
The Number of Boolean Functions with

Multiplicative Complexity 2

Magnus Gausdal Find1, Daniel Smith-Tone1,2, and Meltem Sönmez
Turan 1,3

1 National Institute of Standards and Technology,
2 University of Louisville
3 Dakota Consulting Inc.

{magnus.find,daniel.smith,meltem.turan}@nist.gov

Abstract. Multiplicative complexity is a complexity measure defined
as the minimum number of AND gates required to implement a given
primitive by a circuit over the basis (AND, XOR, NOT). Implementa-
tions of ciphers with a small number of AND gates are preferred in pro-
tocols for fully homomorphic encryption, multi-party computation and
zero-knowledge proofs. In 2002, Fischer and Peralta [12] showed that the
number of n-variable Boolean functions with multiplicative complexity
one equals 2

(
2n

3

)
. In this paper, we study Boolean functions with multi-

plicative complexity 2. By characterizing the structure of these functions
in terms of affine equivalence relations, we provide a closed form formula
for the number of Boolean functions with multiplicative complexity 2.
Keywords:Affine equivalence; Boolean functions; Cryptography; Mul-
tiplicative complexity; Self-mappings

1 Introduction

Multiplicative complexity is a complexity measure defined as the
minimum number of AND gates required to implement a given prim-
itive by a circuit over the basis (AND, XOR, NOT). In recent years,
the relationships between multiplicative complexity and cryptogra-
phy has been pointed out in several studies:

Multiplicative Complexity and Cryptography Many protocols for fully
homomorphic encryption (e.g., [1]), multi-party computation (e.g.,
[2]) and zero-knowledge proofs of knowledge (e.g., [3]) operate on the
circuit representation of a function in a gate-by-gate manner. In these
and many other protocols it is the case that processing AND gates is
more expensive than processing XOR gates. We refer to [4] and the
references therein for a comprehensive list of examples. Courtois et



al. [5] argued that minimizing the number of AND gates is important
to prevent against side channel attacks such as differential power
analysis. In Eurocrypt’15, Albrecht et al.[4] used this motivation to
design the family of block ciphers LowMC.

On the other hand, having a certain multiplicative complexity
is essential for security, e.g., Boyar et al. [6] showed that a crypto-
graphic hash function must have a certain multiplicative complexity
to be collision resistant.

Multiplicative Complexity and Circuit Design Determining the mul-
tiplicative complexity of a given function is computationally intractable,
even for functions with a small number of variables. For general n,
it is known that under standard cryptographic assumptions it is not
possible to compute the multiplicative complexity in polynomial time
in the length of the truth table [7]. The multiplicative complexity of
a random n-variable Boolean function is at least 2n/2 − O(n) with
high probability [8]. In 2010, Boyar et al. [9] proposed a two-stage
heuristic method to minimize the gate complexity of Boolean cir-
cuits. In the first stage, the heuristic minimizes the number of AND
gates required to implement the function, and then in the second
stage, the linear components are optimized. Using this method, they
constructed efficient circuits for the AES S-box over the basis (AND,
XOR, NOT). In 2014, Turan and Peralta [10] studied the multiplica-
tive complexity of five variable Boolean functions and showed that
any five variable Boolean function can be implemented with at most
four AND gates. Also in 2014, Zajac and Jókay [11] showed that
any bijective 4×4 Sbox can be implemented with at most five AND
gates.

This Paper In this work, we study the number of n-variable Boolean
functions with multiplicative complexity M . Schnorr [13] gave a
closed form for the number of n-variable quadratic functions with a
given multiplicative complexity. In [8], it is shown that the number of
functions with multiplicative complexityM is at most 2M

2+2M+2Mn+n+1.
For large values of n and M , this bound is essentially tight [8], but
it is unclear to what extent this is true for small constant values of
M . In 2002, Fischer and Peralta [12] showed that there are precisely
2
(
2n

3

)
Boolean functions on n variables with multiplicative complex-

2



ity 1. Their result was based on properties on polynomial represen-
tations of such Boolean functions and the authors mention that this
technique is unlikely to generalize to the case of even multiplicative
complexity 2. In this work, we developed an alternative approach to
count the number of Boolean functions with a given multiplicative
complexity. Our approach relies on canonical circuits that compute
functions of a certain multiplicative complexity. First, we count the
number of such circuits, and then by solving a certain system of
polynomial equations we obtain the number of functions from this.
From a theoretical perspective this gives an algorithm, that given
as input M , outputs a formula for the number of functions in n
variables with multiplicative complexity M . Using this approach, we
reprove the result of Fischer and Peralta [12], and extend the result
to show that the number of Boolean functions with multiplicative
complexity exactly 2 equals:

2n(2n − 1)(2n − 2)(2n − 4)

(
2

21
+

2n − 8

12
+

2n − 8

720

)
.

We remark that this is asymptotically a factor of 29·720
61

≈ 6043
smaller than the bound from [8].

The organization of the paper is as follows. Section 2 gives def-
initions and some preliminary information about Boolean functions
and multiplicative complexity. Section 3 discusses affine transforma-
tions and equivalence classes. Section 4 studies the Boolean functions
with multiplicative complexity one. Section 5 provides the equiva-
lence classes of Boolean functions with multiplicative complexity 2.
Section 6 concludes the paper.

2 Preliminaries

Let F2 be the binary field. An n-variable Boolean function f is a
mapping from Fn2 to F2. Let Bn be the set of n-variable Boolean func-
tions. A Boolean function f ∈ Bn can be represented uniquely by the
list of output values for each input Tf = (f(0, . . . , 0), f(0, . . . , 0, 1), . . . , f(1, . . . , 1)).
This list is called the truth table (representation) of f . Since the
truth table has length 2n and there are two possibilities for each,
|Bn| = 22n . Another way of representing a Boolean function f ∈ Bn
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is by the unique multilinear polynomial called the algebraic normal
form (ANF)

f(x1, . . . , xn) =
∑
u∈Fn

2

aux
u, (1)

where au ∈ F2 and xu = xu11 x
u2
2 · · ·xunn is a monomial containing

the variables xi where ui = 1. The degree of the monomial xu is
the number of variables appearing in xu. The degree of a Boolean
function, denoted df , is the highest degree of monomials occurring in
its ANF. Functions with degree 2 are called quadratic and functions
with degree 1 are called affine.

The multiplicative complexity of a Boolean function f is the mini-
mum number of AND gates (multiplications in F2) that are sufficient
to evaluate the function over the basis (AND, XOR, NOT) where
all gates have fanin 2. It is known that a function with degree d has
multiplicative complexity at least d−1 [14]. This bound is called the
degree bound.

3 Affine Transformations and Equivalence
Classes

Definition 1. [15] A map S : Bn → Bn is called an affine transfor-

mation if g
S7−→ f is defined by

f(x) = g(Ax + a) + b>x + c, for all x,

where A is a non-singular n× n matrix over F2; a,b,x are column
vectors in Fn2 and c ∈ F2.

An affine transformation can be characterized by the values of
A, a,b, c. Directly from the definition of an affine transformation, it
follows that the relation

R = {(f, g)| ∃ an affine transformation from f to g},

is an equivalence relation on Bn. This relation imposes equivalence
classes on Bn, and two functions in the same class are said to be
affine equivalent. An algorithm to determine whether two functions
are equivalent is given in [16].
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Let [f ] denote the equivalence class containing the function f .
For brevity, we refer to the function f ∈ Bn by its algebraic normal
form. For example we will refer to the n-variable function f(x) =
x1x2x3 as simply x1x2x3, while [x1x2x3] refers to the equivalence
class containing f .

By counting the number of choices of the A, a, b, and c from
Definition 1, we get that for all n ∈ N, the total number of distinct
affine transformations applicable to any given function f ∈ Bn is

τn = 22n+1

n−1∏
i=0

(2n − 2i).

It was shown in 1972 by Berlekamp and Welch that B5 has 48
equivalence classes [15]. Maiorana [17] proved that B6 has 150 357
equivalence classes. This was independently verified by Fuller [16]
and Braeken et al. [18]. It was shown by Hou [19] that B7 has
63 379 147 320 777 408 548(≈ 265.78) classes. See Table 1 for the equiv-
alence classes with n=2,3,4 variables.

n Equivalence Class [f ] |[f ]| |Θ(f)| dimension k τn

2
[x1] 8 24 1

192
[x1x2] 8 24 2

3
[x1] 16 1344 1

21504[x1x2] 112 192 2
[x1x2x3] 128 168 3

4

[x1] 32 322 560 1

10321920

[x1x2] 1120 9216 2
[x1x2x3] 3840 2688 3
[x1x2 + x3x4] 896 11 520 4
[x1x2x3 + x1x4] 26 880 384 4
[x1x2x3x4] 512 20 160 4
[x1x2x3x4 + x1x2] 17920 579 4
[x1x2x3x4 + x1x2 + x3x4] 14336 720 4

Table 1. Equivalence classes for n = 2, 3, 4.

It should be noted that multiplicative complexity is affine invari-
ant, i.e., the multiplicative complexity of a Boolean function does not
change after applying an affine transformation to the function. Hence
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functions in the same equivalence class all have the same mulitiplica-
tive complexity.

3.1 Properties of Affine Transformations

For the purposes of the rest of the paper, we represent the affine
transformation from f(x) to f(Ax + a) + b>x + c using the tuple
S = (A, a,b, c). The collection of affine transformations (A, a,b, c)
forms a group An under the operation ⊗ defined by

(A1, a1,b1, c1)⊗(A2, a2,b2, c2) = (A2A1, A2a1+a2, A
>
1 b2+b1,b

>
2 a1+c1+c2).

Note that this group operation corresponds to applying the affine
transformation (A2, a2,b2, c2), followed by (A1, a1,b1, c1).

Let f ∈ Bn and let Lf be the number of distinct input variables
appearing in the ANF of f . For example, for f(x1, . . . , x6) = x1x2x3+
x3x4, Lf is 4. It is easy to see that (i) the dimension of [f ] is at least
the degree of f , and (ii) Lf is not affine invariant.

Definition 2. The equivalence class [f ] has dimension k (0 ≤ k ≤
n), if the smallest Lg for g ∈ [f ] is k, i.e., k = ming∈[f ] Lg. Overload-
ing the definition, any function g ∈ [f ] is also said to have dimension
k.

For a function g ∈ Bk, the embedding of g in Bn is the function
gn(x) = g(x1, . . . , xk). When certain inputs do not affect the value
of the output of a function we denote them with ∗ or when clear from
context ignore them altogether. Thus gn(x) = gn(x1, . . . , xk, ∗, . . . , ∗) =
g(x1, . . . , xk). We say that the function g ∈ Bk is a k-dimensional
representative of f ∈ Bn if the embedding of g in Bn is affine equiv-
alent to f . Note that if the dimension of [f ] is k then there exist
`-dimensional representatives of f for all ` ≥ k.

Next we derive a useful computational result; namely, affine equiv-
alence can be tested with low-dimensional representatives.

Lemma 1. Let f, g ∈ Bn be of dimension at most k. Let fk and
gk be k-dimensional representatives of f and g, respectively. Then
g ∈ [f ] if and only if gk ∈ [fk].

Proof. Suppose that f and g are affine equivalent. Then there exists
an affine transformation S ∈ An such that S(f) = g. Let fn and gn

6



be the embeddings of fk and gk in Bn. By definition there exist affine
transformations T, U ∈ An such that T (fn) = f and U(gn) = g. Thus
U−1 ⊗ S ⊗ T (fn) = gn, and so fn and gn are affine equivalent. We
may write

U−1 ⊗ S ⊗ T =

([
A B
C D

]
,

[
a1

a2

]
,

[
b1

b2

]
, c

)
,

where A is k× k, B is k× n− k, C is n− k× k, D is n− k× n− k,
a1 and b1 are k-dimensional, and a2 and b2 are n− k-dimensional.

Let x1 =
[
x1 · · · xk

]>
and x2 =

[
xk+1 · · · xn

]>
. Since the variables

xk+1, . . . , xn do not occur in the ANF of gn, we find that

fn

([
A B
C D

] [
x1

x2

]
+

[
a1

a2

])
is linear in x2. Thus

fn

([
A B
C D

] [
x1

x2

]
+

[
a1

a2

])
+fn

([
A 0
C D

] [
x1

x2

]
+

[
a1

a2

])
=
[
0 b′2

] [x1

x2

]
.

Adding
[
b1 b2

] [x1

x2

]
+ c to both sides of this equation we obtain on

the left hand side gn and on the right hand side

fn

([
A 0
C D

] [
x1

x2

]
+

[
a1

a2

])
+
[
b1
> b2 + b′2

>] [x1

x2

]
+ c.

Since the output of fn doesn’t involve the variables xk+1, . . . , xn, we
learn that b′2 = b2. Clearly A is of full rank. Then for all x = x1||x2,

gk(x1) = gn(x1||x2) = fn

([
A 0
C D

] [
x1

x2

]
+

[
a1

a2

])
+
[
b1
> 0>

] [x1

x2

]
+ c

= fn([Ax1 + a1]||[Cx1 +Dx2]) + b1
>x1 + c

= fk(Ax1 + a1) + b1
>x1 + c.

Thus fk and gk are affine equivalent.
To prove the converse, assume that fk and gk are affine equivalent.

Then there exists an affine transformation S such that S(fk) = gk.
We may write S = (A, a,b, c). Consider the affine transformation

S̃ =

([
A 0
0 I

]
,

[
a
0

]
,

[
b
0

]
, c

)
.
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It is obvious that for all x ∈ Fn2 with x = x1||x2 where x1 ∈ Fk2 and
x2 ∈ Fn−k2 that

S̃(fn)(x) = fn

([
A 0
0 I

] [
x1

x2

]
+

[
a
0

])
+
[
b 0
] [x1

x2

]
+ c

= fn(Ax1 + a||x2) + b>x1 + c

= fk(Ax1 + a) + b>x1 + c

= gk(x1)

= gn(x).

Thus fn and gn are affine equivalent, and by transitivity, f and g are
affine equivalent. Thus the proof is complete. ut

3.2 Self-Mappings

In this section we establish a few facts on a particular kind of
affine transformations, called self-mappings.

Definition 3. [16] A self mapping of f ∈ Bn is an affine trans-
formation such that f(x) = f(Ax + a) + b>x + c, where A is a
non-singular n× n matrix over F2; a,b,x are column vectors in Fn2
and c ∈ F2.

Let f ∈ Bn, and Θ(f) be the set of self-mappings of f . We first
remark that Θ(f) is closed under the group operation ⊗, since for
every x ∈ Fn2 and every pair of self-mappings (S1, S2), defined by the
tuples S1 = (A1, a1,b1, c1) and S2 = (A2, a2,b2, c2), we have:

(S1 ⊗ S2)(f)(x) = f(A2A1x + A2a1 + a2) + (A>1 b2 + b1)
>x + b>2 a1 + c1 + c2

= f(A2A1x + A2a1 + a2) + b>2 A1x + b>1 x + b>2 a1 + c1 + c2

= f(A2(A1x + a1) + a2) + b>2 (A1x + a1) + c2 + b>1 x + c1.

(2)

Now since f(A2x+a2)+b>2 x+c2 = f(x) for all x and since A1x+a1

is a permutation, we have that

f(A2(A1x + a1) + a2) + b>2 (A1x + a1) + c2 = f(A1x + a1), (3)
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for all x. Thus from equations (2) and (3) we obtain:

(S1 ⊗ S2)(f)(x) = f(A2(A1x + a1) + a2) + b>2 (A1x + a1) + c2 + b>1 x + c1

= f(A1x + a1) + b>1 x + c1

= f(x).

Since Θ(f) is finite, Θ(f) forms a subgroup of An. By the Orbit-
Stabilizer Theorem, we have

|[f ]| = τn
|Θ(f)| .

In the following lemma, we let σ be the number of ways of choos-
ing k+ 1 n-dimensional affine forms, t1, . . . , tk+1, over x1, . . . , xn the
first k of which are linearly independent.

Lemma 2. Let f ∈ Bn, and g ∈ Bk be a k-dimensional representa-
tive of f . Let gn be the embedding of g in Bn and let ρ be the number
of choices of affine forms r1, . . . , rk+1 such that

gn(t1, . . . , tk, ∗, . . . , ∗)+tk+1 = gn(r1, . . . , rk, ∗, . . . , ∗)+rk+1 for all x ∈ Fn2 .

Then |[f ]| = |[gn]| = σ
ρ
.

Proof. Let I be the collection of self mappings (A, a,b, c) with b = 0
and c = 0 that satisfies the system of linear equations

A · (x1, . . . , xn)T + a = (x1, . . . , xk, ∗, . . . , ∗)T .

Since I is a subgroup of Θ(gn), the cosets of I form a refinement of
the partition of An formed by the cosets of Θ(gn). Hence |An : I| =
|An : Θ(gn)||Θ(gn) : I|.

Any affine mapping in I has the form:([
I 0
A B

]
,

[
0
a

]
,

[
0
0

]
, 0

)
,

where I is the k × k identity matrix, A is an (n − k) × k matrix,
B is an (n − k) × (n − k) matrix, and a is an n − k-dimensional
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column vector. Consider an arbitrary left coset of I. That is, a left
coset generated by

S =

([
C D
E F

]
,

[
c
d

]
,

[
e
f

]
, h

)
,

where each of the block matrices and block vectors are of the ap-
propriate dimension. Any member of the left coset S ⊗ I is given
by ([

C D
AC +BE AD +BF

]
,

[
c

Ac +Bd + a

]
,

[
e
f

]
, h

)
.

Here, the first k rows of the first two coordinates as well as the last
two coordinates of this element are identical to S; therefore any two
elements in S⊗I share these k+ 1 affine forms (the first k of which
are necessarily independent) in common. On the other hand, since
gn is the embedding of a k-dimensional simple representative of f ,
different values of the last two coordinates of S give rise to different
functions; thus, since each such coset of I is determined by the first
k rows of the first two coordinates of S along with the last two
coordinates of S, the cosets of I are uniquely determined by such
choices of k + 1 affine forms with the first k linearly independent.
Therefore |An : I| = σ and |Θ(f) : I| = ρ. Thus |[f ]| = |[gn]| =
|An:I|
|Θ(f):I| = σ

ρ
. ut

A particular consequence of the lemma is the following tool for
computationally determining the number of self-mappings of a Boolean
function by computing on a much smaller search space.

Corollary 1. Let f ∈ Bn be of dimension k. Let g ∈ Bk be a k-
dimensional representative of f and let gn be the embedding of g in
Bn. The number of self-mappings θ of f is

θ = 2n−k
n−1∏
i=k

(2n − 2i)ρ,

where ρ is the number of choices of affine forms r1, . . . , rk+1 such
that

gn(t1, . . . , tk, ∗, . . . , ∗)+tk+1 = gn(r1, . . . , rk, ∗, . . . , ∗)+rk+1 for all x ∈ Fn2 ,

as in Lemma 2.

10



Proof. When n = k we have θ = ρ in the formula. If k < n, by
Lemma 2, we have that σ

ρ
= |[gn]| = τn

θ
, and thus θ = τnρ

σ
. Since

σ = 2n+k+1
∏k−1

i=0 (2n − 2i), and since |Θ(f)| = |Θ(gn)|, we have the
result. ut

We will count the number of functions with multiplicative com-
plexity M using the following strategy. First show that all functions
on n variables with multiplicative complexity M can be partitioned
into equivalence classes, each having a representative of a dimension
independent of n. Now the size of each of these equivalence classes
(as a function of n) can be determined directly using Corollary 1 as
τn/θ. The total number of functions is then the sum of the sizes of
these equivalence classes.

4 Boolean Functions with Multiplicative
Complexity One

Fischer and Peralta [12] provided the number of Boolean func-
tions with multiplicative complexity one. In this section, we reprove
their result using an alternative method which can easily be extended
for multiplicative complexity two.

Proposition 1. Let f be an n-variable Boolean function with mul-
tiplicative complexity 1. f is affine equivalent to x1 · x2.
Proof. Let f ∈ Bn have multiplicative complexity exactly 1. Then f
is of the form

f(x) = (a>x) · (b>x) + c>x + d,

where a and b are distinct and nonzero. Note that when a and b do
not satisfy these conditions, the multiplicative complexity of f is 0.

Define the function g ∈ Bn by

g(x1, . . . , xn) = x1 · x2.

We want to show that f and g are affine equivalent. It suffices to
show that there exists an invertible A such that

f(x) = g(Ax) + c>x + d.
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One can let the first row of A be a>, the second row be b>. The last
n−2 vectors can be chosen arbitrarily under the condition that they
together with a,b form a basis of Fn2 . This is possible since a,b are
distinct and therefore linearly independent. ut

Thus it suffices to count the number of functions in the equiva-
lence class from Proposition 1. To this end, we use Lemma 2.

Theorem 1. The number of n-variable Boolean functions with mul-
tiplicative complexity 1 is exactly

2n+1(2n − 1)(2n − 2)/6.

Proof. First we count the number of circuits with exactly one AND
gate, then, compute the number of functions with multiplicative
complexity 1. Written as a formula, such a circuit is of the form

C(x) = t1(x) · t2(x) + t3(x),

where t1, t2 and t3 are affine forms on F2. Since t1, t2 must be linearly
independent, the number of such circuits is 4 ·2n ·(2n−1) ·2n+1. Now
we want to use Corollary 1. For this, we determine ρ, number of such
triples of affine forms satisfying the above equation. An exhaustive
search (we used a computer program but the system is small enough
that one can do this by hand) found that ρ = 24. We get that
the size of the equivalence class x1x2, the number of functions with
multiplicative complexity 1 is

4 · 2n · (2n − 1) · 2n+1

24
,

which is what we wanted. ut

5 Boolean Functions with Multiplicative
Complexity Two

In this section, we generalize the proof technique from the pre-
vious section to count the number of functions with multiplicative
complexity 2. We start by showing that there exist exactly three
equivalence classes with multiplicative complexity 2.
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Theorem 2. Let f be an n-variable Boolean function with multi-
plicative complexity 2. Then f is affine equivalent to exactly one of
the following three functions:

1. x1x2x3
2. x1x2x3 + x1x4
3. x1x2 + x3x4

Proof. First we show that each function with multiplicative complex-
ity 2 falls in one of three classes. Consider a circuit, C, containing
exactly two AND gates computing a function with multiplicative
complexity two. Suppose first that there is no directed path from
either of the AND gate to the other. In this case there exists affine
forms r1, , . . . , r5 such that the circuit computes the function

C(x) = r1(x) · r2(x) + r3(x) · r4(x) + r5(x).

This function is affine equivalent to x1x2+x3x4 via an affine transfor-
mation similar to the one demonstrated in the proof of Theorem 1.

Now suppose that there exist a directed path from one of the
AND gates to the other. Call the functions computed by the two
AND gates fA1 , fA2 , respectively. Suppose the topologically minimal
AND gate computes the function fA1(x) = r1(x)r2(x) for suitably
chosen affine forms r1, r2.

We now claim that there exist affine forms r3, r4, r5 such that the
circuit computes the function

(r1 · r2 + r3) · r4 + r5.

First, we can assume that fA1 occurs only in one of the two inputs
of fA2 . To see this, notice that

(fA1 + r3) · (fA1 + r4) = (fA1 + r3) · (r4 + r3 + 1).

Therefore the topologically last AND gate, fA2 , computes the func-
tion

fA2 = (fA1 + r3) · r4.
So we have that the output of the circuit is either fA2 + r5, or fA2 +
fA1 + r5. for some affine function L5.
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We claim that the output can be assumed to be on the first form.
Suppose A2 = (A1+r3)·r4, and let A′2 = (A1+r3)·(r4+1), r′5 = r5+r3

A′2 + r′5 = (A1 + r3) · (1 + r4) + r3 + r5 = A2 + A1 + r5.

This proves the claim. Now suppose that r3 ∈ spanF2
{r1, r2, r4}, and

let
r3 = c1r1 + c2r2 + c4r4.

By adding constants to r1, r2 we can assume that c1 = c2 = 0. That
is we have that the function computed is:

(r1r2 + c4r4)r4 + r5,

again we can assume that c4 = 0 since otherwise

(r1r2 + r4)r4 + r5 = r1r2r4 + r4 + r5.

We observe that the affine functions r1, r2, r4 must be linearly in-
dependent (otherwise the function has multiplicative complexity at
most 1). We conclude that this function is affine equivelant to x1x2x3.

Now suppose that r3 is linearly independent of r1, r2, r4. In this
case the function computed is

r1r2r4 + r3r4 + r5,

for linearly independent functions r1, r2, r3, r4. This function is clearly
linearly equivalent to the function x1x2x3 + x1x4.

Finally we notice that these three functions indeed belong to
three distinct equivalence classes. The function (3) has degree two,
and is therefore not affine equivalent to a function of degree 3. Fur-
thermore, by Lemma 1 a simple calculation shows that [x1x2x3] has
dimension 3 whereas [x1x2x3 + x1x4] has dimension 4. Thus these
equivalence classes are distinct. ut
The result readily implies that there are three different circuit types
computing functions with multiplicative complexity 2. These are
shown in Figure 1.

Theorem 3. The number of n-variable Boolean functions with mul-
tiplicative complexity 2 is exactly

2n(2n − 1)(2n − 2)(2n − 4) ·
(

2

21
+

2n − 8

12
+

2n − 8

720

)
.
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⊕

∧

⊕

Type I Type II Type III

Fig. 1. The three different circuit types for the three equivalence classes.ri denotes an
affine form on the input variables. Every function with multiplicative complexity 2 can
be computed by exactly one of the three displayed circuits.

Proof. By Theorem 2 it suffices to count the number of functions
in each of the following three equivalence classes. By the proof of
Theorem 2 there is a natural type of circuit associated with each
equivalence class.

1. [x1x2x3]
2. [x1x2x3 + x1x4]
3. [x1x2 + x3x4]

We will count the number of functions in each class in a way
similar in spirit, but slightly more complicated than what was done
in the proof of Theorem 1: We will count the number of circuit
layouts for each type. Then we will compute the value of ρ from
Corollary 1 to obtain the actual number of functions.

Type 1: We want to determine the value ρ from Corollary 1. That is,
count the number of choices of affine forms (r1, r2, r3, r4) such that
for all x

t1(x) · t2(x) · t3(x) + t4(x) = r1(x) · r2(x) · r3(x) + r4(x). (4)

By affine equivalence, the number of solutions (r1, r2, r3, r4) does
not depend on the actual choice of (t1, t2, t3, t4). By going through
all the possibly choices one can verify that the number of solutions
is 168. By Corollary 1, the number of functions in this equivalence
class is

(2n − 1)(2n − 2)(2n − 4)2n+1

21
.
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Type 2: Again here we can count the number of ways of choosing
(r1, . . . , r5) such that for all x

r1(x)r2(x)r3(x)+r1(x)r4(x)+r5(x) = t1(x)t2(x)t3(x)+t1(x)t4(x)+t5(x).

Using a computer search one can verify that this number is 384, so
by Corollary 1 the number of functions computable by this type of
circuit is.

2n(2n − 1)(2n − 2)(2n − 4)(2n − 8)

12
.

Type 3: Again, a computer search can verify that for this type we
have that ρ = 23040. That is, the number of distinct functions com-
putable by circuits of this type is

(2n − 1)(2n − 2)(2n − 4)(2n − 8)2n

720
.

We conclude that the total number of functions in Bn with mul-
tiplicative precisely 2 is:

2n(2n − 1)(2n − 2)(2n − 4) ·
(

2

21
+

2n − 8

12
+

2n − 8

720

)
.

ut

6 Conclusion

One can count the number of Boolean functions with multiplica-
tive complexity M by exhaustively listing the equivalence classes
with multiplicative complexity M and finding the size of each class.
However, already when multiplicative complexity is three, it is hard
to list the equivalence classes exhaustively. For functions on n = 4,
one can show that [x1x2x3x4],[x1x2x3x4+x1x2] and [x1x2x3x4+x1x2+
x3x4] are the only equivalence classes with multiplicative complex-
ity 3. For n = 5, the exhaustive list of classes with multiplicative
complexity 3 is not known. Turan and Peralta [10] showed that the
number of such classes is between 16 and 24. For n = 6, there are
2497 equivalence classes having degree at most 4. This provides an
upper bound on the number of equivalence classes that can be com-
puted by circuits with three AND gates, since some of these might
have multiplicative complexity 4 or more.
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editors, Lightweight Cryptography for Security and Privacy - Third International
Workshop, LightSec 2014, Istanbul, Turkey, September 1-2, 2014, Revised Selected

17



Papers, volume 8898 of Lecture Notes in Computer Science, pages 21–33. Springer,
2014.

11. Pavol Zajac and Matus Jokay. Multiplicative complexity of bijective 4 x 4 s-boxes.
Cryptography and Communications, 6(3):255–277, 2014.

12. M. J. Fischer and R. Peralta. Counting predicates of conjunctive complexity one.
Yale Technical Report 1222, February 2002 2002.

13. Roland Mirwald and Claus-Peter Schnorr. The multiplicative complexity of
quadratic Boolean forms. Theor. Comput. Sci., 102(2):307–328, 1992.

14. Claus-Peter Schnorr. The multiplicative complexity of Boolean functions. In
AAECC, pages 45–58, 1988.

15. Elwyn R. Berlekamp and Lloyd R. Welch. Weight distributions of the cosets of the
(32, 6) Reed-Muller code. IEEE Transactions on Information Theory, 18(1):203–
207, 1972.

16. Joanne Elizabeth Fuller. Analysis of affine equivalent boolean functions for cryp-
tography. PhD thesis, Queensland University of Technology, 2003.

17. James A. Maiorana. A classification of the cosets of the Reed-Muller code R(1,6).
Mathematics of Computation, 57(195):403–414, 1991.

18. An Braeken, Yuri L. Borissov, Svetla Nikova, and Bart Preneel. Classification of
Boolean functions of 6 variables or less with respect to some cryptographic prop-
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