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ABSTRACT
Cloud providers are realizing the outsourced database model
in the form of database-as-a-service offerings. However, se-
curity in terms of data privacy remains an obstacle because
data storage and processing are performed on an untrusted
cloud. Achieving strong security under additional con-
straints of functionality and performance is even more chal-
lenging, for which advanced encryption and recent trusted
computing primitives alone prove insufficient.

In this paper, we propose PRAMOD – a novel framework
for enabling efficient and secure database-as-a-service. We
consider a setting in which data is stored encrypted on the
untrusted cloud and data-dependent computations are per-
formed inside a trusted environment. The proposed frame-
work protects against leakage caused by observable data
movement between different components (due to limited se-
cure memory) by using a special component called scrambler
running inO(n) time. It supports popular algorithms under-
lying many data management applications, including sort,
compaction, join and group aggregation. The algorithms
implemented in PRAMOD are not only privacy-preserving
but also asymptotically optimal. They can be used as build-
ing blocks to construct efficient and secure query process-
ing algorithms. The experimental study shows reasonable
overheads over a baseline system assuring a weaker level of
security. More remarkably, PRAMOD shows superior per-
formance in comparison with the state-of-the-art solutions
offering similar privacy protection: up to 4.4× speedup over
the alternative data-oblivious algorithms.

1. INTRODUCTION
Big data is the driving force behind the database-as-a-

service model offered by most cloud providers. Amazon,
Google, Microsoft, etc. are providing cost-effective and scal-
able solutions for storing and managing tremendous volumes
of data. However, security in terms of data privacy remains
a challenge, as the data is being handled by an untrusted
party. Despite being a well-studied problem, especially in

the context of outsourced database in the past [45, 46, 26],
data privacy in this era of Big Data faces new challenges.
First, the cloud providers have more incentives in extracting
content of the outsourced data for its commercial values [42,
43]. Second, even when the providers are trusted, multi-
tenancy, complexity of software stacks, and distributed com-
puting models continue to enlarge the attack surface [15,
17]. Third, there is a tight constraint on the performance
overhead, since most data analytics tasks, e.g. data mining,
consume huge CPU cycles which are directly billable [16, 8].

The first step towards securing the data is to encrypt it
before outsourcing to the cloud. Unfortunately, this only
protects data at rest [30]. Fully homomorphic encryp-
tion allows computation over encrypted data, but it suf-
fers from prohibitive performance [20, 13]. Partially ho-
momorphic encryption schemes [37, 19] are more practi-
cal, but they are limited in the range of supported oper-
ations [39, 44], and have been shown to be vulnerable to
attacks [33]. Consequently, some recent works have advo-
cated an approach of combining encryption with trusted
computing primitives [10, 40, 6], in which confidentiality and
integrity protected execution environments are provisioned
by hardware (e.g. Intel SGX [1]) or by hardware-software
combination [31, 32]. In such a secure environment, com-
putations are performed on decrypted data, and the results
are encrypted before being returned. However, the remedy
is yet to come. There is a limit on the amount of data
that the secure environment can process at any time, the
upper bound being the size of physical memory allocated
to a process. This results in a data communication channel
between the trusted and untrusted parties, which can leak
information about the data [41, 15, 17]. For instance, by ob-
serving I/O access patterns during merge sort, an attacker
can infer the order of the original input. Such leakage can
be eliminated by either generic oblivious-RAM (ORAM) or
application-specific data-oblivious algorithms1 [38, 24, 41].
Both approaches, however, are complex and incur high per-
formance overheads. It is worth noting that complexity of
the codebase running inside the secure environment is un-
desirable for security, because it raises the cost of vetting
software for implicit vulnerabilities.

In this paper, we consider the setting in which user data
is stored encrypted2 on the untrusted storage, and all data-

1A data-oblivious algorithm (or oblivious algorithm for
short) performs the same sequence of I/O accesses on all
inputs of the same size.
2We assume data is encrypted using a semantic secure and
authenticated encryption scheme.
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dependent computations are performed inside trusted com-
putation units (or trusted units). The trusted units are
securely provisioned either purely by hardware or by a
hardware-software combination. An untrusted worker is
responsible for data movements and other house keeping
tasks. During these processes, the worker can observe ac-
cess patterns. Given this setting, we aim to enable prac-
tical, privacy-preserving data management. In particular,
the data management algorithms running on the untrusted
cloud must not leak any information about the inputs via ac-
cess patterns, while admitting reasonable performance over-
heads.

We propose PRAMOD (PRivate dAta Management for
Outsourced Databases) – a framework for implementing ef-
ficient and privacy-preserving data management algorithms.
PRAMOD protects against potential leakage via access pat-
terns. It ensures data privacy in the presence of honest-but-
curious adversaries by utilizing a component named scram-
bler. The scrambler randomly and securely permutes input
data of size n in O(n) time. We demonstrate PRAMOD by
constructing four popular data management algorithms:
sort, compaction, group aggregation and join. The first
two algorithms can immediately achieve security using the
scrambler. They are then composed with other privacy-
preserving steps to realize group aggregation and join. These
four algorithms form the building blocks for constructing ef-
ficient and secure query processing algorithms.

The four algorithms under consideration underlie many
data management applications. Sort is fundamental to any
database systems. Compaction is vital in many distributed
key-value stores where updates are directly appended to disk
and compaction is frequently scheduled to improve query
performance [5, 29, 4]. Join is arguably one of the most
important operations in data management, and commonly
used for data integration which is becoming more important
given the variety of data sources [27]. Group aggregation is
widely used in decision support systems to summarize data,
making it an integral part of data warehouse systems. The
last two algorithms account for 80 over 99 queries in the
TPC-DS benchmarks [2].

In PRAMOD, we make a key observation. In order to
prevent leakage from access patterns, for a large class of al-
gorithms including sort and compaction, it is sufficient to
randomly permute (or scramble) the input before feeding
it to the actual algorithm. Let us consider merge sort al-
gorithm in which the original input is randomly permuted.
During the execution, an adversary observing access pat-
terns will, at best, be able to infer only sensitive information
on the scrambled input, which cannot be linked back to that
of the original input. This approach to security — scram-
bling the input before executing the algorithm — leads to
two important results. First, its performance is superior to
that of generic ORAM solutions, because its overhead factor
is additive rather than multiplicative. Second, it generalizes
to all algorithms implementing the same application. This
allows PRAMOD to take advantage of state-of-the-art algo-
rithms to achieve simpler yet more efficient solutions than
existing data-oblivious algorithms. For instance, scrambling
followed by an optimized merge sort (or any other popular
sorting algorithms) is simpler than data-oblivious external
sort algorithms [24], and it is shown later to have better per-
formance. It is worth noting that the simplicity of this ap-
proach implies smaller trusted computing base (TCB) which

translates to better security. For a complex algorithm made
up of a sequence of sub-steps, there will be no access pat-
tern leakage if none of the sub-steps leak information. This
allows PRAMOD to achieve security for group aggregation
and join algorithms by implementing them based on sort
and compaction.

We implement pSort, pCompact, pAggr and pJoin,
evaluate their performances and study the costs of secu-
rity. Compared with the baseline system, PRAMOD offers
a stronger privacy protection at a cost of 3.85× overhead
on average. Compared with state-of-the-art data-oblivious
alternatives [24, 22, 6, 7] which offer similar level of secu-
rity, PRAMOD demonstrates speedup as high as 4.4×. In
summary, we make the following contributions:

1. We define a security model for privacy-preserving data
management algorithms. The model implies data con-
fidentiality even when the adversary can observe I/O
access patterns.

2. We propose PRAMOD – the framework for deriving
privacy-preserving algorithms. Certain classes of al-
gorithms including sort and compaction immediately
achieve security with a prepended scrambler, while
other more complex algorithms such as group aggre-
gation and join derive security from their sub-steps so
long as each of which is privacy-preserving.

3. We demonstrate PRAMOD by constructing pSort,
pCompact, pAggr and pJoin, and analysing their
complexity. These algorithms are not only privacy-
preserving but also attain optimal complexity. pSort,
pAggr and pJoin run in O(n logn) time, and
pCompact runs in O(n) time.

4. We conduct extensive experiments to benchmark
PRAMOD’s algorithms against the baseline and state-
of-the-art data-oblivious alternatives. The results
demonstrate reasonable overheads over the less se-
cure (baseline) approach, and running time speedup
of upto 4.4× over corresponding data-oblivious alter-
natives with similar level of security.

Next section describes the security model and defines the
problem that we are solving and rationale behind the pro-
posed framework. Section 3 presents PRAMOD and its as-
sociated components. Section 4 demonstrates the proposed
framework by describing constructions of four data man-
agement algorithms and discusses their theoretical analysis.
Our experimental evaluation of PRAMOD is reported in
Section 5. After that, we discusses related work in Section 6
before concluding our work in Section 7.

2. PROBLEM DEFINITION
In this section, we define the problem of privacy-

preserving data management for outsourced databases and
state the necessary conditions for data management algo-
rithms to be privacy-preserving using trusted computing
primitives. We shall start with a running example to il-
lustrate our ideas.

Running Example. Let us consider a user storing her data
consisting of integer-value records on the cloud. Due to pri-
vacy concerns, the user encrypts the data so that no un-
trusted party can learn its content. She then wishes to sort
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Figure 1: An example of three-way external merge sort. Each
square denotes an encrypted record. Black numbers represent
integer-value of the records which are invisible to untrusted par-
ties due to the deployment of secure encryption. Orange numbers
denote the order in which each encrypted record is read into the
trusted unit during the merging.

Trusted
Unit Worker · · ·

Storage

Figure 2: Computation model of a cloud server, consisting of a
trusted unit capable of processing a limited number of records
at a time. Storage is untrusted, and its communication with
the trusted unit is mediated by an untrusted worker (honest-but-
curious). Only the trusted unit can see and compute the content
of the encrypted records (denoted by blue squares).

the data, as a pre-processing step for other tasks such as
database loading, ranking, de-duplication, etc. Although
sorting directly over encrypted data is possible to a cer-
tain extent, it is highly impractical [3]. To efficiently sort
the data, the user relies on a trusted unit which decrypts
the records and sorts them in its secure memory before re-
encrypting and sending them back to the cloud storage. Be-
cause the secure memory is limited in size, the user must
employ an external, k-way merge sort algorithm. Figure 1
depicts a simple example of three-way merge sort in which
the secure memory is limited to holding only three records
at a time. The input consists of nine records, and sorting
involves one merging step.

2.1 Baseline System and Adversary Model
We now describe the baseline system, in which the user

uploads data to the cloud and relies entirely on the cloud in-
frastructure to store and execute computations on her data.
The data X = 〈x1, x2, . . . , xn〉 is a sequence of n equal-sized,
key-value records. Let key(x) and value(x) denote the key
and value component of a record x, respectively. The data
records are protected by a semantically secure encryption
scheme. Figure 2 details the cloud’s computation model
which consists of a trusted unit, a worker and a storage
component. The user grants her trust on the trusted unit,
which can only hold up to m records at a time. We assume
that m is at least

√
n. This is a reasonable assumption since

in practical scenarios, the size of the secure memory can be
in orders of megabytes. The worker, which mediates access
to the untrusted cloud storage and is also responsible for
other house-keeping tasks, is not trusted. Both the worker
and the storage see only encrypted data.

Threat Model. The adversary is a curious insider at the
cloud provider, who has complete access to the cloud in-
frastructure, either via misuses of privilege or via exploiting
vulnerabilities in the software stack. We consider honest-
but-curious (or passive) adversary who tries to learn infor-
mation from what are observable but do not tamper with
the data or the computation. This is a realistic model, given
that insider threats are a serious concern to organizations as
they are one of the main causes of security breaches (NSA
and Target data breach, for example). The model with ac-
tive adversaries who deviate arbitrarily from the expected
computation is a complex and different problem by itself.
We refer readers to recent works demonstrating effective de-
fences against the active adversaries [17, 40].

We assume that the worker and storage component are
under the adversary’s control, while the trusted unit is suffi-
ciently protected. Specifically, the trusted unit corresponds
to the user’s TCB, while the worker and storage compo-
nent correspond to the cloud software stack and storage
controller. For TCB based on hardware-software combina-
tion, we assume that the software is void of vulnerabilities
and malwares. Furthermore, there is no side-channel leak-
age (e.g. power analysis) from the trusted unit. Physical
attacks which could compromise the trusted unit’s confi-
dentiality and integrity, such as cold-boot or attacks aiming
to subvert the CPU’s security mechanisms, are out of scope.
Finally, we assume that decryption keys have already been
provisioned securely to the trusted unit, and when there are
more than one trusted unit, they all agree on the same de-
cryption keys.

Leakage of the Baseline System. Let us use the running
example to illustrate how the baseline system fails to ensure
data privacy. As shown in Figure 1, the encrypted input
is divided into three blocks, and the trusted unit executes
the algorithm in two phases. In the first phase, it indepen-
dently sorts each block in-memory and returns three sorted,
encrypted blocks. Next, it performs three-way merge: at
most three records are kept in the secure memory at any
time. They are pulled from the sorted blocks with help
from the worker. In this the running example, the adver-
sary observes that the trusted unit first takes one record
from each sorted block, writes one record out, then takes
another record from the first block in. Although it cannot
learn the records’ content, it can still infer that the smallest
record comes from S1. Such inference in general can reveal
the relative order of the records from different blocks. For
algorithms taking data from different sources, this leakage
can expose the sources’ identities.

2.2 Problem Definition
In this paper, we concern privacy-preserving data man-

agement algorithms using trusted computing with limited
secure memory. This secure memory is limited in a sense
that it can hold (and process) at most only m records at
any time. Let P be the algorithm executed on input X.
The first goal is to restrict leakage from the execution of P
to only the input and output sizes, i.e. |X| and |P(X)|. The
baseline system fails this goal for sort as well as for other
algorithms. One solution is to employ oblivious RAM [41]
directly on the storage backend. However, this approach
incurs an overhead of at least O(logn) per each access, ren-
dering it impractical for big data processing. Another option
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is to use application-specific data-oblivious algorithms such
as oblivious sort [24]. Nevertheless, they are convoluted and
do not generalize well to other algorithms. Thus, the sec-
ond goal of our work is to attain a simple design with low
performance overhead.

2.3 Security Definition
We now describe our formal security definition that ad-

mits only the disclosure of the input and output sizes. Let
Qm
P (X) = 〈q1, q2, . . . , qz〉 be the access (read/write or I/O)

sequence observed by the adversary during the computation
of P on X using the trusted unit with secure memory of size
m. In the baseline system, Qm

P (X) represents the sequence
of I/O requests made by the trusted units to the worker.
Hereafter, unless stated otherwise, we assume m >

√
n and

simply denote the trusted unit’s access sequence by QP(X).
Each qi is a 5-value tuple 〈op, addr, val, time, info〉 where
op ∈ {r, w} is the type of the request (“read” or “write”),
addr and val is the address and content accessed by op
respectively, time is the time3 of request and info is the
record’s metadata (⊥ if undefined). The last component is
useful when the trusted unit wishes to offload parts of the
processing on non-sensitive data fields to the worker. For
example, if an algorithm requires arranging records with re-
spect to an order that is not secret, the trusted unit sets info
to be the record’s desired address, thus allowing the worker
to complete the arranging step.

Consider the example in Figure 1, the observed read
sequence, denoted as QP(X)read, is as follows (the complete
sequence, including write, is similar):

QP(X)read =


〈r, S1, e(S1), t1,⊥〉, 〈r, S2, e(S2), t2,⊥〉,
〈r, S3, e(S3), t3,⊥〉, 〈r, S1, e(S4), t4,⊥〉,
· · ·
〈r, S3 + 1, e(S3 + 1), t10,⊥〉,
〈r, S3 + 2, e(S3 + 2), t11,⊥〉


where ti represents the request time, and Si + j, e(Si + j)
denote the address and ciphertext of the jth record in block
Si, respectively.

During the execution of P, QP(X) is the only source
of leakage from which the adversary can learn information
about X. Using the well-accepted notion of indistinguisha-
bility in the literature [28], our security definition dictates
that QP(X) reveals nothing beyond the input and output
sizes. Specifically:

Definition 1 (Privacy-Preserving Algorithm).
An algorithm P is privacy-preserving if for any two datasets
X1, X2 of the same size, QP(X1) is computationally indis-
tinguishable from QP(X2).

Informally, the definition requires that for any two equal-
sized inputs, the observed I/O sequences are similar, and
thus reveal no sensitive information about their inputs. This
also implies the two inputs induce equal-sized outputs, oth-
erwise the I/O sequences would have been different. In ad-
dition, note subtly that if the records are not encrypted,
QP(X1) and QP(X2) are immediately distinguishable for
their tuples contain the records in clear-text.

Discussion. A similar definition, data obliviousness, re-
quires a data-oblivious algorithm P to incur the same ac-
cess sequence on any two inputs X1, X2 of the same size,

3For simplicity, we assume there exists a global clock.
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Figure 3: PRAMOD constructs privacy-preserving algorithm AP

from an algorithm P by appending it with the scrambler S. The
proposed framework can also combine simple privacy-preserving
algorithms to build a more complex algorithm which is also
privacy-preserving.

i.e. QP(X1) = QP(X2). This definition implies perfect
zero leakage against all adversaries, as opposed to ours as-
suring negligible leakage against computationally bounded
adversaries. Data-oblivious algorithms share with ours the
assumption that data records are always protected and the
adversary cannot see their content, relying on the deploy-
ment of secure encryption. However, practical encryption
schemes cannot achieve perfect secrecy. Therefore, in prac-
tice, both data-oblivious algorithms and privacy-preserving
algorithms satisfying Definition 1 are expected to offer sim-
ilar levels of privacy-protection.

Oblivious algorithms, such as one which sequentially scans
through the entire input, reads and then immediately writes
records to the same addresses for instance, are inherently
privacy-preserving. On contrary, the k-way merge sort in
the running example is not privacy-preserving because there
exists X1, X2 such that QP(X1) 6= QP(X2) ((e.g. X1 =
〈1, 2, 3, 4, 5, 6, 7, 8, 9〉 and X2 = 〈3, 5, 1, 6, 2, 4, 9, 7, 8〉).

3. PRAMOD
In this section, we present the PRAMOD framework, fo-

cusing on a new component — the scrambler. We explain
how to design simple privacy-preserving algorithms, for ex-
amples sort and compaction, using this component. We then
discuss how to build more complex yet still secure algorithms
based on simpler, privacy-preserving steps.

PRAMOD is designed on top of the baseline system de-
scribed earlier in Section 2.1. Specifically, data records are
encrypted with a semantically secure encryption scheme,
and data-dependent computations are done inside the
trusted unit with limited memory. Note that algorithms
implemented in the baseline system, such as merge sort
in the running example, may not be privacy-preserving.
PRAMOD realizes privacy-preserving algorithms in two
ways. First, for algorithm P which essentially re-arranges
the input, it simply prepends P with the scrambler S which
randomly permutes the input before applying P on the out-
put of the scrambler (Figure 3[a]). To ensure overall secu-
rity, however, the scrambler S must not leak any information
during its execution. Second, PRAMOD allows for complex,
privacy-preserving algorithms to be built from a sequence
of privacy-preserving sub-steps AP1 ,AP2 , . . . (Figure 3[b]).
We note that for complex algorithms, input scrambling alone
is not sufficient to assure our security definition. For exam-
ple, consider a group aggregation algorithm which first ar-
ranges data records into groups based on their keys and then
aggregates the values of the records in each group. Even if
the input is scrambled beforehand, the adversary can still
learn information about size of each group, which is beyond
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the leakage admitted by our definition (i.e. the number of
groups).

3.1 The Scrambler
The scrambler S is responsible for generating the scram-

bled data X̃ from X such that their linkage is not revealed
via I/O patterns of S (i.e. QS(X)). In particular, S first
chooses a permutation π : [1..n] → [1..n] uniformly at ran-
dom. It then privately realizes the permutation π on the in-

put X, obtaining X̃ such that X̃[π[i]] = X[i], while ensuring
that the adversary is oblivious to the underlying permuta-
tion π. A simple solution which sequentially scans through

X and places the ith record at position π[i] in X̃ reveals π,
as the adversary is able to observe all read/write accesses
on the storage.

The scrambler can be implemented using either the Mel-
bourne shuffle algorithm recently introduced in [35] or a
cascaded mix-network proposed in [14]. The former takes

X and π as input and outputs X̃, whereas the latter takes

in only X and generates X̃ without a priori knowledge of π.
Although the cascaded mix-network seems able to produce
the scrambled data whose distribution is statistically close to
random permutation within constant number of rounds, the
best known bound requires O(n0.85) trusted memory [14]. In
contrast, the Melbourne shuffle algorithm is able to success-
fully scramble the data with high probability within con-
stant number of rounds, using only O(

√
n) trusted mem-

ory [35].
We implement S using the Melbourne shuffle algorithm.

Specifically, S first privately generates the permutation π
using a pseudo-random permutation [28]. Then, it executes
the Melbourne shuffle algorithm with π and X as input,

outputting the scrambled data X̃. The shuffle algorithm
is oblivious and consists of two phases: distribution and
clean-up. The algorithm is configurable by two variables
p1, p2 that affect its overall performance. With a negligible
probability, the algorithm needs to aborts its execution and
restarts. Note that this does not imply failure, but rather
longer running time. Details of the shuffle algorithm are
provided in Appendix A, which also shows the probability
of restarting is negligible.

Let us now consider the security of the scrambler. Since
the adversary’s guess of π in unlikely to be correct4, it has
to rely on the access pattern QS(X) to reveal the linkage

between X and X̃. However, from the security of the Mel-
bourne shuffle algorithm, no adversary can reveal π by ob-
serving QS(X). Therefore, the scrambler is secure.

3.2 Privacy-Preserving Algorithms
We first show how to construct basic privacy-preserving

algorithms using the scrambler. Then, we discuss how to
build more complex algorithms.

3.2.1 Basic algorithms
Let us now consider basic algorithms which essentially

rearrange the input. Specifically, given the output P(X) =
Y = 〈y1, y2, .., yn〉, the algorithm can be characterized by
a permutation (or tag) T = 〈t1, t2, .., tn〉 such that Y [i] =
X[T [i]]. The tag T represents the linkage between input
and output records. In the running example (Figure 1),

4The probability of such event is Pr = 1/((1−negl(n))×n!)
in which negl(n) is a negligible function in n

T = 〈3, 5, 1, 6, 2, 4, 9, 7, 8〉. Let QP(X) be the observable
access sequence defined earlier in Section 2.3 and AP denote
the algorithm derived from P by prepending it with the
scrambler. More specifically, AP first scrambles X using S
and then applies P on the scrambled input X̃ to obtain the
desired output. We show that if QP(X) = QP(T ), then AP

is privacy-preserving.

Theorem 1. Given an algorithm P, if for any input X,
the read/write sequence generated by P on X is the same
as the read/write sequence generated by P on T where T is
the corresponding tag of X, then the derived algorithm AP

is privacy-preserving.

Proof Sketch: Let A∗P be an algorithm that is the same as
AP , except for one step which reveals the corresponding tag

T̃ of the scrambled input X̃. We shall prove by contradiction
that A∗P is privacy-preserving. Since A∗P reveals more than
AP , if A∗P is privacy-preserving, then so is AP .

Let us consider two equal-sized inputs X1, X2. We denote

by T1, T2 tags of X1, X2, and by T̃1, T̃2 tags of the scrambled

input X̃1, X̃2, respectively. Assume that A∗P is not privacy-
preserving, there exists an algorithm D∗ that distinguishes
QA∗

P
(X1) and QA∗

P
(X2). We then construct another al-

gorithm D that breaks the security of the scrambler S by

distinguishing X̃1 and X̃2.

Given X̃1 and X̃2, D first executes P on X̃1 and X̃2. Since
P is not privacy-preserving, D can learn the scrambled tags

T̃1, T̃2 from QP(X̃1) and QP(X̃1). D combines QS(X1) with

QP(X̃1) and QS(X2) with QP(X̃2), getting QAP (X1) and
QAP (X2). Recall that A∗P is the same as AP except for

the step revealing T̃ , D can executes D∗ with two inputs

(QAP (X1), T̃1) and (QAP (X2), T̃2) and relies on D∗’s out-

put to distinguish X̃1 and X̃2. However, as discussed in
Section 3.1, the scrambler is secure and the assumption of
the existence of D cannot hold. By contradiction, we con-
clude that A∗P is privacy-preserving and so is AP . �

3.2.2 Complex algorithms
We consider complex algorithms which can be decom-

posed into sequences of sub-steps. By hybrid argument [28],
PRAMOD allows a complex algorithm to derive secu-
rity from that of its sub-steps. Specifically, let AP =
(AP1 ;AP2 ; ..;APk ) be the algorithm consisting of k sub-
steps, in which the output of APi is the input of APi+1 .
If every sub-step APi is privacy-preserving, then so is AP .

Corollary 1. Given two privacy-preserving algorithms
P1 and P2, the combined algorithm P which first executes
P1 on the input and then applies P2 on the output of P1 is
also privacy-preserving.

Proof Sketch: This can be proved using the hybrid argu-
ment [28]. �

Note subtly that this corollary can only be applied a poly-
nomial number of times as opposed to repeated arbitrarily.
In other words, the number of combined sub-steps k cannot
be arbitrarily large. Interested readers can refer to [28] for
a detailed discussion. Nevertheless, this restriction does not
affect the utilization of PRAMOD in practice, for practical
algorithms do not contain an exponentially large number of
sub-steps.
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3.3 Discussion
One important implication of Theorem 1 is that the out-

put of AP is not always the same as that of P, since
the input has been permuted. For example, consider
merge sort algorithm with X = 〈00, 01, 02, 03, 04, 05〉 where
the subscripts indicate the original positions in the input.
The output P(X) = 〈00, 03, 01, 04, 02, 05〉, and AP (X) =
〈00, 02, 01, 05, 03, 04〉 for a certain permutation generated by
the scrambler. It can be seen that when P is invariant to
input permutation (i.e. P(X) = P(X ′) where X ′ is a per-
mutation of X), the outputs of P and AP are the same. In
practice, this condition can be achieved by adding a pre-
processing step which transforms the input, and a post-
processing step to reverse the effect. In the sort example,
the pre-processing step adds metadata to the keys so that
the input contains no duplicates (for instance, by using ad-
dress as the secondary key), and the post-processing step
removes the metadata.

There are many privacy-preserving algorithms which can
be combined to build complex algorithms that meet our se-
curity definition. A set of algorithms which scan through
the entire input and write the output to the same ad-
dresses is one example. Sort and compaction implemented
in PRAMOD are also privacy-preserving, as we will show
later. Other examples include existing data-oblivious al-
gorithms, such as oblivious data expansion [7], which can
be ported directly to PRAMOD. In fact, for complex algo-
rithms for which data-oblivious implementations exist, we
can re-use the implementations directly by replacing data-
oblivious sub-steps with more efficient privacy-preserving al-
gorithms in PRAMOD. We demonstrate this approach later
with the join algorithm (Section 4.4).

Although the algorithms considered so far are determin-
istic, Theorem 1 also generalizes to probabilistic algorithms
such as quick sort. Essentially, they can be modified to take
the random choices as additional input, thus making them
deterministic and to which Theorem 1 is applicable.

4. PRIVACY-PRESERVING DATA MAN-
AGEMENT ALGORITHMS

In this section, we provides examples of privacy-
preserving data management algorithms constructed using
PRAMOD framework: pSort, pCompact, pAggr and
pJoin. pSort and pCompact achieve security directly
using the scrambler (as discussed in Section 3.2.1), while
pAggr and pJoin derive security from that of their sub-
steps (as presented in Section 3.2.2).

For each algorithm, we first explain its variant in the base-
line system, then contrast it to the PRAMOD’s version. Fi-
nally, we analyse the performance of different alternatives,
the results of which are summarized in Table 1.

4.1 Sort
The algorithm rearranges the input according to a certain

order of the record keys.

Baseline solution. We implement the well-known external
merge sort [18] algorithm. First, the input is divided into
s = n/m blocks (s < m). Each block is sorted entirely inside
the trusted unit. Next, all s sorted blocks are combined
in 1 merge step using s-way merge. In this process, the
trusted memory is divided into s+ 1 parts, s of which serve

as input buffers, one for each sorted block. The last part
is the output buffer. s-way merge results in optimal I/O
performance because each record is read only once during
merging. This implementation, however, leaks the input
order as discussed earlier in Section 2.

Algorithm 1 Privacy-Preserving Sort

1: procedure Sort(X)
2: X ′ ← MakeKeyDistinct(X);

3: X̃ ← Scramble (X ′);

4: Y ′ ←ExternalMergeSort(X̃);
5: Y ← RevertKey(Y ′);
6: return Y ;
7: end procedure

Privacy-preserving solution. Algorithm 1 shows the
privacy-preserving sort algorithm – pSort – consisting of
four steps. (1) The pre-processing step appends the address
of each record to its key, i.e. key(x′i) = key(xi)||i, trans-
forming the input X to X ′ whose keys are distinct. (2) X ′

is securely permuted by the scrambler, which results in X̃.

(3) X̃ is sorted and becomes Y ′. The comparison function
break ties (if any) using the addresses attached to record
keys in the pre-processing step. (4) The post-processing
step scans through Y ′ and removes the address information,
generating the final output Y .

Although pSort employs merge sort as an underlying
sorting algorithm, it can use other sorting algorithms as well.
This generality is advantageous to PRAMOD: it can adopt
the most appropriate and efficient algorithm for the targeted
applications.

Performance analysis. The scrambler and merge sort
run in O(n) and O(n logn) time, respectively, therefore
pSort runs in O(n logn). To the best of our knowledge,
the most efficient data-oblivious sorting algorithms are from
Goodrich et al. [24, 22], among which the deterministic ver-
sion [24] runs in O(n log2 n) time, and the randomized ver-
sion [22] runs in O(n logn) time with a large constant fac-
tor. pSort attains optimal performance with low constant
factor, and is arguably simpler than the data-oblivious al-
ternatives.

4.2 Compaction
The algorithm removes marked records from the input.

The output contains n′ ≤ n unmarked records while pre-
serving the original order: if xi and xj are to be retained
and i < j, xi appears before xj in the output. For simplicity,
a record is marked with 1 if it is to be retained, and with 0
if it is to be dropped. Note that the output size n′ is not a
secret, i.e. our security definition allows this to be learned
by the adversary. This leakage is acceptable, because the
purpose of the algorithm is to reduce the number of records
stored on the storage accessible to the adversary. Keeping n′

secret would incur storage overhead and defeat the purpose
of compaction.

Baseline solution. A straightforward implementation se-
quentially pulls and decrypts records in the trusted unit,
then re-encrypts and writes back to the storage only those
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Table 1: Comparison of time complexity of different algorithms. For join algorithm, l is the size of the result join set.

Algorithm Baseline Data-oblivious PRAMOD
Sort O(n logn) O(n log2 n) O(n logn)
Compaction O(n) O(n logn) O(n)
Group aggregation O(n logn) O(n logn) O(n logn)
Join O(n1 logn1 + n2 logn2) O(n1 logn1 + n2 logn2 + l log l) O(n1 logn1 + n2 logn2 + l log l)

marked with 1 while discarding the others. This solution is
efficient, but it reveals distribution of the discarded records.

Algorithm 2 Privacy-Preserving Compaction

1: procedure Compact(X)
2: X ′ ← Mark(X)

3: X̃ ← Scramble (X ′)

4: Ỹ ← Filter (X̃)

5: Y ← Arrange (Ỹ )
. Arrange() is offloaded to the worker

6: return Y
7: end procedure

Privacy-preserving solution. Algorithm 2 shows the
privacy-preserving compaction algorithm – pCompact –
consisting of four steps. (1) In the pre-processing step, the
trusted unit initializes two counters, C1 = 0 and C2 = n.
Scanning through X, it marks each record with C1 or C2 if
it is to be retained or removed, respectively. C1 is then in-
cremented by 1, while C2 is decremented by 1 for each mark.
(2) The scrambler randomly permutes the marked dataset

to X̃. (3) The baseline algorithm is applied on X̃ to get

a compact dataset Ỹ . Note that Ỹ is not order-preserving.
(4) The mark information of the retaining records is revealed
to the worker so that it can move records to their desired
positions. The worker can finish this step by one linear scan

through Ỹ , instead of sorting Ỹ . Although the worker can
learn the marking of records, such leakage does not compro-
mise privacy as we argued earlier.

Performance analysis. Every step of pCompact runs in
linear time, thus the algorithm runs in O(n). The data-
oblivious algorithm for compaction [22] runs in O(n logn)
time. Interestingly, pCompact achieves the asymptotically
optimal time complexity of O(n) while keeping the constant
factor low.

4.3 Grouping and aggregation
The algorithm groups input records based on their keys

and then applies an aggregation function, such as sum-
ming or averaging, over the group members. Specifically, let
K = {k1, k2, . . . , kn′} be the set of unique keys in X, the al-
gorithm outputs Y = 〈y1, y2, . . . , yn′〉 in which key(yi) = ki
and value(yi) = Agg(value(x) : x ∈ X; key(x) = ki).

Baseline solution. First, records are sorted by their keys.
Then, the sorted records are scanned, and the aggregate
values are accumulated and written out immediately after
the last record of each group is encountered. Because of this
last step, the overall execution reveals the size of each group
even if a privacy-preserving sorting algorithm is used.

Algorithm 3 Privacy-Preserving Aggregation

1: procedure PrivateSum(X)
2: G← pSort(X)
3: k = k1

. k1 is first element in the the set of distinct keys K.
4: v = 0
5: for each g in G do
6: if key(g) = k then
7: v ← v + value(g)
8: Add 〈dummy〉 to V . output dummy record
9: else

10: Add 〈k, v〉 to V
11: k ← key(g)
12: v ← value(g)
13: end if
14: end for
15: Y ← pCompact(V ) . Remove all 〈dummy〉 from V
16: return Y
17: end procedure

Privacy-preserving solution. Algorithm 3 shows the
privacy-preserving algorithm – pAggr – based on a sort,
a compaction and a scanning step. pAggr illustrates a spe-
cial case of grouping with Sum(.) as an aggregation function.
It is easy to modify pAggr to accommodate other aggrega-
tion functions. First, it sorts X using pSort, obtaining G
in which records of the same key are inherently grouped to-
gether. Next, it scans through G, processes each record and
computes an intermediate result V . To prevent the worker
from inferring the size of each group, this step outputs not
only valid aggregation values, but also dummy records. Fi-
nally, it uses pCompact to remove dummy records in V .
Since these 3 steps are all privacy-preserving, it follows from
Corollary 1 that pAggr is also privacy-preserving.

Performance analysis. pAggr is constructed from
pSort and pCompact, thus it runs O(n logn) time. The
data-oblivious alternative described in [6] adopts the same
workflow, and its time complexity is also O(n logn).

4.4 Join
The algorithm takes as input two datasets X1, X2 of size

n1, n2 and outputs Y = X1 1 X2. For the sake of dis-
position, let us consider a simplified version of the join al-
gorithm, although generalizing to other join algorithms is
straight forward. A record xi ∈ X1 matches with another
record xj ∈ X2 if key(xi) = key(xj). Denote yij = xi · xj
as the join output of xi and xj , it follows that key(yij) =
key(xi) = key(xj) and value(yij) = value(xi)||value(xj).
Unlike the algorithms considered so far, the output size of
join can be larger than the input size.
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Table 2: Example of pJoin for inputs X1 = {〈a, fde〉, 〈a, tol〉, 〈b, lxv〉, 〈b, xdj〉} and X2 = {〈a,maj〉, 〈b,med〉, 〈c, tfn〉, 〈d, kbs〉}. Values in
parentheses appeared in columns W1 and W2 represent records’ degree in the join graph while those in columns V1 and V2 are running
sum of weights in each group.

X V2 V1 W1 W2 X1exp X2exp Y
〈a, fde〉X1

〈a, fde〉X1
(1) 〈d, kbs〉X2

(1) 〈b, xdj〉(1) 〈a,maj〉(2) 〈b, xdj〉 〈b,med〉 〈b, xdjmed〉〈a, tol〉X1
〈a, tol〉X1

(2) 〈c, tfn〉X2
(1)

〈a,maj〉X2
〈a,maj〉X2

(2) 〈b,med〉X2
(1) 〈b, lxv〉(1) 〈b,med〉(2) 〈b, lxv〉 〈b,med〉 〈b, lxvmed〉〈b, lxv〉X1

〈b, lxv〉X1
(1) 〈b, xdj〉X1

(1)

〈b, xdj〉X1
〈b, xdj〉X1

(2) 〈b, lxv〉X1
(1) 〈a, tol〉(1) 〈c, tfn〉(0) 〈a, tol〉 〈a,maj〉 〈a, tolmaj〉〈b,med〉X2

〈b,med〉X2
(2) 〈a,maj〉X2

(1)

〈c, tfn〉X2
〈c, tfn〉X2

(0) 〈a, tol〉X1
(1) 〈a, fde〉(1) 〈d, kbs〉(0) 〈a, fde〉 〈a,maj〉 〈a, fdemaj〉〈d, kbs〉X2

〈d, kbs〉X2
(0) 〈a, fde〉X1

(1)

Baseline solution. We consider the sort-merge join algo-
rithm. It first sorts X1 and X2, then performs interleaved
linear scans to find matching records. These sorting and
matching steps may reveal the entire join graph.

Algorithm 4 Privacy-preserving join

1: procedure Join(X1, X2)
2: X ← X1||X2

3: S ← pSort(X)
. tie is broken such that X1 records always come

before X2 records
4: V2 ← FRSum(S)
5: V1 ← RRSum(S)
6: W1 ← pCompact(V1)
7: W2 ← pCompact(V2)
8: X1exp ← OExpand (W1)
9: X2exp ← OExpand (W2)

10: Y ← X1exp ·X2exp

. stitch expansion of X1 and X2 to get the join output
11: return Y
12: end procedure

Privacy-preserving solution. Algorithm 4 shows the
privacy-preserving join algorithm — pJoin — which is based
on the data-oblivious algorithm proposed by Arasu el al. [7].
It consists of two stages. The first stage computes the degree
of each record in the join graph. The second stage dupli-
cates each record a number of times indicated by its degree.
The output is generated by “stitching” corresponding (du-
plicated) records with each other. pJoin basically replaces
the data-oblivious sub-steps in [7] with a pSort, two linear-
scan and two pCompact steps (line 2-7). However, it uses
the data-oblivious expansion step without change (line 8-
9). Because every step is privacy-preserving, it follows from
Corollary 1 that pJoin is also privacy-preserving.

In the first stage, pJoin first combines X1 and X2 into
one big dataset X of size n = n1 + n2, then privately sorts
X, ensuring that for those records having the same key,
tie is broken by placing X1’s records before X2’s. Next, it
scans the entire X in two passes. The first pass, FRSum(),
assumes that each X1 record has a weight value of 1 while
X2 record has a weight value of 0. It scans X from left to
right and associates with each record the running sum of
weights in its group. At the end of this pass, each record in
X2 is associated with a weight representing its degree in the
join graph. The second pass, RRSum(), similarly scans from
right to left, assuming weight values of 0 for X1 records and

1 for X2 records. At the end of this pass, X1 records are
associated with theirs degree in the join graph. After the
two passes, pCompact is invoked twice to remove X2 and
X1 records from V1 and V2, respectively, giving two weight
sequences W1 and W2.

In the second stage, pJoin duplicates each record in X1

and X2 a number of times indicated by its associated weight.
It directly uses the oblivious expansion algorithm presented
in [7] for this step. Finally, it performs a linear scan to stitch
records together and generate the final output Y . Table 2
gives a detailed example for pJoin.

Performance analysis. The time complexity of the first
stage is O(n logn), and that of the second stage is
O(n1 logn1 + n2 logn2 + l log l) where l = |X1 1 X2|. Over-
all, pJoin runs in O(n logn+l log l), which is the same as the
complexity of the oblivious alternative [7]. Nevertheless, we
show later in Section 5 that pJoin has lower running time
because pSort and pCompact are more efficient than the
data-oblivious sub-steps.

5. PERFORMANCE EVALUATION
We report the performance of the four algorithms de-

scribed in the last section: pSort, pCompact, pAggr and
pJoin. We generate input data following Yahoo! TeraSort
benchmark [36]. Each record comprises of a 10-byte key
and a 90-byte value. We encrypt the records with AES-
GCM using a 256-bit key, generating 132-byte ciphertexts.
We assign 64MB of secure memory to the trusted unit5 (i.e.
m = 219), and vary the input size from 8GB to 64GB. Our
implementations6 use Crypto++ library7 for cryptographic
operations. Experiments are run on a DELL workstation
equipped with a Intel i5-4570 3.2GHz CPU and a 500GB
SATA disk. We repeat each experiment 10 times and report
the average result.

5.1 Cost of Security

5We have run other sets of experiments with various secure
memory capacities (e.g. 128MB and 256MB) and found that
varying the secure memory within the small range does not
affect the the algorithms’ performance. On the other hand,
much larger secure memory, say a few GB, will improve the
running time. However, since we consider settings in which
m is in orders of

√
n, we rule out this option.

6Our implementations are available on github at https://
github.com/dkhungme/PRAMOD.
7http://www.cryptopp.com.
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Table 3: Leakage of the baseline system, oblivious solution and the proposed PRAMOD for different algorithms.

Algorithm Baseline Oblivious Algorithms PRAMOD
Sort Order of original input

Input & Output sizes Input & Output sizes
Compaction Distribution of removed records
Group aggregation Distribution of original input
Join Distribution of original input

Table 4: Overall running time (in seconds) of PRAMOD’s algo-
rithms in comparison with: (1) implementations in the baseline
system with weaker security and (2) data-oblivious algorithms
offering the similar level of pirvacy protection.

Oblivious
Algorithm Baseline PRAMOD

Algorithms

Sorting 3782.86
9195.78 37641.81
(2.43×) (9.95×)

Compaction 1553.88
7364.8 24636.32

(4.74×) (15.85×)

Group-Aggregation 5336.74
18144.46 63831.98
(3.39×) (11.96×)

Join 8444.53
42221.43 105210.44
(4.99×) (12.46×)
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Figure 4: Normalized running time breakdowns for PRAMOD’s
algorithms. The overall cost consists of the time taken by the
scrambler, plus the time required by the worker (if any). The rest
is taken by pre-processing, post-processing steps and the main al-
gorithm logic. The value on top of each bar indicates the running
time of the corresponding algorithm (in minutes).

We first compare PRAMOD’s algorithms with the al-
ternatives in the baseline system. As noted in Sec-
tion 4, the baseline implementations reveal more informa-
tion about the input via access patterns than what are ad-
mitted by our security definition. We then compare them
with data-oblivious algorithms: oblSort for sorting [24],
oblCompact for compaction [22], oblAggr for group
aggregation [6] and oblJoin for join [7]. For the sake of
completeness, we summarize leakage of different approaches
in Table 3.

Overhead. Table 4 quantifies the execution time
for 32GB inputs (or n = 228 records8). It shows that
PRAMOD incurs overheads between 2.43× to 4.99× over
the baseline system. This cost of security is considerable.
Nevertheless, it is still practical, considering the overheads of
data-oblivious algorithms offering the similar security level
are between 9.95× to 15.85×.

8For join algorithms which take as input two dataset X1 and
X2, we consider the input size to be the total size of X1 and
X2 (i.e. n = |X1|+ |X2|).
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Figure 5: Normalized running time breakdowns for group aggre-
gation and join algorithms. The running time consists of the time
taken by sort and compaction steps, as well as by other sub-steps.
The value on top of each bar indicates the running time of the
corresponding algorithm (in minutes).

Cost breakdown. To better understand factors that
contribute to the overheads, we measured the time taken by
the scrambler, by the worker (if any) and by other opera-
tions in the trusted unit. The last factor includes the time
spent on pre-processing, post-processing steps and on the
main algorithm logic. Figure 4 depicts this breakdown. It
can be seen consistently across all algorithms that the cost
of scrambling is significant. Particularly, the scrambler con-
tributes 42%, 52.3%, 42.6% and 27.4% to the overall cost
of pSort, pCompact, pAggr and pJoin, respectively. The
time taken by the untrusted worker accounts for small pro-
portion of the total running time, from 1.8% (for pJoin) to
5.4% (for pCompact). This is because the worker does not
perform cryptographic operations which are computation-
ally expensive.

As the security of group aggregation and join algorithms
are derived from that of sorting and compaction algorithms,
we also report cost break-down of the algorithms over the
sort, compaction and other sub-steps in Figure 5. The supe-
rior performance of pSort and pCompact helps pAggr and
pJoin achieve security with low cost. Apart from sort
and compaction, other sub-steps (e.g. oblivious expansion
step in join) in the data-oblivious algorithms and ours have
the similar running time. This explains why the contribu-
tions of sort and compaction to the overall running time
of pAggr and pJoin are less than that of the oblivious
alternatives (21.7 − 50.8% vs. 36.6 − 58.9% for sort and
34.8− 40.7% vs. 38.5− 46.8% for compaction).

Re-Encryptions and I/O complexity. Table 5 de-
tails the costs of cryptographic operations (which are CPU
intensive) and of communication between the trusted unit
and the storage (which is I/O intensive). Observe that
PRAMOD’s algorithms require O(n) I/Os with a small con-
stant factor, whereas all data-oblivious algorithms, except
for oblCompact, require O(n log2 n) I/Os. For join algo-
rithms, I/O complexity depends on d, the average record
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Table 5: Number of re-encryptions and I/O complexity required by PRAMOD’s algorithms and relevant data-oblivious solutions on
input of size n. p1 and p2 are constant parameters in the scrambler’s configuration (see Section 3.1). In our experiments, p1 = p2 = 2.
s = n/m and d is the average degree of records in the join graph (we assume d = 3 in our experiments).

Algorithm # Re-Encryption I/O Complexity
pSort (p1 + p2 + 5) · n O(n)

oblSort[24] (
∑log s

i=1 i+ log s+ 1) · n O(n log2 n)
pCompact (p1 + p2 + 2) · n O(n)

oblCompact[22] (1 + logn) · n O(n logn)
pAggr (2p1 + 2p2 + 8) · n O(n)

oblAggregate[6] (
∑log s

i=1 i+ log s+ logn+ 3) · n O(n log2 n)
pJoin (3p1 + 3p2 + 9 + d) · n O(dn)

oblJoin[7] (
∑log s

i=1 i+ log s+ 2 logn+ 5 + d) · n O((dn) log(dn) + n log2 n)

degree in the join graph. For uniformly distributed datasets,
d can be considered as a constant (we assumed d = 3 in our
experiments).

Recall that a record is re-encrypted every time it leaves the
trusted unit, hence the number of re-encryptions is propor-
tional to the I/O complexity. Table 5 gives the exact number
of re-encryptions in each algorithm. For PRAMOD algo-
rithms, these numbers depend on their specific configura-
tions, i.e. p1, p2. The scrambler performs (p1 + p2 + 1)× n
re-encryptions in scrambling n records. In our experiments,
we find that for the datasets under consideration, with
p1 = p2 = 2, the scrambler achieves optimal running time
and negligible probability of restarting9 . On the other
hand, the numbers of re-encryptions of data-oblivious al-
gorithms depend only on the size of the secure memory.
We observe that given secure memory of size m = c

√
n

(where c is a small constant larger than one) and the same
input, the data-oblivious algorithms perform a few times
more re-encryptions than PRAMOD’s privacy-preserving al-
gorithms, which directly translates to considerable perfor-
mance overheads.

5.2 Efficiency and Scalability
Figure 6 illustrates how the algorithms scale in running

time with larger input sizes. PRAMOD’s algorithms out-
perform the data-oblivious alternatives for all input sizes.
More specifically, pSort is faster than oblSort [24] by
2.6 − 4.4× (Figure 6a). Similarly, pCompact is faster
than oblCompact [22] by 3 − 3.5×(Figure 6b), pAggr is
faster than oblAggr [6] by 2.7 − 3.8× (Figure 6c), and
pJoin is faster than oblJoin [7] by 2 − 2.6× (Figure 6d).
The speedup is due to the fewer numbers of re-encryptions
and I/O accesses, both are expensive operations.

It is worth noting that the speedup becomes more evi-
dent with larger inputs: from 2 − 3× for 8GB datasets to
2.6 − 4.4× for 64GB datasets. This suggest PRAMOD’s
algorithms are more efficient and scalable than the data-
oblivious alternatives.

Discussion. PRAMOD is currently running on a single ma-
chine, but we stress that porting it to a distributed environ-
ment is straight forward for two reasons. First, the scram-
bler processes data in blocks independently of each other,
which lends itself naturally to distributed setting. Con-
sequently, distributing the scrambler’s workload to multi-

9From the Appendix A, with p1 = p2 = 2 and n = 228, the
probability that the scrambler need to restart is Prrestart =
5.3530× 10−70.

ple nodes could result in substantial speed-up because the
scrambling process is CPU intensive. In fact, the current im-
plementations are multi-threaded (4 threads), and in com-
parison with the single-thread version, we observed 1.8×
speed-up. Second, most external-memory algorithms are of-
ten designed to support parallelism, making it simple to port
them to a distributed setting. On the other hand, data-
oblivious algorithms are difficult to parallelize because of
their complexity.

6. RELATED WORK
Secure Data Management using Trusted Hard-

ware. Several systems have used trusted computing hard-
ware such as IBM 4764 PCI-X 10 or Intel SGX [1] to en-
able secure data management. TrustedDB [8] presents a
secure outsourced database prototype which leverages on
IBM 4764 secure CPU (SCPU) for privacy-preserving SQL
queries. Cipherbase [6] extends TrustedDB’s idea to offer
a full-fledged SQL database system with data confidential-
ity. V C3 employs Intel SGX processors to build a general-
purposed data analytics system. In particular, it supports
MapReduce computations, and protects both data and the
code inside SGX’s enclaves. However, these systems do not
meet our security definition, i.e. they offer a weaker security
guarantee.

Recent systems [17, 34] adopt a similar approach to this
paper’s to support privacy-preserving computation. How-
ever, they focus on the MapReduce computation model,
and specifically use scrambling to ensure security for the
shuffling phase (which is essentially a sorting algorithm).
PRAMOD is a more general framework which supports
many other algorithms.

Secure Computation by Data-Oblivious Tech-
nique. Oblivious-RAM [21] enables secure and oblivious
computation by hiding data read/write patterns during pro-
gram execution. ORAM techniques [38, 12, 24] trust a
CPU with limited internal memory, while user programs
and data are stored encrypted on the untrusted server. Se-
curity is achieved by making data accesses to the server ap-
pear random and irrelevant to the true and intended access
sequences. A non-oblivious algorithm can be made data-
oblivious by adopting ORAM directly, but this approach
leads to performance overhead of at least a O(logn) multi-
plicative factor. PRAMOD offers a similar level of security
with only an O(n) additive overhead.

10http://www-03.ibm.com/security/cryptocards/
pcixcc/overview.shtml
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Figure 6: Performance comparison between our algorithms and the corresponding data-oblivious alternatives. Running time (in seconds)
is reported in log-scale (y-axis) for different input sizes (x-axis).

Another line of works advocate designing data-oblivious
algorithms. Goodrich et al. present several oblivious
algorithms for sorting [24, 23], compaction and selec-
tion [22]. The authors also propose approaches to simulate
ORAM using data-oblivious algorithms [24]. Other inter-
esting data-oblivious algorithms have also been proposed
for graph drawing [25], graph-related computations such
as maximum flow, minimum spanning tree, single-source
single-destination (SSSD) shortest path, and breadth-first
search [11]. However, these algorithms are application-
specific and less efficient than PRAMOD’s algorithms.

7. CONCLUSION
In this paper, we have described PRAMOD, a frame-

work for enabling efficient and privacy-preserving data man-
agement algorithms using trusted computing with limited
secure memory. We showed that for many algorithms,
prepending them with the scrambling step make the algo-
rithms privacy preserving. Moreover, PRAMOD achieves
security for other complex algorithms by decomposing them
into smaller privacy-preserving sub-steps. We demonstrated
four algorithms: pSort for sorting, pCompact for com-
paction, pAggr for group aggregation and pJoin for join,
all of which are not only privacy-preserving but also opti-
mal. We showed experimentally that the algorithms are ef-
ficient and scalable, outperforming the corresponding data-
oblivious algorithms offering a similar level of privacy pro-
tection.
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A. THE MELBOURNE SHUFFLE
The shuffle algorithm shares our assumptions on encryp-

tion of data records. Particularly, all records are encrypted
using a semantic secure encryption scheme. They are only
decrypted inside the trusted unit and re-encrypted before
being written back to the storage.

The algorithm takes as input a randomly chosen permu-
tation π and a data set X of n items. The permutation
π is generated using a pseudo random permutation [28],
and represented by a short secret seed. The algorithm then

obliviously arranges n items to their final position in X̃ with
respect to π. The shuffling requires two intermediate arrays
T1 and T2 which are of size p1n and p2n where p1 and p2
are constants and p1, p2 > 1. First, X, T1, T2 and X̃ are
divided into

√
n buckets, each contains O(

√
n) records. Ev-

ery 4
√
n buckets constitute a chunk and there are 4

√
n chunks

in total. Each bucket of T1 holds p1
√
n records while each

bucket in T2 stores p2
√
n.

The algorithm proceeds in two phases: distribution and
clean-up. The first phase comprises of two rounds. Records
are moved from X to T1 in the first round, such that records

belonging to the ith chunk of X̃ will be put in the ith chunk
of T1. In the second round, records in T1 are distributed
among buckets of T2 such that at the end of this distribution,
records are located in their correct buckets. To ensure the
obliviousness, data written to T1 and T2 are padded to equal
size. This implies adding dummy records. There are (p1 −
1)n dummy records in T1 and similarly (p2−1)n are written
to T2. The second phase, clean-up, removes dummy records
and arranges real records to correct positions within their
own bucket.

In each round, the trusted unit sequentially process each
of
√
n buckets. Recall that each bucket contains O(

√
n)

records, the entire bucket can fit in the secure memory of the
trusted unit. Records within the bucket, after being read to
the secure memory, are divided into 4

√
n segments according

to their final positions. In distributing records from X to
T1, each segment has at most p1 4

√
n records and they are

written to corresponding chunks in T1. Similarly, in the
second distribution, each segment hold upto p2 4

√
n records,

which are then placed to their corresponding buckets. If
a segment contains less records than its capacity, dummy
records are added to ensure data-obliviousness. However, if
so many records are located to one segment that it becomes
overflowed, the algorithm aborts and restarts. Using Poisson
Approximation [9] and the result from [35], the probability
that the algorithm restarts is:

Prrestart ≤ 2n3/4( ep1

p
p1

4√n
1

+ ep2

p
p2

4√n
2

)
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