Mv)x, the x-th row of Mv, belongs to party ρ(x), where ρ maps
{1, . . . , ℓ} to P.

Any LSSS defined as above enjoys the linear reconstruction property as follows. Suppose that
Π is an LSSS for access structure A. Let S ∈ A be an authorized set, and I ⊆ {1, . . . , ℓ} be defined
as I = {i : ρ(i) ∈ S}. There exist constants {wi ∈ Zp}i∈I satisfying

∑

i∈I wiMi = (1, 0, . . . , 0), so
that if {λi} are valid shares of any secret κ according to Π, then

∑

i∈I wiλi = κ. Furthermore,
these constants {wi} can be found in time polynomial in the size of the share-generating matrix
M . For any unauthorized set, no such constants exist. The LSSS is denoted by (M,ρ), and its size
is the number of rows of M .

Access structures can also be represented by monotonic boolean formulas. The techniques of
transforming any monotonic boolean formula to LSSS are well known in the literature [5]. One
can also convert the boolean formula into an access tree. An access tree of ℓ nodes results in an
LSSS matrix of ℓ rows. Readers can refer to [32, appendix] for the conversion algorithm.

3.3 Oblivious Transfer (OT)

Oblivious transfer (OT) is another basic cryptographic building block. It allows the receiver to get
only part of the sender’s input, while the sender remains oblivious about what the receiver obtains.

Formally, in an OTm
ℓ protocol, the sender inputs m pairs ℓ-bit strings (xi,0, xi,1) (1 ≤ i ≤ m) and

the receiver inputs an m-bit selection string b = (b1, . . . , bm). At the end of the protocol, the
sender learns nothing about b, while the receiver only gets xi,bi for 1 ≤ i ≤ m. OT protocols in
the random oracle model can be very efficient2.

Basically the above formulation only allows the receiver to choose 1-out-of-2 according to each
bit in the selection string. Researchers have also considered more general k-out-of-n OT, where
the receiver prepares n strings, and the receiver only gets k of them by specifying a set of distinct
indexes (in range [1, n] instead of {0, 1}) of size k.

Looking ahead, we use the notion (which slightly abuses the one defined above) OT
|Is∩Ir|
Is

for oblivious transfer for a sparse array (OTSA). Note that the superscript is a number while

the subscript is a set, thus differentiates OTSA from OTm
ℓ . Roughly speaking, OT

|Is∩Ir|
Is

can be
considered as an |Is ∩ Ir|-out-of-|Is| OT. The meaning behind such superscript and subscript will
be more clear after we explained the meaning of Is and Ir in Sec. 4.1.

3.4 Additive Homomorphic Encryption

We will also use semantically-secure additive homomorphic encryption scheme. One well known
example is Paillier’s cryptosystem [37]. It supports addition, and multiplication by a constant,
without private key sk. Specifically, given two ciphertexts Encpk(m0) and Encpk(m1), there is
an efficient operation that can compute Encpk(m0 + m1); given one ciphertext Encpk(m) and a
constant c, there is an efficient operation that can produce Encpk(c ·m). A corollary of these two
properties is: given encryptions of the coefficients a0, . . . , ak of a polynomial p(x) of degree k, and
a plaintext s, it is possible to compute an encryption of p(s).

3.5 Oblivious Pseudorandom Function

An oblivious pseudorandom function [19] is a two-party protocol between a server S and a client
C for securely computing a pseudorandom function fk(·) under key k known by S only, while
the input x is known by C. The client learns fk(x) while the server learns nothing after their
interaction. In this work, we consider the construction given by Jarecki and Liu [27]. It is secure
under parallel composition [27] and our second construction relies on this special property. This
protocol uses Camenisch-Shoup version [10] of Paillier encryption [37] (Encpk(·),Decsk(·)), which

is additive homomorphic, to compute Dodis-Yampolskiy PRF [17] fk(x) = g
1

k+x . We sketch the
main procedures as follows:

1. The server sends Encpks
(k) to the client.

2. The client chooses a random number rc, computes Encpks
(rc(k + x)) by the homomorphic

property, and then replies with (c1, c2) = (Encpks
(rc(k + x)),Encpkc

(rc)).
3. The server decrypts c1 and computes its inverse 1

rc(k+x) . It also chooses a random number rs

and uses the homomorphic property to compute s1 = c2
1

rc(k+x) · Encpkc
(−rs). Then it replies

with (s1, s2) = (Encpkc
(1
k+x
− rs), g

rs).

4. The client decrypts s1 to get 1
k+x
− rs, and computes the final output as g

1
k+x = g

1
k+x

−rs · s2.

The parallel version of this OPRF can be easily obtained by replacing rc, rs, (c1, c2) and (s1, s2)

with {r
(i)
c }|C|, {r

(i)
s }|C|, {(c

(i)
1 , c

(i)
2)}|C| and {(s

(i)
1 , s

(i)
2)}|C| respectively in Steps 2 to 4. Also note

that if the server applies a random permutation Π on {(s
(i)
1 , s

(i)
2)}|S|, the client will still get the

same set
{

g
1

k+xi

}

|C|
, but it does not know which g

1
k+xi corresponds to which xi due to property

of PRF. We denote such parallel OPRF with additional permutation step as oblivious permuted
pseudorandom function (OPPRF).

2 In the random oracle model, one can reduce expensive public key operations for OTm
ℓ to that of OTλ

λ,
where λ is the security parameter [26]. This technique is used to improve efficiency of PSI protocol of
Dong et al. [18]. Readers are referred to [18,26] for details.

3.6 Bloom Filters and Garbled Bloom Filters

An (m,n, k,H)-Bloom filter [6] is a compact array of m bits that can represent a set S of at most
n elements for efficient set membership testing. It consists of a set of k independent hash functions
H = (h1, h2, . . . , hk) where each hi maps elements to index numbers in the set [1,m] uniformly.

Initially, all bits in the array are set to 0. To insert an element x ∈ S into a Bloom filter, the
element is hashed using the k hash functions to get k index numbers. The bits at all these indexes
in the bit array are set to 1, regardless of its original value. To check if an item y is in S, y is
hashed by the k hash functions to get k indexes. If any of the bits at these indexes is 0, we conclude
that y is certainly not in S. Otherwise, y is probably in S. So, it never yields a false negative, but
there is a small fraction of false positives. The upper bound of the false positive probability [8] is:

ǫ = pk ×

(

1 +O

(

k
p

√

lnm−k ln p
m

))

where p = 1− (1− 1/m)kn.

The false positive rate should set to be less than a certain threshold ǫ. It can be shown that the
length of the bit arraym should be at leastm ≥ n log2 e·log2 1/ǫ, and the number of hash functions
k = (m/n) · ln 2 = log2 1/ǫ, where e is the base of the natural logarithm. In the rest of this paper,
we will stick with these optimal values when we use (garbled) Bloom filter. Specifically, we set the
false positive probability ǫ = 2−λ where λ is the security parameter. As a result, m = λn log2 ǫ
and k = λ in all cases. So we represent a Bloom filter with optimal parameters as an (n,H, λ)-BF.

An (m,n, k,H, λ)-garbled Bloom filter [18] is a variant of Bloom filter introduced by Dong et al.
that supports efficient private set-intersection. Roughly speaking, a garbled Bloom filter uses an
array of λ-bit strings instead of an array of bits in a normal Bloom filter. Initially allm strings in the
garbled Bloom filter are set to NULL. To insert an element x ∈ {0, 1}λ, x is first split into k shares
by XOR-based (k, k)-secret sharing. The kth share is placed at location hi(x). If the location hi(x)
is already occupied due to previous insertion, we reuse the string at that location, and adjust the
value of subsequent shares accordingly, subject to the constraint that

⊕k

i=1 GBF [hi(x)] = x. Such
adjustment is always possible unless all locations {hi(x)}1≤i≤k are all occupied, which corresponds
to a false positive. The probability of this happening can be negligible if the parameters are set
properly. After inserting all elements in S to the garbled Bloom filter, the undefined slots in the
vector are filled with random strings. To check if an item y is in S, y is hashed by the k hash
functions, and the strings in those locations are retrieved. If y can be reconstructed from these
shares, we conclude that y is surely in S. For brevity, GBF with optimal parameters will be denoted
by (n,H, λ)-GBF.

3.7 Semi-honest Secure Computation

We use the following simulation-based definition for security. We consider static semi-honest adver-
saries [21], which can control one of the two parties and assumed to follow the protocol specification
exactly. However, it may try to learn more information about the other party’s input.

A two-party protocol π computes a function that maps a pair of inputs to a pair of outputs
f : {0, 1}∗×{0, 1}∗ → {0, 1}∗×{0, 1}∗, where f = (f1, f2). For every pair of inputs x, y ∈ {0, 1}∗,
the output-pair is a random variable (f1(x, y), f2(x, y)). The first party obtains f1(x, y) and the
second party obtains f2(x, y).

In the semi-honest model, a protocol π is secure if whatever can be computed by a party in
the protocol can be obtained from its input and output only. This is formalized by the simulation
paradigm. We require a party’s view in a protocol execution to be simulatable given only its
input and output. The view of the party i during an execution of π on input (x, y) is denoted by
Viewπ

i (x, y) = (w, ri,mi
1, . . . ,m

i
t) where w ∈ (x, y) is the input of i, ri is i’s internal random coin

tosses and mi
j denotes the jth message that it received.

Definition 2 (Semi-honest Model) Let f = (f1, f2) be a deterministic function. Protocol π
is said to be securely computes f in the presence of static semi-honest adversaries if there exists

probabilistic polynomial-time algorithms Sim1 and Sim2 such that

{Sim1(x, f1(x, y))}x,y
c
≡ {Viewπ

1 (x, y)}x,y

{Sim2(y, f2(x, y))}x,y
c
≡ {Viewπ

2 (x, y)}x,y

4 OT for a Sparse Array

We propose oblivious transfer for a sparse array (OTSA) as a building block for secret transfer
with access structure (STAS). We first provide a formal definition for OTSA and then sketch the
main design idea before presenting two concrete constructions.

Although in an abstract level, the two constructions both make use of the idea of PSI with
data transfer, we believe the first OPE-based construction is conceptually simpler and easier to
understand than the second GBF-based one for readers who do not have prior knowledge in recent
advances of PSI, in particular, (garbled) Bloom filter. As a consequence, the OPE-based one is
worth mentioning, even though its computation complexity is quite high (quadratic in the number
of elements). The second construction achieves linear complexity using more recent techniques
(i.e., combining garbled Bloom filter and oblivious transfer) in the area of PSI. In Sec. 7, we
implement the second (more practical) construction and evaluate its performance.

4.1 Definitions

OTSA is a new variant of the original OT concept. The sender holds an array of ns elements
{ei}1≤i≤ns

(from a certain domain), which are associated with ns distinct indices Is = {s1, . . . , sns
},

where each sj for 1 ≤ j ≤ ns is an element from the domain D, not necessarily [1, ns]. The receiver
specifies a set of indices Ir = {r1, . . . , rnr

}, not necessarily a subset of Is, and asks for retrieving
the associated elements. We assume the domain D is large, i.e., ns ≪ |D| and nr ≪ |D|, so not
every index rj ∈ Ir specified by the receiver indeed has an element from the server associated with
it. Our OTSA satisfies the following properties:

– Correctness: The receiver retrieves E′ = {e′j}1≤j≤nr
, where e′j = ej if sj ∈ Is ∩ Ir, or e′j is

an element randomly picked from a pre-defined domain if sj /∈ Is ∩ Ir.
– Receiver privacy: The sender learns nothing about Ir.
– Sender array privacy: The receiver learns nothing about ej ’s whose index sj /∈ Is ∩ Ir.
– Sender indices privacy: The receiver learns nothing about Is except |Is ∩ Ir|.

Distinction from Normal OT Normal OT typically represents the server indices by [1, ns]. A
possible way to use OT to realize the functionality we want to achieve is to require the server
to publish a 1-to-1 mapping between [1, ns] and {s1, . . . , sns

}, but this breaks the sender indices
privacy. Another possibility is to simply use normal OT in which the server holds |D| elements.
This will incur O(|D|) communication complexity. Ideally, we shoot for O(max(nr, ns)). We remark
that our primitive implies the normal OT since one can simply set Is = [1, ns].

More on Correctness Requirement For OTSA to be useful, the client should have the ability
to differentiate a correct data element from a random string. In case the application (e.g., in TST)
may not make it apparent, it can be achieved by asking the server to append a special symbol to ei
for recognition, or simply publish {H(ei)} where H(·) is a cryptographic (one-way) hash function.

On Sender Indices Privacy When a correct data element is distinguishable from a random
string, the receiver will learn from the protocol the cardinality of the intersection, i.e., |Is ∩ Ir|,
according to the functionality requirement; and hence we cannot afford to protect it. Yet, we note
that the receiver will not know what exactly is the intersection set Is ∩ Ir. We will show that this
level of privacy suffices for our applications.

Security Using the language of secure two-party computation, we define OT for a sparse array
as the following functionality:

Definition 3 (Oblivious Transfer for a Sparse Array (OTSA)) OTSA is a two-party com-
putation protocol that implements the following functionality

f(x, y) = (⊥, E′)

where the server’s input x = (E, Is) consists of two sets of the same size ns, one being the (multi-
)set of data elements E = {e1, . . . , ens

}, another being the sender’s index set Is = {s1, . . . , sns
}.

The receiver’s input y = Ir is a set of indices of size nr. The output of the receiver E′ is a subset
of E, such that ej ∈ E′ if and only if its index sj ∈ Is ∩ Ir.

We assume that the size of index sets, namely ns and nr, are publicly known by both parties.
We say that a protocol π is an OTSA in the semi-honest model if it securely implements the

above function f in the semi-honest model. As discussed in Sec.3.3, we denote such a protocol by

OT
|Is∩Ir|
Ir

.

4.2 Construction Idea

Our two constructions borrow ideas from the area of private set-intersection. One is based on
oblivious polynomial evaluation (OPE); the other one is based on a variant of garbled Bloom
filter. It has been observed that the PSI protocol from OPE can actually allow the transfer of
auxiliary information. Hence, we exploit this storage capacity to store the data elements for our
OTSA. Corresponding, we make the same observation for the GBF-based PSI. We note that while
both PSI protocols share the same property, their construction ideas are quite different.

4.3 OPE-based OT
|Is∩Ir|
Ir

Now we describe our first construction, which is based on oblivious polynomial evaluation, in
Fig. 2.

Protocol: OPE-based OT
|Is∩Ir|
Ir

Input: The receiver’s input is an index set Ir = {r1, . . . , rnr}. The sender’s input is an index set
Is = {s1, . . . , sns} and a data set E = {e1, . . . , ens}.

1. The receiver chooses a key pair (pk, sk) for a semantic secure additive homomorphic encryption
scheme (Encpk,Decsk), and publishes pk.

2. The receiver computes the coefficients of the polynomial p(x) =
∑nr

i=0 aix
i of degree nr with

roots being elements in the selection strings set Ir.
3. The receiver encrypts each of the (nr + 1) coefficients by the additive homomorphic encryption

scheme and gives the sender the resulting set of ciphertexts, {Encpk(ai)}.
4. For each index si ∈ Is, the sender:

(a) Uses the homomorphic property to evaluate the encrypted polynomial at si, namely computes
Encpk(p(si)).

(b) Chooses a random value r and computes Encpk(rp(si) + ei).

5. The sender sends a permutation of these ns ciphertexts to the client.
6. The receiver decrypts all ns ciphertexts received, picks up the set of valid elements.

Fig. 2: Protocol: OPE-based OT
|Is∩Ir|
Ir

The correctness of this OPE-based OT
|Is∩Ir|
Ir

is straightforward: if si ∈ Ir∩Is, then rp(si)+ei =
ei, meaning that the receiver successfully received one element; otherwise rp(si) + ei will be a
random string containing no useful information about ei. More formally, we assert the security of
the above protocol in the following theorem:

Theorem 1 The protocol in Fig. 2 securely implements the function f in Sec. 4 in the semi-honest
model.

Proof. Constructing an ideal world sender SIMs will be easy, since the sender’s view only con-
tains pk and {Encpk(ai)}. The first one is simply a valid public key, while the second one can be
simulated by encryption of random strings due to semantic security of the encryption scheme.

Constructing an ideal world receiver SIMr from a malicious receiver R∗ in the real world can
be done in the following way: SIMr first gets the public key pk and the set Γ = {γi} where
|Γ | = |Ir| + 1. On getting Ir from the receiver R∗, it sends ((E, Is), Ir) to the ideal functionality
FOTAS , which outputs E′ = {ej}sj∈Is∩Ir to the receiver, on the ideal world sender’s input (E, Is)
and SIMr’s input Ir. Then SIMr first gives the sender the set of ciphertexts by encrypting the
coefficient of a polynomial constructed from Ir as in the real world, then sends to R∗ a permutation
of the following set of ciphertext: (1) among |Is ∩ Ir| of them, each encrypts ej , (2) the rest of
them just encrypt random strings.

4.4 GBF∗-based OT
|Is∩Ir|
Ir

Our second construction is based on a variant of garbled Bloom filter (GBF), which we call it
GBF∗. An (n,H, λ)-GBF∗

X,I stores a secret set X using another set I of the same size n. In the
original GBF, each element xj ∈ X is first split into k = λ shares and then these shares are placed
at locations h1(xj), . . . , hk(xj). While in our GBF∗

X,I , each xj ∈ X is split and placed at locations
defined by h1(ij), . . . , hk(ij), where ij ∈ I. Namely, the set I “indexes” the locations to place
X. When we query GBF∗

X,I using some element i′ ∈ I, then GBF∗
X,I returns the corresponding

element x′. If i′ /∈ I, then GBF∗
X,I returns a uniformly random string.

The BuildGBF∗, QueryGBF∗, and GBF∗Intersection algorithms constituting our GBF∗ are listed
as follows:

It is easy to see that Algorithm 1 fails only when emptySlot remains unchanged before line 22.
The false positive of GBF∗ means when querying GBF∗

X,I with some index i′ /∈ I, Algorithm 2
returns some element x ∈ X. Following the existing analysis [18], we have with the following
theorems:

Theorem 2 Algorithm 1 fails with probability negl(λ).

Theorem 3 The false positive probability is negl(λ).

The underlying idea of Algorithm 3 is very similar to the GBFIntersection algorithm [18].
Thus Algorithm 3 inherits the corresponding theorems for GBFIntersection algorithm. We omit the
largely repeated proofs for the page limit.

Theorem 4 For GBF ∗
S̃,I∩I′

produced by Algorithm 3. Let aℓ be the event that GBF ∗
S̃,I∩I′

[hℓ(ij)]

equals the ℓ-th share of sj, 1 ≤ ℓ ≤ k; then (i) ∀ij ∈ I ∩ I ′ : Pr[a1 ∧ . . . ∧ aℓ] = 1 (ii) ∀ij /∈ I ∩ I ′ :
Pr[a1 ∧ . . . ∧ ak] is negl(k).

Theorem 5 Given sets I, I ′ and their intersection I ∩ I ′, let S̃ ⊆ S be a set such that sj ∈ S̃ if
and only if ij ∈ I ∩ I ′. Let GBF ∗

S̃,I∩I′
be the output of the Algorithm 3 from GBF ∗

S,I and BFI′ ,

let GBF ∗′
S̃,I∩I′

be another GBF∗ produced by Algorithm 1 using S̃ and I ∩ I ′, then GBF ∗
S̃,I∩I′

c
≡

GBF ∗′
S̃,I∩I′

.

Algorithm 1 BuildGBF∗(n,H, λ)

Input: A secret set X, an indexing set I, n, λ, and λ uniform hash functions H = {h1, . . . , hλ}
Output: An (n,H, λ)-GBF ∗

X,I

1: procedure

2: Set m = λn log2 e
3: GBF ∗

X,I = new m-element array of λ-bit strings
4: for j ← 1,m do

5: GBF ∗
X,I [j] = NULL

6: end for

7: for each xj ∈ X do

8: emptySlot = −1, finShare = xj

9: for ℓ← 1, λ do

10: index = hℓ(ij);
11: if GBF ∗

X,I [index] == NULL then

12: if emptySlot== −1 then

13: emptySlot = index

14: else

15: GBF ∗
X,I [index]

$
←− {0, 1}λ

16: finShare=finShare⊕ GBF ∗
X,I [index]

17: end if

18: else

19: finShare=finShare ⊕ GBF ∗
X,I [index]

20: end if

21: end for

22: GBF ∗
X,I [emptySlot] = finShare

23: end for

24: for j ← 1,m do

25: if GBF ∗
X,I [j] == NULL then

26: GBF ∗
X,I [j]

$
←− {0, 1}λ

27: end if

28: end for

29: return GBF ∗
X,I

30: end procedure

Now we are ready to detail the procedure of our second OT
|Is∩Ir|
Ir

construction in Fig. 3.
Note that in the second step, the receiver’s set Ir is transformed into a pseudorandom set I ′r. We
implement this transformation using an OPPRF protocol (Sec. 3.5) instead of a normal OPRF
because we need to hide the one-to-one correspondence between rj and r′j from the receiver. Note
that our scheme is also modular since any secure OPPRF suffices.

Theorem 6 The protocol in Fig. 3 securely implements the function f in Sec. 4 in the semi-honest
model.

Proof. (sketch). The proof mostly follows that of [18, Theorem 7], except that the simulator needs
to randomly generate a set of indices Ĩ of size |Is ∩ Ir|, and uses it as the additional input to
construct GBF ∗π

Ẽ,Ĩ
, which is computationally indistinguishable from GBF ∗

Ẽ,I′

r∩I′

s

by the security

of PRF, and thus indistinguishable from GBF ∗π
Ẽ,I′

s∩I′

r

by Theorem 5 above.

5 (Threshold) Secret Transfer

We now discuss how to make use of OTSA to construct secret transfer with access structure
(STAS). STAS is a two-party computation protocol that allows the client to receive a secret
transferred from the server, if the client satisfies the prescribed access structure. For illustration
purpose, below we first define STAS with a simple threshold access structure. We call it threshold

Algorithm 2 QueryGBF∗(GBF ∗
X,I , i

′, k,H)

Input: A (n,H, λ)-secret embedding garbled Bloom filter GBF ∗
X,I , λ,H = {h1, . . . , hλ}

Output: An element x ∈ X if i′ ∈ I, a random string otherwise
1: procedure

2: x̃ = {0}λ

3: for ℓ← 1, λ do

4: index = hℓ(i
′)

5: x̃ = x̃⊕GBF ∗
X,I [index]

6: end for

7: return x̃

8: end procedure

Algorithm 3 GBF∗Intersection(GBF ∗
X,I , BFI′ ,m)

Input: An (n,H, λ)-secret embedding garbled Bloom filter GBF ∗
X,I , an (n,H, λ)-Bloom filter BFI′

Output: (n,H, λ)-GBF ∗
X̃,I∩I′

1: procedure

2: Set m = λn log2 e
3: GBF ∗

X̃,I∩I′
= new m-element array of λ-bit strings

4: for j ← 1,m do

5: if BFI′ [j] == 1 then

6: GBF ∗
X̃,I∩I′

[j] = GBF ∗
X,I [j]

7: else

8: GBF ∗
X̃,I∩I′

[j]
$
←− {0, 1}λ

9: end if

10: end for

11: return GBF ∗
X̃,I∩I′

12: end procedure

secret transfer (TST). Next we demonstrate how to easily extend TST to support general access
structure, namely STAS.

5.1 Definition

Using the language of secure two-party computation, we define TST as the following functionality:

Definition 4 (Threshold secret transfer (TST)) TST is a two-party computation protocol
that implements the following functionality

f(x, y) =

{

(⊥, κ and |C ∩ S|) if |C ∩ S| ≥ t

(⊥, |C ∩ S|) otherwise

where the server’s input x = (κ, S) and the client’s input y = C.

Above definition always leaks the intersection size to the client. This is due to the technical
difficulty for simulation to the client without this knowledge. More discussion will be given later.
For the sake of completeness, we give the stronger definition.

Definition 5 (Strong threshold secret transfer ((ST)2)) (ST)2 is a two-party computation
protocol that implements the following functionality:

f ′(x, y) =

{

(⊥, κ) if |C ∩ S| ≥ t

(⊥,⊥) otherwise

where the server’s input x = (κ, S) and the client’s input y = C.

Protocol: GBF∗ based OT
|Is∩Ir |
Ir

Input: The receiver’s input is an index set Ir = {r1, . . . , rnr}, the sender’s input is an index set
Is = {s1, . . . , sns} and a data set E = {e1, . . . , ens}.

1. The sender chooses a random key kPRF for Dodis-Yampolskiy pseudorandom function fkPRF
(·).

2. The receiver and the sender engage in an OPPRF protocol using Ir and kPRF as input respectively,
such that the sender learns nothing while the receiver obtains I ′r = {r′j} where r′j = fkPRF

(rj) for
all j. The sender also converts its own private set Is into I ′s in similar manner.

3. The receiver generates an (n,H, λ)-BFI′r
that encodes its private set I ′r, the sender invokes Al-

gorithm 1 to generate a (n,H, λ)-GBF ∗
E,I′s

.
4. The receiver uses BFI′r

as the selection strings and acts as the receiver in an OTm
λ protocol.

5. The sender sends m pairs of λ-bit strings (xi,0, xi,1)(1 ≤ i ≤ m) in OTm
λ , where xi,0 is a uniformly

random string and xi,1 is GBF ∗
E,I′s

[i]. For 1 ≤ i ≤ m, if BFI′r
[i] is 0, then the receiver receives a

random string; if BFI′r
[i] is 1 it receives GBF ∗

E,I′s
[i]. The result obtained by the client is denoted

by GBF ∗π
Ẽ,I′s∩I′r

.

6. The receiver queries GBF ∗π
E,I′s∩I′r

using its own set I ′r, and picks up the set of valid element {Ẽ}.

Fig. 3: Protocol: GBF∗-based OT
|Is∩Ir|
Ir

In (ST)2, the server remains oblivious about the client’s input set, but the client only learns if
|C ∩ S| ≥ t or not.

5.2 TST Construction from OT
|Is∩Ir|
Ir

The basic idea behind the construction is to split κ into K = {κi} using (t, |S|)-secret sharing

scheme. The server and the client then engage in an OT
|Is∩Ir|
Ir

protocol with the server acting as
sender using secret input set K and indexing set S, and the client acting as the receiver using

C as input set. By the security of OT
|Is∩Ir|
Ir

, the client receives only a subset of secret shares
of κ corresponding to elements in |C ∩ S|. The security of TST naturally follows from that of
(t, |S|)-secret sharing scheme.

The detailed construction is given in Fig. 4.

Protocol: TST from OT
|Is∩Ir|
Ir

Input: The client’s input is a set C = {ci}nc , the server’s input is a set S = {si}ns and a secret
value κ.

1. The server computes the set of shares K = {κi}
$
←− SecretSharing(t,ns)

(κ).

2. The server and the client engage in a OT
|Is∩Ir|
Ir

protocol. The server acts as the sender with input
x = (K,S). The client acts as the receiver with input C.

3. Let K̃ denote the set of the client’s collected secret shares from step 1. If |K̃| ≥ t, then outputs
κ = Reconstruct(t,ns)(K̃) and |K̃| locally. Otherwise output |K| only.

Fig. 4: TST Construction from OT
|Is∩Ir|
Ir

Theorem 7 If the underlying secret sharing scheme and the OT
|Is∩Ir|
Ir

protocols are secure, then
the protocol defined in Fig. 4 securely evaluates the TST functionality.

Proof. (sketch). If the OT
|Is∩Ir|
Ir

is secure, the simulators for both sides exist. We can use them as
subroutines to construct the simulator for the whole protocol.

Server’s view: We construct a simulator SimS , when given the server’s private input and out-
put, simulates the server’s view ViewS of a real protocol execution. ViewS contains the input

set S, the secret value κ, the random coins, and the view of OT
|Is∩Ir|
Ir

. The simulator SimS se-

lects random coins rs uniformly random, and also computes K ′ = {κ′
i}

$
←− SecretSharing(t,ns)(κ).

Then SimS invokes the simulator for OT
|Is∩Ir|
Ir

to obtain SimOT
sx

((K ′, S),⊥). Finally, SimS outputs

(S,K ′, rs, SimOT
sx

((K ′, S),⊥)) as the simulated view. Because K ′ is generated in the same way as

in the real protocol, it follows that SimOT
sx

((K ′, S),⊥)
c
≡ SimOT

sx
((K,S),⊥). Thus by the security

of OT
|Is∩Ir|
Ir

, the simulated view should be indistinguishable from ViewS .
Client’s view: We construct a simulator SimC , when given the client’s private input and output,

simulates the client’s view ViewC of a real protocol execution. ViewC contains the input set C, the

random coins, and the view of OT
|Is∩Ir|
Ir

.

– If |C ∩ S| ≥ t, the simulator SimC is given C, κ, |K| = |C ∩ S| as input. SimC picks coins

rc uniformly random, and also computes K ′ $
←− SecretSharing(t,ns)(κ). SimC then selects a

random subset K̃ ′ ⊆ K ′ of size |K| uniformly at random. Then SimC invokes the simulator

for OT
|Is∩Ir|
Ir

to obtain SimOT
rx

(C, (K̃ ′, |K|)). SimC outputs (C, rc, SimOT
rx

(C, (K̃ ′, |K|))) as the

simulated view. Since K ′ and K̃ ′ are generated in the same way as K and K̃ in the real
protocol, SimOT

rx
(C, (K̃ ′, |K|)) is identically distributed as SimOT

rx
(C, (K̃, |K|)). Thus by the

security of OT
|Is∩Ir|
Ir

, the simulated view should be indistinguishable from ViewC .
– If |C ∩ S| < t, SimC is given only C, |K| = |C ∩ S| as input. This time SimC selects a

random κ′, and computes K ′′ $
←− SecretSharing(t,ns)(κ

′). SimC then selects a random subset

K̃ ′′ ⊆ K ′′ of size |K| < t uniformly at random. SimC outputs (C, rc, SimOT
rx

(C, (K̃ ′′, |K|))) as
the simulated view. To see that above simulated view works well, notice that by the security of
(t, ns)-secret sharing scheme, both K̃ ′′ generated by SimC and K̃ received in the real protocol
execution leak no information about the original value κ′ and κ respectively. Thus K̃ ′′ and
K̃ are computationally indistinguishable. Therefore SimOT

rx
(C, (K̃ ′′, |K|)) simulates the view

of OT
|Is∩Ir|
Ir

perfectly.

In both cases, the client’s view can be simulated. Combining the result for the server’s view,
we conclude that the protocol in Fig. 4 is secure in the semi-honest model.

5.3 Transferring Multiple Secrets

Our exposition only considers transferring the secret shares of a single secret. Yet, it is possible
to store multiple shares of the same secret in the same slot for supporting weighted TST. One
step further, it is also possible to store multiple share of different secrets in the same slots.
However, since the capacity of each slot is limited. One may need to resort to a hybrid approach
where symmetric keys are stored in the TST, while these symmetric keys can in turn unlock the
corresponding ciphertext encrypting multiple shares.

5.4 Extending to General Access Structure

It is not hard to see that the threshold access structure of TST comes directly from the under-
lying threshold secret sharing scheme (SecretSharing(t,ns),Reconstruct(t,n)). If we replace it with
other secret sharing scheme with different access structure (SecretSharingA,ReconstructA), the TST
construction will be readily transformed into STAS with access structure A. The proof strategy
remains mostly unchanged.

In particular, linear secret sharing [5] fits with our design well. We do not need the usual
mapping ρ from attributes to row number of the matrix, since our underlying OTSA supports a
sparse array with indices from a large domain.

Recall that in LSSS (see Def. 1), the share generating matrix M is public. The secret value
κ is embedded in a column vector v = (κ, r2, . . . , rn), and party ρ(x) gets the share (Mv)x. In
STAS, the server also needs to publish M . Moreover, it explicitly appends an index x to each
share (Mv)x, so that the client knows how to calculate constants {wi ∈ Zp}i∈|Is∩Ir| according to
M in the reconstruction phase. Exposing M in clear reveals some information about the access
structure, i.e., the shape of the access tree. However, we would like to stress that by the secu-
rity property (sender’s indices privacy) of the underlying OTSA, the client does not know the
correspondence between the elements in its secret set C and the leave nodes of the access tree.

5.5 Discussion on Leaking Intersection Size

From a theoretical point of view, knowledge of both C and |C ∩ S| allows one to infer some
information about S, especially when |C| ≈ |C ∩S|. For instance, if C is of size 100 and the client
learns that |C ∩ S| = 70. The client is able to conclude that many elements in C are also in S.
Moreover, if the client can interact with the server multiple times, it can change C by one element
each time and monitor how |C ∩ S| changes accordingly, which will eventually lead to S.

From a practical standpoint, such leakage is acceptable because the aforementioned probing
attack can be mitigated by limiting the number of interactions. Moreover, in the next section we
will see an immediate application of TST (resp. STAS), i.e. generic t-PSI-CA (resp. PSI with access
structure) construction from TST (resp. STAS). The fact that TST always leaks the cardinality
of intersection hinders us from obtaining t-PSI. Nevertheless, we believe t-PSI-CA is still a useful
primitive and it is the first of its kind in the literature. Finally, we remark that, when the cardinality
of the intersection is not exceeding the threshold, t-PSI-CA is the same as PSI-CA; otherwise t-
PSI-CA works as normal PSI.

6 Threshold-PSI-CA Protocol

With all necessary building blocks at hand, we are now ready to formally introduce t-PSI(-CA).
Again, we first formally define functionality of t-PSI-CA and t-PSI, then describe how to use TST
to realize t-PSI-CA.

6.1 Definitions

Definition 6 (Threshold Private Set-intersection (t-PSI)) t-PSI is a two-party computa-
tion protocol that implements the following functionality

f(x, y) =

{

(⊥, C ∩ S) if |C ∩ S| ≥ t

(⊥,⊥) otherwise

where the server’s input x = S and the client’s input y = C.

Definition 7 (Threshold Private Set-intersection (t-PSI-CA)) t-PSI-CA is a two-party com-
putation protocol that implements the following functionality

f(x, y) =

{

(⊥, C ∩ S) if |C ∩ S| ≥ t

(⊥, |C ∩ S|) otherwise

where the server’s input x = S and the client’s input y = C.

We assume threshold t is known by the client beforehand.

6.2 Generic t-PSI-CA Construction from TST

The idea is simple: the client and the server first engage in a TST protocol, such that the client
learns κ if |C ∩ S| ≥ t; then they engage in a normal PSI protocol, in which the server and the
client uses Sκ = {si||κ}ns

and Cκ = {ci||κ}nc
as input respectively. In case |C ∩ S| < t, the client

chooses a random κ′ uniformly at random and use Cκ = {ci||κ
′}nc

instead. The correctness of the
above idea is straightforward. What we need to prove is its security. To this end, we first formally
describe the above construction in Fig. 5.

Protocol: t-PSI-CA
Input: The client’s input is a set C = {ci}nc , the server’s input is a set S = {si}ns .

1. The server selects κ uniformly at random from {0, 1}λ.
2. The client and the server engage in a secure TST protocol πTST with the server’s input being

(κ, S) and the client’s input being C.
3. The server computes Sκ = {si||κ}ns .
4. If the client obtains κ from πTST, then it computes Cκ = {ci||κ}nc . Otherwise it samples a

uniformly random κ′, and computes Cκ as {ci||κ
′}nc .

5. The client and the server engage in a secure PSI protocol πPSI with the server’s input being Sκ

and the client’s input being Cκ.

Fig. 5: Protocol: t-PSI-CA

Theorem 8 Let πTST be a secure two-party computation protocol that securely implements the
function f defined in Sec. 5 in the semi-honest model. Let πPSI be a secure PSI protocol in the semi-
honest model. Then the protocol defined in Fig. 5 securely evaluates the t-PSI-CA functionality.

Proof. (sketch) If πTST and πPSI are secure, there exist the simulators for the participants in both
protocols. We can use them as subroutines to construct our simulators.

Server’s view: The view of a real protocol execution contains the input set S, the random coins,

the view of πTST, the view of πPSI (ViewS = (S, rs,ViewπTST

svr
,ViewπPSI

svr
)). Given S, the simulator SimS

pick coins rs uniformly at random, chooses κ uniformly at random from {0, 1}λ, computes Sκ =

{si||κ}ns
. SimS then invokes the simulator for the underlying protocols to obtain SimπTST

svr
((κ, S),⊥)

and SimπPSI

svr
(Sκ,⊥). SimS outputs (S, rs, SimπTST

svr
((κ, S),⊥), SimπPSI

svr
(Sκ,⊥)) as the simulated view.

Because κ is identically distributed as in the real execution, so will Sκ. Thus by the security

of πTST and πPSI, SimπTST

svr
((κ, S),⊥), SimπPSI

svr
(Sκ,⊥) are computationally indistinguishable from

ViewπTST

svr
,ViewπPSI

svr
.

Client’s view: The view of a real protocol execution contains the input set C, the random coins,

the view of πTST, the view of πPSI (ViewC = (C, rc,ViewπTST

clt
,ViewπPSI

clt
)).

– If |C ∩S| ≥ t, the simulator SimC is given C,C ∩S as input. SimC selects κ′ from {0, 1}λ and
coins rc uniformly at random, and computes Cκ′

and Cκ′

∩Sκ′

accordingly. SimC invokes the

simulator for πPSI and πTST to obtain respectively the simulated views SimπPSI

clt
(Cκ′

, Cκ′

∩ Sκ′

)

and SimπTST

clt
(C, (κ′, |C∩S|)). SimC then outputs C, rc, SimπPSI

clt
(Cκ′

, Cκ′

∩Sκ′

) and SimπTST

clt
(C, (κ′, |C∩

S|)) as the simulated view. Because κ′ is identically distributed as κ (which is selected uni-

formly at random by the server in the real protocol), SimπPSI

clt
(Cκ′

, Cκ′

∩Sκ′

) and SimπTST

clt
(C, (κ′, |C∩

S|)) are identically distributed as SimπPSI

clt
(Cκ, Cκ ∩ Sκ) and SimπTST

clt
(C, (κ, |C ∩ S|)). Then by

the security of πPSI and πTST, the simulated view is computationally indistinguishable from
the real view.

– If |C∩S| < t, SimC is the same as above except replacing SimπPSI

clt
(Cκ′

, Cκ′

∩Sκ′

) by SimπPSI

clt
(Cκ′

,⊥)

and SimπTST

clt
(C, (κ′, |C ∩ S|)) by SimπTST

clt
(C, |C ∩ S|).

In both cases, the client’s view can be simulated. Combining the result for the server’s view,
we conclude that the protocol in Fig. 5 is secure in the semi-honest model.

6.3 Extending to PSI with Access Structure

In Sec. 5.4 we show how to construct STAS by replacing threshold secret sharing in TST with linear
secret sharing scheme. Following the same vein, we obtain PSI with expressive access structure
easily by replacing threshold secret sharing in t-PSI-CA with linear secret sharing scheme. The
detailed description is largely the same, thus is omitted for brevity.

7 Evaluation

Comparing our two OT
|Is∩Ir|
Ir

constructions, it is easy to see that both computational cost and
communication cost of GBF∗ are linear in n = |Is|, while OPE-based one is quadratic. For this

reason, we only implemented the GBF∗-based OT
|Is∩Ir|
Ir

in C, by modifying the GBF source code3

provided by Dong, and evaluated its performance. The major modification we did is adding OPPRF
before GBF related operations. We use existing Paillier encryption implementation4 for OPPRF.
We consider |Ir| = n here.

The experiment is conducted on a virtual machine running Ubuntu 12.04 LTS, allotted 2GB
memory and 2 CPUs. Both the client and the server program are run on this virtual machine.
The host machine is running Windows 8.1, with 2 Intel(R) Core(TM) i5-4590 3.30GHz CPUs, and
8GB RAM. We only implemented single thread version but we remark that both OPPRF and

GBF∗ are easily parallelizable. We expect the resulting OT
|Is∩Ir|
Ir

retains such property.

The major bottleneck of our GBF∗-based OT
|Is∩Ir|
Ir

is Paillier encryption, decryption and
computing Encpk(c ·m) in OPPRF. For a näıve implementation of OPPRF with n elements, the
client needs to encrypt n elements in its set X, together with n random number rc. The server also
needs to encrypt n random elements rs. However, these values do not depend on the other party’s
input, so both the client and the server can precompute these values before starting the whole
protocol. Our implementation exploits this observation. We remark that when a more efficient
OPPRF is available, the efficiency of our protocol will be improved correspondingly.

We first fix the key length for Paillier encryption to be 1024-bit, and the security of GBF∗ as
80-bit, because NIST [4] suggests that factorization-based cryptography with 1024-bit key length
has 80-bit security. We vary the set size n to be 64, 128, 256, 512, 1024, 2048, and measure the

execution time of GBF∗-based OT
|Is∩Ir|
Ir

construction. For higher level of security, we fix Paillier
key length to be 3072-bit and the security of GBF∗ as 128-bit. The result is shown in Table 2 and
Figure 6. From the table and the figure we can see that the computation time increases linearly

with the set size. When the access structure is simple, i.e. the set size is < 20, OT
|Is∩Ir|
Ir

terminates
around half a second at 80-bit security. At 128-bit security, the protocol finishes in a few seconds.

8 Further Applications

We discuss a few more applications of our TST.

3 https://personal.cis.strath.ac.uk/changyu.dong/PSI/PSI.html
4 http://acsc.cs.utexas.edu/libpaillier/

https://personal.cis.strath.ac.uk/changyu.dong/PSI/PSI.html
http://acsc.cs.utexas.edu/libpaillier/

Set size 80-bit security (ms) 128-bit security (ms)

64 1769.30 24811.71

128 3385.99 49184.89

256 6582.20 96890.47

512 13080.66 199575.18

1024 25737.88 400866.31

2048 51649.81 778964.15

Table 2: Execution time under various set size and different security level

8.1 Private Match-making

As discussed in the introduction, dating apps which work by connecting two users if their set of
attributes overlap, can be supported in a privacy-preserving manner via TST.

A nice observation here is that, the asymmetry in the roles of the client and the server in our
protocol may actually be useful in the context of private match-making. For example, a business
model of paying user (client) and free user (server) may be employed since the client will know if
there is a match and hence has the choice to contact the other party (server) upon receipt of the
secret κ (which can be the profile picture).

Moreover, even if the desired threshold is not reached, the users may know to what extent
they are similar, which can be a useful feature allowing the users to adjust their expected level of
similarity for future matching.

It is also possible to store the shares of multiple secrets corresponding to different policies
through a single invocation of our protocol. For example, a requester who satisfies only the gender
criteria can get the ((1, 1) share of) an user’s pseudonym with a (1, 2) share of a real first name,
when another criteria such as the level of education is satisfied, the corresponding slot will contain
only the other (1, 2) share of the first name. This will give great flexibility for dating apps.

8.2 Publish/Subscribe System

As our protocol is for matching in general, it can also find applications in other scenarios where
the transfer of material is based on matching of interests. One example is publish/subscribe sys-
tem. Previous work (such as [46]) focus on using attribute-based encryption for the encryption
and possibly also attribute-based mechanism or perhaps some other primitives for the interests
matching part. Our solution can act as a handy tool.

8.3 Oblivious Transfer with Access Control

OT with access control (OTAC) is introduced by Camenisch et al. [9]. Their construction supports
conjunctive policy and is based on a specific construction which covers the credential and the
encryption mechanisms. TST enables for the first time OT with threshold access control, in a
modular manner.

The initial setup and execution of our approach are similar to those considered in the setting
of Camenisch et al. [9]. The server encrypts each data item pi by a homomorphic encryption into
ei under the server’s public key. The server publishes all these ciphertexts. The client can use
private information retrieval (PIR) technique to get ei of interest, re-randomizes it by a factor r,
and sends it to the server.

Now, the decryption result of this ciphertext is treated as the secret κ of the TST protocol,
to be transferred to the client. If the client’s attribute satisfies the server’s threshold policy, r · pi
will be transferred.

Note that we need to add the corresponding zero-knowledge proofs, in particular, to prove
that the re-randomized ciphertext is originated from the server. This can be done by proving
that it is a ciphertext signed by the server which is then randomized by a factor of r, without
revealing the signature or r. Also, we need to add the proof for showing the credential of the
client is certifying the attributes which are used as the selection strings in TST. Remarkably,
one can plugin any credential scheme and any encryption scheme supporting the corresponding
zero-knowledge proofs efficiently (which are abundant). We think that it is a conceptually simpler
and possibly more efficient approach, yet we enjoy more expressive policy.

At the application level, this class of primitive can find applications in pay-per-download music
repository, pay-per-retrieval DNA database, etc. For example, a specific solution based on private
information retrieval instead of OT with an integrated payment system has been proposed with
these kinds of e-commerce applications in mind [24].

9 Conclusion and Future Work

In this paper, we study the problem of secret transfer with access structure, with the aim of
revealing as little information as possible. We provide two constructions of STAS, one is based on
oblivious polynomial evaluation, and the other one is based on a new variant of garbled Bloom
filter. The former one is conceptually simple while the latter one is computationally more efficient.
We then show how to use STAS to construct private set-intersection with access structure, which is
the first of the kind to the best of our knowledge. Further applications of STAS are also discussed.

All our proposed constructions are proven to be secure in the semi-honest model. It is of
theoretical interest to consider stronger security model, like the malicious model and the universal
composability model. Also, our t-PSI-CA construction always leaks the size of intersection, leaving
an interesting open question to fill up gap.

References

1. A. Abadi, S. Terzis, and C. Dong, “O-PSI: delegated private set intersection on outsourced datasets,”
in ICT Systems Security and Privacy Protection - 30th IFIP TC 11 International Conference,
SEC 2015, Hamburg, Germany, May 26-28, 2015, Proceedings, 2015, pp. 3–17. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-18467-8 1

2. R. Agrawal, A. V. Evfimievski, and R. Srikant, “Information sharing across private databases,”
in Proceedings of the 2003 ACM SIGMOD International Conference on Management of
Data, San Diego, California, USA, June 9-12, 2003, 2003, pp. 86–97. [Online]. Available:
http://doi.acm.org/10.1145/872757.872771

3. G. Ateniese, E. D. Cristofaro, and G. Tsudik, “(if) size matters: Size-hiding private set intersection,”
in Public Key Cryptography - PKC 2011 - 14th International Conference on Practice and Theory
in Public Key Cryptography, Taormina, Italy, March 6-9, 2011. Proceedings, 2011, pp. 156–173.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-19379-8 10

4. E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid, “Recommendation for key management,”
NIST Special Publication, vol. 800, no. 57, pp. 1–142, 2007.

5. A. Beimel, “Secure schemes for secret sharing and key distribution,” Ph.D. dissertation, Technion -
Israel Institute of Technology, Israel, 1996.

6. B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Commun. ACM, vol. 13,
no. 7, pp. 422–426, 1970. [Online]. Available: http://doi.acm.org/10.1145/362686.362692

7. A. Boldyreva, “Threshold signatures, multisignatures and blind signatures based on the gap-diffie-
hellman-group signature scheme,” in Public Key Cryptography - PKC 2003, 6th International
Workshop on Theory and Practice in Public Key Cryptography, Miami, FL, USA, January 6-8, 2003,
Proceedings, 2003, pp. 31–46. [Online]. Available: http://dx.doi.org/10.1007/3-540-36288-6 3

8. P. Bose, H. Guo, E. Kranakis, A. Maheshwari, P. Morin, J. Morrison, M. H. M. Smid, and Y. Tang,
“On the false-positive rate of bloom filters,” Inf. Process. Lett., vol. 108, no. 4, pp. 210–213, 2008.
[Online]. Available: http://dx.doi.org/10.1016/j.ipl.2008.05.018

http://dx.doi.org/10.1007/978-3-319-18467-8_1
http://doi.acm.org/10.1145/872757.872771
http://dx.doi.org/10.1007/978-3-642-19379-8_10
http://doi.acm.org/10.1145/362686.362692
http://dx.doi.org/10.1007/3-540-36288-6_3
http://dx.doi.org/10.1016/j.ipl.2008.05.018

9. J. Camenisch, M. Dubovitskaya, and G. Neven, “Oblivious transfer with access control,” in
Proceedings of the 2009 ACM Conference on Computer and Communications Security, CCS
2009, Chicago, Illinois, USA, November 9-13, 2009, 2009, pp. 131–140. [Online]. Available:
http://doi.acm.org/10.1145/1653662.1653679

10. J. Camenisch and V. Shoup, “Practical verifiable encryption and decryption of discrete logarithms,”
in Advances in Cryptology - CRYPTO 2003, 23rd Annual International Cryptology Conference, Santa
Barbara, California, USA, August 17-21, 2003, Proceedings, 2003, pp. 126–144. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-45146-4 8

11. J. Camenisch and G. M. Zaverucha, “Private intersection of certified sets,” in Financial
Cryptography and Data Security, 13th International Conference, FC 2009, Accra Beach,
Barbados, February 23-26, 2009. Revised Selected Papers, 2009, pp. 108–127. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-03549-4 7

12. E. D. Cristofaro, P. Gasti, and G. Tsudik, “Fast and private computation of cardinality of
set intersection and union,” in Cryptology and Network Security, 11th International Conference,
CANS 2012, Darmstadt, Germany, December 12-14, 2012. Proceedings, 2012, pp. 218–231. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-35404-5 17

13. E. D. Cristofaro, J. Kim, and G. Tsudik, “Linear-complexity private set intersection protocols secure
in malicious model,” in Advances in Cryptology - ASIACRYPT 2010 - 16th International Conference
on the Theory and Application of Cryptology and Information Security, Singapore, December 5-9, 2010.
Proceedings, 2010, pp. 213–231. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-17373-8 13

14. E. D. Cristofaro and G. Tsudik, “Practical private set intersection protocols with linear complexity,”
in Financial Cryptography and Data Security, 14th International Conference, FC 2010, Tenerife,
Canary Islands, January 25-28, 2010, Revised Selected Papers, 2010, pp. 143–159. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-14577-3 13

15. D. Dachman-Soled, T. Malkin, M. Raykova, and M. Yung, “Efficient robust private set intersection,”
in Applied Cryptography and Network Security, 7th International Conference, ACNS 2009,
Paris-Rocquencourt, France, June 2-5, 2009. Proceedings, 2009, pp. 125–142. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-01957-9 8

16. P. D’Arco, M. I. G. Vasco, A. L. P. del Pozo, and C. Soriente, “Size-hiding in private set intersection:
Existential results and constructions,” in Progress in Cryptology - AFRICACRYPT 2012 - 5th
International Conference on Cryptology in Africa, Ifrance, Morocco, July 10-12, 2012. Proceedings,
2012, pp. 378–394. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-31410-0 23

17. Y. Dodis and A. Yampolskiy, “A verifiable random function with short proofs and keys,” in Public
Key Cryptography - PKC 2005, 8th International Workshop on Theory and Practice in Public Key
Cryptography, Les Diablerets, Switzerland, January 23-26, 2005, Proceedings, 2005, pp. 416–431.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-30580-4 28

18. C. Dong, L. Chen, and Z. Wen, “When private set intersection meets big data: an efficient
and scalable protocol,” in 2013 ACM SIGSAC Conference on Computer and Communications
Security, CCS’13, Berlin, Germany, November 4-8, 2013, 2013, pp. 789–800. [Online]. Available:
http://doi.acm.org/10.1145/2508859.2516701

19. M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold, “Keyword search and oblivious pseudorandom
functions,” in Theory of Cryptography, Second Theory of Cryptography Conference, TCC 2005,
Cambridge, MA, USA, February 10-12, 2005, Proceedings, 2005, pp. 303–324. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-30576-7 17

20. M. J. Freedman, K. Nissim, and B. Pinkas, “Efficient private matching and set intersection,”
in Advances in Cryptology - EUROCRYPT 2004, International Conference on the Theory and
Applications of Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004, Proceedings, 2004,
pp. 1–19. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-24676-3 1

21. O. Goldreich, The Foundations of Cryptography - Volume 2, Basic Applications. Cambridge Univer-
sity Press, 2004.

22. C. Hazay and Y. Lindell, “Efficient protocols for set intersection and pattern matching with security
against malicious and covert adversaries,” in Theory of Cryptography, Fifth Theory of Cryptography
Conference, TCC 2008, New York, USA, March 19-21, 2008., 2008, pp. 155–175. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-78524-8 10

23. C. Hazay and K. Nissim, “Efficient set operations in the presence of malicious adversaries,” in Public
Key Cryptography - PKC 2010, 13th International Conference on Practice and Theory in Public Key
Cryptography, Paris, France, May 26-28, 2010. Proceedings, 2010, pp. 312–331. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-13013-7 19

http://doi.acm.org/10.1145/1653662.1653679
http://dx.doi.org/10.1007/978-3-540-45146-4_8
http://dx.doi.org/10.1007/978-3-642-03549-4_7
http://dx.doi.org/10.1007/978-3-642-35404-5_17
http://dx.doi.org/10.1007/978-3-642-17373-8_13
http://dx.doi.org/10.1007/978-3-642-14577-3_13
http://dx.doi.org/10.1007/978-3-642-01957-9_8
http://dx.doi.org/10.1007/978-3-642-31410-0_23
http://dx.doi.org/10.1007/978-3-540-30580-4_28
http://doi.acm.org/10.1145/2508859.2516701
http://dx.doi.org/10.1007/978-3-540-30576-7_17
http://dx.doi.org/10.1007/978-3-540-24676-3_1
http://dx.doi.org/10.1007/978-3-540-78524-8_10
http://dx.doi.org/10.1007/978-3-642-13013-7_19

24. R. Henry, F. G. Olumofin, and I. Goldberg, “Practical PIR for electronic commerce,” in
Proceedings of the 18th ACM Conference on Computer and Communications Security, CCS
2011, Chicago, Illinois, USA, October 17-21, 2011, 2011, pp. 677–690. [Online]. Available:
http://doi.acm.org/10.1145/2046707.2046784

25. S. Hohenberger and S. A. Weis, “Honest-verifier private disjointness testing without random
oracles,” in Privacy Enhancing Technologies - PET, 2006, pp. 277–294. [Online]. Available:
http://dx.doi.org/10.1007/11957454 16

26. Y. Ishai, J. Kilian, K. Nissim, and E. Petrank, “Extending oblivious transfers efficiently,” in
Advances in Cryptology - CRYPTO 2003, 23rd Annual International Cryptology Conference, Santa
Barbara, California, USA, August 17-21, 2003, Proceedings, 2003, pp. 145–161. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-45146-4 9

27. S. Jarecki and X. Liu, “Efficient oblivious pseudorandom function with applications to adaptive OT
and secure computation of set intersection,” in Theory of Cryptography, 6th Theory of Cryptography
Conference, TCC 2009, San Francisco, CA, USA, March 15-17, 2009. Proceedings, 2009, pp. 577–594.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-00457-5 34

28. A. Juels and M. Sudan, “A fuzzy vault scheme,” Des. Codes Cryptography, vol. 38, no. 2, pp.
237–257, 2006. [Online]. Available: http://dx.doi.org/10.1007/s10623-005-6343-z

29. F. Kerschbaum, “Outsourced private set intersection using homomorphic encryption,” in 7th ACM
Symposium on Information, Compuer and Communications Security, ASIACCS ’12, Seoul, Korea,
May 2-4, 2012, 2012, pp. 85–86. [Online]. Available: http://doi.acm.org/10.1145/2414456.2414506

30. L. Kissner and D. X. Song, “Privacy-preserving set operations,” in Advances in Cryptology - CRYPTO
2005: 25th Annual International Cryptology Conference, Santa Barbara, California, USA, August 14-
18, 2005, Proceedings, 2005, pp. 241–257. [Online]. Available: http://dx.doi.org/10.1007/11535218 15

31. J. Lai, R. H. Deng, and Y. Li, “Expressive CP-ABE with partially hidden access structures,” in 7th
ACM Symposium on Information, Computer and Communications Security, ASIACCS ’12, Seoul, Ko-
rea, May 2-4, 2012, 2012, pp. 18–19. [Online]. Available: http://doi.acm.org/10.1145/2414456.2414465

32. A. B. Lewko and B. Waters, “Decentralizing attribute-based encryption,” in Advances in Cryptology
- EUROCRYPT 2011 - 30th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings, 2011, pp. 568–588.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-20465-4 31

33. J. Li, Q. Huang, X. Chen, S. S. M. Chow, D. S. Wong, and D. Xie, “Multi-authority ciphertext-policy
attribute-based encryption with accountability,” in Proceedings of the 6th ACM Symposium on
Information, Computer and Communications Security, ASIACCS 2011, Hong Kong, China, March
22-24, 2011, 2011, pp. 386–390. [Online]. Available: http://doi.acm.org/10.1145/1966913.1966964

34. J. Li, K. Ren, B. Zhu, and Z. Wan, “Privacy-aware attribute-based encryption with
user accountability,” in Information Security, 12th International Conference, ISC 2009,
Pisa, Italy, September 7-9, 2009. Proceedings, 2009, pp. 347–362. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-04474-8 28

35. P. D. MacKenzie, T. Shrimpton, and M. Jakobsson, “Threshold password-authenticated
key exchange,” J. Cryptology, vol. 19, no. 1, pp. 27–66, 2006. [Online]. Available:
http://dx.doi.org/10.1007/s00145-005-0232-5

36. T. Nishide, K. Yoneyama, and K. Ohta, “Attribute-based encryption with partially hidden encryptor-
specified access structures,” in Applied Cryptography and Network Security, 6th International
Conference, ACNS 2008, New York, NY, USA, June 3-6, 2008. Proceedings, 2008, pp. 111–129.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-68914-0 7

37. P. Paillier, “Public-key cryptosystems based on composite degree residuosity classes,” in Advances
in Cryptology - EUROCRYPT ’99, International Conference on the Theory and Application of
Cryptographic Techniques, Prague, Czech Republic, May 2-6, 1999, Proceeding, 1999, pp. 223–238.
[Online]. Available: http://dx.doi.org/10.1007/3-540-48910-X 16

38. B. Pinkas, T. Schneider, G. Segev, and M. Zohner, “Phasing: Private set inter-
section using permutation-based hashing,” in Proceedings of the 24th USENIX Secu-
rity Symposium. Washington, D.C.: USENIX Association, Aug. 2015. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/pinkas

39. B. Pinkas, T. Schneider, and M. Zohner, “Faster private set intersection based
on OT extension,” in Proceedings of the 23rd USENIX Security Symposium, San
Diego, CA, USA, August 20-22, 2014., 2014, pp. 797–812. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/pinkas

40. M. D. Raimondo and R. Gennaro, “Provably secure threshold password-authenticated key
exchange,” J. Comput. Syst. Sci., vol. 72, no. 6, pp. 978–1001, 2006. [Online]. Available:
http://dx.doi.org/10.1016/j.jcss.2006.02.002

http://doi.acm.org/10.1145/2046707.2046784
http://dx.doi.org/10.1007/11957454_16
http://dx.doi.org/10.1007/978-3-540-45146-4_9
http://dx.doi.org/10.1007/978-3-642-00457-5_34
http://dx.doi.org/10.1007/s10623-005-6343-z
http://doi.acm.org/10.1145/2414456.2414506
http://dx.doi.org/10.1007/11535218_15
http://doi.acm.org/10.1145/2414456.2414465
http://dx.doi.org/10.1007/978-3-642-20465-4_31
http://doi.acm.org/10.1145/1966913.1966964
http://dx.doi.org/10.1007/978-3-642-04474-8_28
http://dx.doi.org/10.1007/s00145-005-0232-5
http://dx.doi.org/10.1007/978-3-540-68914-0_7
http://dx.doi.org/10.1007/3-540-48910-X_16
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/pinkas
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/pinkas
http://dx.doi.org/10.1016/j.jcss.2006.02.002

41. A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in Advances in Cryptology -
EUROCRYPT 2005, 24th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings, 2005, pp. 457–473.
[Online]. Available: http://dx.doi.org/10.1007/11426639 27

42. B. Schneier, Applied cryptography - protocols, algorithms, and source code in C (2. ed.). Wiley, 1996.
43. A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11, pp. 612–613, 1979. [Online].

Available: http://doi.acm.org/10.1145/359168.359176
44. V. Shoup, “Practical threshold signatures,” in Advances in Cryptology - EUROCRYPT

2000, International Conference on the Theory and Application of Cryptographic Techniques,
Bruges, Belgium, May 14-18, 2000, Proceeding, 2000, pp. 207–220. [Online]. Available:
http://dx.doi.org/10.1007/3-540-45539-6 15

45. J. Vaidya and C. Clifton, “Secure set intersection cardinality with application to association rule
mining,” Journal of Computer Security, vol. 13, no. 4, pp. 593–622, 2005. [Online]. Available:
http://iospress.metapress.com/openurl.asp?genre=article&issn=0926-227X&volume=13&issue=4&spage=593

46. T. H. Yuen, W. Susilo, and Y. Mu, “Towards a cryptographic treatment of publish/subscribe
systems,” Journal of Computer Security, vol. 22, no. 1, pp. 33–67, 2014. [Online]. Available:
http://dx.doi.org/10.3233/JCS-130486

http://dx.doi.org/10.1007/11426639_27
http://doi.acm.org/10.1145/359168.359176
http://dx.doi.org/10.1007/3-540-45539-6_15
http://iospress.metapress.com/openurl.asp?genre=article&issn=0926-227X&volume=13&issue=4&spage=593
http://dx.doi.org/10.3233/JCS-130486

0 500 1000 1500 2000
0

10

20

30

40

50

60
Execution Time (80−bit security)

Set Size

T
im

e(
s)

(a)

0 500 1000 1500 2000
0

100

200

300

400

500

600

700

800

900
Execution Time (128−bit security)

Set Size

T
im

e(
s)

(b)

Fig. 6: Execution time vs. set size: (a) 80-bit security / (b) 128-bit security

	Are you The One to Share? Secret Transfer with Access Structure

