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Abstract

Identity-based revocation (IBR) is a specific kind of broadcast encryption that can effectively send
a ciphertext to a set of receivers. In IBR, a ciphertext is associated with a set of revoked users instead
of a set of receivers and the maximum number of users in the system can be an exponential value in the
security parameter. In this paper, we reconsider the general method of Lee, Koo, Lee, and Park (ES-
ORICS 2014) that constructs a public-key revocation (PKR) scheme by combining the subset difference
(SD) method of Naor, Naor, and Lotspiech (CRYPTO 2001) and a single revocation encryption (SRE)
scheme. Lee et al. left it as an open problem to construct an SRE scheme under the standard assump-
tion without random oracles. In this work, we first propose a selectively secure SRE scheme under the
standard assumption without random oracles. Next, we propose a fully secure SRE scheme under simple
static assumptions without random oracles. Finally, we present an efficient IBR scheme derived from
the SD method and our SRE scheme. The security of our IBR scheme depends on that of the underlying
SRE scheme.
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1 Introduction

Public-key broadcast encryption (PKBE) is a special type of public-key encryption (PKE) such that any user
can create a compact ciphertext for a dynamic changing set of receivers. PKBE can be used for secure group
communication systems, pay-TV systems, content distribution systems, and secure file systems. Public-key
revocation (PKR) is a variation of PKBE where a ciphertext is associated with a set R of revoked users
instead of a set S of receivers and a user can decrypt the ciphertext if he is not revoked in the ciphertext.
PKBE can be extended to identity-based broadcast encryption (IBBE) where a user is mapped to any identity
string and the total number of users in the system can be an exponential value in the security parameter. We
also can define identity-based revocation (IBR) by associating a ciphertext with a set of revoked users R
instead of a set of receivers S.

One method to build a collusion-resistant PKBE scheme is to use bilinear groups. Boneh, Gentry, and
Waters [5] proposed the first PKBE scheme with short ciphertexts in bilinear groups and proved its selective
security under q-type assumption. After their work, other PKBE, IBBE, and IBR schemes were proposed in
bilinear groups [10,14,20,25,26]. Another method to build a secure PKBE scheme is to combine the subset
cover framework of Naor, Naor, and Lotspiech [23] and an identity-based encryption (IBE) scheme [4].
Naor et al. [23] showed that a PKR scheme can be obtained from the complete subtree (CS) method and an
IBE scheme and Dodis and Fazio [11] showed that an efficient PKR scheme can be derived from the subset
difference (SD) method and an hierarchical IBE (HIBE) scheme. Recently, Lee et al. [17] showed that an
improved PKR scheme can be derived by combining the SD method with a single revocation encryption
(SRE) scheme. Compared to PKR schemes that are directly built on bilinear groups, PKR schemes derived
from the subset cover framework provide short public parameters and efficient operation in the decryption
algorithm.

The PKR scheme of Lee et al. [17] that combines the SD method with an SRE scheme is interesting
since it achieves the asymptotically optimal bound in the SD method. The SD method is one instance of the
subset cover framework of Naor et al. [23] and it can be used to build an efficient revocation system where
a ciphertext is associated to a set of subsets that covers all receivers by excluding revoked users. In SD, a
subset is defined by a subtree Ti, j that is related with two nodes vi and v j in a full binary tree. That is, Ti, j is
defined as a set of leaf nodes in Ti but not in Tj where the root node of Ti, Tj is vi, v j respectively. In SRE,
a ciphertext is associated with labels (GL,ML) and a private key is associated with labels (GL′,ML′) and a
ciphertext can be decrypted if GL = GL′ and ML 6= ML′ [17]. To construct an improved PKR scheme, Lee
et al. [17] observed that a subset Ti, j in the SD method can be directly mapped to labels (GL,ML) in the
SRE scheme. Although the PKR scheme of Lee et al. can reduce the size of public keys and private keys
compared to the PKR scheme of Dodis and Fazio, their SRE scheme is proven to be secure under q-type
assumption in the random oracle model. Thus, they left it as an interesting problem to build an SRE scheme
under standard assumptions without random oracles.

1.1 Our Contributions

In this paper, we give affirmative answers to the above interesting problem. We obtain the following results:

SRE with Selective Security. We first propose an SRE scheme in prime-order bilinear groups and prove its
selective security under a standard assumption without random oracles. In SRE, a ciphertext and a private
key are associated with labels (GL,ML) and (GL′,ML′) respectively and the ciphertext can be decrypted if
GL = GL′ and ML 6= ML′. The main idea to build an SRE scheme under the standard assumption is that an
IBE scheme can be used to support the equality GL = GL′ and a simple IBR scheme can be used to support
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the inequality ML 6= ML′. In this case, an SRE can be proven to be secure under the standard assumption
since both an IBE scheme and a simple IBR scheme can be proved to be secure under the decisional bilinear
Diffie-Hellman (DBDH) assumption.

SRE with Full Security. Our first SRE scheme is just secure in the selective model. To construct an SRE
scheme with full security, we propose an SRE scheme in composite-order bilinear groups and prove its
full security under simple static assumptions. The structure of our second SRE scheme is similar to that
of our first scheme with slight modification except that it uses composite-order bilinear groups to use the
dual system encryption technique of Waters [21, 27]. To prove the full security of our second SRE scheme,
we cannot use the dual system encryption technique of Lewko and Waters [21] that shows the information
theoretic argument because of the inequality ML 6=ML′ in SRE. To solve this problem, we use the new proof
technique of Lewko and Waters [22] that combines the selective technique with the dual system encryption
technique.

IBR from Subset Difference. To construct an IBR scheme by combining the SD method with an SRE
scheme, we follow the design principle of Lee et al. [17]. As mentioned before, an SRE scheme can be
integrated with the SD method since a subset Ti, j in SD can be directly mapped to the labels (GL,ML)
in SRE. Lee et al. only proposed a PKR scheme where the maximum number of users is fixed to be a
polynomial value in the security parameter since their SRE scheme is proven under a q-type assumption
where q is related to the maximum number of users in the systems. However, our scheme can be identity-
based one by extending the depth of a binary tree since our SRE scheme can support any label strings.
Additionally, our IBR scheme provides better efficiency since it adopts the hybrid approach that encrypts a
session key by using an SRE scheme and encrypts a message by using a symmetric-key encryption scheme.
The security of our IBR scheme follows that of the underlying SRE scheme.

1.2 Related Work

Broadcast encryption, introduced by Fiat and Naor [12], is symmetric-key encryption where a trusted center
which knows all private keys of all users can create a ciphertext for a set of receivers. Fiat and Naor proposed
broadcast encryption schemes in the bounded collusion security model. The full literature of broadcast
encryption is extensive and it is beyond the scope of this paper. We will only review some papers that are
relevant to our work. Naor, Naor, and Lotspiech [23] proposed the general methodology named the subset
cover framework for revocation systems. The complete subtree (CS) and subset difference (SD) methods in
binary trees are two important instances of the subset cover framework. The subset cover framework can be
extended to trace-and-revoke by incorporating the tracing functionality that can trace a traitor of the system.
After their work, other improved method was proposed [15, 16].

In public-key broadcast encryption (PKBE), any user can create a ciphertext for a set of receivers by
using a public key whereas only the center can create a ciphertext in (symmetric-key) broadcast encryption.
As mentioned before, public-key revocation (PKR) is a variation of PKBE where a ciphertext is associated
with a set of revoked users R. Naor and Pinkas [24] introduced revocation systems and proposed a PKR
scheme by using a polynomial-based secret key sharing method in the bounded collusion model. Boneh et
al. [5] proposed a fully collusion-resistant PKBE scheme in bilinear groups that achieves short ciphertexts.
After that, many PKBE scheme in bilinear groups were presented [6, 13, 14, 18, 20, 25]. The subset cover
framework also can be used to build a PKR scheme by combining it with an IBE, HIBE, or SRE scheme
[11, 17, 23].

Identity-based broadcast encryption (IBBE) is a special type of PKBE where the maximum number of
users in the system can be an exponential value in the security parameter since the size of public parameters
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is not linearly dependent on the number of users. A fully collusion-resistant IBBE scheme was indepen-
dently proposed by Delerablée, Sakai, and Furukawa [10, 26]. Recently, IBBE schemes with short public
parameters were proposed in multilinear maps [7, 28]. IBR is a variation of IBBE where a set of revoked
users R is specified in a ciphertext. Note that an IBBE scheme cannot be converted to an IBR scheme since
the maximum number of users is an exponential value whereas a PKBE scheme can be easily converted to a
PKR scheme. Lewko et al. [20] proposed an IBR scheme with short keys in bilinear groups and an improved
IBR scheme was presented by Attrapadung and Libert [2].

2 Preliminaries

In this section, we define single revocation encryption (SRE) and identity-based revocation (IBR) and their
security models.

2.1 Single Revocation Encryption

Before we define IBR, we first define SRE. The concept of SRE was introduced by Lee et al. [17] and
this SRE scheme is a new public-key encryption scheme that can be combined with the subset difference
method to construct an efficient IBR scheme. In SRE, each user is associated with a group label GL′ and a
member label ML′ and he is given a private key for the labels (GL′,ML′). A sender can create a ciphertext
for a specific group label GL excluding one revoked member label ML. A receiver who has a private key
for labels (GL′,ML′) can decrypt the ciphertext for (GL,ML) if he belongs to the same group but he is not
revoked. That is, GL′ = GL and ML′ 6= ML. The formal syntax of SRE is given as follows:

Definition 2.1 (Single Revocation Encryption). An SRE scheme for the universe U of groups and members
consists of four algorithms Setup, GenKey, Encrypt, and Decrypt, which are defined as follows:

Setup(1λ ,U). The setup algorithm takes as input a security parameter 1λ . It outputs a master key MK and
public parameters PP.

GenKey((GL,ML),MK,PP). The key generation algorithm takes as input labels (GL,ML), the master key
MK, and public parameters PP. It outputs a private key SK for the labels (GL,ML).

Encrypt((GL,ML),M,PP). The encryption algorithm takes as input labels (GL,ML), a message M ∈M,
and public parameters PP. It outputs a ciphertext CT for (GL,ML) and M.

Decrypt(CT,SK,PP). The decryption algorithm takes as input a ciphertext CT for labels (GL,ML), a
private key SK for labels (GL′,ML′), and public parameters PP. It outputs an encrypted message M
or ⊥.

The correctness property of SRE is defined as follows: For all MK,PP generated by Setup, all (GL,ML),
any SK(GL′,ML′) generated by GenKey, and any M, it is required that

• If (GL = GL′)∧ (ML 6= ML′), then Decrypt(Encrypt((GL,ML),M,PP),SK(GL′,ML′),PK) = M.

• If (GL 6= GL′)∨ (ML = ML′), then Decrypt(Encrypt((GL,ML),M,PP),SK(GL′,ML′),PK) =⊥.

The security model of SRE was defined by Lee et al. [17] and we follow their definition of chosen-
plaintext attack (CPA) security of SRE. In the CPA security, an adversary can adaptively obtain a private key
for labels (GL,ML) many times. In the challenge step, the adversary submits challenge labels (GL∗,ML∗)
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with some restrictions and two challenge messages and then he receives a challenge ciphertext that is an
encryption of one of the challenge messages. The adversary may obtain additional private keys and finally
outputs a guess of the challenge ciphertext. The detailed description of the security model is given as
follows:

Definition 2.2 (IND-CPA Security). The security of SRE is defined in terms of the indistinguishability un-
der chosen plaintext attacks (IND-CPA). The security game is defined as the following game between a
challenger C and a PPT adversary A:

1. Setup: C runs Setup(1λ ) to generate a master key MK and public parameters PP. It keeps MK to
itself and gives PP to A.

2. Query 1: A adaptively requests private keys for labels (GL1,ML1), . . . ,(GLq1 ,MLq1). In response, C
gives the corresponding private keys SK1, . . . ,SKq1 to A by running GenKey((GLi,MLi),MK,PP).

3. Challenge: A submits challenge labels (GL∗,ML∗) and two messages M∗0 ,M
∗
1 with the equal length

subject to the restriction: for all (GLi,MLi) of private key queries, it is required that (GLi 6= GL∗)
or (GLi = GL∗)∧ (MLi = ML∗). C flips a random coin µ ∈ {0,1} and gives the challenge ciphertext
CT ∗ to A by running Encrypt((GL∗,ML∗),M∗µ ,PP).

4. Query 2: A may continue to request private keys for labels (GLq1+1,MLq1+1), . . . ,(GLq,MLq).

5. Guess: A outputs a guess µ ′ ∈ {0,1} of µ , and wins the game if µ = µ ′.

The advantage of A is defined as AdvSRE
A (λ ) =

∣∣Pr[µ = µ ′]− 1
2

∣∣ where the probability is taken over all the
randomness of the game. A SRE scheme is secure under chosen plaintext attacks if for all PPT adversary
A, the advantage of A in the above game is negligible in the security parameter λ .

2.2 Identity-Based Revocation

IBR is a special type of PKBE where a ciphertext is associated with a set of revoked users R instead of a
set of receivers S and each user is specified by a unique identifier string ID. In IBR, a center generates a
private key for a user ID by using his master key and gives it to the user. A sender can create a ciphertext
for receivers that excludes the set of revoked users R and a receiver with ID can decrypt the ciphertext if
ID /∈ R. The formal syntax of IBR is given as follows:

Definition 2.3 (Identity-Based Revocation). An identity-based revocation (IBR) scheme for the identity I
consists of four algorithms Setup, GenKey, Encrypt, and Decrypt, which are defined as follows:

Setup(1λ ). The setup algorithm takes as input a security parameter 1λ . It outputs a master key MK and
public parameters PP.

GenKey(ID,MK,PP). The key generation algorithm takes as input an identity ID ∈ I, the master key MK,
and the public parameters PP. It outputs a private key SKID.

Encrypt(R,M,PP). The encryption algorithm takes as input a revoked set R of users, a message M ∈
{0,1}m, and the public parameters PP. It outputs a ciphertext CTR for R and M.

Decrypt(CTR,SKID,PP). The decryption algorithm takes as input a ciphertext CTR for a revoked set R, a
private key SKID for an identity ID, and the public parameters PP. It outputs an encrypted message
M or ⊥.
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The correctness property of IBR is defined as follows: For all MK,PK generated by Setup, all ID,R, any
SKID generated by GenKey, and any M, it is required that

• If ID /∈ R, then Decrypt(Encrypt(R,M,PP),SKID,PP) = M.

• If ID ∈ R, then Decrypt(Encrypt(R,M,PP),SKID,PP) =⊥.

The security model of IBR is similar to that of IBBE and we follow the security definition of Lewko
et al. [20]. In the CPA security, an adversary can request a private key of a user with ID many times.
In the challenge step, the adversary submits a challenge revoked set R∗ and two challenge messages with
some restrictions and receives a challenge ciphertext that is the encryption of one challenge message. The
adversary further can request private keys of other users and finally outputs the guess of the challenge
message. The detailed description of the security is described as follows:

Definition 2.4 (IND-CPA Security). The indistinguishability property of IBR under a chosen plaintext attack
is defined in terms of the following game between a challenger C and a PPT adversary A:

1. Setup: C runs Setup(1λ ,N) to generate a master key MK and public parameters PP. It keeps MK to
itself and gives PP to A.

2. Query 1: A may adaptively request private keys for users ID1, . . . , IDq1 ∈ I. In response, C gives the
corresponding private keys SKID1 , . . . ,SKIDq1

to A by running GenKey(IDi,MK,PP).

3. Challenge: A submits a challenge revoked set R∗ of users and two messages M∗0 ,M
∗
1 with the equal

length subject to the restriction: for all IDi of private key queries, IDi ∈ R∗. C flips a random coin
µ ∈ {0,1} and gives the challenge ciphertext CT ∗ to A by running Encrypt(R∗,M∗µ ,PP).

4. Query 2: A may continue to request private keys for users IDq1+1, . . . , IDq ∈ I.

5. Guess: A outputs a guess µ ′ ∈ {0,1} of µ , and wins the game if µ = µ ′.

The advantage of A is defined as AdvIBR
A (λ ) =

∣∣Pr[µ = µ ′]− 1
2

∣∣ where the probability is taken over all the
randomness of the game. An IBR scheme is secure under chosen plaintext attacks if for all PPT adversary
A, the advantage of A in the above game is negligible in the security parameter λ .

3 SRE with Selective Security

In this section, we propose a selectively secure SRE scheme in prime-order bilinear groups and prove its
security under the standard assumption.

3.1 Bilinear Groups of Prime Order

Let G and GT be multiplicative cyclic groups of prime order p. Let g be a generator of G. The bilinear map
e : G×G→GT has the following properties:

1. Bilinearity: ∀u,v ∈G and ∀a,b ∈ Zp, e(ua,vb) = e(u,v)ab.

2. Non-degeneracy: ∃g such that e(g,g) has order p, that is, e(g,g) is a generator of GT .

We say that G,GT are bilinear groups if the group operations in G and GT as well as the bilinear map e are
all efficiently computable.

6



3.2 Complexity Assumptions

To prove the security of our SRE scheme, we use the well-known standard DBDH assumption. The DBDH
assumption was introduced by Boneh and Franklin [4] and widely used to prove the security of IBE, HIBE,
and ABE schemes.

Assumption 3.1 (Decisional Bilinear Diffie-Hellman, DBDH). Let (p,G,GT ,e) be a description of the
bilinear group of prime order p with the security parameter λ . Let g be a generator of G. The DBDH as-
sumption is that if the challenge values D = ((p,G,GT ,e), g,ga,gb,gc) and T are given, no PPT algorithm
B can distinguish T = T0 = e(g,g)abc from T = T1 = e(g,g)d with more than a negligible advantage. The
advantage of B is defined as AdvDBDH

B (λ ) =
∣∣Pr[B(D,T0) = 0]−Pr[B(D,T1) = 0]

∣∣ where the probability is
taken over the random choice of a,b,c,d ∈ Zp.

3.3 Construction

The previous SRE scheme of Lee et al. [17] was proven to be secure under q-type assumption in the random
oracle model. To construct an SRE scheme that is secure under the standard assumption without the random
oracle model, we inspect the correctness property of SRE. In SRE, a ciphertext is associated with group and
member labels (GL,ML) and a private key is associated with labels (GL′,ML′). The correctness property
requires that the group labels should be equal but the member labels should be not equal to decrypt the
ciphertext by using the private key. That is, GL = GL′ and ML 6= ML′. We observe that an IBE scheme can
be used for equality and a simple IBR scheme where the number of revoked users is just one can be used for
inequality. More specifically, the IBE (BB-IBE) scheme of Boneh and Boyen [3] can be used to support the
equality of group labels where a private key is structured as (gα(uGLh)r,g−r). The simple IBR (LSW-IBR)
scheme of Lewko et al. [20] can be used to support the inequality of member labels and a private key is
described as (gαwr,(wMLv)r,g−r). By combining the BB-IBE scheme and the simple LSW-IBR scheme,
we can derive an SRE scheme with the private key structure of (gα(uGLh)r1wr2 ,(wMLv)r2 ,g−r1 ,g−r2).

Our SRE scheme in prime-order bilinear groups is described as follows:

SRE.Setup(1λ ): This algorithm first generates a bilinear group G of prime order p of bit size Θ(λ ). Let g
be a generator of G. It chooses a random exponent α ∈ Zp and a random hash function H fromH. It
outputs a master key MK = α and public parameters as

PP =
(
(p,G,GT ,e), g, u,h, w,v, H, Ω = e(g,g)α

)
.

SRE.GenKey((GL,ML),MK,PP): This algorithm takes as input labels (GL,ML), the master key MK, and
the public parameters PP. It selects random exponents r1,r2 ∈ Zp and outputs a private key by im-
plicitly including (GL,ML) as

SK(GL,ML) =
(

K0 = gα(uGLh)r1wr2 , K1 = (wMLv)r2 , K2 = g−r1 , K3 = g−r2
)
.

SRE.Encrypt((GL,ML),M,PP): This algorithm takes as input labels (GL,ML), a message M ∈ {0,1}m,
and the public parameters PP. It chooses a random exponent t ∈ Zp and outputs a ciphertext by
implicitly including (GL,ML) as

CT(GL,ML) =
(

C = H(Ωt)⊕M, C0 = gt , C1 = (uGLh)t , C2 = (wMLv)t
)
.
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SRE.Decrypt(CT(GL,ML),SK(GL′,ML′),PP): This algorithm takes as input a ciphertext CT(GL,ML), a private
key SK(GL′,ML′), and the public parameters PP. If (GL=GL′)∧(ML 6=ML′), then it outputs a message
as

M =C⊕H
(
e(C0,K0) · e(C1,K2) ·

(
e(C0,K1) · e(C2,K3)

)−1/(ML′−ML))
.

Otherwise, it outputs ⊥.

3.4 Correctness

The correctness of the above SRE scheme is easily verified by the following equation.

e(C0,K0) · e(C1,K1) · (e(C0,K2) · e(C2,K3))
−1/(ML′−ML)

= e(gt ,gα(uGLh)r1wr2) · e((uGLh)t ,g−r1) ·
(

e(gt ,(wML′v)r2) · e((wMLv)t ,g−r2)
)−1/(ML′−ML)

= e(gt ,gαwr2) ·
(

e(g,w)tr2·(ML′−ML)
)−1/(ML′−ML)

= e(g,g)αt .

3.5 Security Analysis

To prove the security of our SRE scheme in the selective model, we use the partitioning method that was
used in the security proof of IBE and its extensions. Since our SRE scheme is derived from the BB-IBE
scheme and the simple LSW-IBR scheme [3, 20], we may try to use the partitioning proof method of BB-
IBE and LSW-IBR schemes. However, the original LSW-IBR scheme is proven under a complex q-type
assumption. To prove the security under the standard assumption, we observe that a simple variant of the
LSW-IBR scheme such that a ciphertext is associated with a single ID instead of a set of revoked users
R is enough for SRE. In this case, we can prove the simple LSW-IBR scheme under the standard DBDH
assumption. Therefore, we have the following result.

Theorem 3.2. The above SRE scheme is selectively secure under chosen plaintext attacks if the DBDH
assumption holds.

Proof. Suppose there exists an adversary A that breaks the security game of SRE with a non-negligible
advantage. A simulator B that solves the DBDH assumption using A is given: a challenge tuple D =
((p,G,GT ,e),g,ga,gb,gc) and T where T = e(g,g)abc or T = e(g,g)d . Then B interacts with A as follows:

Setup: B first guesses challenge labels (GL′,ML′) such that ML′ is a member of GL′. It selects random ex-
ponents yu,yh,yw,yv ∈Zp and creates the public key implicitly setting α = ab as PK =

(
(p,G,GT ,e),g, u =

gagyu ,h = (ga)−GL′gyh , w = gagyw ,v = (ga)−ML′gyv , Ω = e(ga,gb)
)
.

Query 1: A may adaptively request a private key query for labels (GL,ML). If (GL = GL′)∧ (ML 6= ML′),
then it aborts since it cannot create a private key. Otherwise, it handles this query as follows:

• Case GL 6= GL′: In this case, it selects random exponents r′1,r2 ∈ Zp and creates a private key by
implicitly setting r1 =−b/(GL−GL′)+ r′1 as

K0 = (gb)−(yuGL+yh)/(GL−GL′)(uGLh)r′1wr2 , K1 = (gb)1/(GL−GL′)g−r′1 , K2 = (wMLv)r2 , K3 = g−r2 .

• Case GL = GL′ and ML = ML′: In this case, it selects random exponents r1,r′2 ∈ Zp and creates a
private key by implicitly setting r2 =−b+ r′2 as

K0 = (uGLh)r1(gb)−ywwr′2 , K1 = g−r1 , K2 = (gb)−(ywML+yv)(wMLv)r′2 , K3 = gbg−r′2 .
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Challenge: A submits challenge labels (GL∗,ML∗) and two messages M∗0 ,M
∗
1 . If (GL′ 6= GL∗)∨ (ML′ 6=

ML∗), then B aborts the simulation since it failed to guess the challenge labels. Otherwise, B flips a random
coin µ ∈ {0,1} internally. Next, it implicitly sets t = c and creates a challenge ciphertext as

C = H(T ) ·M∗µ , C0 = gc, C1 = (gc)yuGL∗+yh , C2 = (gc)ywML∗+yv .

Query 2: Same as Query 1.
Guess: Finally, A outputs a guess µ ′. If µ = µ ′, B outputs 0. Otherwise, it outputs 1.

To finish the proof, we first show that hash outputs, private keys, and the challenge ciphertext are cor-
rectly distributed. In case of GL 6= GL′, the private key is correctly distributed since it satisfies the following
equation

K0 = gα(uGLh)r1wr2 = gab((gagyu)GL(ga)−GL′gyh
)−b/(GL−GL′)+r′1wr2

= (gb)−(yuGL+yh)/(GL−GL′)(uGLh)r′1wr2 ,

K1 = g−r1 = gb/(GL−GL′)−r′1 = (gb)1/(GL−GL′)g−r′1 , K2 = (wMLv)r2 , K3 = g−r2 .

In case of (GL = GL′)∧ (ML = ML′), the private key is also correctly distributed as

K0 = gα(uGLh)r1wr2 = gab(uGLh)r1(gagyw)−b+r′2 = (uGLh)r1(gb)−ywwr′2 ,

K1 = g−r1 , K2 = (wMLv)r2 = ((gagyw)ML(ga)−ML′gyv)−b+r′2 = (gb)−(ywML+yv)(wMLv)r′2 ,

K3 = g−r2 = gb−r′2 = gbg−r′2 .

Note that it cannot create a private key for (GL,ML) such that (GL = GL′)∧ (ML 6= ML′) since the element
gab cannot be removed. The challenge ciphertext is also correctly distributed since it satisfies the following
equation

C = H(e(g,g)αt)M∗µ = H(e(g,g)abc)M∗µ , C0 = gt = gc,

C1 = (uGL∗h)t = ((gagyu)GL∗(ga)−GL′gyh)c = (gc)yuGL∗+yh ,

C2 = (wML∗v)t = ((gagyw)ML∗(ga)−ML′gyv)c = (gc)ywML∗+yv .

This completes our proof.

3.6 Discussions

Efficiency Analysis. In our SRE scheme, a private key and a ciphertext consist of four number of group
elements respectively. The decryption algorithm requires four pairing operations and one exponentiation.
To improve the efficiency, we can reduce one pairing operation by restating e(C0,K0) · e(C0,K1)

1/(ML′−ML)

to e(C0,K0K1/(ML′−ML)
1 ). Compared to the SRE scheme of Lee et al. [17] that is secure in the random oracle

model, our SRE scheme requires one additional group element in the private key and the ciphertext, but our
SRE scheme is secure under the standard assumption without random oracle model.

CCA Security. Although we proved the CPA security of our SRE scheme, the CPA security is weaker
than the chosen-ciphertext attack (CCA) security. In CCA security, an adversary additionally requests the
decryption of a ciphertext adaptively chosen by the adversary. To prove the CCA security, we can use the
generic CHK transformation of Canetti et al. [9]. That is, we can use a two-level HIBE scheme instead of an

9



IBE scheme and a one-time signature scheme to construct an SRE scheme since the two-level HIBE scheme
can be converted to a CCA-secure IBE scheme by the CHK transform. To construct a CCA-secure SRE
scheme with better efficiency, we may use the technique of Boyen et al. [8], but we should modify our SRE
scheme to be a key encapsulation mechanism (KEM).

4 SRE with Full Security

In this section, we propose an SRE scheme in composite-order bilinear groups and prove its full-model
security under simple assumptions.

4.1 Bilinear Groups of Composite Order

Let N = p1 p2 p3 where p1, p2, and p3 are distinct prime numbers. Let G and GT be two multiplicative cyclic
groups of same composite order N and g be a generator of G. The bilinear map e : G×G→ GT has the
following properties:

1. Bilinearity: ∀u,v ∈G and ∀a,b ∈ ZN , e(ua,vb) = e(u,v)ab.

2. Non-degeneracy: ∃g such that e(g,g) has order N, that is, e(g,g) is a generator of GT .

We say that G is a bilinear group if the group operations in G and GT as well as the bilinear map e are
all efficiently computable. Furthermore, we assume that the description of G and GT includes generators
of G and GT respectively. We use the notation Gpi to denote the subgroups of order pi of G respectively.
Similarly, we use the notation GT,pi to denote the subgroups of order pi of GT respectively.

4.2 Complexity Assumptions

To prove the security of our SRE scheme, we introduce simple static assumptions that were used by Lewko
and Waters [21, 22] to prove the full model security of ABE schemes by using the dual system encryption
technique.

Assumption 4.1 (Subgroup Decision, SD). Let (N,G,GT ,e) be a description of the bilinear group of com-
posite order N = p1 p2 p3. Let g1,g2,g3 be generators of subgroups Gp1 ,Gp2 ,Gp3 respectively. The As-
sumption is that if the challenge tuple D = ((N,G,GT ,e),g1,g3) and T are given, no PPT algorithm A can
distinguish T = T0 = X1 ∈ Gp1 from T = T1 = X1R1 ∈ Gp1 p2 with more than a negligible advantage. The
advantage of A is defined as AdvSD

A (λ ) =
∣∣Pr[A(D,T0) = 0]−Pr[A(D,T1) = 0]

∣∣ where the probability is
taken over random choices of X1 ∈Gp1 and R1 ∈Gp2 .

Assumption 4.2 (General Subgroup Decision, GSD). Let (N,G,GT ,e) be a description of the bilinear
group of composite order N = p1 p2 p3. Let g1,g2,g3 be generators of subgroups Gp1 ,Gp2 ,Gp3 respectively.
The Assumption is that if the challenge tuple D = ((N,G,GT ,e),g1,g3,X1R1,R2Y1) and T are given, no
PPT algorithmA can distinguish T = T0 = X2Y2 ∈Gp1 p3 from T = T1 = X2R3Y2 ∈Gp1 p2 p3 with more than a
negligible advantage. The advantage of B is defined as AdvGSD

A (λ ) =
∣∣Pr[A(D,T0) = 0]−Pr[A(D,T1) = 0]

∣∣
where the probability is taken over random choices of X1,X2 ∈Gp1 , R1,R2,R3 ∈Gp2 , and Y1,Y2 ∈Gp3 .

Assumption 4.3 (3-party Diffie-Hellman, 3DH). Let (N,G,GT ,e) be a description of the bilinear group
of composite order N = p1 p2 p3. Let g1,g2,g3 be generators of subgroups Gp1 ,Gp2 ,Gp3 respectively. The
Assumption is that if the challenge tuple D = ((N,G,GT ,e),g1,g2,g3,ga

2,g
b
2,g

c
2) and T are given, no PPT
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algorithm A can distinguish T = T0 = gabc
2 from T = T1 = gd

2 with more than a negligible advantage. The
advantage of A is defined as Adv3DH

A (λ ) =
∣∣Pr[A(D,T0) = 0]−Pr[A(D,T1) = 0]

∣∣ where the probability is
taken over random choices of a,b,c,d ∈ ZN .

Assumption 4.4 (Composite Diffie-Hellman, ComDH). Let (N,G,GT ,e) be a description of the bilinear
group of composite order N = p1 p2 p3. Let g1,g2,g3 be generators of subgroups Gp1 ,Gp2 ,Gp3 respectively.
The Assumption is that if the challenge tuple D = ((N,G,GT ,e),g1,g2,g3,ga

1R1,gb
1R2) and T are given, no

PPT algorithmA can distinguish T = T0 = e(g1,g1)
ab from T = T1 = e(g1,g1)

c with more than a negligible
advantage. The advantage of A is defined as AdvComDH

A (λ ) =
∣∣Pr[A(D,T0) = 0]−Pr[A(D,T1) = 0]

∣∣ where
the probability is taken over random choices of a,b,c ∈ ZN , and R1,R2 ∈Gp2 .

4.3 Construction

To construct a fully secure SRE scheme, we build our SRE scheme in composite-order bilinear groups
instead of prime-order bilinear groups. To prove the security of SRE, we use the dual system encryption
technique of Lewko and Waters [21, 22]. Our fully secure SRE scheme has the similar structure with that
of the selectively secure SRE scheme in prime order groups, but this SRE scheme additionally contains one
group element in private keys to prove the full security. Our SRE scheme in composite-order bilinear groups
is described as follows:

SRE.Setup(1λ ): This algorithm first generates a bilinear group G of prime order p of bit size Θ(λ ). Let g
be a generator of G. It chooses a random exponent α ∈ ZN and a random hash function H fromH. It
outputs a master key MK = α and public parameters as

PP =
(
(N,G,GT ,e), g = g1, Y = g3, u,h, w,v, z, H, Ω = e(g1,g1)

α

)
.

SRE.GenKey((GL,ML),MK,PP): This algorithm takes as input labels (GL,ML), the master key MK, and
the public parameters PP. It selects random r1,r2,r3 ∈ZN , Y0,Y1,Y2,Y3,Y4 ∈Gp3 and outputs a private
key as

SK(GL,ML) =
(

K0 = gα(uGLh)r1wr2zr3Y0, K1 = (wMLv)r2Y1, K2 = g−r1Y2, K3 = g−r2Y3, K4 = g−r3Y4

)
.

SRE.Encrypt((GL,ML),M,PP): This algorithm takes as input labels (GL,ML), a message M ∈ {0,1}m,
and the public parameters PP. It chooses a random exponent t ∈ ZN and outputs a ciphertext as

CT(GL,ML) =
(

C = H(Ωt)⊕M, C0 = gt , C1 = (uGLh)t , C2 = (wMLv)t , C3 = zt
)
.

SRE.Decrypt(CT(GL,ML),SK(GL′,ML′),PP): This algorithm takes as input a ciphertext CT(GL,ML), a private
key SK(GL′,ML′), and the public parameters PP. If (GL=GL′)∧(ML 6=ML′), then it outputs a message
as

M =C⊕H
(
e(C0,K0) · e(C1,K2) ·

(
e(C0,K1) · e(C2,K3)

)−1/(ML′−ML) · e(C3,K4)
)
.

Otherwise, it outputs ⊥.
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4.4 Security Analysis

For the security proof of our SRE scheme, we use the dual system encryption technique [21, 27] that was
successfully used to prove the full security of IBE, HIBE, and ABE schemes. In dual system encryption, a
private key and a ciphertext can be normal type or semi-functional type. In the security proof, we use hybrid
games such that a challenge ciphertext is changed from the normal type to the semi-functional type and then
each private key is changed from the normal type to the semi-functional type one by one. In the final game,
it is hard for an adversary to obtains the encrypted message since semi-functional private keys given to the
adversary are not related with the semi-functional challenge ciphertext. The technical difficulty of the dual
system encryption technique is to define nominal semi-functional private key in order to solve the paradox
in the proof and to show the information theoretic argument between the nominal semi-functional private
key and the semi-functional private key.

We may try to use the dual system encryption technique for the security proof of our SRE scheme.
However, we encounter a problem to show the information theoretic argument between a nominal private
key and a semi-functional private key. The main reason of the problem is that an adversary can query a
private key for labels (GL,ML) such that (GL = GL∗) and (ML = ML∗) where (GL∗,ML∗) is the challenge
ciphertext labels. That is, the information theoretic argument does not work if the labels in a private key
are equal to that in the challenge ciphertext [21]. To solve this problem, we use the new dual system
encryption technique of Lewko and Waters [22] that combines the partitioning technique with the dual
system encryption technique. In this new proof technique, we use the partitioning technique to show the
indistinguishability between a nominal private key and a semi-functional private key instead of using the
information theoretic argument.

To prove the full security of our SRE scheme, we use the original and new dual system encryption
techniques at the same time since our SRE scheme consists of an IBE scheme and a simple IBR scheme.
To apply the two techniques at the same time, we divide the behaviour of adversaries as two types: Type-A
and Type-B that will be defined later. If the adversary is Type-A, then we use the information theoretic
argument to show the indistinguishability between nominal type and semi-functional type. Otherwise, we
use the partitioning technique. The security proof of our SRE scheme is described as follows:

Theorem 4.5. The above SRE scheme is fully secure under chosen plaintext attacks if the SD, GSD, 3DH,
and ComDH assumptions hold.

Proof. We first define the semi-functional type of private keys and ciphertexts. For the semi-functional type,
we let g2 denote a fixed generator of the subgroup Gp2 .

SRE.GenKeySF. This algorithm first creates a normal private key SK′GL,ML = (K′0,K
′
1,K

′
2,K

′
3,K

′
4) by using

MK. It chooses a random element R ∈ Gp2 and outputs a semi-functional private key SKGL,ML =(
K0 = K′0R,K1 = K′1,K2 = K′2,K3 = K′3,K4 = K′4

)
.

SRE.EncryptSF. This algorithm first creates a normal ciphertext CT ′GL,ML = (C′,C′0,C
′
1,C
′
2,C
′
3). It chooses

random exponents τ,η1,η2,θ1,θ2,κ ∈ ZN and outputs semi-functional ciphertext CTGL,ML =
(
C0 =

C′0gτ
2,C1 = C′1g(η1GL+η2)τ

2 ,C2 = C′2g(θ1ML+θ2)τ
2 ,C3 = C′3gκτ

2

)
. Note that η1,η2,θ1,θ2,κ are randomly

chosen once and fixed to be used in other types of private keys that will be defined later.

Note that if a semi-functional private key is used to decrypt a semi-functional ciphertext, then the decryption
fails since an additional random element e(gτ

2,R) is left.
The security proof consists of the sequence of hybrid games: The first game is the original security game

and the last one is a game such that the adversary has no advantage. We define the games as follows:
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Game G0. This game is the original security game. In this game, all private keys and the challenge cipher-
text are normal.

Game G1. In the game G1, all private keys are still normal, but the challenge ciphertext is semi-functional.

Game G2. Next, we define a new game G2. In this game, all private keys are semi-functional. For the
security proof, we additionally define a sequence of sub-games G1,1, . . . ,G1,k, . . . ,G1,q where G1 =
G1,0 and q is the maximum number of private keys. In the game G1,k, the challenge ciphertext is
semi-functional, all jth private keys such that j≤ k are semi-functional, and the remaining jth private
keys such that k < j are normal. It is obvious that G1,q = G2.

Game G3. In the final game G3, all private keys and the challenge ciphertext are semi-functional, but the
challenge ciphertext component C is random.

Let AdvG j
A be the advantage of A in the game G j. We have AdvSRE

A (λ ) = AdvG0
A , AdvG1

A = AdvG1,0
A ,

AdvG2
A = AdvG1,q

A , and AdvG3
A = 0. Through the following Lemmas 4.6, 4.7, and 4.13, we obtain the follow-

ing equation

AdvSRE
A (λ )

≤
∣∣AdvG0

A −AdvG1
A
∣∣+ q

∑
k=1

∣∣AdvG1,k−1
A −AdvG1,k

A
∣∣+ ∣∣AdvG2

A −AdvG3
A
∣∣

≤ AdvSD
B (λ )+q(2AdvGSD

B (λ )+Adv3DH
B (λ ))+AdvComDH

B (λ ).

where q is the maximum number of private key queries. This completes our proof.

Lemma 4.6. If the SD assumption holds, then no polynomial-time adversary can distinguish between G0
and G1 with a non-negligible advantage.

Proof. Suppose there exists an adversaryA that distinguishes between G0 and G1 with a non-negligible ad-
vantage. A simulatorB that solves the SD assumption usingA is given: a challenge tuple D=((N,G,GT ,e),
g1,g3) and T where T =X1 ∈Gp1 or T =X1R1 ∈Gp1 p2 . Then B that interacts withA is described as follows:
Setup: B first chooses random exponents u′,h′,w′,v′,z′,α ∈ ZN . It sets MK = α and publishes PP =(
(N,G,GT ,e),g = g1,Y = g3,u = gu′

1 ,h = gh′
1 ,w = gw′

1 ,v = gv′
1 ,z = gz′

1 ,H,Ω = e(g1,g1)
α
)
.

Query 1: To response private key queries, B creates normal private keys since it knows MK. Note that it
cannot create semi-functional private keys since it does not know gp2 .
Challenge: A submits challenge labels (GL∗,ML∗) and challenge messages M∗0 ,M

∗
1 . B flips a random coin

µ ∈ {0,1} and creates a challenge ciphertext CT ∗ by implicitly setting gt to be the Gp1 part of T as

CT ∗ =
(
C = H(e(T,g)α) ·M∗µ , C0 = T, C1 = (T )u′GL∗+h′ , C2 = (T )w′ML∗+v′ , C3 = (T )z′).

If T = X1, this is a normal ciphertext. If T = X1R1, this is a semi-functional ciphertext since τ ≡ logg2
(R1)

mod p2,η1 ≡ u′ mod p2,η2 ≡ h′ mod p2,θ1 ≡ w′ mod p2,θ2 ≡ v′ mod p2, and κ ≡ z′ mod p2 are not
correlated with their values modulo p1 by CRT.
Query 2: Same as Query 1.
Guess: A outputs a guess µ ′. If µ = µ ′, then B outputs 1. Otherwise, it outputs 0.

Lemma 4.7. If the GSD and 3DH assumptions hold, then no polynomial-time adversary can distinguish
between G1,k−1 and G1,k with a non-negligible advantage.
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Proof. We additionally define two additional semi-functional private keys. Let g2 denote a fixed generator
of the subgroup Gp2 .

SRE.GenKeyNSF. This algorithm first creates a normal private key SK′GL,ML =(K′0,K
′
1,K

′
2,K

′
3,K

′
4) by using

MK. Next, it chooses random exponents γ1,γ2,γ3 ∈ ZN and outputs a nominal semi-functional private
key SKGL,ML =

(
K0 = K′0g(η1GL+η2)γ1+θ1γ2+κγ3

2 ,K1 = K′1g(θ1ML+θ2)γ2
2 ,K2 = K′2g−γ1

2 ,K3 = K′3g−γ2
2 ,K4 =

K′4g−γ3
2

)
.

SRE.GenKeyTSF. This algorithm first creates a normal private key SK′GL,ML =(K′0,K
′
1,K

′
2,K

′
3,K

′
4) by using

MK. Next, it chooses a random element R ∈Gp3 and outputs a temporary semi-functional private key
SKGL,ML =

(
K0 = K′0R,K1 = K′1g(θ1ML+θ2)γ2

2 ,K2 = K′2g−γ1
2 ,K3 = K′3g−γ2

2 ,K4 = K′4g−γ3
2

)
.

We also additionally define hybrid games Hk−1,0,Hk−1,1,Hk−1,2, and Hk−1,3. The games are formally
defined as follows: The game Hk−1,0 is equal to the game G1,k−1. That is, the kth private key is normal. The
game Hk−1,1 is almost the same as G1,k−1 except that kth private key is nominal semi-functional. The game
Hk−1,2 is almost the same as G1,k−1 except that kth private key is temporary semi-functional. The game
Hk−1,3 is equal to the game G1,k. That is, the kth private key is semi-functional.

To argue the indistinguishability between two games Hk−1,1 and Hk−1,2, we divide the behavior of an
adversary as two types: Type-A and Type-B. Let (GL∗,ML∗) be the challenge labels. An adversary is Type-
A if it queries a private key for labels (GL,ML) such that GL 6= GL∗. An adversary is Type-B if it queries a
private key for labels (GL,ML) such that GL = GL∗ and ML = ML∗.

Let AdvH j
A be the advantage of A in the game H j. Through the following Claims 4.8, 4.9, 4.10, 4.11,

and 4.12, we obtain the following equation∣∣AdvG1,k−1
A −AdvG1,k

A
∣∣= ∣∣AdvHk−1,0

A −AdvHk−1,3
A

∣∣
≤
∣∣AdvHk−1,0

A −AdvHk−1,1
A

∣∣+ ∣∣AdvHk−1,1
A −AdvHk−1,2

A
∣∣+ ∣∣AdvHk−1,2

A −AdvHk−1,3
A

∣∣
≤ AdvGSD

B (λ )+Adv3DH
B (λ )+AdvGSD

B (λ ).

This completes our proof.

Claim 4.8. If the GSD assumption holds, then no polynomial-time adversary can distinguish between Hk−1,0
and Hk−1,1 with a non-negligible advantage.

Proof. Suppose there exists an adversary A that distinguishes between Hk−1,0 and Hk−1,1 with a non-
negligible advantage. A simulator B that solves the GSD assumption using A is given: a challenge tuple
D = ((N,G,GT ,e),g1,g3,X1R1,R2Y1) and T where T = X2Y2 or T = X2R3Y2. Then B that interacts with A
is described as follows:
Setup: B first chooses random exponents u′,h′,w′,v′,z′,α ∈ ZN . It sets MK = α and publishes PP =(
(N,G,GT ,e),g = g1,Y = g3,u = gu′

1 ,h = gh′
1 ,w = gw′

1 ,v = gv′
1 ,z = gz′

1 ,Ω = e(g1,g1)
α
)
.

Query 1: To response the jth private key query, B proceeds as follows: If j < k, then it creates a semi-
functional private key since it knows MK and R2Y1 is given in the assumption. If j > k, then it creates a
normal private key since it knows MK. If j = k, then it selects random r′1,r

′
2,r
′
3 ∈ ZN , Y ′0,Y

′
1,Y
′
2,Y
′
3,Y
′
4 ∈Gp3

and creates a private key SK(GL,ML) as

K0 = gα(T )(u
′GL+h′)r′1+w′r′2+z′r′3Y ′0, K1 = (T )(w

′ML+v′)r′1Y ′1, K2 = (T )−r′1Y ′2,

K3 = (T )−r′2Y ′3, K4 = (T )−r′3Y ′4.
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If T = X2Y2, this is a normal private key. If T = X2R3Y2, this is a nominally semi-functional private key since
γ1 ≡ logg2

(R3)r′1 mod p2,γ2 ≡ logg2
(R3)r′2 mod p2,γ3 ≡ logg2

(R3)r′3 mod p2,η1 ≡ u′ mod p2,η2 ≡ h′

mod p2,θ1 ≡ w′ mod p2,θ2 ≡ v′ mod p2, and κ ≡ z′ mod p2.
Challenge: B flips a random coin µ ∈ {0,1} and creates a semi-functional ciphertext by implicitly set-
ting gt = X1 and gτ

2 = R1 as CT ∗ =
(
C = H(e(X1R1,g)α) ·M∗µ , C0 = X1R1, C1 = (X1R1)

u′GL∗+h′ , C2 =

(X1R1)
w′ML∗+v′ , C3 = (X1R1)

z′
)
.

Query 2: Same as Query 1.
Guess: A outputs a guess µ ′. If µ = µ ′, then B outputs 1. Otherwise, it outputs 0.

Claim 4.9. No polynomial-time Type-A adversary can distinguish between Hk−1,1 and Hk−1,2 with a non-
negligible advantage.

Proof. To argue that any Type-A adversary cannot distinguish the nominally semi-functional private key
from the semi-functional private key, we use the restriction of the Type-A adversary that he queries a private
key for (GL,ML) such that GL 6=GL∗. Suppose there exists an unbounded Type-A adversary. This adversary
can gather (η1GL+η2)γ1 + θ1γ2 +κγ3 mod p2,(θ1ML+ θ2)γ2 mod p2,−γ1 mod p2,−γ2 mod p2,−γ3
mod p2 from the kth private key and τ mod p2,(η1GL∗+η2)τ mod p2,(θ1ML∗+θ2)τ mod p2,κτ mod p2
from the challenge ciphertext. If GL 6= GL∗, then η1GL+η2 mod p2, η1GL∗+η2 mod p2 look random to
the adversary since η1x+η2 is a pair-wise independent function and η1 mod p2,η2 mod p2 are informa-
tion theoretically hidden to the adversary.

Claim 4.10. If the 3DH assumption in a subgroup holds, then no polynomial-time Type-B adversary that
requests the kth query in Query 1 can distinguish between Hk−1,1 and Hk−1,2 with a non-negligible advan-
tage.

Proof. Suppose there exists an adversary A that distinguishes between Hk−1,1 and Hk−1,2 with a non-
negligible advantage. A simulator B that solves the 3DH assumption in a subgroup using A is given: a
challenge tuple D = ((N,G,GT ,e),g1,g2,g3,ga

2,g
b
2,g

c
2) and T where T = gabc

2 or T = gabc+ f
2 . Then B that

interacts with A is described as follows:
Setup: B first chooses random exponents u′,h′,w′,v′,z′,α ∈ ZN . It sets MK = α and publishes PP =(
(N,G,GT ,e),g = g1,Y = g3,u = gu′

1 ,h = gh′
1 ,w = gw′

1 ,v = gv′
1 ,z = gz′

1 ,H,Ω = e(g1,g1)
α
)
.

Query 1: To response the jth private key query, B proceeds as follows: If j < k, then it creates a semi-
functional private key by using MK and g2. If j > k, then it creates a normal private key by using MK. If
j = k, then it first creates a normal private key SK′ = (K′0,K

′
1,K

′
2,K

′
3,K

′
4). Let (GL∗,ML∗) be the labels of

the kth private key since the adversary is Type-B. It implicitly sets η1 = ab+ η̃1,η2 = −abGL∗+ η̃2,θ1 =
ab+ θ̃1,θ2 = −abML∗+ θ̃2,κ = a+ κ̃ by selecting random exponents η̃1, η̃2, θ̃1, θ̃2, κ̃ ∈ ZN . Note that it
can only create gκ

2 . Next, it selects random γ1,γ
′
2,γ
′
3 ∈ ZN and creates a private key SK(GL∗,ML∗) by implicitly

setting γ2 = c+ γ ′2,γ3 =−bγ ′2 + γ ′3 as

K0 = K′0 ·g
(η̃1GL∗+η̃2)γ1
2 T (gc

2gγ ′2
2 )

θ̃1(ga
2)

γ ′3(g−γ ′2
2 gγ ′3

2 )
κ̃ , K1 = K′1 · (gc

2)
(θ̃1ML∗+θ̃2)g(θ̃1ML∗+θ̃2)γ

′
2

2 ,

K2 = K′2 ·g
−γ1
2 , K3 = K′3 · (gc

2)
−1g−γ ′2

2 , K4 = K′4 · (gb
2)

γ ′2g−γ ′3
2 .

If T = gabc
2 , this is a nominal semi-functional private key since (η1GL∗+η2)γ1 = (η̃1GL∗+ η̃2)γ1, θ1γ2 +

κγ3 =(ab+ θ̃1)(c+γ ′2)+(a+ κ̃)(−bγ ′2+γ ′3)= abc+ θ̃1(c+γ ′2)+aγ ′3+ κ̃(−bγ ′2+γ ′3), and (θ1ML∗+θ2)γ2 =

(θ̃1ML∗+ θ̃2)(c+γ ′2). If T = gabc+ f
2 , then this is a temporary semi-functional private key. Note that it cannot

create a private key for (GL,ML) such that ML 6= ML∗ since it cannot compute K1 without directly knowing
gabc

2 .
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Challenge: A submits challenge labels (GL∗,ML∗) and challenge messages M∗0 ,M
∗
1 . B flips a random coin

µ ∈ {0,1} and creates a normal ciphertext CT ′ = (C′,C′0,C
′
1,C
′
2,C
′
3) for M∗µ . Next, it chooses a random

exponent τ ∈ ZN and creates a semi-functional ciphertext CT ∗ as

C =C′, C0 =C′0 ·gτ
2, C1 =C′1 ·g

(η̃1GL∗+η̃2)τ
2 , C2 =C′2 ·g

(θ̃1ML∗+θ̃2)τ
2 , C3 =C′3 ·gκτ

2 .

Query 2: B creates normal private keys by using MK.
Guess: A outputs a guess µ ′. If µ = µ ′, then B outputs 1. Otherwise, it outputs 0.

Claim 4.11. If the 3DH assumption in a subgroup holds, then no polynomial-time Type-B adversary that
requests the kth query in Query 2 can distinguish between Hk−1,1 and Hk−1,2 with a non-negligible advan-
tage.

Proof. Suppose there exists an adversary A that distinguishes between Hk−1,1 and Hk−1,2 with a non-
negligible advantage. A simulator B that solves the augmented 3DH assumption in a subgroup using A
is given: a challenge tuple D =

(
(N,G,GT ,e),g1,g2,g3,ga

2,g
b
2,g

c
2

)
and T where T = gabc

2 or T = gabc+ f
2 .

Then B that interacts with A is described as follows:
Setup: B first chooses random exponents u′,h′,w′,v′,z′,α ∈ ZN . It sets MK = α and publishes PP =(
(N,G,GT ,e),g = g1,Y = g3,u = gu′

1 ,h = gh′
1 ,w = gw′

1 ,v = gv′
1 ,z = gz′

1 ,H,Ω = e(g1,g1)
α
)
.

Query 1: To response the private key queries, B creates semi-functional private keys by using MK and g2.
Challenge: A submits challenge labels (GL∗,ML∗) and challenge messages M∗0 ,M

∗
1 . B flips a random

coin µ ∈ {0,1} and creates a normal ciphertext CT ′ = (C′,C′0,C
′
1,C
′
2,C
′
3) for M∗µ . It implicitly sets η1 =

ab+ η̃1,η2 = −abGL∗+ η̃2,θ1 = ab+ θ̃1,θ2 = −abML∗+ θ̃2,κ = a+ κ̃ by selecting random exponents
η̃1, η̃2, θ̃1, θ̃2, κ̃ ∈ ZN . Note that it can only create gκ

2 . Next, it chooses a random exponent τ ∈ ZN and
creates a semi-functional ciphertext CT ∗ as

C =C′, C0 =C′0 ·gτ
2, C1 =C′1 ·g

(η̃1GL∗+η̃2)τ
2 , C2 =C′2 ·g

(θ̃1ML∗+θ̃2)τ
2 , C3 =C′3 ·gκτ

2 .

Query 2: To response the jth private key query, B proceeds as follows: If j < k, then it creates a semi-
functional private key by using MK and g2. If j > k, then it creates a normal private key by using MK. Let
(GL∗,ML∗) be the labels of the kth private key since the adversary is Type-B. If j = k, then it first creates
a normal private key SK′ = (K′0,K

′
1,K

′
2,K

′
3,K

′
4). Next, it selects random γ1,γ

′
2,γ
′
3 ∈ ZN and creates a private

key SK(GL∗,ML∗) by implicitly setting γ2 = c+ γ ′2,γ3 =−bγ ′2 + γ ′3 as

K0 = K′0 ·g
(η̃1GL∗+η̃2)γ1
2 T (gc

2gγ ′2
2 )

θ̃1(ga
2)

γ ′3(g−γ ′2
2 gγ ′3

2 )
κ̃ , K1 = K′1 · (gc

2)
(θ̃1ML∗+θ̃2)g(θ̃1ML∗+θ̃2)γ

′
2

2 ,

K2 = K′2 ·g
−γ1
2 , K3 = K′3 · (gc

2)
−1g−γ ′2

2 , K4 = K′4 · (gb
2)

γ ′2g−γ ′3
2 .

If T = gabc
2 , this is a nominal semi-functional private key since (η1GL∗+η2)γ1 = (η̃1GL∗+ η̃2)γ1, θ1γ2 +

κγ3 =(ab+ θ̃1)(c+γ ′2)+(a+ κ̃)(−bγ ′2+γ ′3)= abc+ θ̃1(c+γ ′2)+aγ ′3+ κ̃(−bγ ′2+γ ′3), and (θ1ML∗+θ2)γ2 =

(θ̃1ML∗+ θ̃2)(c+γ ′2). If T = gabc+ f
2 , then this is a temporary semi-functional private key. Note that it cannot

create a private key for (GL,ML) such that ML 6= ML∗ since it cannot compute K1 without directly knowing
gabc

2 .
Guess: A outputs a guess µ ′. If µ = µ ′, then B outputs 1. Otherwise, it outputs 0.

Claim 4.12. If the GSD assumption holds, then no polynomial-time adversary can distinguish between
Hk−1,2 and Hk−1,3 with a non-negligible advantage.
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Proof. The proof of this claim is almost the same as that of Claim 4.8 except the generation of the kth
private key. The kth private key for (GL,ML) is generated as follows: If j = k, then it selects random
r′1,r

′
2,r
′
3,a
′ ∈ ZN , Y ′0,Y

′
1,Y
′
2,Y
′
3,Y
′
4 ∈Gp3 and creates a private key SK(GL,ML) as

K0 = gα(T )(u
′GL+h′)r′1+w′r′2+z′r′3(R2Y1)

a′Y ′0, K1 = (T )(w
′ML+v′)r′1Y ′1, K2 = (T )−r′1Y ′2,

K3 = (T )−r′2Y ′3, K4 = (T )−r′3Y ′4.

Note that the kth private key is no longer correlated with CT ∗ since K0 is re-randomized by (R2Y1)
a′ . If

T = X2Y2, this is a semi-functional private key. If T = X2R3Y2, this is a temporary semi-functional private
key.

Lemma 4.13. If the ComDH assumption holds, then no polynomial-time adversary can distinguish between
G2 and G3 with a non-negligible advantage.

Proof. Suppose there exists an adversaryA that distinguish G2 from G3 with a non-negligible advantage. A
simulatorB that solves the ComDH assumption usingA is given: a challenge tuple D=((N,G,GT ,e),g1,g2,
g3,ga

1R1,gb
1R2) and T where T = e(g1,g1)

ab or T = e(g1,g1)
c. Then B that interacts with A is described as

follows:
Setup: B chooses random exponents u′,h′,w′,v′,z′ ∈ ZN and implicitly sets α = a from the term ga

1R1. It
publishes the public parameters PP =

(
(N,G,GT ,e),g = g1,Y = g3,u = gu′

1 ,h = gh′
1 ,w = gw′

1 ,v = gv′
1 ,z =

gz′
1 ,H,Ω = e(g1,ga

1R1)
)
.

Query 1: To response private key queries, B creates semi-functional private keys since ga
2R1 and g2 are

given. Note that it cannot create normal private keys since it does not know ga
1 ∈Gp1 .

Challenge: B first flips a random coin µ ∈ {0,1} and creates a challenge ciphertext CT ∗ =
(
C = H(T ) ·

M∗µ , C0 = gb
1R2, C1 = (gb

1R2)
u′GL∗+h′ , C2 = (gb

1R2)
w′ML∗+v′ , C3 = (gb

1R2)
z′
)
.

Query 2: Same as Phase 1.
Guess: A outputs a guess µ ′. If µ = µ ′, then B outputs 1. Otherwise, it outputs 0.

5 Identity-Based Revocation from SD

In this section, we propose an IBR scheme by combining the SD method with an SRE scheme and prove its
security. For the construction of an IBR scheme, we follow the design principle of Lee et al. [17]. Compared
to the scheme of Lee et al., our scheme is an identity-based one whereas their scheme is a public-key based
one.

5.1 Subset Difference Scheme

The subset difference (SD) scheme is one instance of the subset cover framework proposed by Naor et
al. [23]. The subset cover framework is a general method to construct a revocation system for a set of users
N . In this framework, a collection S of subsets is defined for the system and each user is assigned to a set
of subsets that is a subset of S where each subset is associated with a unique key. When a center broadcasts
an encrypted message for all users except the set of revoked users R, it first finds cover CV that is a set of
subsets that can cover all users N \R and creates ciphertexts for each subset by using their unique key. A
receiver can decrypt the ciphertext if he is not revoked in the revoked set R.

Before we describe the SD scheme, we define some notation. Let T be a full binary tree and vi be a
node in T . The depth di of a node vi is the length of the path from the root node to the node where the root

17



node is at depth zero. A level of T is a set of all nodes at given depth. For any node vi ∈ T , Ti is defined as
a subtree that is rooted at vi. For any two nodes vi,v j ∈ T such that v j is a descendant of vi, Ti, j is defined as
a subtree Ti−Tj, that is, all nodes that are descendants of vi but not v j. For any node vi ∈ T , Si is defined as
the set of leaf nodes in Ti. Similarly, Si, j is defined as the set of leaf nodes in Ti, j, that is, Si, j = Si \S j. For
any node vi ∈ T , we let Li be a fixed and unique label of vi. The label Li of a node vi is assigned as follows:
Each edge in the tree is assigned with 0 or 1 depending on whether the edge is connected to its left or right
child node. The label Li of vi ∈ T is the bitstring obtained by reading all the bits of edges in the path from
the root node to the node vi. For a subtree Ti, we define the label of Ti as the label Li of vi where vi is the
root node of Ti. For a subtree Ti, j, we also define the label of Ti, j as labels (Li,L j) where Li,L j are labels of
vi,v j of Ti, j. Similarly, we can define the label of Si as the same as that of Ti and the label of Si, j as the same
as that of Ti, j.

As mentioned before, the SD scheme is one instance of the subset cover framework. To describe the
SD scheme, we use the abstraction of Lee et al. [17] since their abstraction of SD is independent of a key
assignment method. They defined the SD scheme as four algorithms: Setup, Assign, Cover, and Match.
The setup algorithm first defines a binary tree T and the collection S of subsets where each subset Si, j is
associated with a subtree Ti, j in T . The assign algorithm first assigns a user to a leaf node of T and defines
a path set PV of subsets for the user where any two nodes vi,v j in the path nodes from the root node to the
leaf node defines a subtree Ti, j in PV . The cover algorithm takes as input a set of revoked users R and finds
a cover set CV of subsets that can cover the set of receivers N \R. The final match algorithm takes as input
a path set PV and a cover set CV and finds two matching subsets in PV and CV respectively. The detailed
description of the SD scheme is given in Appendix A.

5.2 Construction

The general method that combines the SD scheme with an SRE scheme for the construction of a revocation
system was introduced by Lee et al. [17]. The basic idea of their method is that there exists a one-to-one
mapping between a subset Si, j in the SD scheme and labels (GL,ML) in the SRE scheme. That is, we can
set GL = Li‖d j and ML = L j where (Li,L j) is the labels of a subtree Ti, j and d j is the depth of the node v j

since the subtree Ti, j is associated with the subset Si, j. Thus, we can derive a public-key revocation system
by using an SRE scheme instead of using a pseudo-random generator. We follow the design method of
Lee et al. [17], but we slightly modify it to use a symmetric key encryption scheme in order to improve the
efficiency.

Let SD = (Setup,Assign,Cover,Match) be the SD scheme and SKE = (Gen,Enc,Dec) be a symmet-
ric key encryption scheme. Our IBR scheme for the identity space I = {0,1}n is described as follows:

IBR.Setup(1λ ,n): This algorithm first define a full binary tree T by running SD.Setup(2n). Next, it obtains
MKSRE and PPSRE by running SRE.Setup(1λ ). It outputs a master key MK = MKSRE and public
parameters PP = (T ,PPSRE).

IBR.GenKey(ID,MK,PP): This algorithm takes as input an identity ID ∈ I, the master key MK, and
the public parameters PP. It first obtains a private set PVID = {Si, j} by running SD.Assign(T , ID).
Note that we assign ID to the leaf node where the label of the leaf node is equal to ID. Let d j be
the depth of a node v j associated with a label L j. For each Si, j ∈ PVID, it derives (Li,L j) from Si, j

and obtains SKSRE,Si, j by running SRE.GenKey((Li||d j,L j),MKSRE ,PPSRE). It outputs a private key
SKID =

(
PVID,{SKSRE,Si, j}Si, j∈PVID

)
.
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IBR.Encrypt(R,M,PP): This algorithm takes as input a revoked set of users R, a message M ∈ {0,1}m,
and the public parameters PP. It first finds a covering set CVR = {Si, j} by running SD.Cover(T ,R).
Let d j be the depth of a node v j associated with L j. Next, it chooses a session key K ∈ {0,1}λ . For
each Si, j ∈CVR, it derives two labels (Li,L j) from Si, j and obtains CTSRE,Si, j by running SRE.Encrypt
((Li||d j,L j),K,PPSRE). It obtains an encrypted message C by running SKE.Encrypt(K,M). Finally,
it outputs a ciphertext CTR =

(
CVR,C,{CTSRE,Si, j}Si, j∈CVR

)
.

IBR.Decrypt(CTR,SKID,PP): This algorithm takes as input a ciphertext CTR, a private key SKID, and the
public parameters PP. If ID 6∈R, it finds a matching tuple (Si, j,S′i, j) by running SD.Match(CVR,PVID)
and obtains a session key K by running SRE.Decrypt(CTSRE,Si, j ,SKSRE,S′i, j ,PPSRE). Otherwise, it
outputs ⊥. Finally, it outputs a message M by running SKE.Decrypt(K,C).

Remark 5.1. Our revocation scheme is identity-based one whereas the revocation scheme of Lee et al. [17]
is public-key one since the SRE scheme of Lee et al. is proven under a q-type assumption where q is depends
on the number of users. Another difference is that our IBR scheme encrypts a session key by using an SRE
scheme and this session key is used to encrypt a message by using a symmetric-key encryption scheme.

5.3 Security Analysis

The security model of our IBR scheme in the proof depends on the security model of the underlying SRE
scheme. That is, if the underlying SRE scheme is fully (or selectively) secure, then our IBR scheme is also
fully (or selectively) secure.

Theorem 5.2. The above IBR scheme is selectively (or fully) secure under chosen plaintext attacks if the
SRE scheme is selectively (or fully) secure under chosen plaintext attacks and the SKE scheme is secure
under chosen plaintext attacks.

Proof. Let R∗ be the set of revoked users in the challenge ciphertext and CVR∗ be the covering set where the
number of subsets in CVR∗ is `. The challenge ciphertext is described as CT ∗ = (CVR∗ ,C∗,{CT ∗SRE,Sik , jk

}`k=1).
For the security proof, we define hybrid games G0,G1,G2,G3 as follows:

Game G0 This game is the original security game defined in the security model except that the challenge
bit µ is fixed to 0. In this game, all components CT ∗SRE, j are encryption on a correct session key K∗

and the component C∗ is an encryption on the message M∗0 by using the session key K∗.

Game G1 In this game, all components CT ∗SRE, j in the challenge ciphertext CT ∗ are encryption on a random
session key Z that is not related to the correct one K∗. However, the component C∗ is still an encryption
on the message M∗0 by using the correct one K∗.

For the security proof, we additionally define hybrid games G0,0, . . . ,G0,ρ , . . . ,G0,` where G0,0 = G0
and G0,` = G1. The game G0,ρ is almost identical to the game G0,ρ−1 except that CT ∗SRE,ρ is an
encryption on a random session key Z. Specifically, each component CT ∗SRE,k for k≤ ρ is an encryption
on a random session key Z and each component CT ∗SRE,k for ρ < k is an encryption on the session key
K∗.

Game G2 This game is similar to the game G1 except that the component C∗ is an encryption on the
message M∗1 by using the session key K∗. That is, the challenge ciphertext CT ∗ is an encryption on
the message M∗1 .
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Game G3 In this game, all components CT ∗SRE, j in the challenge ciphertext CT ∗ are encryption on the
correct session key K∗ instead of the random session key Z. Thus, this game is the original security
game in the definition except that the challenge bit µ is fixed to 1.

For the security proof, we also define additional hybrid games G2,0, . . . ,G2,ρ , . . . ,G2,` where G2,0 =
G2 and G2,` = G3. The game G2,ρ is almost identical to the game G2,ρ−1 except that CT ∗SRE,ρ is
an encryption on the correct session key K∗. Specifically, each component CT ∗SRE,k for k ≤ ρ is an
encryption on the session key K∗ and each component CT ∗SRE,k for ρ < k is an encryption on the
random session key Z.

Let SGi
A be the event that A outputs 0 in Gi. From Lemmas 5.3, 5.4 and 5.5, we obtain the following

result

AdvIBR
A (λ )≤ 1

2

∣∣∣Pr[SG0
A ]−Pr[SG3

A ]
∣∣∣

≤ 1
2

( `

∑
ρ=1

∣∣∣Pr[SG0,ρ−1
A ]−Pr[SG0,ρ

A ]
∣∣∣+ ∣∣∣Pr[SG1

A ]−Pr[SG2
A ]

∣∣∣+ `

∑
ρ=1

∣∣∣Pr[SG2,ρ−1
A ]−Pr[SG2,ρ

A ]
∣∣∣)

≤ `AdvSRE
B (λ )+AdvSKE

B (λ )+ `AdvSRE
B (λ ).

This completes our proof.

Lemma 5.3. If the SRE scheme is secure under chosen plaintext attacks, then no polynomial time adversary
can distinguish between G0,ρ−1 and G0,ρ with non-negligible advantage.

Proof. Suppose there exists an adversaryA that distinguishes between G0,ρ−1 and G0,ρ with non-negligible
advantage. A simulator B that breaks the security game of the SRE scheme is given: challenge public
parameters PPSRE . Then B that interacts with A is described as follows:

Setup: B first sets a full binary tree T by running SD.Setup(2n) and gives PP = (T ,PPSRE) to A.
Query 1: If A adaptively requests a private key query for a user ID, then B proceeds this query as follows:
It first obtains a private set PVID = {Si, j} by running SD.Assign(T , ID). For each Si, j ∈ PVID, it sets labels
(GL,ML) from Si, j and requests SK′SRE,Si, j

for labels (GL,ML) to the key generation oracle that simulates
SRE.GenKey. It sets SKID = (PVID,{SK′SRE,Si, j

}) and gives this to A.
Challenge: A submits a challenge revoked set R∗ and two challenge messages M∗0 ,M

∗
1 subject to the

restrictions. It sets µ = 0 and proceeds as follows: It obtains two session keys K∗ and Z by running
SKE.GenKey(1λ ) and computes C∗ by running SKE.Encrypt(M∗µ ,K∗). Next, it obtains a covering set
CVR∗ = {Si1, j1 , . . . ,Si`, j`} by running SD.Cover(T ,R∗) and obtains each component CTSRE,Sik , jk

as follows:

1. For 1 ≤ k ≤ ρ − 1, it computes CT ∗SRE,Sik , jk
by running SRE.Encrypt((Li j‖d jk ,L jk),Z,PPSRE) where

(Lik ,L jk) is the label of Sik, jk and d jk is the depth of the node v jk .

2. For k = ρ , it submits challenge labels GL′ = Liρ‖d jρ ,ML′ = L jρ and two challenge messages M′0 =
K∗,M′1 = Z to the challenge oracle of SRE and receives a challenge ciphertext CT ′SRE . It simply sets
CT ∗SRE,ρ =CT ′SRE .

3. For ρ +1≤ k ≤ `, it computes CT ∗SRE,Sik , jk
by running SRE.Encrypt((Lik‖d jk ,L jk),K

∗,PPSRE) where
(Lik ,L jk) is the label of Sik, jk and d jk is the depth of the node v jk .
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It gives a challenge ciphertext CT = (CVR∗ ,C∗,{CT ∗SRE,Sik , jk
}`k=1) to A.

Query 2: Same as Query 1.
Guess: Finally, A outputs a bit µ ′. B also outputs µ ′.

Lemma 5.4. If the SKE scheme is secure under chosen plaintext attacks, then no polynomial time adversary
can distinguish between G1 and G2 with non-negligible advantage.

Proof. Suppose there exists an adversary A that distinguishes between G1 and G2 with non-negligible
advantage. A simulator B that breaks the security game of the SKE scheme is described as follows:

Setup: B first obtains MK and PP by running IBR.Setup(1λ ,n) and gives it to A.
Query 1: If A adaptively requests a private key query for a user ID, then B creates the private key by using
the master key MK.
Challenge: A submits a challenge revoked set R∗ and two challenge messages M∗0 ,M

∗
1 . It also submits two

challenge messages M′0 = M∗0 ,M
′
1 = M∗1 and receives a challenge ciphertext CT ′ of SKE. It sets C∗ = CT ′.

It chooses a random session key Z and prepare all components CT ∗SRE,Sik , jk
that are encryption on the random

session key Z. It gives a challenge ciphertext CT = (CVR∗ ,C∗,{CT ∗SRE,Sik , jk
}`k=1) to A.

Query 2: Same as Query 1.
Guess: Finally, A outputs a bit µ ′. B also outputs µ ′.

Lemma 5.5. If the SRE scheme is secure under chosen plaintext attacks, then no polynomial time adversary
can distinguish between G2,ρ−1 and G2,ρ with non-negligible advantage.

The proof of this Lemma is almost similar to that of Lemma 5.3.

6 Conclusion

In this paper, we solved the problem of Lee et al. [17] to construct an SRE scheme under the standard
assumption without random oracles. The important insight of our solution is that an SRE scheme can be
built by combining an IBE scheme and a simple IBR scheme that are secure under the standard assumption.
We first proposed an SRE scheme in prime-order bilinear groups and proved its selective security under the
DBDH assumption. We next proposed another SRE scheme in composite-order bilinear groups and proved
its full security under simple static assumptions. We expect that our composite-order SRE scheme can be
converted into a prime-order one by following the conversion method of Lewko [19]. Finally, we proposed
an IBR scheme by combining the SD method and our SRE scheme and proved its security.

We left the following as an interesting problem. One drawback of an IBR scheme derived from the SD
(or LSD) method and an SRE scheme is that the number of group elements in private keys is O(log2 N) (or
O(log1.5 N)) where N is the maximum number of users in the system. In symmetric-key revocation systems
derived from the subset cover framework, the size of private keys can be constant by increasing the cost of
key derivation operations [1]. Thus, it is an interesting problem to construct an IBR scheme derived from
the SD method that has shorter private keys.
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A SD Scheme

We describe the SD scheme that is defined in [17] for the completeness of our paper.

SD.Setup(N): This algorithm takes as input the maximum number N of users. Let N = 2n for simplicity.
It first sets a full binary tree T of depth n. Each user is assigned to a different leaf node in T . The
collection S of SD is the set of all subsets {Si, j} where vi,v j ∈ T and v j is a descendant of vi. It
outputs the full binary tree T .

SD.Assign(T , ID): This algorithm takes as input the tree T and a user ID. Let vID be the leaf node of T
that is assigned to the user ID. Let (vk0 ,vk1 , . . . ,vkn) be the path from the root node vk0 to the leaf node
vkn = vID. It first sets a private set PVID as an empty one. For all i, j ∈ {k0, . . . ,kn} such that v j is a
descendant of vi, it adds the subset Si, j defined by two nodes vi and v j in the path into PVu. It outputs
the private set PVID = {Si, j}.

SD.Cover(T ,R): This algorithm takes as input the tree T and a revoked set R of users. It first sets a subtree
T as ST (R), and then it builds a covering set CVR iteratively by removing nodes from T until T consists
of just a single node as follows:

1. It finds two leaf nodes vi and v j in T such that the least-common-ancestor v of vi and v j does not
contain any other leaf nodes of T in its subtree. Let vl and vk be the two child nodes of v such
that vi is a descendant of vl and v j is a descendant of vk. If there is only one leaf node left, it
makes vi = v j to the leaf node, v to be the root of T and vl = vk = v.

2. If vl 6= vi, then it adds the subset Sl,i to CVR; likewise, if vk 6= v j, it adds the subset Sk, j to CVR.

3. It removes from T all the descendants of v and makes v a leaf node.

It outputs the covering set CVR = {Si, j}.

SD.Match(CVR,PVID): This algorithm takes input as a covering set CVR = {Si, j} and a private set PVID =
{S′i, j}. It finds two subsets Si, j and S′i′, j′ such that Si, j ∈CVR, S′i′, j′ ∈ PVID, i = i′, d j = d j′ , and j 6= j′

where d j is the depth of v j. If it found two subsets, then it outputs (Si, j,S′i′, j′). Otherwise, it outputs
⊥.
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