
Cryptanalysis of GGH15 Multilinear Maps

Jean-Sébastien Coron

University of Luxembourg

October 26, 2015

Abstract. We describe a cryptanalysis of the GGH15 multilinear maps. Our attack breaks the multipartite
key-agreement protocol by generating an equivalent user private key.

1 Introduction

We describe a cryptanalysis of the GGH15 graph-induced multilinear maps from lattices [GGH15]. Our
attack breaks the multipartite key-agreement protocol by generating an equivalent user private key. Our
attack proceeds in two steps: in the first step, we express the secret exponent of one user as a linear
combination of some other secret exponents corresponding to public encodings, using a variant of the
Cheon et al. attack [CHL+15]. This does not immediately break the multipartite key-agreement protocol
because the coefficients of the linear combination are not small. In the second step, we use the previous
linear combination to derive an encoding equivalent to the user private encoding, by correcting the error
resulting from the large coefficients of the linear combination.

2 The GGH15 Scheme

We briefly recall the GGH15; we refer to [GGH15] for a full description. In the following we only consider
the commutative variant from [GGH15, Section 3.2]; namely this commutative variant must be used in
the multipartite key-agreement protocol from [GGH15, Section 5.1].

2.1 GGH15 Multilinear Maps

We work over polynomial rings R = Z[x]/(f(X)) and Rq = R/qR for some degree n irreducible integer
polynomial f(X) ∈ Z[x] and an integer q. An encoding of a plaintext element s ∈ R relative to path
u→ v is a small matrix D ∈ Rm×m such that:

Au ·D = s ·Av +E (mod q)

where Au and V v are row vectors of dimension m over Rq, and E is a small row error vector of dimension
m. Only small plaintext elements s ∈ R are encoded.

Two encodings C1 and C2 relative to path u→ v and v → w can be multiplied to get an encoding
relative to path u→ w. Namely given:

Au ·C1 = s1 ·Av +E1 (mod q)

Av ·C2 = s2 ·Aw +E2 (mod q)



we obtain:

Au ·C1 ·C2 = (s1 ·Av +E1) ·C2 (mod q)

= s1 · s2 ·Aw + s1 ·E2 +E1 ·C2 (mod q)

= s1 · s2 ·Aw +E′

Since s1, E1, E2 and C2 have small coefficients, the error vector E′ still has small coefficients (compared
to q), and therefore the product C1 ·C2 is an encoding of s1 · s2 for the path u→ w.

Finally, given an encoding C relative to path u → w and the vector Au, extraction works by
computing the high-order bits of Au ·C. Namely we have:

Au ·C = s ·Aw +E (mod q)

for some small E, and therefore the high-order bits of Au ·C only depend on the secret exponent s.

2.2 The GGH15 Multipartite Key-Agreement

We briefly recall the multipartite key-agreement protocol from [GGH15, Section 5.1]. We consider the
protocol with k users. Each user i has a directed path of vectors Ai,1, . . . ,Ai,k+1, all sharing the same
end-point A0 = Ai,k+1. The i-th user will use the resulting chain to extract the session key. Each user i
has a secret exponent si. Each secret exponent si will be encoded in each of the j chains; the encodings
for i 6= j will be published, while the encoding of si on the i-th chain will be kept private by user i.
Therefore on the i-th chain only user i will be able to compute the session key. The exponents si are
encoded in a “round robin” fashion; namely the i-th secret si is encoding on the chain of user j at edge
` = i+ j − 1, with index arithmetic modulo k.

We illustrate the protocol with k = 2 users. We have the following encodings:

A1,1 ·D1,1 = s1 ·A1,2 +E1,1 (mod q)

A1,2 ·D1,2 = s2 ·A0 +E1,2 (mod q)

A2,1 ·D2,1 = s2 ·A2,2 +E2,1 (mod q)

A2,2 ·D2,2 = s1 ·A0 +E2,2 (mod q)

where D2,2 is public while D1,1 is kept private by User 1. Similarly D1,2 is public while D2,1 is kept
private by User 2. Therefore User 1 can compute modulo q:

A1,1 ·D1,1 ·D1,2 = (s1 ·A1,2 +E1,1) ·D1,2 (mod q)

= s1 · s2 ·A0 + s1 ·E1,2 +E1,1 ·D1,2 (mod q)

and extract the most significant bits corresponding to s1 · s2 ·A0. Similarly User 2 can compute modulo
q:

A2,1 ·D2,1 ·D2,2 = (s2 ·A2,2 +E2,1) ·D2,2 (mod q)

= s1 · s2 ·A0 + s2 ·E2,2 +E2,1 ·D2,2 (mod q)

and extract the same most significant bits corresponding to s1 · s2 ·A0.



The previous encodings Di,j are generated by linear combination of public encodings, corresponding
to secret exponents ti,` for 1 ≤ ` ≤ N , for large enough N . This means that we have the following public
encodings:

A1,1 ·C1,1,` = t1,` ·A1,2 +E1,1,` (mod q)

A1,2 ·C1,2,` = t2,` ·A0 +E1,2,` (mod q)

A2,1 ·C2,1,` = t2,` ·A2,2 +E2,1,` (mod q)

A2,2 ·C2,2,` = t1,` ·A0 +E2,2,` (mod q)

and the Di,j ’s are generated by linear combination of the Ci,j,`’s; more precisely, the pair (D1,1,D2,2)
will be generated by User 1 by linear combination of the pairs (C1,1,`,C2,2,`), and similarly for User 2.

3 Cryptanalysis of GGH15

In the following we describe a cryptanalysis of the multipartite key-agreement protocol based on GGH15
multilinear maps.

3.1 Description with 2 Users

For simplicity we first consider the protocol with only 2 users, as in the previous section, using the same
notations. Our attack proceeds in two steps.

1. In the first step, we are able to express one secret exponent s1 as a linear combination of the other
secret exponents t1,`, using a variant of the Cheon et al. attack. However this does not immediately
break the protocol, because the coefficients are not small.

2. In the second step, we compute an equivalent of the private encoding of User 1 by using the previous
linear combination, while correcting the error due to the large coefficients.

First Step: Linear Relations In the first step of the attack, we show that we can express s1 as a
linear combinations of the t1,`’s. We consider the public encodings Ci,j,` and we let Ci,j be one such set
of encodings for a specific `. We can compute the difference over R (not modulo q):

ω = A1,1 · C1,1 · C1,2 −A2,1 · C2,1 · C2,2 (1)

= t1 · E1,2 − E2,2 · t2 + E1,1 · C1,2 − E2,1 · C2,2

We have that ω is a vector of dimension m. Now an important step is to restrict ourselves to the
first component of ω. Namely in order to apply the Cheon et al. attack, we would like to express ω as
the product of 2 vectors, where the left vector corresponds to User 1 and the right vector corresponds to
User 2. Due to the “round-robin” fashion of exponent encodings, we should therefore swap the product
E2,1 ·C2,2, which we cannot do if we consider the full vector ω. Therefore we consider the first component
ω′, with:

ω′ = t1 · E′1,2 − E′2,2 · t2 + E1,1 · C ′1,2 − E2,1 · C ′2,2
where both C ′1,2 and C ′2,2 are vectors of dimension m; similarly E′1,2 and E′2,2 are now scalars. We can
now write:

ω′ =
[
t1 E

′
2,2 E1,1 C

′
2,2

]
·


E′1,2
−t2
C ′1,2
−E2,1





Note that the two vectors in the product have dimension 2m + 2. As in the Cheon et al. attack,
we can extend ω′ to a matrix of dimension (2m+ 2)× (2m+ 2), but we take 2m+ 3 rows instead of
2m+ 2. This is done by considering 2m+ 3 public encodings C1,1,` and C2,2,` corresponding to User 1,
and similarly 2m+ 2 encoding C1,2,` and C2,1,` corresponding to User 2. We obtain:

W = A ·B

where the matrix W has dimension (2m+ 3)× (2m+ 2), the matrix A has dimension (2m+ 3)× (2m+ 2),
and the matrix B has dimension (2m+ 2)× (2m+ 2). We can find a vector u of dimension (2m+ 3)
such that u ·W = 0, which gives:

(u ·A) ·B = 0

With good probability the matrix B is full rank, which implies:

u ·A = 0

Such vector u gives a linear relation among the secret exponents t1,i.
Moreover, if we assume now that both D1,1 and D2,2 are public (instead of only D2,2 in the regular

protocol), we can express s1 as a linear combination of the t1,i’s, over R. Namely we can compute ω
in (1) with the public D1,1, and D2,2, instead of C1,1 and C2,2. This is done by collecting enough linear
relations and taking gcd’s to make sure that the coefficient of s1 is 1. We obtain:

s1 =
∑
j

αj · t1,j (2)

for some known αj ’s. Note that we have the same linear relation for E1,1:

E1,1 =
∑
j

αj · E1,1,j

where by definition:
A1,1 ·D1,1 = s1 ·A1,2 + E1,1 (mod q)

and also for the first component of E2,2:

E′2,2 =
∑
j

αj · E′2,2,j

We note that in the above attack we has used the private key D1,1 of User 1 to derive the previous
linear relations. Namely to derive such linear relations we need at least 2 encodings D1,1 and D2,2

corresponding to the same secret exponent s1. Therefore when considering the key-agreement protocol
for 2 users we don’t really break the protocol. Our attack will be applicable for 3 users (or more), because
for k ≥ 3 users we will have k − 1 ≥ 2 public encodings Di,i corresponding to the same exponent s1,
namely for 2 ≤ i ≤ k. We will use 2 such encodings in order to derive a linear relation for s1 as in (2).

3.2 Second Step: Equivalent Private Key

In the second step, we will use the previous linear relation to derive an equivalent encoding for the
private key D1,1 of User 1. To illustrate our attack for 2 users, we artificially consider a 3rd chain:

A3,1 ·D3,1 = s1 ·A3,2 + E3,1

A3,2 ·D3,2 = s2 ·A0 + E3,2



in which this time only D3,2 is made public. Such 3rd chain will be available when considering the
protocol with 3 users or more. We also have the public encodings C3,1,`:

A3,1 · C3,1,` = t1,` ·A3,2 + E3,1,` (mod q) (3)

which gives:

A3,1 · C3,1,` ·D3,2 = t1,` · s2 ·A0 + t1,` · E3,2 + E3,1,` ·D3,2 (mod q)

In light of (2) it is natural to compute:

A3,1 ·

∑
j

αj · C3,1,j

 ·D3,2 = s1 · s2 ·A0 + s1 · E3,2 +

∑
j

αj · E3,1,j

 ·D3,2 (mod q)

The main problem is that the αj ’s are not small so this does not reveal the high-order bits of s1 · s2 ·A0.
In the following, we show how to derive an approximation of

∑
j αj · E3,1,j .

We consider some public encodings C2,1 and C3,2 corresponding to User 2, encoding the same
exponent t2,`. By taking the difference between Row 3 and Row 2, we can compute over R:

Ω =
∑
j

αj · (A3,1 · C3,1,j · C3,2 −A2,1 · C2,1 · C2,2,j)

=
∑
j

αj · (t1,j · E3,2 + E3,1,j · C3,2 − E2,2,j · t2 − E2,1 · C2,2,j)

As previously we restrict ourselves to the first component:

Ω′ =
∑
j

αj · (t1,j · E′3,2 + E3,1,j · C ′3,2 − E′2,2,j · t2 − E2,1 · C ′2,2,j)

= s1 · E′3,2 − E′2,2 · t2 − E2,1 · C ′2,2 +

∑
j

αj · E3,1,j

 · C ′3,2
= u+

∑
j

αj · E3,1,j

 · C ′3,2
where u is small in R. We can now extend Ω′ to a vector of dimension m, by using various encodings
corresponding to t2,`. We obtain a new vector Ω′ over R:

Ω′ = u+

∑
j

αj · E3,1,j

 · C ′3,2
where C ′3,2 is a m×m matrix with small coefficients.

Now the crucial observation is that because u is small we can get an approximation of
∑

j αj ·E3,1,j

by reducing the vector Ω′ modulo C ′3,2. Therefore we obtain a vector E such that:

E′ =
∑
j

αj · E3,1,j − E



is small. Given the public encodings given by (3) we can therefore compute:

D′3,1 =
∑
j

αj · C3,1,j

and we get:
A3,1 ·D′3,1 − E = s1 ·A3,2 + E′ (mod q)

for a small vector E′. Therefore we have obtained with (D′3,1, E) an equivalent of the private D3,1, which
breaks the protocol. More precisely, we can now compute:

(A3,1 ·D′3,1 − E) ·D3,2 = (s1 ·A3,2 + E′) ·D3,2

= s1 · s2 ·A0 + s1 · E3,2 + E′ ·D3,2

Since E′ is small, this enables to extract the high-order bits of s1 · s2 ·A0 and breaks the protocol1.

3.3 Cryptanalysis with 3 Users or More

We now consider the true cryptanalysis on 3 users (or more). For simplicity we restrict ourselves to 3
users; the attack works the same for more users. We have the following 3 chains:

A1,1 t1, C1,1 A1,2 t2, C1,2 A1,3 t3, C1,3 A0

A2,1 t3, C2,1 A2,2 t1, C2,2 A2,3 t2, C2,3 A0

A3,1 t2, C3,1 A3,2 t3, C3,2 A3,3 t1, C3,3 A0

For User 1, the encoding D1,1 corresponding to s1 is private, while D2,2 and D3,3 are public. Similarly
for User 2, encodings D1,2 and D3,1 are public, and for user 3 encodings D1,3 and D2,1 are public.

First step: linear relations. In the first step, we will express s1 as a linear combination of the t1,i’s.
For this we consider the rows 2 and 3, for which the encodings D2,2 and D3,3 of s1 are public. We define
the product encodings C ′2,2 = C2,1 · C2,2 and C ′3,2 = C3,1 · C3,2, and we have:

A2,1 · C ′2,2 = t1 · t3 ·A2,3 + E′2,2

A2,3 · C2,3 = t2 ·A0 + E2,3

A3,1 · C ′3,2 = t2 · t3 ·A3,3 + E′3,2

A3,3 · C3,3 = t1 ·A0 + E3,3

for some small E′2,2 and E′3,2. As previously we can compute over R, restricting ourselves to the first
component:

ω = A2,1 · C ′2,2 · C2,3 −A3,1 · C ′3,2 · C3,3

= t1 · t3 · E2,3 + E′2,2 · C2,3 − t2 · t3 · E3,3 − E′3,2 · C3,3

=
[
t1 E′2,2 E3,3 C3,3

]
·


t3 · E2,3

C2,3

−t2 · t3
−E′3,2


As previously this enables to express s1 as a linear combination of the t1,`’s, as in (2).

1 This is not a true attack since we have used the private encoding D1,1 at Step 1. We only have a true attack for 3 users
or more.



Second step: equivalent private-key. In this second step, we show how to compute an encoding
equivalent to the private-key D1,1. We now consider rows 1 and 3. We define the product encodings
C ′1,2 = C1,2 · C1,3 and C ′3,2 = C3,1 · C3,2, with the following notations:

A1,2 · C ′1,2 = t2 · t3 ·A0 + E′1,2

A3,1 · C ′3,2 = t2 · t3 ·A3,3 + E′3,2

We can then compute over R, using the coefficients αj from the linear relation (2), restricting ourselves
to the first component:

Ω =
∑
j

αj · (A1,1 · C1,1,j · C ′1,2 −A3,1 · C ′3,2 · C3,3,j)

=
∑
j

αj · (t1,j · E′1,2 + E1,1,j · C ′1,2 − t2 · t3 · E3,3,j − E′3,2 · C3,3,j)

= s1 · E′1,2 − t2 · t3 · E3,3 − E′3,2 · C3,3 +

∑
j

αj · E1,1,j

 · C ′1,2
As previously one can recover an approximation of

∑
j αj ·E1,1,j , which enables to compute an equivalent

D′1,1 of the secret D1,1, which breaks the key-agreement protocol.
More precisely, we can obtain a vector E such that:

E′ =
∑
j

αj · E1,1,j − E

is small. Then given the public encodings C1,1,` with:

A1,1 · C1,1,` = t1,` ·A1,2 + E1,1,` (mod q)

we can compute:

D′1,1 =
∑
j

αj · C1,1,j

and we get:
A1,1 ·D′1,1 − E = s1 ·A1,2 + E′ (mod q)

for a small vector E′. Therefore we have obtained with (D′1,1, E) an equivalent of the private D1,1, which
breaks the protocol. Namely we can eventually compute from public parameters:

(A1,1 ·D′1,1 − E) ·D1,2 ·D1,3 = (s1 ·A1,2 + E′) ·D1,2 ·D1,3

= s1 · s2 · s3 ·A0 + v

for a small vector v. This enables to extract the high-order bits of s1 · s2 · s3 ·A0 and breaks the protocol.

References

[CHL+15] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé. Cryptanalysis of the
multilinear map over the integers. In Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015,
Proceedings, Part I, pages 3–12, 2015.

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps from lattices. In Theory
of Cryptography - 12th Theory of Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015,
Proceedings, Part II, pages 498–527, 2015.


