
Round-Optimal Token-Based Secure Computation

Carmit Hazay∗ Antigoni Polychroniadou† Muthuramakrishnan Venkitasubramaniam‡

Abstract

Secure computation in the presence of tamper-proof hardware tokens is proven under the assumption
that the holder of the token is only given black-box access to the functionality of the token. Starting with
the work of Goldreich and Ostrovsky [GO96], a long series of works studied tamper-proof hardware for
realizing two-party functionalities in a variety of settings.

In this work we focus our attention on two important complexity measures of stateless token-based
secure computation: round complexity and hardness assumptions and present the following results in the
two-party setting:

• A round optimal generic secure protocol in the plain model assuming one-way functions, where
the tokens are created by a single party.

• A round optimal generic UC secure protocol assuming one-way functions.

Our constructions are proven in the real/ideal paradigm with security in the presence of static malicious
adversaries. As a side contribution, we identify a flaw in one of the feasibility results regarding UC
secure protocols in the tamper proof model proved in the work of Goyal, Ishai, Sahai, Venkatesan and
Wadia (TCC 2010) and correct history by attributing the work of Choi, Katz, Schroöder, Yerukhimovic
and Zhou (TCC 2014) to establishing the (same) feasibility result.
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1 Introduction

Secure multi-party computation enables a set parties to mutually run a protocol that computes some func-
tion f on their private inputs, while preserving two important properties: privacy and correctness. The
former implies data confidentiality, namely, nothing leaks by the protocol execution but the computed out-
put, while, the later requirement implies that no corrupted party or parties can cause the output to devi-
ate from the specified function. It is by now well known how to securely compute any efficient func-
tionality [Yao86, GMW87, MR91, Bea91] under the stringent simulation-based definitions (following the
ideal/real paradigm). These traditional results prove security in the stand-alone model, where a single set of
parties run a single execution of the protocol. However, the security of most cryptographic protocols proven
in the stand-alone setting does not remain intact if many instances of the protocol are executed concurrently
[Can01, CF01, Lin03]. The strongest (but also the most realistic) setting for concurrent security, known as
Universally Composable(UC) security [Can01] considers the execution of an unbounded number of concur-
rent protocols in an arbitrary and adversarially controlled network environment. Unfortunately, stand-alone
secure protocols typically fail to remain secure in the UC setting. In fact, without assuming some trusted
help, UC security is impossible to achieve for most tasks [CF01, CKL06, Lin03]. Consequently, UC se-
cure protocols have been constructed under various trusted setup assumptions in a long series of works;
see [BCNP04, CDPW06, Kat07, KLP07, CPS07, LPV09, DMRV13] for few examples.

One such model is the tamper proof hardware token model, where the parties are assumed to have
the capability of creating “hardware tokens” that can implement some efficient functionality which when
transferred to another party only allows black-box access to the functionality. The work of Goldreich and
Ostrovsky [GO96] first considered the use of hardware tokens in the context of software obfuscation via
Oblivious RAMs. Goldwasser et al. [GKR08], investigated the use of one-time programs, that allows
a semi-honest sender to create simple tokens that allow a potentially malicious receiver to execute a fixed
specified program exactly once (or a bounded number of times). Their work considered specific applications
such as zero-knowledge proofs and focussed on minimizing the number of tokens needed. More recently,
Katz in [Kat07] demonstrated the feasibility of achieving UC secure protocols for arbitrary functionalities
assuming tamper-proof tokens. In his formulation, the parties can create a token that compute arbitrary
functionalities such that any adversary that is given access to the token can only observe the input/output
behavior of the token. In the UC framework, Katz described an ideal functionality FWRAP that captures this
model. Note that tokens can either be stateful or stateless, depending on whether the tokens are allowed to
maintain some state between invocations (where stateless tokens are easier to implement). Since the work of
[Kat07], the power of hardware tokens has been explored extensively in a long series of works specifically
in the context of achieving UC security (for example, [CGS08, MS08, GIS+10, DKM11, CKS+14]). While
the work of Katz [Kat07] relied on stateful tokens, the work of Chandran, Goyal and Sahai [CGS08] showed
how to achieve UC security using only stateless tokens.

Quite notably, the work of Goyal, Ishai, Sahai, Venkatesan and Wadia comprehensively studied the
power of stateless and stateful tokens in the context of achieving (UC) secure computation [GIS+10]. In
detail, they demonstrate how to obtain unconditionally secure two-party computation using stateful tokens.
They complement this result with a lower bound which shows that stateless tokens are insufficient to achieve
unconditional security.1 When relying on stateless tokens, they further show how (computational) UC secu-
rity can achieved under the meager assumption of one-way functions. More recently, Choi, Katz, Schröder,
Yerukhimovich, Zhou [CKS+14] explored the limit of achieving UC security under minimal number of

1If further token encapsulation, which enables creation of token that can invoke another token internally was allowed, they show
unconditional security can be achieved using stateless tokens. We do not consider this model in our work.
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stateless tokens. They constructed an efficient protocol that implements oblivious transfer (OT) where any
two parties create and exchange a single stateless token after which they can execute an unbounded number
of OTs. They proved optimality of their result with respect to “black-box” simulation techniques by show-
ing that exchanging token both directions is necessary. Furthermore, they demonstrated how relying on non
black-box techniques it is possible to achieve UC security using a single token.

In this work, we investigate the round-complexity of achieving UC security under minimal cryptographic
assumptions. The seminal work of Katz and Ostrovsky [KO04] establishes that secure computation of most
two-party functionalities that admit black-box proofs of security in the plain model (i.e. assuming no setup)
requires at least five rounds. When assuming setup, in the Common Reference String (CRS) model, much
effort has already been put in providing round efficient UC secure protocols. To name a few results, the
work of Horvitz and Katz [HK07] presents a two-party protocol assuming a simultaneous channel, Asharov
et al. [AJL+12] showed how to obtain two-round multi-party secure computation with a reusable public-
key infrastructure, whereas the work of Garg, Gentry and Halevi [GGHR14] gives a two-round multi-party
protocol under strong assumptions, namely, the existence of indistinguishability obfuscation for polyno-
mial circuits. In the tamper-proof model, we argue that the issue of round-complexity has been largely
not addressed. The work of Chandran et al. [CGS08] gives an O(κ) rounds protocol (where κ is the
security parameter) based on enhanced trapdoor permutations. Following that, Goyal et al. [GIS+10] pro-
vided a O(1) rounds construction based on collision-resistant hash functions (CRH) and a linear number of
rounds assuming one-way functions (OWF). The work of Choi et al. [CKS+14], extending the techniques
of [GIS+10] and [DKM11], establishes the same result and provide a five-round construction based on
CRH (and an O(κ) rounds construction based on OWF). The previous works leave the following question
regarding round-complexity open:

How many rounds do we need to achieve UC security using stateless tokens?

A second question that we wish to address is:

Can we construct O(1)-round UC secure protocols using stateless tokens assuming only one-
way functions?

Notably, it was shown in [DNO10] that one-way functions are insufficient to achieve UC security in the
CRS model.

Unidirectional Token Exchange. In many contexts, such as a client-server setting, it is unreasonable to
expect that clients without a trusted infrastructure be able to create tokens. Consider the scenario, where
a company such as Amazon or Google wishes to provide a email spam-detection service and users of this
service wish to keep their emails private (so as to not have unwanted advertisements posted based on the
content of their emails). In such a scenario, it is quite reasonable to assume that Amazon or Google be
able to create simple hardware tokens in large scale while the clients simply buy these tokens to avail the
service. Largely, in literature, most practical protocols in previous works assume (require) that both parties
require the capability of constructing tokens. This is not surprising, as the work of [CKS+14] establishes
that with stateless tokens relying on non-black-box techniques (which are inherently inefficient) is necessary
to achieve UC security. Notably, the work of Moran and Segev in [MS08] shows how to construct UC secure
two-party computation using stateful tokens where tokens are required to be passed only in one direction.
In this work, we therefore wish to address the following question:

Is there a meaningful security notion that can be practically achieved in a client-server setting
using simple stateless tokens where tokens are created only by the server?
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1.1 Our Results

We answer all questions in the affirmative. Our first result provides a two-round UC secure protocol that
realizes any arbitrary “well-formed” functionality under minimal assumptions. More formally,

Theorem 1.1 (Informal). Assuming the existence of one-way functions, there exists a two-round protocol
that UC realizes any two-party functionality assuming stateless tokens.

We remark that it is easy to see that non-interactive secure computation is impossible when relying
on stateless tokens, as a malicious receiver can repetitively query the tokens to recompute the function on
multiple inputs. Thus, the best round complexity we can hope for assuming tamper-proof tokens is two.
As a warmup, we first provide a three-round UC construction where the first round simply involves sending
tokens. This already demonstrates the feasibility of UC secure protocols under minimal assumptions. We
next show how to obtain a two-round UC protocol where the tokens are exchanged only once in a setup
phase and thereafter can be (re-)used for an arbitrary number of executions. In this protocol, every execution
requires only exchanging two messages.

As a side contribution, we demonstrate in Section 4 a flaw in the construction of the UC secure protocol
based on CRHs (and OWFs) in [GIS+10]. In more detail, Goyal et al. first provided a “Quasi oblivious-
transfer” protocol based on tokens that admits one-sided simulation and one-sided indistinguishability. Next,
they provided a transformation from Quasi-OT to full OT. We demonstrate that this transformation is inse-
cure by constructing an adversary that breaks security.2 While this flaw invalidates the feasibility result as
proved in [GIS+10], the same result was proved in the work of Choi et al. [CKS+14] and therefore continues
to hold.

Next, in the client-server setting, we prove the following theorem:

Theorem 1.2 (Informal). Assuming the existence of one-way functions, there exists a two-round protocol
that securely realizes any two-party functionality assuming stateless tokens in a client-server setting, where
the tokens are created only by the server and full concurrent security is achieved against malicious clients
and security under sequential and parallel composition against malicious servers.

As with the previous protocol our protocols are comprised of two phases: (1) tokens exchange phase
and (2) two communicated messages and we further show how to reuse tokens for multiple executions. In
more detail, we provide straight-line (UC) simulation of malicious receivers and standard rewinding-based
simulation against malicious servers. Our protocols guarantee security of the servers against arbitrary ma-
licious coordinating clients and protects every individual client executing sequentially or in parallel against
a corrupted server. We believe that this is a reasonable model in comparison with the common reference
string where both parties require a trusted entity to sample the CRS. Furthermore, it guarantees meaningful
concurrent security that are otherwise not achievable in the plain model in two-rounds.

1.2 Our Techniques

While tamper-proof hardware-tokens can be a powerful tool, several subtleties arise in proving security
in this model and as mentioned in the previous section, we identify a flaw in the UC secure protocol of
[GIS+10]. We discuss briefly some these issues and point out in particular the attack strategy that breaks
the security of the protocol in [GIS+10]. Next, we show how this problem can be rectified to give security
in the plain model. This protocol will require rewinding and will have limited composability guarantees.

2In private communication, the authors have acknowledged this issue and are in the process of updating their version.
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Then, we move on to discuss our main result and describe a different technique that enables us to obtain
round-optimal UC secure protocol. We will rely on a “robust combiner” that was recently developed by
Ostrovsky, Richelson and Scafuro [ORS15] to circumvent these attacks.

Obtaining round optimal secure computation in the plain model. We focus our attention on construct-
ing an OT protocol executed between a receiver and a sender, which is sufficient for general secure two-party
computation [Kil88, IPS08]. In the malicious setting, security follows by constructing a simulator that pro-
duces an indistinguishable view while extracting the adversary’s input. In order to achieve input extraction,
our starting point is a technique presented in [GIS+10]. Roughly speaking, in order to extract the receiver’s
input, the sender chooses a function F from a pseudorandom function family that maps {0, 1}m to {0, 1}n
bits where m >> n, and incorporates it into a token that it sends to the receiver. Next, the receiver commits
to its input b by first sampling a random string u ∈ {0, 1}m and querying the PRF token on u, receiving
back a value v. Finally, it sends comb = (Ext(u; r)⊕ b, r, v) where Ext(·, ·) is a randomness strong extrac-
tor. Now, since the PRF is highly compressing, it holds with high probability that conditioned on v, u has
very high min-entropy and therefore Ext(u; r)⊕ b, r statistically hides b.3 Furthermore, since the simulator
monitors the queries made by the receiver to the PRF token, it can directly extract the receiver’s input with
the knowledge u upon given the receiver’s commitment. This is because by the pseudorandomness property
of F , it is computationally infeasible for an adversarial receiver to obtain two values u, u′ that map to v.
Given this tool in our arsenal, a simple (incorrect) protocol to realize OT can be constructed as follows. In
the token exchange phase, the parties exchange two sets of PRF tokens, respectively denoted by TKPRF

S and
TKPRF

R . Next, the receiver commits to its bit comb using the approach described above, followed by the
sender committing to its input (coms0 , coms1) along with an OT token that implements the one-out-of-two
string OT functionality. More specifically, it stores two strings s0 and s1, and given a single bit b outputs sb.
Specifically, the code of that token behaves as follows:

• On input b∗, u∗, the token outputs (sb, decomsb) only if comb = (Ext(u∗; r)⊕b∗, r, v) and PRF(u∗) =
v. Otherwise, the token aborts.

The receiver then runs the token to obtain sb and verifies if decomsb correctly decommits comsb to sb.
This simple idea is vulnerable to an input-dependent abort attack, where the token aborts depending on
the value b∗. To prevent this, analogous to [GIS+10], a second (still incorrect) idea is to have κ parallel
independent instances of the above protocol where the sender sets as input (zi, zi ⊕∆) to the ith instance,
where z1, . . . , zκ,∆ are chosen at random. Along with its message, the sender also sends C0 = s0⊕w,C1 =
s1 ⊕ w ⊕ ∆ where w =

⊕κ
i=1 zi. Then, the receiver samples random bits b1, . . . , bκ conditioned on⊕κ

i=1 bi = b, where b is its input. Finally, to reconstruct sb, the receiver simply adds all the outputs of the κ
OT calls to Cb. Note that extraction can be achieved by simply extracting all of the sender’s and receiver’s
inputs to the tokens, by monitoring the PRF queries. More precisely, the simulation in [GIS+10] extracts
the sender’s input by first sampling two sets of random bit-vectors {bi}i∈[κ] and {b′i}i∈[κ] that add up to 0
and 1, respectively, and then running the receiver’s strategy with these vectors as inputs, i.e. add the outputs
the tokens would have revealed on input bi (or b′i) and then unmasking C0 (resp., C1) to obtain s0 (resp., s1).

3We remark that this does not contradict the result Haitner et al. [HHRS15] who show that statistically hiding commitments
cannot be achieved via a fully black-box construction based on one-way functions in fewer than κ

log κ
rounds, where κ is the

security parameter. This is because the tokens themselves cannot be replaced by arbitrary one-way functions, or even a random
permutation, as we specifically require the functionality implemented in the token to be compressing. Second, we cannot obtain a
construction in the plain model without any setup even though the PRF function implemented in the tokens makes only black-box
access to an underlying one-way function, since our proof crucially relies on the fact that the PRF key is hidden from the receiver
via the token.
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While this strategy seems to work, a subtle issue arises since the values are extracted directly instead of
running the token on the actual {bi}i∈[κ] and {b′i}i∈[κ] values. In fact, by carefully chosing the distribution of
the sender’s inputs to the different tokens and making the tokens aborts on specific inputs, we can show that
the values extracted by the simulator will be different from that obtained by the receiver in the real world.
It is precisely this attack that breaks the security of the [GIS+10] protocol. Intuitively, this is because no
check is made by the receiver to ensure that each of the inputs to the individual tokens are consistent (in this
case, add up to ∆; see our concrete counter example in Section 4.

In this work we rectify this issue by using an alternative mechanism to extract the sender’s inputs without
monitoring the queries of the simulator to the token. In the plain model, this technique will additionally
remove the necessity of the receiver to create a token for the sender. On a high-level the idea is that we
provide a mechanism for the simulator to extract both inputs of the sender by running the tokens produced
by the sender twice. In our protocol, we will make the receiver commit to its input via the look ahead
trapdoor commitment scheme of Pass and Wee [PW09]. In their construction, the trapdoor is committed
to by the sender in a first message, and is revealed after the receiver commits to its input. Now, since the
simulator can extract the sender’s commitment, it will be able to equivocate the receiver’s input using the
trapdoor while the honest receiver will not be able to do so. Specifically, it will be able to run the tokens
twice, once with {bi}i∈[κ] adding up to 0 and another time with new {b′i}i∈[κ] adding up to 1. Nevertheless,
this yields only a three message protocol as the sender needs to commit to the trapdoor in a first message.
In the plain model, we are able to reduce the number of messages into two by relying on rewinding for
extracting the trapdoor and then committing to the receiver’s input using an additional token.

Obtaining round optimal UC secure computation. In the UC model, however, this approach does not
work as we cannot rely on rewinding. As pointed in our discussion above, a main issue when dealing with
tokens is in handling input-dependent abort, specifically, when it relates to extracting the sender’s inputs
without relying on the tokens.

Our approach is to develop a mechanism to simultaneously deal with the token aborts while at the same
time allowing extraction of sender’s inputs without the tokens. We rely on the following idea implicit in
the beautiful work of Ostrovsky, Richelson and Scafuro [ORS15]. Suppose we have an OT protocol π
that is vulnerable to an input-dependent abort. We repeat the protocol in parallel and split the inputs to
the OT into shares using a secret-sharing scheme and use the individual shares in the parallel executions.
Suppose that we use a 2n-out-of-4n secret sharing scheme then it follows that to learn a particular input,
the receiver needs to learn at least 2n+ 1 shares corresponding to that input. Since the sender and receiver
only engage in 4n parallel executions of π, one of the sender’s inputs remains hidden as long as π protects
the privacy of sender’s inputs. This guarantees privacy of sender’s inputs, but, still does not solve the issue
of input-dependent abort. If the secret-sharing scheme additionally had a mechanism to verify a share then
the following strategy of the receiver can catch a sender who maliciously behaves in the parallel OTs. More
precisely, consider the following receiver strategy:

• Sample two disjoint random subsets T0, T1 ⊂ [4n] of size n. Obtain shares corresponding to the first
sender’s input in sessions T0 by setting the input bit to 0 and shares corresponding to second input by
using input 1 in sessions T1. If any of the shares corresponding to either input are not valid, abort.

• Use as input b, the actual receiver’s input, in the rest of the coordinates. With 3n shares (2n obtained
here and n obtained in the previous step) reconstruct the shares.

The first item ensures using a standard cut-and-choose argument that the sender must have placed valid
shares in all but a few of the parallel sessions for both inputs. If this check passes, the second item helps the
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receiver reconstruct the required input. A key feature in this approach is that the receiver obtains an input
only if the sender does not cheat corresponding to both inputs in most sessions. In [ORS15], to realize such a
secret-sharing scheme, the authors rely on linear codes that have corresponding check matrices to verify the
validity of the shares. In more detail, there is a public matrix A (i.e., the Vandermonde matrix) such that all
valid vectors of shares reside in the null-space corresponding to this matrix. However, verifying this requires
all that shares be revealed. A second idea used by [ORS15] to deal with this is to prove in zero-knowledge
that the shares satisfy this property. The sender splits the vector of shares v into two vectors v1, v2 using
an additive secret sharing and then proves that A(v1 + v2) is the 0 vector by committing to a vector z. The
receiver asks to either reveal v1 such that Av1 = z or reveal z such that z+Av2 = 0. Since this yields only
soundness half, the authors amplify the security by repeating this in parallel and combining it with the OT
protocol where a column of shares is revealed (more details in Section 5). Finally, we adopt this approach in
our protocol where the sender commits to all its shares using an extractable commitment as well as the check
vectors z. The receiver obtains the OT outputs from the tokens, but, follows the strategy described above to
ensure that there is no input dependent abort. In this approach, the simulator can extract the shares directly
from the commitments, but follows first the receiver’s strategy described in the above first item to ensure
that the sender provides valid shares corresponding to both inputs. An additional subtle issue that we need
to address in the case of tokens is that while the tokens could reveal valid shares, it is not necessary that the
shares extracted by the simulator from the extractable commitments are consistent with the decommitment
of the tokens. However, as argued in our protocol, the cut-and-choose step can additionally guarantee this
required consistency. We refer the reader to Section 5 for the finer details.

2 Preliminaries

Basic notations. We denote the security parameter by κ. We say that a function µ : N → N is negligible
if for every positive polynomial p(·) and all sufficiently large κ’s it holds that µ(κ) < 1

p(κ) . We use the
abbreviation PPT to denote probabilistic polynomial-time. We specify next the definition of computationally
indistinguishable and statistical distance.

Definition 2.1. Let X = {X(a, κ)}a∈{0,1}∗,κ∈N and Y = {Y (a, κ)}a∈{0,1}∗,κ∈N be two distribution en-

sembles. We say that X and Y are computationally indistinguishable, denoted X
c≈ Y , if for every PPT

machine D, every a ∈ {0, 1}∗, every positive polynomial p(·) and all sufficiently large κ’s,∣∣Pr [D(X(a, κ), 1κ) = 1]− Pr [D(Y (a, κ), 1κ) = 1]
∣∣ < 1

p(κ)
.

Definition 2.2. Let Xκ and Yκ be random variables accepting values taken from a finite domain Ω ⊆
{0, 1}κ. The statistical distance between Xκ and Yκ is

SD(Xκ, Yκ) =
1

2

∑
ω∈Ω

∣∣Pr[Xκ = ω]− Pr[Yκ = ω]
∣∣.

We say that Xκ and Yκ are ε-close if their statistical distance is at most SD(Xκ, Yκ) ≤ ε(κ). We say that
Xκ and Yκ are statistically close, denoted Xκ ≈s Yκ, if ε(κ) is negligible in κ.

2.1 Pseudorandom Functions

Informally speaking, a pseudorandom function (PRF) is an efficiently computable function that looks like a
truly random function to any PPT observer. Namely,
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Definition 2.3 (Pseudorandom function ensemble). Let F = {PRFκ}κ∈N where for every κ, PRFκ :
{0, 1}κ × {0, 1}m → {0, 1}l is an efficiently computable ensemble of keyed functions. We say that F =
{PRFκ}κ∈N is a pseudorandom function ensemble if for every PPT machine D, there exists a negligible
function negl(·) such that for all sufficiently large κ’s,

|Pr[DPRFκ(k,·)(1κ)] = 1− Pr[Dfκ(1κ) = 1]| ≤ negl(κ),

where k is picked uniformly from {0, 1}κ and fκ is chosen uniformly at random from the set of functions
mapping m-bit strings into l-bit strings. We sometimes omit κ from our notation when it is clear from the
context.

2.2 Commitment Schemes

Commitment schemes are used to enable a party, known as the sender S, to commit itself to a value while
keeping it secret from the receiver R (this property is called hiding). Furthermore, in a later stage when the
commitment is opened, it is guaranteed that the “opening” can yield only a single value determined in the
committing phase (this property is called binding). In this work, we consider commitment schemes that are
statistically binding, namely while the hiding property only holds against computationally bounded (non-
uniform) adversaries, the binding property is required to hold against unbounded adversaries. Formally,

Definition 2.4 (Commitment schemes). A PPT machine Com = ⟨S,R⟩ is said to be a non-interactive
commitment scheme if the following two properties hold.

Computational hiding: For every (expected) PPT machine R∗, it holds that the following ensembles are
computationally indistinguishable.

• {ViewR∗
Com(m1, z)}κ∈N,m1,m2∈{0,1}κ,z∈{0,1}∗

• {ViewR∗
Com(m2, z)}κ∈N,m1,m2∈{0,1}κ,z∈{0,1}∗

where ViewR∗
Com(m, z) denotes the random variable describing the output of R∗ after receiving a

commitment to m using Com.

Statistical binding: For any (computationally unbounded) malicious sender S∗ and auxiliary input z, it
holds that the probability that there exist valid decommitments to two different values for a view v,
generated with an honest receiver while interacting with S∗(z) using Com, is negligible.

We refer the reader to [Gol01] for more details. We recall that non-interactive perfectly binding commit-
ment schemes can be constructed based on one-way permutation, whereas two-round statistically binding
commitment schemes can be constructed based on one-way functions [Nao91]. To set up some notations,
we let comm ← Com(m; rm) denote a commitment to a message m, where the sender uses uniform ran-
dom coins rm. The decommitment phase consists of the sender sending the decommitment information
decomm = (m, rm) which contains the message m together with the randomness rm. This enables the
receiver to verify whether decomm is consistent with the transcript comm. If so, it outputs m; otherwise
it outputs ⊥. For simplicity of exposition, in the sequel, we will assume that random coins are an implicit
input to the commitment functions, unless specified explicitly.

Definition 2.5 (Trapdoor commitment schemes). Let Com = (S,R) be a statistically binding commitment
scheme. We say that Com is a trapdoor commitment scheme is there exists an expected PPT oracle machine
S = (S1,S2) such that for any PPT R∗ and all m ∈ {0, 1}κ, the output (τ, w) of the following experiments
is computationally indistinguishable:
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- an honest sender S interacts with R∗ to commit to m, and then opens the commitment: τ is the view of R∗

in the commit phase, and w is the message S sends in the open phase.

- the simulator S generates a simulated view τ for the commit phase, and then opens the commitment to m
in the open phase: formally (τ, state)← SR∗

1 (1κ), w ← S2(state,m).

2.3 Randomness Extractors

The min-entropy of a random variable X is H∞(X) = − log(maxx Pr[X = x]).

Definition 2.6 (Extractors). A function Ext : {0, 1}n × {0, 1}t → {0, 1}m is a (k, ε)-strong extractor if for
all pairs of random variables (X, I) such that X ∈ {0, 1}n and H∞(X|I) ≥ k it holds that

SD((Ext(X,S), S, I), (Um, S, I)) ≤ ε,

where S is uniform over {0, 1}t and Um is the uniform distribution over {0, 1}m.

The Leftover Hash Lemma shows how to explicitly construct an extractor from a family of pairwise
independent functionsH. The extractor uses a random hash function h← H as its seed and keeps this seed
in the output of the extractor.

Theorem 2.7 (Leftover Hash Lemma). If H = {h : {0, 1}n → {0, 1}m} is a pairwise independent family
where m = n− 2 log 1

ε , then Ext(x, h) = (h, h(x)) is a strong (n, ε)-extractor.

In this work we will consider the case where m = 1 and n ≥ 2κ+ 1 where κ is the security parameter.
This yields ε = 2−

2κ+1−1
2 = 2−κ.

2.4 Hardcore Predicates

Definition 2.8 (Hardcore predicate). Let f : {0, 1}κ → {0, 1}∗ and H : {0, 1}κ → {0, 1} be a polynomial-
time computable functions. We say H is a hardcore predicate of f , if for every PPT machine A, there exists
a negligible function negl(·) such that

Pr[x← {0, 1}κ; y = f(x) : A(1κ, y) = H(x)] ≤ 1

2
+ negl(κ).

An important theorem by Goldreich and Levin [GL89] states that if f is a one-way function over {0, 1}κ
then the one-way function f ′ over {0, 1}2κ, defined by f ′(x, r) = (f(x), r), admits the following hardcore
predicate b(x, r) = ⟨x, r⟩ = Σxiri mod 2, where xi, ri is the ith bit of x, r respectively. In the following,
we refer to this predicate as the GL bit of f . We will use the following theorem that establishes the list-
decoding property of the GL bit.

Theorem 2.9 ([GL89]). There exists a PPT oracle machine Inv that on input (κ, ε) and oracle access to
a predictor PPT B, runs in time poly(κ, 1ε ), makes at most O(κ

2

ε2
) queries to B and outputs a list L with

|L| ≤ 4κ
ε2

such that if

Pr[r ← {0, 1}κ : B(r) = ⟨x, r⟩] ≥ 1

2
+

ε

2

then
Pr[L← InvB(κ, ε) : x ∈ L] ≥ 1

2
.
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2.5 Secret-Sharing

A secret-sharing scheme allows distribution of a secret among a group of n players, each of whom in a
sharing phase receive a share (or piece) of the secret. In its simplest form, the goal of secret-sharing is to
allow only subsets of players of size at least t+ 1 to reconstruct the secret. More formally a t+ 1-out-of-n
secret sharing scheme comes with a sharing algorithm that on input a secret s outputs n shares s1, . . . , sn
and a reconstruction algorithm that takes as input ((si)i∈S , S) where |S| > t and outputs either a secret s′

or ⊥. In this work, we will use the Shamir’s secret sharing scheme [Sha79] with secrets in F = GF (2κ).
We present the sharing and reconstruction algorithms below:

Sharing algorithm: For any input s ∈ F, pick a random polynomial f(·) of degree t in the polynomial-field
F[x] with the condition that f(0) = s and output f(1), . . . , f(n).

Reconstruction algorithm: For any input (s′i)i∈S where none of the s′i are ⊥ and |S| > t, compute a
polynomial g(x) such that g(i) = s′i for every i ∈ S. This is possible using Lagrange interpolation
where g is given by

g(x) =
∑
i∈S

s′i
∏

j∈S/{i}

x− j

i− j
.

Finally the reconstruction algorithm outputs g(0).

We will additionally rely on the following property of secret-sharing schemes. To this end, we view the
Shamir secret-sharing scheme as a linear code generated by the following n× (t+ 1) Vandermonde matrix

A =


1 12 · · · 1t

1 22 · · · 2t

...
...

...
...

1 n2 · · · nt


More formally, the shares of a secret s that are obtained via a polynomial f in the Shamir scheme, can be
obtained by computing Ac where c is the vector containing the coefficients of f . Next, we recall that for any
linear code A, there exists a parity check matrix H of dimension (n− t−1)×n which satisfies the equation
HA = 0(n−t−1)×(t+1), i.e. the all 0’s matrix. We thus define the linear operator ϕ(v) = Hv for any vector
v. Then it holds that any set of shares s is valid if and only if it satisfies the equation ϕ(s) = 0n−t−1.

The authors in [DZ13] were the first to propose an algorithm for verifying membership in (binary) codes,
i.e., verifying the product of Boolean matrices in quadratic time with exponentially small error probability,
while previous methods only achieved constant error.

3 Modeling Tamper-Proof Hardware

Our modeling for tamper-proof hardware is based on the modeling of [Kat07, GIS+10] for stateless tokens
by defining an ideal functionality FStateless

WRAP that models a real world functionality where a sender S sends
a stateless token M (specified by the code of a Turing machine), to a receiver R. Each such machine is
uniquely identified by a machine identifier mid. Note that the receiver may run M multiple times on inputs
of its choice as the token is stateless, and thus the functionality must save the description of the code it gets
from the sender. Nevertheless, our protocols prevent R from gaining an additional information when reusing
M multiple times using standard techniques. Moreover, our protocols are secure even in the case where S
provides a maliciously created stateful token. The description of FStateless

WRAP is given in Figure 1.
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Functionality FStateless
WRAP

Functionality FStateless
WRAP is parameterized by a polynomial p(·) and an implicit security parameter κ.

Create. Upon receiving (Create, sid, S,R,mid,M) from S, where M is a Turing machine, do:

1. Send (Create, sid, S,R,mid) to R.

2. Store (S,R,mid,M).

Execute. Upon receiving (Run, sid, S,mid, x) from R, find the unique stored tuple (S,R,mid,M). If
no such tuple exists, do nothing. Run M(x) for at most p(κ) steps, and let out be the response
(out = ⊥ if M does not halt in p(k) steps). Send (sid,R,mid, out) to R.

Figure 1: The ideal functionality for stateless tokens.

4 A Counter Example to [GIS+10]

In the following we identify a flaw in the sender simulation of the OT protocol in [GIS+10], Section 5.
More precisely, this result establishes that UC security is achievable in the tamper-proof hardware model in
O(κ)-round assuming only OWFs (or O(1)-round based on CRHs). On a high-level, the issue is because
the extraction procedure of the sender’s inputs is achieved through monitoring the queries to the PRF token
as opposed to running the actual OT token sent by the sender. This affects the distribution of the receiver’s
output as computed by the simulation. Next, we describe the counter example where the distribution of
what the receiver learns is different in the real world and ideal. We assume familiarity with the protocol
in [GIS+10] (see our Section 1.2 for an overview of their protocol). Consider the following strategy for a
malicious sender:

• Pick z1, z2, ..., zn−1 and ∆ at random.

• The inputs of the first n− 1 tokens are set as z1, z1 +∆, . . . , zn−1, zn−1 +∆.

• Let z1 + . . .+ zn−1 = a and z1 + . . .+ zn−1 +∆ = b.

• The inputs to the nth token are some fixed values c (when bn = 0) and d (when bn = 1), where
c+ d ̸= ∆.

In addition, the sender defines the following functionality relative to the OT tokens. The first n − 1 tokens
never abort, yet the nth token aborts whenever the input bn, the receiver’s input to the nth token is 1. Let
s0 = 0 and s1 = 1 (we remark that we are not concerned about the actual inputs of the sender, but focus on
the sum of the sender’s inputs embedded within the OT tokens that the receiver learns). We next examine
the honest receiver’s output in both the real and ideal worlds. First, in the real world the honest receiver
learns an output only if bn = 0 (since the nth token aborts whenever bn = 1). We consider two cases:

Case 1: The receiver’s input is b = 0. Then bn = 0 with probability 1/2, and bn = 1 with probability 1/2.
Moreover, when bn = 0, the sum of the outputs from the tokens OT that is obtained by the receiver is
a+ c. This is because when bn = 0, then, b1 + . . .+ bn−1 = 0, and the receiver learns a as the sum
of the outputs of the first n− 1 tokens and c from the nth token. On the other hand, when bn = 1 then
the receiver aborts since the nth token aborts.
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Case 2: The receiver’s input b = 1. Similarly, in this case the receiver will learn b+ c with probability 1/2
and aborts with probability 1/2.

In the ideal world, the simulator runs first with a random bit-vector and extracts the inputs to the tokens OT
by monitoring the queries to the PRF token. Next, it generates two bit-vectors bi’s and b′i’s that add up to
0 and 1, respectively, and computes the sums of the sender’s input that correspond to these bits. Then the
distribution of these sums can be computed as follows:

Case 1: In case that
∑

bi = 0, then bn = 0 with probability 1/2, and bn = 1 with probability 1/2. In the
former case the receiver learns a+ c, whereas in the latter case it learns b+ d.

Case 2: In case that
∑

b′i = 1, then with probability 1/2, b′n = 0 and with probability 1/2, b′n = 1. In the
former case the receiver learns b+ c, whereas in the latter it learns a+ d.

Note that this distribution is different from the real distribution, where the receiver never learns b + d or
a+d since the token will always abort and not reveal d. We remark that in our example the abort probability
of the receiver is independent of its input as proven in Claim 17 in [GIS+10], yet the distribution of what it
learns is different.

5 Two-Round UC Oblivious Transfer using Stateless Tokens

In this section we present our main protocol that implements UC OT in two rounds. We first construct a
three-round protocol and then show in Section 5.1 how to obtain a two-round protocol by exchanging tokens
just once in a setup phase. Recall that the counter example to the [GIS+10] protocol shows that directly
extracting the sender’s inputs does not necessarily allow us to extract the sender’s inputs correctly, as the
tokens can behave maliciously. Inspired by the recently developed protocol from [ORS15] we consider a
new approach here for which the sender’s inputs are extracted directly by monitoring the queries it makes to
the PRF tokens and using additional checks to ensure that the sender’s inputs can be verified.

Protocol intuition. As a warmup consider the following sender’s algorithm that first chooses two random
strings x0 and x1 and computes their shares [xb] = (x1b , . . . , x

2κ
b ) for b ∈ {0, 1} using the κ + 1-out-of-2κ

Shamir secret-sharing scheme. Next, for each b ∈ {0, 1}, the sender commits to [xb] by first generating
two vectors αb and βb such that αb ⊕ βb = [xb], and then committing to these vectors. Finally, the parties
engage in 2κ parallel OT executions where the sender’s input to the jth instance are the decommitments to
(α0[j], β0[j]) and (α1[j], β1[j]). The sender further sends (s0 ⊕ x0, s1 ⊕ x1). Thus, to learn sb, the receiver
needs to learn xb. For this, it enters the bit b for κ + 1 or more OT executions and then reconstructs the
shares for xb, followed by reconstructing sb using these shares. Nevertheless, this reconstruction procedure
works only if there is a mechanism that verifies whether the shares are consistent.

To resolve this issue, Ostrovsky et al. made the observation that the Shamir secret-sharing scheme has
the property for which there exists a linear function ϕ such that any vector of shares [xb] is valid if and only if
ϕ(xb) = 0. Moreover, since the function ϕ is linear, it suffices to check whether ϕ(αb)+ϕ(βb) = 0. Never-
theless, this check requires from the receiver to know the entire vectors αb and βb for its input b. This means
it would have to use b as the input to all the 2κ OT executions, which may lead to an input-dependent abort
attack. Instead, Ostrovsky et al. introduced a mechanism for checking consistency indirectly via a cut-and-
choose mechanism. More formally, the sender chooses κ pairs of vectors that add up to [xb]. It is instructive
to view them as matrices A0, B0, A1, B1 ∈ Zκ×2κ

p where for every row i ∈ [κ] and b ∈ {0, 1}, it holds that
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Ab[i, ·]⊕Bb[i, ·] = [xb]. Next, the sender commits to each entry of each matrix separately and sets as input
to the jth OT the decommitment information of the entire column ((A0[·, j], B0[·, j]), (A1[·, j], B1[·, j])).
Upon receiving the information for a particular column j, the receiver checks if for all i, Ab[i, j]⊕ Bb[i, j]
agree on the same value. We refer to this as the shares consistency check.

Next, to check the validity of the shares, the sender additionally sends vectors [zb1], . . . , [z
b
κ] in the clear

along with the sender’s message where it commits to the entries of A0, A1, B0 and B1 such that [zbi ] is set
to ϕ(A0[i, ·]). Depending on the challenge message, the sender decommits to A0[i, ·] and A1[i, ·] if ci = 0
and B0[i, ·] and B1[i, ·] if ci = 1. If ci = 0, then the receiver checks whether ϕ(Ab[i, ·]) = [zbi ], and if
ci = 1 it checks whether ϕ(Bb[i, ·]) + zbi = 0. This check ensures that except for at most s ∈ ω(log κ) of
the rows (Ab[i, ·], Bb[i, ·]) satisfy the condition that ϕ(Ab[i, ·]) + ϕ(Bb[i, ·]) = 0 and for each such row i,
Ab[i, ·] + Bb[i, ·] represents a valid set of shares for both b = 0 and b = 1. This check is denoted by the
shares validity check. In the final protocol, the sender sets as input in the jth parallel OT, the decommitment
to the entire jth columns of A0 and B0 corresponding to the receiver’s input 0 and A1 and B1 for input 1.
Upon receiving the decommitment information on input bj , the receiver considers a column “good” only
if Abj [i, j] + Bbj [i, j] add up to the same value for every i. Using another cut-and-choose mechanism,
the receiver ensures that there are sufficiently many good columns which consequently prevents any input-
independent behavior. We refer this to the shares-validity check.

We adapt the idea introduced in [ORS15] to obtain a two-round UC protocol as follows. The receiver
commits to its input bits b1, . . . , b2κ and the challenge bits for the share consistency check c1, . . . , cκ using
the PRF tokens. Then, the sender sends all the commitments a la [ORS15] and 2κ + κ tokens, where
the first 2κ tokens provide the decommitments to the columns, and the second set of κ tokens give the
decommitments of the rows for the shares consistency check. The simulator now extracts the sender’s
inputs by monitoring its queries and we are able to show that there cannot be any input dependent behavior
of the token if it passes both the shares consistency check and the shares validity check. See Figure 2 for the
protocol overview.

S(s0, s1) R(b)

PRF tokens {TKPRF,l
S }l∈[3κ] -

Select T1−b ⊂ [2κ] of size κ/2
Define Tb = [2κ]/T1−b

For every j ∈ [2κ], bj = β if j ∈ Tβ

Select c1, . . . , cκ ← {0, 1}

�

{combj}j∈[2κ], {comci}i∈[κ]

PRF tokens {TKPRF,l′

R }l′∈[8κ2]

pick x0, x1 ← Zp

(x1
b , . . . , x

2κ
b )← Share(xb)

(comA0 , comB0 , comA1 , comB1)
C0 = s0 ⊕ x0, C1 = s1 ⊕ x1

Tokens {TKj}j∈[2κ], {T̂Ki}i∈[κ]-

If checks pass extract xb, sb

Figure 2: A high-level diagram of πOT
UC .
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We now describe our protocol ΠUC
OT with sender S and receiver R using the following building blocks:

let (1) Com be a non-interactive perfectly binding commitment scheme, (2) let SS = (Share,Recon) be a
(κ+ 1)-out-of-2κ Shamir secret-sharing scheme over Zp, together with a linear map ϕ : Z2κ

p → Zκ−1
p such

that ϕ(v) = 0 iff v is a valid sharing of some secret, (3) F, F ′ be two families of pseudorandom functions
that map {0, 1}5κ → {0, 1}κ and {0, 1}κ → {0, 1}p(κ), respectively (4) H denote a hardcore bit function
and (5) Ext : {0, 1}5κ × {0, 1}d → {0, 1} denote a randomness extractor where the source has length 5κ
and the seed has length d. See Protocol 1 for the complete description.

Protocol 1. Protocol ΠOT
UC - UC OT with stateless tokens.

• Inputs: S holds two strings s0, s1 ∈ {0, 1}κ and R holds a bit b.

• The protocol:

1. S → R: S chooses 3κ random PRF keys {γl}[l∈3κ] for family F . Let PRFγl
: {0, 1}5κ → {0, 1}κ

denote the pseudorandom function. S creates token TKPRF,l
S by sending (Create, sid,R, S,midl,M1) to

FStateless
WRAP , that on input x outputs PRFγl

(x) for all l ∈ [3κ], where M1 is the functionality.

2. R → S: R selects a random subset T1−b ⊂ [2κ] of size κ/2 and defines Tb = [2κ]/T1−b. For every
j ∈ [2κ], R sets bj = β if j ∈ Tβ . R samples uniformly at random c1, . . . , cκ ← {0, 1}. Finally, R sends

(a) ({combj}j∈[2κ], {comci}i∈[κ]) to S where

∀ j ∈ [2κ], i ∈ [κ] combj = (Ext(uj)⊕ bj , vj) and comci = (Ext(u′
i)⊕ ci, v

′
i)

uj , u
′
i ← {0, 1}5κ and vj , v

′
i are obtained by sending respectively (Run, sid, S,midj , uj) and (Run, sid,

S,mid2κ+i, u
′
i).

(b) R generates the tokens {TKPRF,l′

R }l′∈[8κ2] which are analogous to the PRF tokens {TKPRF,l
S }l∈[3κ]

by sending (Create, sid, S,R,midl′ ,M2) to FStateless
WRAP for all l′ ∈ [8κ2].

3. S → R: S picks two random strings x0, x1 ← Zp and secret shares them using SS . In particular, S
computes [xb] = (x1

b , . . . , x
2κ
b )← Share(xb) for b ∈ {0, 1}. S commits to the shares [x0], [x1] as follows.

It picks random matrices A0, B0 ← Zκ×2κ
p and A1, B1 ← Zκ×2κ

p such that ∀i ∈ [κ]:

A0[i, ·] +B0[i, ·] = [x0], A1[i, ·] +B1[i, ·] = [x1].

S computes two matrices Z0, Z1 ∈ Zκ×κ−1
p and sends them in the clear such that:

Z0[i, ·] = ϕ(A0[i, ·]), Z1[i, ·] = ϕ(A1[i, ·]).

S sends:

(a) Matrices (comA0 , comB0 , comA1 , comB1) to R, where,

∀ i ∈ [κ], j ∈ [2κ], β ∈ {0, 1} comAβ [i,j] = (Ext(uAβ [i,j] ⊕Aβ [i, j], v
Aβ [i,j])

comBβ [i,j] = (Ext(uBβ [i,j] ⊕Bβ [i, j], v
Bβ [i,j])

where (uAβ [i,j], uBβ [i,j]) ← {0, 1}5κ and (vAβ [i,j], vBβ [i,j]) are obtained by sending (Run, sid, S,

mid[i,j,β], u
Aβ [i,j]) and (Run, sid,S,mid2κ2+[i,j,β], u

Bβ [i,j]), respectively, to the token TK
PRF,[i,j,β]
R

where [i, j, β] is an encoding of the indices i, j, β into an integer in [2κ2].
(b) C0 = s0 ⊕ x0 and C1 = s1 ⊕ x1 to R.
(c) For all j ∈ [2κ], S creates a token TKj by sending (Create, sid,R, S,mid3κ+j ,M3) to FStateless

WRAP

where M3 is the functionality that on input (bj , decombj ), aborts if decombj is not verified correctly.
Otherwise it outputs (Abj [·, j], decomAbj

[·,j], Bbj [·, j], decomBbj
[·,j]).
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(d) For all i ∈ [κ], S creates a token T̂Ki by sending (Create, sid,R, S,mid5κ+i,M4) to FStateless
WRAP

where M4 is the functionality that on input (ci, decomci) aborts if decomci is not verified correctly.
Otherwise it outputs,

(A0[i, ·], decomA0[i,·], A1[i, ·], decomA1[i,·]), if c = 0

(B0[i, ·], decomB0[i,·], B1[i, ·], decomB1[i,·]), if c = 1

4. Output Phase:
For all j ∈ [2κ], R sends (Run, sid, S,mid3κ+j , (bj , decombj )) receives

(Abj [·, j], decomAbj
[·,j], Bbj [·, j], decomBbj

[·,j]).

For all i ∈ [κ], R sends (Run, sid,S,mid5κ+i, (ci, decomci)) receives

(A0[·, i], A1[·, i]) or (B0[·, i], B1[·, i]).

(a) SHARES VALIDITY CHECK PHASE: For all i ∈ [κ], if ci = 0 check that Z0[i, ·] = ϕ(A0[i, ·]) and
Z1[i, ·] = ϕ(A1[i, ·]). Otherwise, if ci = 1 check that ϕ(B0[i, ·]) + Z0[i, ·] = 0 and ϕ(B1[i, ·]) +
Z1[i, ·] = 0. If the tokens do not abort and all the checks pass, the receiver proceeds to the next
phase.

(b) SHARES CONSISTENCY CHECK PHASE: For each b ∈ {0, 1}, R randomly chooses a set Tb for
which bj = b of κ/2 coordinates. For each j ∈ Tb, R checks that there exists a unique xj

b such that
Ab[i, j] + Bb[i, j] = xj

b for all i ∈ [κ]. If so, xj
b is marked as consistent. If the tokens do not abort

and all the shares obtained in this phase are consistent, R proceeds to the reconstruction phase.
Else it abort.

(c) OUTPUT RECONSTRUCTION: For j ∈ [2κ]/T1−b, if there exists a unique xj
b such that Ab[i, j] +

Bb[i, j] = xj
b, mark share j as a good column. If R obtains less than κ + 1 good shares, it

aborts. Otherwise, let xj1
b , . . . , x

jκ+1

b be any set of κ + 1 consistent shares. R computes xb ←
Recon(xj1

b , . . . , x
jκ+1

b ) and outputs sb = Cb ⊕ xb.

Theorem 5.1. Assume the existence of one-way permutations, then protocol ΠOT
UC UC realizes FOT in the

FStateless
WRAP -hybrid.

Proof overview. On a high-level, when the sender is corrupted our simulation proceeds analogously to the
simulation from [ORS15] where the simulator generates the view of the malicious sender by honestly gen-
erating the receiver’s messages and then extracting all the values committed to by the sender. Nevertheless,
while in [ORS15] the authors rely on extractable commitments and extract the sender’s inputs via rewind-
ing, we directly extract its inputs by monitoring the queries made by the malicious sender to the {TKPRF,i

R }i
tokens. The proof of correctness follows analogously. More explicitly, the share consistency check ensures
that for any particular column that the receiver obtains, if the sum of the values agree on the same bit, then
the receiver extracts the correct share of [xb] with high probability. Note that it suffices for the receiver to
obtain κ+ 1 good columns for its input b to extract enough shares to reconstruct xb since the shares can be
checked for validity. Namely, the receiver chooses κ/2 indices Tb and sets its input for these OT executions
as b. For the rest of the OT executions, the receiver sets its input as 1 − b. Denote this set of indices by
T1−b. Then, upon receiving the sender’s response to its challenge and the OT responses, the receiver first
performs the shares consistency check. If this check passes, it performs the shares validity check for all
columns, both with indices in T1−b and for the indices in a random subset of size κ/2 within Tb. If one
of these checks do not pass, the receiver aborts. If both checks pass, it holds with high probability that the
decommitment information for b = 0 and b = 1 are correct in all but s ∈ ω(log n) indices. Therefore, the
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receiver will extract [xb] successfully both when its input b = 0 and b = 1. Furthermore, it is ensured that
if the two checks performed by the receiver pass, then a simulator can extract both x0 and x1 correctly by
simply extracting the sender’s input to the OT protocol and following the receiver’s strategy to extract.

On the other hand, when the receiver is corrupted, our simulation proceeds analogous to the simulation
in [ORS15] where the simulator generates the view of the malicious receiver by first extracting the receiver’s
input b and then obtaining sb from the ideal functionality. It then completes the execution following the hon-
est sender’s code with (s0, s1), where s1−b is set to random. Moreover, while in [ORS15] the authors rely
on a special type of interactive commitment that allows the extraction of the receiver’s input via rewind-
ing, we instead extract this input directly by monitoring the queries made by the malicious receiver to the
{TKPRF,l

S }l∈[3κ] tokens. The proof of correctness follows analogously. Informally, the idea is to show that
the receiver can learn κ + 1 or more shares for either x0 or x1 but not both. In other words there exists
a bit b for which a corrupted receiver can learn at most κ shares relative to s1−b. Thus, by replacing s1−b

with a random string, it follows from the secret-sharing property that obtaining at most κ shares keeps s1−b

information theoretically hidden.
The next claim establishes that the commitments made by the parties are statistically hiding. We remark

that this claim is analogous to Claim 20 from [GIS+10]. For completeness, we present it below.

Lemma 5.1. For any i ∈ [κ], let Db denote the distribution obtained by sampling a random combi with
bi = b. Then D0 and D1 are 2−κ+1-close.

Proof: Informally, the proof follows from the fact that ui has high min-entropy conditioned on vi and there-
fore (Ext(ui, h), h) hides ui information theoretically as it is statistically close to the uniform distribution.
More formally, consider a possibly maliciously generated token M1 that incorporates an arbitrary function-
ality from 5κ bits to κ. It is possible to think of M1 as a function even if the token is stateful since we only
consider the min-entropy of the input with respect to the output when M1 is invoked from the same state.

Let Sv denote the subset of {0, 1}5κ that contains all x ∈ {0, 1}5k such that M1(x) = v. First, we claim
that for a randomly chosen x ← {0, 1}5κ, SM1(x) is of size at least 23κ with probability at least 1 − 2−κ.
Towards proving this we calculate the number of x’s for which |SM1(x)| < 23κ and denote such an x by bad.
Now, since there are at most 2k possible values that M1 may output, then the number of bad x’s is:∑

v:|Sv |<23κ

|Sv| < 2κ × 23κ = 24κ.

Therefore, the probability that a uniformly chosen x is bad is at most 24k/25k = 2−k. Let U and V denote
random variables such that V is the response of M1 on U . It now holds that

Pr[u← {0, 1}5κ : H∞(U |V = M1(u)) ≥ 3κ] > 1− 2−κ.

In other words, the min-entropy of U is at least 3κ with very high probability. Now, whenever this is the
case, using the Leftover Hash Lemma (cf. Definition 2.7) with ϵ = 2−κ, m = 1 and k = 3κ implies that
(Ext(U, h), h) is 2−κ-close to the uniform distribution. Combining the facts that comb = (Ext(U, h) ⊕
b, h, V ) and that U has high min-entropy at least with probability 1 − 2−κ, we obtain that D0 and D1 are
2−κ + 2−κ-close. �

We continue with the complete proof.

Proof: Let A be a malicious PPT real adversary attacking protocol ΠUC
OT in the FStateless

WRAP -hybrid model. We
construct an ideal adversary S with access to FOT which simulates a real execution of ΠUC

OT withA such that
no environment Z can distinguish the ideal process with S and FOT from a real execution of ΠUC

OT with A.
S starts by invoking a copy of A and running a simulated interaction of A with environment Z , emulating
the honest party. We describe the actions of S for every corruption case.
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Simulating the communication with Z: Every message that S receives from Z it internally feeds to A
and every output written by A is relayed back to Z .

Simulating the corrupted S. We begin with describing our simulation:

1. Upon corrupting A, S emulates the role of FStateless
WRAP where upon receiving from A the messages

{(Create, sid,R, S,midl,M1)}l∈[3κ], S stores the codes of these tokens.

2. Next, S emulates the role ofFStateless
WRAP for tokens {TKPRF,l′

R }l′∈[8κ2], where for each query u ∈ {0, 1}5κ

made by A to token TKPRF,l′

R , S returns a random v from {0, 1}κ. S further stores the pair (u, v) in
the query/answer list of TKPRF,l′

R .

3. S generates the first message by following the code of the honest receiver with input b = 0.

4. Upon receiving the second message from A, i.e. commitments (comA0 , comB0 , comA1 , comB1) and
(C0, C1), it completes the execution by following the honest receiver’s code.

5. Next, S tries to extract s0 and s1. For this, it first extracts matrices A0, B0, A1, B1 from the respective
commitments as described in the simulation for the proof of ΠOT. More precisely, given any com-
mitment β, v, it first checks if there exists a query/answer pair (u, v) that has already been recorded
with respect to that token. If there exists such a query then the simulator sets the decommitted value
to be β ⊕ Ext(u), and ⊥ otherwise. Next, to extract sb, S proceeds as follows: For every i ∈ [κ],
it computes Ab[i, j] ⊕ Bb[i, j] for all j ∈ [2κ] and marks that column j good if they all agree to the
same value, say, γj . If it finds more than κ + 1 good columns, it reconstructs the secret xb by using
share reconstruction algorithm on {γj}j∈good. Otherwise, it sets xb to ⊥.

6. S computes s0 = C0 ⊕ x0 and s1 = C1 ⊕ x1 and sends (s0, s1) to the trusted party that computes
FOT and halts, outputting whatever A does.

Next, we prove the correctness of our simulation in the following lemma.

Lemma 5.2.
{

ViewFStateless
WRAP

ΠUC
OT,A,Z(κ)

}
κ∈N

c≈
{

ViewFOT
πIDEAL,S,Z(κ)

}
κ∈N.

Proof: Our proof follows by a sequence of hybrid executions defined below.

Hybrid H0: In this hybrid game there is no trusted party that computes functionality FOT. Instead, we
define a simulator S0 that receives the real input of the receiver and internally emulates the protocol
ΠUC

OT with the adversary A by simply following the honest receiver’s strategy. Finally, the output of
the receiver in the internal emulation is just sent to the external honest receiver (as part of the protocol
ΠH0) that outputs it as its output. Now, since the execution in this hybrid proceeds identically to the
real execution, we have the following claim,

Claim 5.3.
{

ViewFStateless
WRAP

ΠUC
OT,A,Z(κ)

}
κ∈N ≈

{
ViewΠH0

,S0,Z(κ)
}
κ∈N.

Hybrids H1,0 . . . ,H1,8κ2 : We define a collection of hybrid executions such that for every l′ ∈ [8κ2]

hybrid H1,l′ is defined as follows. We modify the code of token TKPRF,l′

R by replacing the function
PRFγl′ with a truly random function fl′ . In particular, given a query u the token responds with a
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randomly chosen κ bit string v, rather than running the original code of M2. We maintain a list ofA’s
queries and responses so that repeated queries will be consistently answered. It is simple to verify that
the adversary’s view in every two consecutive hybrid executions is computationally indistinguishable
due to the security of the pseudorandom function embedded within TKPRF,l′

R . Moreover, since the
PRF key is hidden from the sender, it follows from the pseudorandomness property that the views in
every two consecutive hybrid are computationally indistinguishable. As in the previous hybrid, the
simulator hands the output of the receiver in the internal emulation to the external receiver as part of
the protocol ΠH1,l′ . More formally, we have the following claim,

Claim 5.4. For every l′ ∈ [8κ2],
{

ViewΠH1,l′−1
,S1,l′−1,Z(κ)

}
κ∈N

c≈
{

ViewΠH1,l′
,S1,l′ ,Z(κ)

}
κ∈N.

Hybrids H2,0 . . . ,H2,8κ2 : This sequence of hybrids executions is identical to hybrid H1,8κ2 except that
here S2 aborts if two queries made by A to the token TKPRF,l′

R results in the same response. Using a
proof analogous to Lemma 6.10, we obtain the following claim.

Claim 5.5. For every l′ ∈ [8κ2],
{

ViewΠH2,l′−1
,S2,l′−1,Z(κ)

}
κ∈N

s≈
{

ViewΠH2,l′
,S2,l′ ,Z(κ)

}
κ∈N.

Hybrid H3: In this hybrid, S3 proceeds identically to S2,8κ2 using the honest receiver’s input b with the
exception that it does not report the output of the receiver as what is computed in the emulation by
the simulator. Instead, S3 follows the code of the actual simulator to extract (s0, s1) and sets the
receiver’s output as sb. Note that the view of the adversary is identical in both hybrids H2,8κ2 and
H3. Therefore, to prove the indistinguishability of the joint output distribution, it suffices to show that
the output of the honest receiver is the same. On a high-level, this will follow from the fact that if
the honest receiver does not abort then the two checks performed by the receiver, namely, the shares
validity check and the shares consistency check were successful, which would imply that there are at
least κ+ 1 good columns from which the simulator can extract the shares. Finally, we conclude that
the reconstruction performed by the honest receiver and the simulator will yield the same value for sb.

More formally, we argue indistinguishability conditioned on when the two consistency checks pass
in the execution emulated by the simulator (in the event at least one of them do not pass, the receiver
aborts and indistinguishability directly holds). Then, the following hold for any s ∈ ω(log n):

Step 1: Since the shares validity check passed, following a standard cut-and-choose argument, it
holds except with probability 2−O(s) that there are at least κ − s rows for which ϕ(Ab[i, ·]) +
ϕ(Bb[i, ·]) = 0. In fact, it suffices if this holds at least for one row, say i∗. For b ∈ {0, 1}, let the
secret corresponding to Ab[i

∗, ·] +Bb[i
∗, ·] be s̃b.

Step 2: If for any column j ∈ [2κ] and b ∈ {0, 1} there exists a value γj such that for all i ∈ [κ]

γb[j] = Ab[i, j] +Bb[i, j],

then, combining with Step 1, we can conclude that γb[j] = Ab[i
∗, j] +Bb[i

∗, j]. Furthermore, if
either the receiver or the simulator tries to extract the share corresponding to that column it will
extract γb[j] since the commitments made by the sender are binding. Therefore, we can conclude
that if either the receiver or the simulator tries to reconstruct the secret for any b ∈ {0, 1}, it will
reconstruct only with shares in {γb[j]}j∈J which implies that they reconstruct only s̃b.
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Step 3: Now, since the shares consistency check passed, following another cut-and-choose argument,
it holds except with probability 2−O(s) that there is a set J of at least 2κ−s columns such that for
any j ∈ J the tokens do not abort on a valid input from the receiver and yield consistent values
for both bj = 0 and bj = 1. This means that if the honest receiver selects 3κ/4 columns with
input as its real input b, the receiver is guaranteed to find at least κ+1 indices in J . Furthermore,
there will be κ + 1 columns in J for both inputs for the simulator to extract and when either of
them extract they can only extract s̃b.

Then to prove indistinguishability in this hybrid, it suffices to prove that the simulator reconstructs sb
if and only if the receiver extracts sb and this follows directly from Step 3 in the proceeding argument,
since there is a unique value s̃b that either of them can reconstruct and they will reconstruct that value
with probability 1− 2−O(s) if the two checks pass. As the checks are independent of the real input of
the receiver, indistinguishability of the hybrids follow.

Claim 5.6.
{

ViewΠH
2,8κ2

,S2,8κ2 ,Z(κ)
}
κ∈N

s≈
{

ViewΠH3
,S3,Z(κ)

}
κ∈N.

Hybrid H4: In this hybrid, S4 proceeds identically to S3 with the exception that the simulator sets the
receiver’s input in the main execution as 0 instead of the real input b. Finally, it reconstructs sb and
sets that as the honest receiver’s output. It follows from Lemma 5.1 that the output of H3 and H4 are
statistically-close. Therefore, we have the following claim,

Claim 5.7.
{

ViewΠH3
,S3,Z(κ)

}
κ∈N

s≈
{

ViewΠH4
,S4,Z(κ)

}
κ∈N.

Hybrid H5: In this hybrid, we consider the simulation. Observe that our simulator proceeds identically
to the simulation with S4 with the exception that it feeds the extracted values s0 and s1 to the ideal
functionality while S4 instead just outputs sb. Furthermore, the ideal simulator sends (s0, s1) to the
FOT functionality. It follows from our simulation that the view of the adversary in H5 and the ideal
execution are identically distributed. Furthermore, for both b = 0 and b = 1 we know that the value sb
extracted by the simulator and the value output by the honest receiver in the ideal execution are equal.
Therefore, we can conclude that the output of H4 and the ideal execution are identically distributed.

Claim 5.8.
{

ViewΠH4
,S4,Z(κ)

}
κ∈N ≈

{
ViewFOT

πIDEAL,S,Z(κ)
}
κ∈N.

Simulating the corrupted R. We begin with describing our simulation:

1. Upon corrupting A, S emulates the role of FStateless
WRAP for tokens {TKPRF,l

S }l∈[3κ] using truly random
functions, where for each query u ∈ {0, 1}5κ made by A to token TKPRF,l

S , S returns a random v

from {0, 1}κ. S further stores the pair (u, v) in the query/answer list of TKPRF,l
S .

2. Next, S emulates the role ofFStateless
WRAP where upon receiving fromA the message {(Create, sid,R, S,midl′ ,

M2)}l′∈[8κ2], S stores the code of these tokens.

3. Upon receiving the first message from A, i.e. the commitments combj and comci where i ∈ [κ] and
j ∈ [2κ], S tries to extract b. For this, just as in previous simulations, it first extracts all the bj values
and then sets the receiver’s input as that bit that occurs at least κ+ 1 times among the bj’s. If no such
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bit exists, it sets b to be random. Next it sends b to the FOT functionality to obtain sb, and completes
the protocol following the honest sender’s code with inputs (s0, s1) where s1−b is set to random. In
particular, it computes Cb = xb ⊕ sb and sets C1−b to a random string.

Next, we sketch the correctness of our simulation in the following lemma.

Lemma 5.9.
{

ViewFStateless
WRAP

ΠUC
OT,A,Z(κ)

}
κ∈N

c
≈
{

ViewFOT
πIDEAL,S,Z(κ)

}
κ∈N.

Proof: Our proof follows by a sequence of hybrid executions defined below.

Hybrid H0: In this hybrid game there is no trusted party that computes functionality FOT. Instead, we
define a simulator S0 that receives the real input of the sender and internally emulates the protocol
ΠUC

OT with the adversary A by simply following the honest sender’s strategy. Finally, the output of the
sender in the internal emulation is just sent to the external honest sender (as part of the protocol ΠH0)
that outputs it as its output. Now, since the execution in this hybrid proceeds identically to the real
execution, we have the following claim,

Claim 5.10.
{

ViewFStateless
WRAP

ΠUC
OT,A,Z(κ)

}
κ∈N ≈

{
ViewΠH0

,S0,Z(κ)
}
κ∈N.

Hybrids H1,0 . . . ,H1,3κ: We define a collection of hybrid executions such that for every l ∈ [3κ] hybrid
H1,l is defined as follows. We modify the code of token TKPRF,l

S by replacing the function PRFγl with
a truly random function fl. In particular, given a query u the token responds with a randomly chosen
κ bit string v, rather than running the original code of M1. We maintain a list of A’s queries and
responses so that repeated queries will be consistently answered. In addition, the code of token TKl

(for l ≤ 2κ) or T̂Kl−2κ (for 2κ+1 ≤ l ≤ 3κ) is modified, as now this token does not run a check with
respect to the PRF that is embedded within token TKPRF,l

S but with respect to the random function
fl. It is simple to verify that the adversary’s view in every two consecutive hybrid executions is
computationally indistinguishable due to the security of the pseudorandom function PRFγl . Moreover,
since the PRF key is hidden from the receiver, it follows from the pseudorandomness property that
the views in every two consecutive hybrid are computationally indistinguishable. As in the previous
hybrid, the simulator hands the output of the sender in the internal emulation to the external receiver
as part of the protocol ΠH1,l

. More formally, we have the following claim,

Claim 5.11. For every l ∈ [3κ],
{

ViewΠH1,l−1
,S1,l−1,Z(κ)

}
κ∈N

c≈
{

ViewΠH1,l
,S1,l,Z(κ)

}
κ∈N.

HybridsH2,0 . . . ,H2,3κ: This sequence of hybrids executions is identical to hybrid H1,3κ except that here
S2 aborts if two queries made by A to the token TKPRF,l

S results in the same response. Using a proof
analogous to Lemma 6.10, we obtain the following claim.

Claim 5.12. For every l ∈ [3κ],
{

ViewΠH2,l−1
,S2,l−1,Z(κ)

}
κ∈N

s
≈
{

ViewΠH2,l
,S2,l,Z(κ)

}
κ∈N.

Hybrid H3: In this hybrid execution, simulator S3 plays the role of the sender as in hybrid H2,3κ except
that it extracts the adversary’s input bit b as carried out in the simulation by S and the challenge string
c. Clearly, this does not make any difference to the receiver’s view which implies that,

Claim 5.13.
{

ViewΠH2,3κ
,S2,3κ,Z(κ)

}
κ∈N

s≈
{

ViewΠH3
,S3,Z(κ)

}
κ∈N.

19



Hybrid H4: In this hybrid execution, the simulator instead of emulating the original tokens {TKj}j∈[2κ],
simulator S4 emulates functionalities {T̃Kj}j∈[2κ] in the following way. For all j ∈ [2κ], if T̃Kj is
queried on (bj , decombj ) and decombj is verified correctly, S4 outputs the column

(Abj [·, j], decomAbj
[·,j], Bbj [·, j], decomBbj

[·,j])

where bj is the bit extracted by S4 as in the prior hybrid. Otherwise, if T̃Kj is queried on (1 −
bj , decom1−bj ) then S4 outputs ⊥. Following the same argument as in Claim 6.11 it follows that
the commitments made by the receiver are binding and thus a receiver will not be able to produce
decommitments to obtain the value corresponding to 1− bj . Therefore, we have the following claim.

Claim 5.14.
{

ViewΠH3
,S3,Z(κ)

}
κ∈N

s
≈
{

ViewΠH4
,S4,Z(κ)

}
κ∈N.

Hybrid H5: In this hybrid execution, instead of emulating the original tokens {T̂Ki}i∈[κ], simulator
S5 emulates functionalities {TKi}i∈[κ] in the following way. For all i ∈ [κ], if TKi is queried on
(ci, decomci) and decomci is verified correctly, S5 outputs the row

(A0[i, ·], decomA0[i,·], A1[i, ·], decomAi[i,·]), if ci = 0

(B0[i, ·], decomB0[i,·], B1[i, ·], decomBi[i,·]), if ci = 1

where ci is the bit extracted by S5 as in the prior hybrid. Otherwise, if TKi is queried on (1 −
ci, decom1−ci) then S5 outputs ⊥. Indistinguishability follows using the same argument as in the
previous hybrid. Therefore, we have the following claim.

Claim 5.15.
{

ViewΠH4
,S4,Z(κ)

}
κ∈N

s≈
{

ViewΠH5
,S5,Z(κ)

}
κ∈N.

Hybrid H6: In this hybrid, the simulator S6 chooses an independent random string x∗ ← Zp instead
of generating the matrices A1−b and B1−b according to the shares of x1−b. We remark that C1−b =
s1−b ⊕ x1−b is still computed as in H5 with x1−b.

Claim 5.16.
{

ViewΠH5
,S5,Z(κ)

}
κ∈N

s≈
{

ViewΠH6
,S6,Z(κ)

}
κ∈N.

Proof: Let Ã1−b, B̃1−b contain the same entries as A1−b, B1−b in H5 with the exception that the
entries whose decommitments have been removed both in TK and T̃K as described in hybrids H4 and
H5 are set to ⊥. More precisely, given the extracted values for bj’s and ci’s, for every j ∈ [2κ] such
that bj = b, Ã1−b(i, j) = ⊥ if ci = 1 and B̃1−b(i, j) = ⊥ if ci = 0 for all i ∈ [κ].

Observe that, for every i, j, either Ã1−b[i, j] = A1−b[i, j] or Ã1−b[i, j] = ⊥. The same holds for the
B̃1−b. We claim that the information of at most κ shares of x1−b is present in matrices Ã1−b, B̃1−b.
To this end, for every column j such that bj ̸= 1 − b and for every row i, depending on ci, either
Ã1−b[i, j] = ⊥, or B̃1−b[i, j] = ⊥. For every pair i, j, since A1−b[i, j] and B1−b[i, j] are both
uniformly distributed, obtaining the value for at most one of them keeps A1−b[i, j] + B1−b[i, j] sta-
tistically hidden. Now, since bj ̸= 1− b for at least κ+ 1 shares, it follows that at least κ+ 1 shares
of x1−b are hidden. In other words, at most κ shares of x1−b can be obtained by the receiver in H5.
Analogously at most κ shares of x∗ are obtained in H6. From our secret-sharing scheme, it follows
that κ shares information theoretically hides the value. Therefore, the decommitments obtained by
the receiver in H5 and H6 and identically distributed. The claim now follows from the fact that the
commitments to the matrices (comA0 , comB0 , comA1 , comB1) are statistically-hiding. �
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Hybrid H7: In this hybrid execution simulator S7 does not know the sender’s inputs (s0, s1), but rather
communicates with a trusted party that computes FOT. S7 behaves exactly as S6, except that when
extracting the bit b, it sends it to the trusted party which sends back sb. Moreover, S7 uses random
values for s1−b and C1−b. Note that since the value committed to in the matrices corresponding to
1− b is independent of x1−b, this hybrid is identically distributed to the previous hybrid. We conclude
with the following claim.

Claim 5.17.
{

ViewΠH6
,S6,Z(κ)

}
κ∈N ≡

{
ViewΠH7

,S7,Z(κ)
}
κ∈N.

Hybrid H8: In this hybrid execution, tokens {TKj}j∈[2κ] are emulated instead of tokens {T̃Kj}j∈[2κ].
In addition, tokens {T̂Ki}i∈[κ] are emulated instead of tokens {T̃Ki}i∈[κ]. Due to similar claims as
above, it holds that

Claim 5.18.
{

ViewΠH7
,S7,Z(κ)

}
κ∈N

c≈
{

ViewΠH8
,S8,Z(κ)

}
κ∈N.

Finally, we note that hybrid H8 is identical to the simulated execution which concludes the proof.

On relying on one-way functions. In this protocol the only place where one-way permutations are used is
in the commitments made by the sender in the second round of the protocol via a non-interactive perfectly-
binding commitment. This protocol can be easily modified to rely on statistically-binding commitments
which have two-round constructions based on one-way functions [Nao91]. Specifically, since the sender
commits to its messages only in the second-round, the receiver can provide the first message of the two-
round commitment scheme along with the first message of the protocol.

5.1 Reusability of Tokens

Following the work of Choi et al. [CKS+14], we investigate the possibility of exchanging tokens just once
and (re-)using the tokens for an unbounded number of oblivious transfers. In this section we argue how
to extend our protocol to achieve reusability. More precisely, we show how the same set of tokens can
be used to execute an arbitrary number of oblivious transfers. Towards achieving this, we show that it
is possible to exchange all tokens at the beginning of the protocol. Analogous to [PVW08], we consider
the multi-session extension F̂OT of the OT functionality which on a high-level enables arbitrary number
of independent executions of FOT and coordinates interactions with every pair of parties via subsessions
specified by the identifier ssid of a single session with identifier sid.

Recall that the sender sends two sets of tokens: PRF tokens in the first message and OT tokens in the
second message whose codes depend on the first message of the receiver. We handle each of these sets in a
different way and note that handling the PRF tokens is identical for both parties.

Handling the OT tokens. Recall that these tokens are generated after receiving the receiver’s message of
the protocol. Then in order to generate them independently of this message, we will rely on digital signa-
tures. A similar approach was pursued in the work of [CKS+14] where digital signatures, which require
an additional property of unique signatures, are employed. Recall that a signature scheme (Gen, Sig,Ver)
is said to be unique if for every verification key vk and every message m, there exists only one signature σ
for which Vervk(m,σ) = 1. Such signature schemes can be constructed based on specific number theoretic
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assumptions [DY05]. In this paper we take a different approach and rely only on one-way functions. For
simplicity we provide a construction based on non-interactive perfectly binding commitment schemes that,
in turn, can be based on one-way permutations. By relying on techniques described in Section 6.2.1 we can
relax this assumption to one-way functions.

Our main idea is to rely on an instantiation of Lamport’s one-time signature scheme [Lam79] with a non-
interactive perfectly binding commitment scheme Com (instead of one-way functions), which additionally
has the uniqueness property as in [CKS+14]. In the following, we consider the setting where a sender S and
a receiver R engage in several oblivious transfer instantiations concurrently. We will identify every session
with the identifier ssid. On a high-level, for every OT instance identified by ssid we generate a one-time
signature/verification key pair by applying a PRF on τ = sid∥ssid∥combj∥j where combj is the receiver’s
jth commitment to its input’s share for that instance. Then the receiver is allowed to query the OT token TKj

only if it possesses a valid signature corresponding to its commitment combj for that instance. Now, since
the signatures are unique, the signatures themselves do not carry any additional information. To conclude,
we use the same protocol as described in the previous section with the following change:

• S provides a signature of combj for every j, under key skτ for τ = sid∥ssid∥combi∥i, along with its
second message to the receiver.

Similarly, we handle the commitments comci and tokens T̂Ki.
We further note that since the tokens are sent prior to the protocol execution, we use an additional PRF

key in order to sample the random strings x0, x1, for which the OT tokens use in order to decommit to their
shares. Specifically, the OT tokens will generate this pair of strings by applying a PRF on an input sid∥ssid.

Handling the PRF tokens. To reduce the number of PRF tokens we must ensure that the sender cannot
create stateful tokens that encode information about the PRF queries. Indeed, such as attack can be carried
out once the PRF tokens are being reused. For instance, the token can split two queries into five strings and
return them as the responses for 10 subsequent queries. Since the output of the PRF queries are relayed to
sender, the sender will be able to recover the first query and this violates the min-entropy argument required
to prove that the commitments are statistically hiding. On a high-level, we get around this by requiring
the sender send 2κ (identical) tokens that compute the same PRF functionality. Then, for each query, the
receiver picks a subset of κ tokens to be queried and verifies that it received the same outcome from any
token in that subset. In case any one of the tokens abort or the outcomes are not identical, the receiver aborts.
Security is then shown by proving that for any query u, the high min entropy of its outcome v is maintained
even conditioned on subsequent queries. Namely, we extend the proof of Lemma 5.1, and prove that with
overwhelming probability, there are sufficiently many preimages for v (namely 22κ+1) even conditioned
on all subsequent queries. Intuitively, this follows because with overwhelming probability any two token
queries are associated with two distinct tokens subsets.4 The rest of the proof against a corrupted sender
follows similarly to the proof of Theorem 6.1.

Lemma 5.19 (Lemma 5.1 restated). For any i ∈ [κ], let Db denote the distribution obtained by sampling a
random combi with bi = b. Then D0 and D1 are 2−κ+1-close.

Proof: We continue with the formal proof of the extended Lemma 5.1. Specifically, instead of having
the sender send 3κ tokens that independently implement the PRF, we will require the sender to send 2κ

4We wish to acknowledge that our approach is inspired by the communication exchanged with the authors of the [GIS+10]
paper while communicating their fix to the issue we found in their paper.
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tokens implementing the same PRF functionality for each commitment, in order to implement a simple
cut-and-choose strategy. In all, the sender sends 3κ× 2κ = 6κ2 tokens.

Namely, for each of the 3κ commitments, we modify the receiver’s algorithm as follows: let the 2κ to-
kens (allegedly) implementing a particular PRF to be used for some commitment be TK0

1,TK
1
1, . . . ,TK

0
κ,TK

1
κ.

Then the receiver picks a uniformly sampled u and proceeds as follows:

1. Pick κ random bits h1, . . . , hk.

2. For every i ∈ [κ], run TKhi
i on input u. If all tokens do not output the same value the receiver halts.

3. Commit by running an extractor on u as described Protocol 1.

For a given malicious sender S∗, let there be at most T = poly(k) sequential sessions in all and let
(U1, V1), . . . , (UT , VT ) be the random variables representing the (query/answer) pair for this PRF in the T
sessions, where Vi (and subsequent values) is set to ⊥ if the token aborts or all tokens do not give consistent
answers on query Ui. In Lemma 5.1, it suffices to prove that for any i, with high probability the min-entropy
of Ui conditioned on (U1, . . . , Ui−1, Ui+1, . . . , UT , V1, , VT ) is at least 2κ+ 1. Since Uj for j ̸= i are each
independently sampled by the receiver, we can fix their values to arbitrary strings. Therefore, it suffices to
show that for any sequence of values u1, . . . , ui−1, ui+1, . . . , uT with high probability the min-entropy of
Ui conditioned on (V1, . . . , VT and Uj = uj for j ̸= i) is at least 2κ+ 1.

Denote by the event Good if there exist no two queries picked by the receiver for which the same values
for h1, . . . , hk in Step 1 are chosen. Using a union bound, except with probability

(
T
2

)
1
2κ , and therefore with

negligible probability, Good holds. Since Good holds except with negligible probability, it suffices to prove
our claim when Good holds. Let u∗ be such that some token in session i returns vi where the input sequence
is u1, . . . , ui−1, u

∗. Then the two sequences u1, . . . , ui−1, ui, . . . , uT and u1, . . . , ui−1, u
∗, . . . , uT will

result in the same sequence of responses (until either some token aborts or some token gives an inconsistent
answer). This is because, since Good holds, for every j > i, uj is queried on at least one token (among the
2κ tokens implementing the PRF) that was not queried in session i and therefore will behave independently
from the query made in session i. In particular this means that a consistent response for uj for any j > i
must be identical for sequences u1, . . . , ui−1, ui, . . . , uT and u1, . . . , ui−1, u

∗, . . . , uT or must result in a
premature abort in one of the sequences. It therefore suffices to show that there are sufficiently many u∗

values for which the same sequence of responses are obtained and if the receiver aborts, it aborts in the same
session for the sequences corresponding to ui and u∗.

Following Lemma 5.1 we have that except with probability 1/2κ, there is a set SVi of size at least
23κ possible values for u such that on input sequence beginning with u1, . . . , ui−1, u, the token will re-
spond with Vi in session i. Let Ai, Ai+1, . . . , AT be subsets of SVi such that u ∈ Aj if on input sequence
u1, . . . , ui−1, u

∗, . . . , uT , the receiver aborts during session j. Let AT+1 ⊆ SVi be those u on which the re-
ceiver does not abort at all. Note that the Aj’s form a partition of SVi . To argue the claim, it suffices to show
that with high probability Ui belongs to Aj such that |Aj | > 22k+1. More formally, we bound the number of
“bad” u’s, namely u ∈ SVi such that u belongs to Aj and |Aj | < 22k+1. Since there are at most T + 1 sets
in all, the number of such queries is at most 22k+1× (T +1). Furthermore, one these queries will be chosen
with probability at most 22κ+1 × T/|SVj | which is at most T/2κ−1 since |SVj | > 23κ. This is negligible.
Therefore, it holds that, except with negligible probability, Ui belongs to Aj such that |Aj | > 22k+1 and this
concludes the proof of the Lemma.

Following these modifications we can allow for the tokens to be created in a setup phase only once and
then used an arbitrary number of times. In Figure 3 we describe our token exchange phase in details.
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Tokens Exchange Phase TKUCTP

Let F be a family of pseudorandom functions that maps {0, 1}5κ → {0, 1}κ.

A Signature Token TKSIG

S : S chooses a PRF key γ for family F ′. Let τ = sid∥ssid∥com∥i. Compute
V = PRF′

γ(τ). Then output

vkτ =

(
Com(x0

1; r
0
1) · · · Com(x0

κ+1; r
0
κ+1)

Com(x1
1, r

1
1) · · · Com(x1

κ+1; , r
1
κ+1)

)
where V is parsed as (xb

ℓ)b∈{0,1},ℓ∈[κ+1]∥(rbℓ)b∈{0,1},ℓ∈[κ+1].
Let PRF′

γ : {0, 1}∗ → {0, 1}κ denote the pseudorandom function. Then S creates token TKSIG

S by
sending (Create, sid, ssid,R, S,mid1,M1), that on input sid∥ssid∥com∥i outputs vk, where M1 is
the above functionality.

PRF Tokens:

1. {TKPRF,l
S }l∈[6κ2]: S chooses 3κ random PRF keys {γl′}[l′∈3κ] for family F .

Let PRFγl′ : {0, 1}5κ → {0, 1}κ denote the pseudorandom function. Then

for each l′ ∈ [3κ], S creates tokens TK
PRF,l′1
S , . . . ,TK

PRF,l′2κ
S by sending

{Create, sid, ssid,R, S,mid1+(l′−1)2κ+j ,M1}j∈[2κ], that on input x, outputs PRFγl′ (x),
where M1 is the functionality.

2. Similarly, R generates the tokens {TKPRF,l̂
R }l̂∈[16κ3] which are analogous to the sender’s PRF

tokens by sending {Create, sid, ssid, S,R,mid6κ2+1+(l̂−1)2κ+j ,M2}j∈[2κ] for all l̂′ ∈ [8κ2].

OT Tokens:

1. {TKj}j∈[2κ]: S chooses a random PRF key γ′ for family F ′. Let PRF′
γ′ : {0, 1}5κ → {0, 1}κ

denote the pseudorandom function. Then, for each j ∈ [2κ], S creates a token TKj by sending
(Create, sid, ssid,R, S,mid6κ2+16κ3+1+j ,M3), where M3 is the functionality that on input
(σ, sid, ssid, bj , combj , decombj ), aborts if decombj is not verified correctly or σ is not (the
unique) valid signature of combj , corresponding to the verification key vkτ , where vkτ is the
key generated for τ = sid∥ssid∥combi∥j.
If both the checks pass then the token computes (x0, x1) = PRF′

γ′(sid∥ssid) and secret shares
them using SS as in ΠOT

UC. Finally, it outputs (Abj [·, j], decomAbj
[·,j], Bbj [·, j], decomBbj

[·,j]).

2. {T̂Ki}i∈[κ]: S chooses a PRF key γ′ for family F ′ (same key as above). Let PRF′
γ′ :

{0, 1}∗ → {0, 1}κ denote the pseudorandom function. Then, for each i ∈ [κ], S creates
a token T̂Ki by sending (Create, sid, ssid,R, S,mid16κ2+6κ2+1+2κ+i,M4), where M4 is the
functionality that on input (σ, sid, ssid, ci, comci , decomci) aborts if decomci is not verified
correctly or σ is not (the unique) valid signature of comci , corresponding to the verification
key vkτ , where vkτ is the key generated for τ = sid∥ssid∥comci∥i.
If both the checks pass then the token picks two random strings (x0, x1) = PRF′

γ′(sid∥ssid)
and secret shares them using SS as in ΠOT

UC. Finally, it outputs

(A0[i, ·], decomA0[i,·], A1[i, ·], decomA1[i,·]), if c = 0

(B0[i, ·], decomB0[i,·], B1[i, ·], decomB1[i,·]), if c = 1

Figure 3: UC OT - Tokens Exchange Phase
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Condition on the event that none of the parties successfully forges a signature, then our proof for Theo-
rem 5.1 follows similarly (with the modifications that involve extraction from 2κ tokens per commitment).

6 Two-Round OT in the Plain Model with One-Way Exchange

6.1 Building Blocks: Commitment Schemes

Trapdoor commitment schemes. A core building block of our protocol is a trapdoor commitment scheme
TCom (cf. Definition 2.5) introduced by Pass and Wee in [PW09]. In Figure 4 we describe their 4-round
trapdoor commitment scheme that is based on one-way permutations. In particular, the protocol comprises a
4-round challenge-response protocol where the receiver commits to its challenge in the first message (using
a non-interactive perfectly binding commitment scheme). The knowledge of the receiver’s challenge enables
the simulator to cheat in the commit phase and equivocate the committed message into any bit (this notion
of “look ahead” trapdoor commitment is borrowed from the area of zero-knowledge proofs).

More specifically, the trapdoor commitment scheme TCom, described in Figure 4, proceeds as follows.
In order to commit to a bit m the sender commits to a matrix M of size 2 × 2, so that m is split into two
shares which are committed within the two rows of M . Next, the receiver sends a challenge bit e where the
sender must open the two commitments that lie in the eth column (and must correspond to the same share
of m, thus it is easy to verify correctness). Later, in the decommit phase the sender opens the values to a
row of his choice enabling the receiver to reconstruct m. Note that if the sender knows the challenge bit
in advance it can commit to two distinct bits by making sure that one of the columns has different bits. In
order to decrease the soundness error this protocol is repeated multiple times in parallel. In this paper we
implement the internal commitment of Pass and Wee using a statistical hiding commitment scheme that is
based on pseudorandom functions; see details below.

Non-interactive commitment schemes. Our construction further relies on a non-interactive perfectly
binding commitment scheme that is incorporated inside the sender’s token TKcom

S . Such commitments can
be build based on the existence of one-way permutations. Importantly, it is possible to relax our assumptions
to one-way functions by relying on a two-round statistically binding commitment scheme [Nao91], and al-
lowing the token TKcom

S to take an additional input that will serve as the first message of the commitment
scheme. Overall, that implies that we only need to assume one-way functions. For clarity of presentation,
we use a non-interactive commitment scheme that is based on one-way permutations; see Section 6.2.1 for
more details.

6.2 Our Protocol

We are now ready to introduce our first protocol that securely computes the functionality FOT : ((s0, s1), b)
7→ (⊥, sb) in the plain model, using only two rounds and a one-way tokens transfer phase that involves
sending a set of tokens from the sender to the receiver in one direction. As with our first protocol, we begin
with a protocol that comprises of three rounds where the first round only exchange token transfer from one
party and then later modify to obtain a two-round protocol where the tokens are reusable and need to be
exchanged once at the beginning of the protocol. For simplicity of exposition, in the sequel we will assume
that the random coins are an implicit input to the commitments and the extractor, unless specified explicitly.
Informally, in the one-way tokens transfer phase the sender sends two types of tokens. The PRF tokens
{TKPRF,l

S }l∈[4κ2] are used by the receiver to commit to its input b using the shares {bi}i∈[κ]. Namely, the
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Trapdoor Commitment Scheme TCom [PW09]

The commitment scheme TCom uses a statistically binding commitment scheme Com and runs between
sender S and receiver R.

Input: S holds a message m ∈ {0, 1}.

Commit Phase:

R → S: R chooses a challenge e = e1, . . . , eκ ← {0, 1} and sends the commitment come ←
Com(e) to S.

S→ R: S proceeds as follows:

1. S chooses η1, . . . , ηκ ← {0, 1}κ.
2. For all i ∈ [κ], S commits to the following matrix: com00

ηi
com01

m⊕ηi

com10
ηi

com11
m⊕ηi

 =

 Com(ηi) Com(m⊕ ηi)

Com(ηi) Com(m⊕ ηi)


R→ S: R sends decome of the challenge e = e1, . . . , eκ ← {0, 1} to S.

S→ R: S proceeds as follows:

1. For all i ∈ [κ], S sends the decommitments of the column
(decom0ei

(ei·m)⊕ηi
, decom1ei

(ei·m)⊕ηi
).

2. For all i ∈ [κ], R checks that the decommitments are valid and that decom0ei
(ei·m)⊕ηi

=

decom1ei
(ei·m)⊕ηi

.

Decommit Phase:

1. For all i ∈ [κ], S chooses r = r1, . . . , rκ ← {0, 1} and sends the bit m and the decommit-
ments of the row (decomri0

ηi
, decomri1

ri⊕ηi
).

2. For i ∈ [κ], R checks that the decommitments are valid and that m = decomri0
ηi
⊕decomri1

ri⊕ηi
.

Figure 4: Trapdoor commitment scheme

number of tokens equals 4κ (which denote the number of tokens per Pass-Wee commitment), times κ which
is the number of the receiver’s input shares. Whereas, the commitment token TKCom

S is used by the receiver
to obtain the commitments of the sender in order to mask the values {(si0, si1)}i∈[κ] which are later used to
conceal the sender’s real inputs to the oblivious transfer. Next, the receiver shares its bit b into b1, . . . , bκ
such that b =

⊕κ
i=1 bi and commits to these shares using the Pass-Wee trapdoor commitment scheme.

Importantly, we consider a slightly variant of the Pass-Wee commitment scheme where we combine the
last two steps of the commit phase with the decommit phase. In particular, the final verification in the
commit phase is included as part of the decommitment phase and incorporated into the sender’s tokens
{TKi} that are forwarded in the second round. The sender further sends the commitments to its inputs s0, s1
computed based on hardcore predicates for the (s0i , s

1
i ) values and a combiner specified as follows. The

sender chooses z1, . . . , zκ and ∆ at random, where
⊕κ

i=1 zi masks s0 and
⊕κ

i=1 zi ⊕∆ masks s1. Finally,
the sender respectively commits to each zi and zi ⊕ ∆ using the hardcore bits computed on the (s0i , s

1
i )
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values. More precisely, it sends

s′0 = w ⊕ s0 and s′1 = w ⊕∆⊕ s1

∀ i ∈ [κ] w0
i = zi ⊕ H(s0i ) and w1

i = zi ⊕∆⊕ H(s1i )

where w =
⊕κ

i=1 zi. If none of the tokens abort, the receiver obtains sbii for all i ∈ [κ] and computes
sb = s′b ⊕ (wb1

1 ⊕H(sb11 )) · · · ⊕ (wbκ
κ ⊕H(sbκκ )). If any of the OT tokens, i.e. TKi, aborts then the receiver

assumes a default value for sb.

Remark 6.1. In [GIS+10], it is pointed out by Goyal et al. in Footnote 12 that assuming a default value
in case the token aborts might cause an input-dependent abort. However, this problem arises only in their
protocol as a result of the faulty simulation. In particular, our protocol is not vulnerable to this since
the simulator for a corrupted sender follows the honest receiver’s strategy to extract both the inputs via
(statistical) equivocation. In contrast, the simulation in [GIS+10] runs the honest receiver’s strategy for a
randomly chosen input in a main execution to obtain the (adversarially corrupted) sender’s view and uses a
“receiver-independent” strategy to extract the sender’s inputs. For more details, see Appendix 4.

Remark 6.2. In Footnote 10 of [GIS+10], Goyal et al. explain why it is necessary that the receiver run
the token implementing the one-time memory functionality (OTM) in the prescribed round. More precisely,
they provide a scenario where the receiver can violate the security of a larger protocol in the OT-hybrid
by delaying when the token implementing the OTM is executed. Crucial to this attack is the ability of
the receiver to run the OTM token on different inputs. In order to prevent such an attack, the same work
incorporates a mechanism where the receiver is forced to run the token in the prescribed round. We remark
here that our protocol is not vulnerable to such an attack. We ensure that there is only one input on which
the receiver can query the OTM token and this invalidates the attack presented in [GIS+10].

Next, we describe our OT protocol ΠOT in theFStateless
WRAP -hybrid with sender S and receiver R. Let (1) Com

be a non-interactive perfectly binding commitment scheme, (2) TCom = {TCmsg1,TCmsg2,TCmsg3}
denote the three messages exchanged in the commit phase of the trapdoor commitment scheme, (3) F, F ′

be two PRF families that map {0, 1}5κ → {0, 1}κ and {0, 1}κ → {0, 1}p(κ), respectively (4) H denote
a hardcore bit function and (5) Ext : {0, 1}5κ × {0, 1}d → {0, 1} denote a randomness extractor where
the source has length 5κ and the seed has length d (for simpler exposition we drop the randomness in the
description below).

Protocol 2. Protocol ΠOT - OT with stateless tokens in the plain model.

• Input: S holds two strings s0, s1 ∈ {0, 1}κ and R holds a bit b.

• The Protocol:

S→ R: The sender creates two sets of tokens as follows and sends them to the receiver.

1. {TKPRF,l
S }l∈[4κ2]: S chooses 4κ2 random PRF keys {γl}l∈[4κ2] for family F . Let PRFγl

: {0, 1}5κ →
{0, 1}κ denote the pseudorandom function. For all l ∈ [4κ2], S creates a token TKPRF,l

S by sending
(Create, sid,R, S,midl,M1) to R, that on input x outputs PRFγl

(x), where M1 is the functionality.

2. TKCom
S : S chooses a random PRF′ key γ′ for family F ′. Let PRF′

γ′ : {0, 1}κ → {0, 1}p(κ) denote
the pseudorandom function. S creates token TKCom

S by sending (Create, sid,R, S,midl+1,M2) to R
where M2 is the functionality that on input (tcombi , i) proceeds as follows:

– If i = 0: compute V = PRF′
γ′(0κ), parse V as e∥r and output come ← Com(e; r).
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– Otherwise: compute V = PRF′
γ′(tcombi∥i), parse V as si0∥si1∥r0∥r1, compute comsib

←
Com(sib; rb) for b = {0, 1}, and output comsi0

, comsi1
.

We remark that if V is longer than what is required in either case, we simply truncate it to the
appropriate length.

R→ S:

1. R sends (Run, sid, S,midl+1, (0
κ, 0)) and receives come and interprets it as TCmsg1.

2. For all i ∈ [κ] and j ∈ [4κ], R sends (Run, sid, S,mid1l , u
j
i ) where uj

i ← {0, 1}5κ and receives
vji = TKPRF,l

S (uj
i ) (where l ∈ [4κ2] is an encoding of the pair (i, j)). If the token aborts the receiver

aborts.
3. R chooses κ − 1 random bits b1, . . . , bκ−1 and sets bκ such that b =

⊕κ
i=1 bi. For all i ∈ [κ],

it commits to bi be setting tcombi = (M i
1, . . . ,M

i
κ). In particular, ∀j ∈ [κ] the receiver picks

ηi,j ← {0, 1}κ as per Figure 4 and computes:

M i
j =

 (Ext(u4j−3
i )⊕ ηi,j , v

4j−3
i ) (Ext(u4j−1

i )⊕ bi ⊕ ηi,j , v
4j−1
i )

(Ext(u4j−2
i )⊕ ηi,j , v

4j−2
i ) (Ext(u4j

i )⊕ bi ⊕ ηi,j , v
4j
i )

 .

4. For all i ∈ [κ], R sends tcombi .

S→ R:

1. S chooses z1, . . . , zκ,∆← {0, 1}, computes w =
⊕κ

i=1 zi and sends s′0 = w⊕s0, s′1 = w⊕∆⊕s1
and {w0

i = zi ⊕ H(s0i ), w
1
i = zi ⊕ ∆ ⊕ H(s1i )}i∈[κ] where (s0i , s

1
i ) are computed by running the

code of the token TKCom
S on input tcombi∥i.

2. S sends TCmsg3 = (e, decome).
3. For all i ∈ [κ], S creates a token TKi by sending (Create, sid,R, S,midl+1+i,M3) to R where M3

implements the following functionality:
– On input (bi,TCdecombi):

If TCdecombi is verified correctly then output (sib, decomsib
), else output (⊥,⊥)

• Output Phase:

1. For all i ∈ [κ], R sends (Run, sid,S,midl+1, (tcombi , i)) and receives comsi0
, comsi0

.

2. For all i ∈ [κ], R sends (Run, sid,S,midl+1+i, (bi,TCdecombi)) and receives (sib, decomsib
). If the

decommitments decomsib
and decome are valid, R computes z̃i = H(sib)⊕ wbi

i and sb =
⊕κ

i=1 z̃i ⊕ s′b.
If any of the tokens abort, the receiver sets sb = ⊥, where ⊥ is a default value.

Theorem 6.1. Assume the existence of one-way permutations, then Protocol 2 securely realizes FOT in the
FStateless

WRAP -hybrid.

Proof overview. On a high-level, when the sender is corrupted the simulator rewinds the adversary in
order to extract both S’s inputs to the OT. Namely, in the first execution simulator S plays the role of the
honest receiver with input 0 and learns the challenge e. It then rewinds the adversary and changes the
receiver’s commitments bi’s in a way that allows equivocating these commitments into both b = 0 and
b = 1. Finally, S runs tokens {TKi}i∈[κ] twice by decommiting into two different sets of bit-vectors, which
allows S to extract both inputs s0 and s1. The security proof follows by exploiting the trapdoor commitment
property, which allows in the simulation to open the commitments of the receiver’s input shares {bi}i∈[κ]
into two distinct bit-vectors that correspond to distinct bits. The indistinguishability argument asserts that
the simulated and real views are statistically close, due to the statistical hiding property of the commitment
scheme that we use within the Pass-Wee trapdoor commitment scheme.
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On the other hand, when the receiver is corrupted the simulator extracts its input b based on the first
message and the queries to the tokens. We note that extraction must be carried out carefully, as the receiver
commits to each bit bi using κ matrices and may commit to different bits within each set of matrices (specif-
ically, there may be commitment for which the committed bit is not even well defined). Upon extracting b,
the proof continues by considering a sequence of hybrids where we replace the hardcore bits for the posi-
tions {bi⊕ 1}i∈[κ]. Specifically, these are the positions in which the receiver cannot ask for decommitments
and hence does not learn {sibi⊕1}i∈[κ]. Our proof of indistinguishability relies on the list-decoding ability
of the Goldreich-Levin hardcore predicate (cf. Theorem 2.9), that allows extraction of the input from an
adversary that can guess the hardcore predicate on the input with probability significantly better than a half.

Proof: We consider each corruption case separately.

Simulating the corrupted S. Let A be a PPT adversary that corrupts S then we construct a simulator S
as follows,

1. S invokes A on its input and a random string of the appropriate length.

2. S emulates the role of FStateless
WRAP where upon receiving from A the messages {(Create, sid,R, S,

midl,M1)}l∈[4κ2] and (Create, sid,R,S,midl+1,M2), S stores these codes.

3. Next, S emulates the role of the honest receiver using an input bit b = 0. If come is decommitted
correctly, S stores this value and rewinds the adversary to the first message. Otherwise, S halts and
outputs A’s view thus far, sending (⊥,⊥) to the ideal functionality.

4. S picks two random bit-vectors (b1, . . . , bκ) and (b′1, . . . , b
′
κ) such that

⊕κ
i=1 bi = 0 and

⊕κ
i=1 b

′
i = 1.

Let e = e1, . . . , eκ denote the decommitment of come obained from the previous step. Then, for all
i, j ∈ [κ], S sends matrix M j

i where the eith column is defined by(
(Ext(u4j−3

i )⊕ ηi,j , v4j−3
i )

(Ext(u4j−2
i )⊕ ηi,j , v4j−2

i )

)

whereas the (1− ei)th column is set

w.p.
1

2
to

(
(Ext(u4j−1

i )⊕ ηi,j , v4j−1
i )

(Ext(u4ji )⊕ 1⊕ ηi,j , v4ji )

)
, and

w.p.
1

2
to

(
(Ext(u4j−1

i )⊕ 1⊕ ηi,j , v4j−1
i )

(Ext(u4ji )⊕ ηi,j , v4ji )

)
.

5. Upon receiving the sender’s message the simulator checks if come is decommitted correctly. Oth-
erwise, S rewinds the adversary to before the first message was sent and returns to Step 4. In each
rewinding S uses fresh randomness to generate the receiver’s message. It repeatedly rewinds until the
malicious sender successfully decommits e. If it tries to make more than 2κ/2 attempts, it simply halts
outputting fail.

Next, to extract s0, it decommits to b1, . . . , bn (and to extract s1, it decommits to b′1, . . . , b
′
n). Recall

that to reveal a commitment to a value bi the simulator decommits that row of the matrix that adds
up to bi. Notice that by out construction, such a row always exists and is either the first row or the
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second row with the probability 1/2. We remark here that the simulator S emulates the code of the
actual Turing Machine incorporated in the token as opposed to running the token itself. Furthermore,
each of the two extractions start with the Turing Machine in the same start (as opposed to running the
machine in sequence). This is because the code in the malicious token can be stateful and rewinding
it back to the start state prevents stateful behavior. More precisely, the simulator needs to proceed
exactly as the honest receiver would in either case. If for any b ∈ {0, 1} extraction fails for sb, then
following the honest receiver’s strategy the simulator sets sb to the default value ⊥.

6. Finally, S sends (s0, s1) to the trusted party that computesFOT and halts, outputting whateverA does.

We now prove that the sender’s view in both the simulated and real executions is computationally indis-
tinguishable via a sequence of hybrid executions. More formally,

Lemma 6.3. The following two ensembles are computationally indistinguishable,{
IDEALFOT,S(z),I(κ, (s0, s1), b)

}
κ∈N,s0,s1,b,z∈{0,1}∗

c
≈
{

REALFStateless
WRAP

ΠOT,A(z),I(κ, (s0, s1), b)
}
κ∈N,s0,s1,b,z∈{0,1}∗

Proof: Roughly speaking, we prove that the joint output distribution of both the receiver and the sender is
computationally indistinguishable. Our proof follows by a sequence of hybrid executions defined below. We
denote by Hybridi

FOT,Si(z),I
(κ, (s0, s1), b) the random variable that corresponds to the simulator’s output

in hybrid execution Hi when running against party Si that plays the role of the receiver according to the
specifications in this hybrid (where S0 refers to the honest real receiver).

Hybrid H0: In the first hybrid, we consider a simulator S0 that receives the real input b of the receiver
and simply follows the protocol as the honest receiver would. Finally, it outputs the view of the
adversary and the receiver’s output as computed in the emulation. It follows from construction that
the distribution of the output of the first hybrid is identical to the real execution.

Hybrid H1: In this hybrid, the simulator S1 receives the real input of the receiver and proceeds as fol-
lows. It first interacts with the adversary with the actual receiver’s input and checks if it successfully
decommits e. If it does not, then the simulator simply outputs the view of the adversary and ⊥ as the
receiver’s output. Otherwise, it proceeds to a rewinding phase. In this phase, it repeatedly rewinds
the adversary to the first message and then samples a new first message by committing to b using
fresh randomness. Specifically, S1 invokes token TKPRF,l

S each time on new random inputs uji (for
all i ∈ [κ], j ∈ [4κ] where l encodes (i, j)), and continues rewinding A until it obtains an interaction
in which the adversary successfully decommits to e again. If the simulation makes more than 2κ/2

rewinding attempts, then it aborts.

We now argue that the view produced in this hybrid is statistically close to the view produced within
the previous hybrid. Observe that if the simulation does not cut off after 2κ/2 attempts, then the view
is identically distributed to the view in H0. Therefore to show that the views are statistically close, it
suffices to prove that the simulation aborts with negligible probability. Let p be the probability with
which the adversary decommits e correctly when the receiver honestly generates a commitment to b.
We consider two cases:

• If p > κ
2κ/2

, then the probability that the simulation takes more than 2κ/2 steps can be computed

as
(
1− κ

2κ/2

)2κ/2
= e−κ and which is negligible in κ.
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• If p < κ
2κ/2

, then the probability that the simulation aborts is bounded by the probability that it
proceeds to the rewinding phase which is at most p and hence negligible in κ.

It only remains to argue that the expected running time of the simulation is polynomial. We remark
that this follows from Lemma 6.4 proven in the next hybrid by setting p0 and pb to p.

Hybrid H2: In this hybrid, the simulator S2 proceeds identically to S1 with the exception that in the first
run where the simulator looks for the decommitment of e, it follows the honest receiver’s strategy with
input 0 instead of its real input. Now, since each commitment is generated honestly, it follows from
Lemma 5.1 using an union bound that the first message generated by the receiver with input b and
input 0 are 4κ22−κ−1-close. Moreover, since the only difference in the two hybrids is within the first
message sent by the receiver in the first execution, the following distributions are statistically close.

• {Hybrid1
FOT,S1(z),I

(κ, (s0, s1), b)}κ∈N,s0,s1,b,z∈{0,1}∗

• {Hybrid2
FOT,S2(z),I

(κ, (s0, s1), b)}κ∈N,s0,s1,b,z∈{0,1}∗

It only remains to argue that the running time of the simulation is still polynomial.

Lemma 6.4. The expected running time of S2 is polynomial-time and the probability that S2 aborts
is negligible.

Proof: Let p0 be the probability that adversary successfully decommits to e in the main execution
of hybrid H2 and pb be the probability that the adversary successfully decommits when the receiver’s
commitments are made to the real input b. Now, since the first message of the receiver when the
commitment is made to 0 or b is 2−O(κ)-close, we have that |p0 − pb| < 2−O(κ).

Next, we prove that the expected number of times the simulator runs the execution is

(1− p0)× 1 + p0 ×min
{
2κ/2,

1

pb

}
.

We consider two cases and argue both regarding the running time and abort probability in each case.

• p0 > 2κ2−κ/2: Since |pb − p0| < 2−O(κ), it follows that,

pb > p0 − 2−O(κ) = 2κ2−κ/2 − 2−O(κ) > κ2−κ/2 =
p0
2

Therefore, p0/pb < 2. Now, since min
{
2κ/2, 1

pb

}
= 1

pb
, the expected number of rewinding

attempts is

(1− p0) + p0 ×
1

pb
< 3

which is polynomial.
Next, we argue regarding the abort probability. Specifically, the probability that the number of
attempts exceeds 2κ/2 is given by

(1− pb)
2κ/2 <

(
1− κ

2κ/2

)2κ/2
= O(e−κ).

Therefore, the probability that the simulator aborts is negligible.
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• p0 < 2κ2−κ/2: Since min
{
2κ/2, 1

pb

}
= 2κ/2, the expected number of rewinding attempts is

(1− p0) + p0 × 2κ/2 < 1 + 2κ2

which is polynomial.
The abort probability in this case is bounded by p0 which is negligible.

�

Hybrids H3,0 . . . ,H3,κ: We define a collection of hybrid executions such that for every i ∈ [κ] hybrid
H3,i is defined as follows. Assume that (b1, . . . , bκ) correspond to the bit-vector for the real input of
the receiver b. Then in H3,i, the first i commitments are computed as in the simulation (i.e. equiv-
ocated using the trapdoor e), whereas the remaining κ − i commitments are set as commitments of
bi+1, . . . , bκ as in the real execution. Note that hybrid H3,0 is identical to hybrid H2 and that the differ-
ence between every two consecutive hybrids H3,i−1 and H3,i is regarding the way the ith commitment
is computed, which is either a commitment to bi computed honestly in the former hybrid, or equivo-
cated using the trapdoor in the latter hybrid. Indistinguishability of H3,i and H3,i−1 follows similarly
to the indistinguishability argument of H1 and H2, as the only difference is in how the unopened
commitments are generated. Therefore, we have the following lemma.

Claim 6.5. For every i ∈ [κ],

{Hybrid1,i−1
FOT,S1,i−1(z),I

(κ, (s0, s1), b)}κ∈N,s0,s1,b,z∈{0,1}∗
s≈ {Hybrid1,i

FOT,S1,i(z),I
(κ, (s0, s1), b)}κ∈N,s0,s1,b,z∈{0,1}∗

Note that the proof regarding the expected running time of the simulator is identical to the proof of
Lemma 6.4.

IDEAL: In this hybrid, we consider the actual simulator. First, we observe that the view of the adversary
output by S3,κ in H3,κ is independent of the receiver’s real input b. This is because in H3,κ, all
commitments are computed in an equivocation mode, where the real input b of the receiver is used
only after the view of the adversary is generated. More precisely, only after S3,κ obtains a second
view on which the adversary successfully decommits to e, does it use the tokens to extract sb by
decommitting the equivocal commitments to b1, . . . , bn such that

⊕
i bi = b. In fact, since in the

rewinding phase all the commitments are equivocated, the bi’s themselves can also be sampled after
the view of the adversary is generated.

Next, we observe that the actual simulator proceeds exactly as S3,κ with the exception that it runs the
tokens twice after the adversary’s view is obtained and the rewinding phase is completed. Namely, it
runs the token once with a vector of bi’s that add up to 0 in order to obtain s0, then rewinds the tokens
back to the original state and runs them another time with a vector of b′i’s that add up to 1 in order
to extract s1. (s0, s1) are then fed to the ideal functionality. Recall that S3,κ on the other hand, runs
the tokens only once for the actual receiver’s input b. Now, since the view of the adversary in H3,κ

and IDEAL are identically distributed, it follows that the value extracted for sb in H3,κ is identically
distributed to sb in the ideal execution for both b = 0 and b = 1. Therefore, we can conclude that
the output of the simulator in H3,κ and the joint output of the simulator and honest receiver the ideal
execution, are identically distributed.
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Claim 6.6. The following two ensembles are identical,

{Hybrid3,κ
FOT,S1,i(z),I

(κ, (s0, s1), b)}κ∈N,s0,s1,b,z∈{0,1}∗

≈
{

IDEALFOT,S(z),I(κ, (s0, s1), b)
}
κ∈N,s0,s1,b,z∈{0,1}∗

Simulating the corrupted R. Let A be a PPT adversary that corrupts R then we construct a simulator S
as follows,

1. S invokes A on its input and a random string of the appropriate length.

2. S emulates the role of FStateless
WRAP for tokens {TKPRF,l

S }l∈[4κ2] using truly random functions, where for
each query u ∈ {0, 1}5κ made by A to token TKPRF,l

S , S returns a random v from {0, 1}κ. S further
stores the pair (u, v) in the query/answer list of TKPRF,l

S .

Finally, S emulates FStateless
WRAP for TKCom

S using a truly random function that maps elements from
{0, 1}κ → {0, 1}p(κ).

3. Next, S splits the set of receiver’s queries (tcomb, i
∗) to the token TKCom

S (that were further part
of the adversary’s message), and adds them either to the “valid” set ICom or “invalid” set JCom.
More formally, let T = q(κ) denote the number of times the token TKCom

S is queried by R for some
polynomial q. For each query (tcomb, i

∗), we say that the query is valid if and only if there exist
values {(βt

i , u
t
i, v

t
i)}i∈[κ],t∈[4κ] such that tcombi = (M i

1, . . . ,M
i
κ), ∀i, j ∈ [κ],

M i
j =

 β4j−3
i , v4j−3

i β4j−1
i , v4j−1

i

β4j−2
i , v4j−2

i β4j
i , v4ji


and, for every i ∈ [κ], t ∈ [4κ], the query/answer pair (uti, v

t
i) has already been recorded as a query to

the corresponding PRF token. Next, for every valid query, the simulator tries to extract the committed
value. This it done by first computing

γj00 = β4j−3
i ⊕ Ext(u4j−3

i ) γj01 = β4j−1
i ⊕ Ext(u4j−1

i )

γj10 = β4j−2
i ⊕ Ext(u4j−2

i ) γj11 = β4j
i ⊕ Ext(u4ji ).

Next it marks the indices j for which γj00 = γj10 and γj01 = γj11. Moreover, for the marked indices
it computes γj = γj00 ⊕ γj01. If there are at least more than half the indices that are marked and are
commitments to the same value, say γ then (tcomb, i

∗, γ) is added to ICom. Otherwise (tcomb, i
∗,⊥)

is added to JCom.

Next, S computes b =
⊕κ

i=1 bi and sends b to the trusted party that computes FOT. Upon receiving
sb, S picks a random sb⊕1 from the appropriate domain and completes the execution by playing the
role of the honest sender on these two inputs.

We now prove that the receiver’s view in both the simulated and real executions is computationally
indistinguishable via a sequence of hybrid executions. More formally,
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Lemma 6.7. The following two ensembles are computationally indistinguishable,{
IDEALFOT,S(z),I(κ, (s0, s1), b)

}
κ∈N,s0,s1,b,z∈{0,1}∗

c≈
{

REALFStateless
WRAP

Π,A(z),I (κ, (s0, s1), b)
}
κ∈N,s0,s1,,bz∈{0,1}∗

Proof: Roughly speaking, we prove that the join output distribution of both the receiver and the sender is
computationally indistinguishable. Now, since only the receiver (which is the corrupted party) has an input,
the proof boils down to proving that the receiver’s view is indistinguishable in both executions. Our proof
follows by a sequence of hybrid executions defined below. We denote by Hybridi

FOT,Si(z),I
(κ, (s0, s1), b)

the random variable that corresponds to the adversary’s view in hybrid execution Hi when running against
party Si that plays the role of the sender according to the specifications in this hybrid (where S0 refers to the
honest real sender).

Hybrid H0: The first hybrid execution is the real execution.

HybridsH1,0 . . . ,H1,4κ2 : We define a collection of hybrid executions such that for every l ∈ [4κ2] hybrid
H1,l is defined as follows. We modify the code of token TKPRF,l

S by replacing the function PRFγl with
a truly random function fl. In particular, given a query u the token responds with a randomly chosen
κ bit string v, rather than running the original code of M1. We maintain a list of A’s queries and
responses so that repeated queries will be consistently answered. In addition, the code of token TKi

is modified so that it verifies the decommitment against the random functions fl as opposed to the
PRF functions previously embedded in TKPRF,l

S . It is simple to verify that the adversary’s view in
every two consecutive hybrid executions is computationally indistinguishable due to the security of
the pseudorandom function PRFγl . Moreover, since the PRF key is hidden from the receiver, it follows
from the pseudorandomness property that the views in every two consecutive hybrid executions are
computationally indistinguishable. More formally, we have the following lemma.

Claim 6.8. For every l ∈ [4κ2],

{Hybrid1,l−1
FOT,S0(z),I

(κ, (s0, s1), b)}κ∈N,s0,s1,b,z∈{0,1}∗
c≈ {Hybrid1,l

FOT,S1(z),I
(κ, (s0, s1), b)}κ∈N,s0,s1,b,z∈{0,1}∗

Hybrid H2: Similarly, we consider a hybrid execution for which the code of token TKCom
S is modified so

that it makes use of a truly random function f ′ rather than a pseudorandom function PRFγ′ . Just as in
the previous hybrid, we have the following Lemma.

Claim 6.9.

{Hybrid1
FOT,S1(z),I

(κ, (s0, s1), b)}κ∈N,s0,s1,b,z∈{0,1}∗
c
≈ {Hybrid2

FOT,S2(z),I
(κ, (s0, s1), b)}κ∈N,s0,s1,b,z∈{0,1}∗

Hybrids H3,0 . . . ,H3,4κ2 : This sequence of hybrids executions is identical to hybrid H2 except that here
we ensure that no two queries made by A to the token TKPRF,l

S have the same response. Specifically,
in case of a collision simulator S3,l aborts.

Claim 6.10. For every l ∈ [4κ2],

{Hybrid3,l−1
FOT,S2(z),I

(κ, (s0, s1), b)}κ∈N,s0,s1,b,z∈{0,1}∗
s≈ {Hybrid3,l

FOT,S3(z),I
(κ, (s0, s1), b)}κ∈N,s0,s1,b,z∈{0,1}∗
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Proof: As we replaced PRF functions to truly random functions, we have that the probability the
simulation aborts in H3,l is at most the probability of finding a collision for a random function. To
prove statistical indistinguishability it suffices to show that this probability is negligible. More for-
mally, if the adversary makes a total of Q queries to both tokens, then the probability that any pair of
queries yields a collision can be bounded by

(
Q
2

)
2−ℓ where ℓ is the minimum length of the outputs of

all random functions. In our case this is κ and hence the probability that the simulator aborts in every
hybrid is negligible. �

Hybrid H4: In this hybrid execution, simulator S4 plays the role of the sender as in hybrid H3 except
that it extracts the adversary’s input bit b as carried out in the simulation by S. First, we observe that
for any i ∈ [κ] and t ∈ [4κ], the probability that the receiver reveals a valid pre-image uti for vti for
which there does not exists a query/answer pair (uti, v

t
i) collected by the simulator is exponentially

small since we rely on truly random functions in this hybrid. Therefore, except with negligible prob-
ability, the receiver will be able to decommit only to γj00, γ

j
01, γ

j
10, γ

j
11 as extracted by the simulator.

Consequently, using the soundness of the Pass-Wee trapdoor commitment scheme, it follows that the
receiver can only decommit to bi and b as extracted by the simulator. Therefore, we can conclude that
the probability that a malicious receiver can equivocate the commitment tcombi is negligible. The
above does not make any difference to the receiver’s view which implies that,

Claim 6.11.

{Hybrid3
FOT,S3(z),I

(κ, (s0, s1), b)}κ∈N,s0,s1,b,z∈{0,1}∗

≈ {Hybrid4
FOT,S4(z),I

(κ, (s0, s1), b)}κ∈N,s0,s1,b,z∈{0,1}∗

Moreover, recall that extraction is straight-line, thus the simulator still runs in strict polynomial-time.

Hybrids H5,0, H̃5,0, . . . ,H5,κ, H̃5,κ: Let tcombi be the ith commitment sent to S in the first message.
Then H5,i proceeds identically to H̃5,i−1, whereas H̃5,i proceeds identically to H5,i, with the following
exceptions:

• If there exists a tuple (tcombi , i, γ) in ICom, then in experiment H5,i, H(siγ⊕1) is replaced by a
random bit in the second message fed to the adversary.

• If there exists a tuple (tcombi , i,⊥) in JCom, then in experiment H5,i, H(si0) is replaced by a
random bit in the second message fed to the adversary.

• If there exists a tuple (tcombi , i,⊥) in JCom, then in experiment H̃5,i, H(si1) is replaced by a
random bit in the second message fed to the adversary.

Note that hybrid H5,0 is identical to hybrid H4 and that the difference between every pair of consecu-
tive hybrids H5,i−1 and H5,i is with respect to H(sibi⊕1) in case i ∈ [|ICom|] or (H(si0),H(s

i
1)) in case

i ∈ [|JCom|], that are replaced with a random bit in H5,i. We now prove the following.

Claim 6.12. For every i ∈ [κ],

{H̃ybrid
5,i−1

FOT,S5,i−1(z),I(κ, (s0, s1), b)}κ∈N,s0,s1,b,z∈{0,1}∗
c≈ {Hybrid5,i

FOT,S5,i(z),I
(κ, (s0, s1), b)}κ∈N,s0,s1,b,z∈{0,1}∗
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and

{Hybrid5,i
FOT,S5,i−1(z),I

(κ, (s0, s1), b)}κ∈N,s0,s1,b,z∈{0,1}∗
c≈ {H̃ybrid

5,i

FOT,S5,i(z),I(κ, (s0, s1), b)}κ∈N,s0,s1,b,z∈{0,1}∗

Proof: Intuitively, the indistinguishability of any pair of hybrids follows from the computational
hiding property of the commitment scheme Com and the binding property of tcombi . Assume for

contradiction, that there exists i ∈ [κ] for which hybrids H̃ybrid
5,i−1

and Hybrid5,i are distin-
guishable by a PPT distinguisher D with probability ε.

If there exists a tuple (tcombi , i, γ) ∈ ICom then define b∗ = 1⊕ γ, otherwise define b∗ = 0. Then, it
follows that the only difference between hybrids H̃5,i−1 and H5,i is that H(sib∗) is computed correctly
in H̃5,i−1 while replaced with a random bit in H5,i. Next, we show how to build an adversary ACom

that on input a commitment Com(s) identifies H(s) with probability non-negligibly better than 1
2 +

ε
2 .

Then using the Goldreich-Levin Theorem (Theorem 2.9), it follows that we can extract value sib∗ and
this violates the hiding property of the commitment scheme Com.

More formally, consider ACom that receives as input a commitment to a randomly chosen string s,
namely Com(s). ACom internally incorporates the adversary ACom and emulates the experiment H̃5,i

with the exception that in place of Com(sib∗), ACom instead feeds Com(s) and replaces H(sib∗) with a
uniformly chosen bit, say b̃. Finally, it feeds the output of the hybrid experiment conducted internally,
namely, the view of the adversary to D, and computes an output based on D’s output g as follows:

• If g = 1, then ACom outputs the value for b̃ as the prediction for H(s), and outputs 1 − b̃
otherwise.

Denote by H5,i the experiment that proceeds identically to H̃5,i with the exception that, in place of
H(sib∗) we feed 1 ⊕ H(sib∗), namely the complement of the value of the hardcore predicate. Let
Hybrid

5,i
denote the distribution of the view of the adversary in this hybrid. It now follows that

ε <
∣∣∣Pr[(v, sb)← H̃ybrid

5,i
: D(v) = 1]− Pr[(v, sb)← Hybrid5,i : D(v) = 1]

∣∣∣
=
∣∣∣Pr[(v, sb)← H̃ybrid

5,i
: D(v) = 1]

− 1

2

(
Pr[(v, sb)← H̃ybrid

5,i
: D(v) = 1] + Pr[(v, sb)← Hybrid

5,i
: D(v) = 1]

)∣∣∣
=

1

2

∣∣∣Pr[(v, sb)← H̃ybrid
5,i

: D(v) = 1]− Pr[(v, sb)← Hybrid
5,i

: D(v) = 1]
∣∣∣.

Without loss of generality we can assume that,5

1

2

(
Pr[(v, sb)← H̃ybrid

5,i
: D(v) = 1]− Pr[(v, sb)← Hybrid

5,i
: D(v) = 1]

)
> ε

5Otherwise, we can replace D with another distinguisher that flips D’s output.
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Therefore,

1

2

(
Pr[(v, sb)← H̃ybrid

5,i
: D(v) = 1]− (1− Pr[(v, sb)← Hybrid

5,i
: D(v) = 0)]

)
> ε

i.e.,
1

2
Pr[(v, sb)← H̃ybrid

5,i
: D(v) = 1] +

1

2
Pr[(v, sb)← Hybrid

5,i
: D(v) = 0)] >

1

2
+ ε

i.e.,Pr[β ← {0, 1} : (v, s)← Hb : D(v) = b] >
1

2
+ ε

where H0 = Hybrid
5,i

and H1 = H̃ybrid
5,i

. We now observe that sampling from Hb where b
is uniformly chosen is equivalent to sampling from H5,i. Therefore, since ACom internally emulates
H5,i by selecting b̃ at random and the distinguisher identifies precisely if this bit b̃ came from H0 or
H1 correctly, we can conclude that b̃ is the value of the hardcore bit when it comes from H0 and the
complement of b̃ when it comes from H1. Therefore, ACom guesses H(s) correctly with probability
1
2+ε. Using the list-decoding algorithm of Goldreich-Leving hardcore-predicate (cf. Theorem 2.9), it
follows the such an adversary can be used to extract s thereby contradicting the computational hiding
property of the Com scheme.

We remark that proving indistinguishability of Hybrid5,i and H̃ybrid
5,i

follows analogously and
this concludes the proof of the Lemma. �

Hybrids H6: In this hybrid execution simulator S5 does not know the sender’s inputs (s0, s1), but rather
communicates with a trusted party that computes FOT. S6 behaves exactly as S5,κ except that when
extracting the bit b it sends it to the trusted party, which returns sb. Moreover, S6 uses a random
value for sb⊕1. We argue that hybrids S5,κ and S6 are identically distributed as the set {wi

b⊕1}i∈[κ] is
independent of {sibi⊕1}i∈[κ].

Claim 6.13.

{Hybrid5,κ
FOT,S5,κ(z),I

(κ, (s0, s1), b)}κ∈N,s0,s1,b,z∈{0,1}∗

≈ {Hybrid5
FOT,S6(z),I

(κ, (s0, s1), b)}κ∈N,s0,s1,b,z∈{0,1}∗

Proof: Following from the fact that H(sibi⊕1) is replaced with a random bit for all i ∈ [κ], it must
hold that the values w1⊕bi

i are random as well as these values are masked using random independent
bits instead of the set {H(sibi⊕1)}i∈[κ]. As a result, these values contribute to a random value sb⊕1.
In addition, we claim that the adversary can only learn sb where b is the bit extracted by S6. This
is because A can only invoke token TKi on the commitment combi , for which is can only open in a
single specific way. �
Finally, note that hybrid H6 is identical to the simulation described above, which concludes the proof.

6.2.1 Relaxing to One-Way Functions

In our construction we rely on one-way permutations for a non-interactive perfectly binding commitment
scheme. Recall that, the TKCom on input (·, 0) is required to output a commitment to the challenge e and
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else commitments to the si0, s
i
1’s values. To relax this assumption to one-way functions, we instead need to

rely on the two-message Naor’s statistically binding commitment scheme [Nao91] where the receiver sends
the first message. Instead of communicating this message to the sender, the receiver directly feeds it to
the token as input. More precisely, let Ĉom(m; r,R) denote the honest committer’s strategy function that
responds according to Naor’s commitment with input message m and random tape r, where the receiver’s
first message is R. We make the following modification and incorporate the following functionality: On
input (tcombi , i, R0, R1) proceed as follows:

• If i = 0: compute V = PRF′γ′(0κ∥R0∥R1), parse V as e∥r and output come ← Ĉom(e; r,R0).

• Otherwise: compute V = PRF′γ′(tcombi∥i∥R0∥R1), parse V as si0∥si1∥r0∥r1, compute comsib
←

Ĉom(sib; rb, Rb) for b = {0, 1}, and output comsi0
, comsi1

.

Finally, along with the first message sent by the receiver to the sender, it produces R0, R1, the first messages
corresponding to the commitments made so that the sender can reconstruct the values being committed to
(using the same PRF function). We note that two issues arise when proving security using the modified
token’s functionality.

1. The first messages for the Naor commitment used when querying the token might not be the same
as the one produced in the first message by the receiver. In this case, by the pseudorandomness
property of the PRF it follows that the values for these commitments computed by the sender will
be independent of the commitments received from the token by the receiver. Hence, the statistically-
hiding property of the values used by the sender will not be violated.

2. The binding property of the commitment scheme is only statistical (as opposed to perfect). This will
affect the failure probability of the simulator when extracting the sender’s input only by a negligible
amount and can be bounded overall by incorporating a union bound argument.

6.3 On Concurrency and Reusability

As in our UC protocol from Section 5, we discuss below how to handle exchange tokens just once and
(re-)using them for an unbounded number of oblivious transfers. We already discussed in Section 5.1 how
to reduce the number of PRF tokens. We next discuss how to reduce the commitment tokens. Our main
idea is to rely on an instantiation of Lamport’s one-time signature scheme [Lam79] with Com (instead of
one-way functions), which additionally has the uniqueness property as in [CKS+14]. In the following, we
consider the setting where a sender S and a receiver R engage in several oblivious transfer instantiations,
both in parallel and in sequentially. As mentioned above, we will identify every session by two quantifiers
(sid, ssid) where sid is the sequential session identifier and ssid is the parallel session identifier. On a high-
level, for every OT instance identified by (sid, ssid, i) we generate a one-time signature/verification key pair
by applying a PRF on τ = sid∥ssid∥tcom∥i where tcom is the commitment to the receiver’s input for that
instance generated using the 4κ sets of tokens specified above. Then the receiver is allowed to query the
OT token TKi only if it possesses a valid signature corresponding to its commitment tcom for that instance.
Now, since the signatures are unique, the signatures themselves do not carry any additional information. In
more detail, we modify the tokens as follows: As in the previous protocol ΠOT, we additionally rely on a
non-interactive perfectly binding commitment scheme Com and PRFs F, F ′.
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1. {TK0
1j ,TK

1
1j , . . . ,TK

0
κj
,TK1

κj
}j∈[4κ]: S chooses 8κ2 random PRF keys {γl}l∈[8κ2] for family F . Let

PRFγl : {0, 1}5κ → {0, 1}κ denote the pseudorandom function. S creates these tokens by sending
{Create, sid, ssid,R, S,midl,M1}l∈[8κ2] to R where M1 is the machine that on input (sid, ssid, x),
outputs PRFγl(sid∥ssid∥x).

2. TKCom
S : S chooses a random PRF′ key γ′ for family F ′. Let PRF′γ′ : {0, 1}κ → {0, 1}p(κ) denote the

pseudorandom function. S creates token TKCom
S by sending (Create, sid, ssid,R,S,midl+1,M2) to R

where M2 is the machine that on input (sid, ssid, tcombi , i) does the following:

• If i = 0: Compute V = PRF′γ′(sid∥0κ). Then, parse V as e∥r and output come ← Com(e; r).

• Otherwise: Let τ = sid∥ssid∥tcombi∥i. Compute V = PRF′γ′(τ). Then output

(comsi0
, comsi1

), vkτ =

(
Com(x01; r

0
1) · · · Com(x0κ+1; r

0
κ+1)

Com(x01, r
0
1) · · · Com(x0κ+1; , r

1
κ+1)

)
where V is parsed as si0∥si1∥r0∥r1∥(xbℓ)b∈{0,1},ℓ∈[κ+1]∥(rbℓ)b∈{0,1},ℓ∈[κ+1] and comsib

← Com(sib; rb)

for b = {0, 1}.

3. TKi: For all i ∈ [κ], S creates a token TKi by sending (Create, sid, ssid,R,S,midl+1+i,M3) to R
where M3 is defined as follows given input (σ, sid, ssid, i, bi, tcombi ,TCdecombi):

Check 1: TCdecombi is a valid decommitment of tcombi to bi.

Check 2: σ is (the unique) valid signature of tcombi corresponding to the verification key vkτ , where
vkτ is the key generated by querying TKCom

S where τ = sid∥ssid∥tcombi∥i.

If both the checks pass then output (sib, decomsib
), otherwise output (⊥,⊥).

Furthermore, we use the same protocol as described in the previous section with the following two
changes:

• R sends all the verification keys vkτ along with its first message.

• S verifies whether the verification keys correctly correspond to the commitments tcombi and then
provides a signature of tcombi for every i, under key skτ for τ = sid∥ssid∥tcombi∥i, along with its
second message to the receiver.

Proof Sketch: We briefly highlight the differences in the proof for the modified protocol.

Sender corruption. The simulator proceeds in stages, a stage for each sid ∈ [q2(n)]. In Stage sid, the
simulation proceeds as in the previous protocol ΠOT. Recall first that the simulation for that protocol
extracts e in a first run and then uses e to equivocate the receiver’s commitments. We will employ the
same strategy here, with the exception that the simulator extracts esid,ssid simultaneously in the first
run for every ssid ∈ [q1(n)] (namely, for all parallel sessions), as there are q1(n) parallel sessions. We
remark that in the extraction phase we rely heavily on the fact that these sessions are run in parallel.
Then in the rewound executions, the simulator equivocates the receiver’s commitments accordingly.
In addition, the simulator produces all signatures for the second message honestly. Indistinguishability
follows essentially as before. We remark that since the signatures are unique given the verification
key, the signatures do not carry any additional information beyond the message.
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On a high-level, we rely on the same sequence of hybrids as in the previous protocol ΠOT, once for
each simulation stage. Below are the changes to the hybrids for each stage:

1. In Hybrid H1, the simulator proceeds exactly as S1, with the exception that it extracts all the
trapdoors esid,ssid simultaneously.

2. In Hybrid H2, the simulation proceeds as the previous hybrid with the exception that it honestly
commits to the receiver’s input as 0 in all parallel sessions in the first run.

3. Instead of the κ+1 hybrids H3,0, . . . ,H3,κ used in the previous protocol ΠOT in order to replace
the receiver’s commitments from being honestly generated to equivocal commitments using the
trapdoor, we consider q1(n)× κ hybrids for the q1(n) parallel OT sessions.

4. Finally, in Hybrid H4, the simulation proceeds analogously with the exception that it extracts
the sender’s input in all q1(n) sessions simultaneously.

Receiver corruption. The simulator proceeds in stages, a stage for each sid ∈ [q2(n)], where in each stage
the simulation proceeds similarly to the simulation of the previous protocol ΠOT. Recall first that
the simulation for ΠOT extracts all the queries made to both the tokens and records these values.
Then upon receiving the first message, these queries are used for extracting the receiver’s input. We
will employ the same strategy here, with the exception that for every parallel session with identifier
ssid ∈ [q1(n)] the simulator extracts the receiver’s input simultaneously. As for the second message,
the simulator acts analogously to our previous simulation for each parallel session.

To argue indistinguishability, we consider a sequence of hybrids executions, once for each sequential
session analogous to the modifications for the sender corruption. First, from the unforgeability of the
one-time signature scheme we conclude that the malicious receiver cannot make bad queries to the
OT token. More formally, in Hybrid H4 corresponding to every sequential session, we argue from the
unforgeability of the signature scheme that a receiver queries the OT token on an input

(σ, sid, ssid, i, bi, tcombi ,TCdecombi)

only if it requested a query (sid, ssid, tcombi , i) to TKCom
S and sent tcombi in the ith coordinate for that

session as part of its first message to the sender. This will allow us to combine with the argument made
in Hybrid 4 of Lemma 6.7 to conclude that there is at most one value of bi for which it can make the
query (σ, sid, ssid, i, bi, tcombi ,TCdecombi) to tokens {TKij}j∈[4κ]. Next, for each parallel session,
we include hybrids between H5 and H6, one for each of the sender’s inputs in each parallel sessions
that the receiver cannot obtain and indistinguishability follows analogous to proof of Lemma 6.10.
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A Secure Two-Party Computation

We briefly present the standard definition for secure multiparty computation in the plain model and refer
to [Gol04, Chapter 7] for more details and motivating discussions. A two-party protocol problem is cast by
specifying a random process that maps pairs of inputs to pairs of outputs (one for each party). We refer to
such a process as a functionality and denote it f : {0, 1}∗×{0, 1}∗ → {0, 1}∗×{0, 1}∗, where f = (f1, f2).
That is, for every pair of inputs (x, y), the output-vector is a random variable (f1(x, y), f2(x, y)) ranging
over pairs of strings where P1 receives f1(x, y) and P2 receives f2(x, y). We use the notation (x, y) 7→
(f1(x, y), f2(x, y)) to describe a functionality. We prove the security of our protocols in the settings of
malicious computationally bounded adversaries. Security is analyzed by comparing what an adversary can
do in a real protocol execution to what it can do in an ideal scenario.

Execution in the ideal model. In an ideal execution, the parties submit inputs to a trusted party, that
computes the output. An honest party receives its input for the computation and just directs it to the trusted
party, whereas a corrupted party can replace its input with any other value of the same length. Since we
do not consider fairness, the trusted party first sends the outputs of the corrupted parties to the adversary,
and the adversary then decides whether the honest parties would receive their outputs from the trusted party
or an abort symbol ⊥. Let f be a two-party functionality where f = (f1, f2), let A be a non-uniform
probabilistic polynomial-time machine, and let I ⊂ [2] be the set of corrupted parties (either P1 is corrupted
or P2 is corrupted or neither). Then, the ideal execution of f on inputs (x, y), auxiliary input z to A and
security parameter κ, denoted IDEALf,A(z),I(κ, x, y), is defined as the output pair of the honest party and
the adversary A from the above ideal execution.

Execution in the real model. In the real model there is no trusted third party and the parties interact
directly. The adversary A sends all messages in place of the corrupted party, and may follow an arbitrary
polynomial-time strategy. The honest parties follow the instructions of the specified protocol π.

Let f be as above and let π be a two-party protocol for computing f . Furthermore, let A be a non-
uniform probabilistic polynomial-time machine and let I be the set of corrupted parties. Then, the real exe-
cution of π on inputs (x, y), auxiliary input z toA and security parameter κ, denoted REALπ,A(z),I(κ, x, y),
is defined as the output vector of the honest parties and the adversary A from the real execution of π.

Security as emulation of a real execution in the ideal model. Having defined the ideal and real models,
we can now define security of protocols. Loosely speaking, the definition asserts that a secure party protocol
(in the real model) emulates the ideal model (in which a trusted party exists). This is formulated by saying
that adversaries in the ideal model are able to simulate executions of the real-model protocol.

Definition A.1. Let f and π be as above. Protocol π is said to securely compute f with abort in the
presence of malicious adversaries if for every non-uniform probabilistic polynomial-time adversary A for
the real model, there exists a non-uniform probabilistic polynomial-time adversary S for the ideal model,
such that for every I ⊂ [2],{

IDEALf,S(z),I(κ, x, y)
}
κ∈N,x,y,z∈{0,1}∗

c≈
{

REALπ,A(z),I(κ, x, y)
}
κ∈N,x,y,z∈{0,1}∗
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where κ is the security parameter.

The F-hybrid model. In order to construct some of our protocols, we will use secure two-party protocols
as subprotocols. The standard way of doing this is to work in a “hybrid model” where parties both interact
with each other (as in the real model) and use trusted help (as in the ideal model). Specifically, when
constructing a protocol π that uses a subprotocol for securely computing some functionality F , we consider
the case that the parties run π and use “ideal calls” to a trusted party for computing F . Upon receiving the
inputs from the parties, the trusted party computes F and sends all parties their output. Then, after receiving
these outputs back from the trusted party the protocol π continues. Let F be a functionality and let π be a
two-party protocol that uses ideal calls to a trusted party computing F . Furthermore, letA be a non-uniform
probabilistic polynomial-time machine. Then, the F-hybrid execution of π on inputs (x, y), auxiliary input
z to A and security parameter κ, denoted HybridπF ,A(z)(κ, x, y), is defined as the output vector of the
honest parties and the adversaryA from the hybrid execution of π with a trusted party computing F . By the
composition theorem of [Can00] any protocol that securely implements F can replace the ideal calls to F .

A.1 UC Security

Some of our proofs are given in the stronger Universal Composability (UC) setting. For completeness we
briefly recall this framework, for more details we refer to [Can01].

Environment. The model of execution includes a special entity called the UC-environment (or environ-
ment) Z . The environment “manages” the whole execution: it invokes all the parties at the beginning of the
execution, generates all inputs and reads all outputs, and finally produces an output for the whole concurrent
execution. Intuitively, the environment models the “larger world” in which the concurrent execution takes
place (e.g., for a distributed computing task over the Internet, the environment models all the other activities
occurring on the Internet at the same time).

Adversarial behavior. The model of execution also includes a special entity called the adversary, that
represents adversarial activities that are directly aimed at the protocol execution under consideration. While
honest parties only communicate with the environment through the input/output of the functions they com-
pute, the adversary is also able to exchange messages with the environment in an arbitrary way throughout
the computation.6 Furthermore, the adversary controls the scheduling of the delivery of all messages ex-
changed between parties (where messages sent by the environment are directly delivered). Technically, this
is modeled by letting the adversary read the outgoing message tapes of all parties and decide whether or not
and when (if at all) to deliver the message to the recipient, therefore the communication is asynchronous and
lossy. However, the adversary cannot insert messages and claim arbitrary sender identity. In other words,
the communication is authenticated.

Protocol execution. The execution of a protocol π with the environment Z , adversaryA and trusted party
G proceeds as follows. The environment is the first entity activated in the execution, who then activates the
adversary, and invokes other honest parties. At the time an honest party is invoked, the environment assigns
it a unique identifier and inquiries the adversary whether it wants to corrupt the party or not. To start an
execution of the protocol π, the environment initiates a protocol execution session, identified by a session

6Through its interaction with the environment, the adversary is also able to influence the inputs to honest parties indirectly.

44



identifier sid, and activates all the participants in that session. An activated honest party starts executing the
protocol π thereafter and has access to the trusted party G. We remark that in the UC model the environment
only initiates one protocol execution session.

Invoking parties. The environment invokes an honest party by passing input (invoke, Pi) to it. Pi is the
globally unique identity for the party and is picked dynamically by the environment at the time it
is invoked. Immediately after that, the environment notifies the adversary of the invocation of Pi

by sending the message (invoke, Pi) to it, who can then choose to corrupt this party by replying
(corrupt, Pi). Note that here as the adversary is static, parties are corrupted only when they are “born”
(invoked).

Session initiation. To start an execution of protocol π, the environment selects a subset U of parties that
has been invoked so far. For each party Pi ∈ U , the environment activates Pi by sending a start-
session message (start-session, Pi, sid, ci,sid, xi,sid) to it, where sid is a session id that identifies this
execution. We remark that in the UC model, the environment starts only one session, and hence all
the activated parties have the same session id.

Honest party execution. An honest party Pi, upon receiving (start-session, Pi, sid, ci,sid, xi,sid), starts
executing its code ci,sid input xi,sid. During the execution,

• The environment can read Pi’s output tape and at any time may pass additional inputs to Pi;

• According to its code, Pi can send messages (delivered by the adversary) to the other parties in
the session, in the format (Pi, Pj , s, content),7 where Pj is the identity of the receiver;

• According to its code, Pi can send an input to the trusted party in the format (Pi, F , s, input).

Adversary execution. Upon activation, the adversary may perform one of the following activities at any
time during the execution.

• The adversary can read the outgoing communication tapes of all honest parties and decides to
deliver some of the messages.

• The adversary can exchange arbitrary messages with the environment.

• The adversary can read the inputs, outputs and incoming messages of a corrupted party, and
instruct the corrupted party for any action.

Output. The environment outputs a final result for the whole execution in the end.

In the execution of protocol π with security parameter κ ∈ N, environment Z , adversaryA and trusted party
G, we define ViewG

π,A,Z(κ) to be the random variable describing the output of the environment Z , resulting
from the execution of the above procedure.

Let F be an ideal functionality; we denote by πIDEAL the protocol accessing F , called as the ideal
protocol. In πIDEAL parties simply interacts with F with their private inputs, and receive their corresponding
outputs from the functionality at the end of the computation. Then the ideal execution of the functionality
F is just the execution of the ideal protocol πIDEAL with environment Z , adversary S and trusted party F .
The output of the execution is thus ViewF

πIDEAL,S,Z(κ). On the other hand, the real model execution does

7The session id in the messages enables the receiver to correctly de-multiplexing a message to its corresponding session, even
though the receiver may involve in multiple sessions simultaneously.
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not require the aid of any trusted party. Let π be a multi-party protocol implementing F . Then, the real
execution of π is the execution of π with security parameter κ, environment Z and adversary A, whose
output is the random variable Viewπ,A,Z(κ). Additionally, the G-Hybrid model execution of a protocol π is
the execution of π with security parameter κ, environment Z and adversary A and ideal functionality G.

Security as emulation of a real model execution in the ideal model. Loosely speaking, a protocol
securely realizes an ideal functionality if it securely emulates the ideal protocol πIDEAL. This is formulated
by saying that for every adversary A in the real model, there exists an adversary S (a.k.a. simulator) in the
ideal model, such that no environment Z can tell apart if it is interacting with A and parties running the
protocol, or S and parties running the ideal protocol πIDEAL.

Definition A.2. (UC security) Let F and πIDEAL be defined as above, and π be a multi-party protocol in the
G-hybrid model. Then protocol π UC realizes F in G-hybrid model, if for every uniform PPT adversary A,
there exists a uniform PPTsimulator S, such that for every non-uniform PPT environment Z , the following
two ensembles are computationally indistinguishable,{

ViewG
π,A,Z(κ)

}
κ∈N

c≈
{

ViewF
πIDEAL,S,Z(κ)

}
κ∈N.
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