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Abstract. In this paper, we propose a new multivariate signature scheme named
MI-T-HFE as a competitor of QUARTZ. The core map of MI-T-HFE is of an HFEv
type but more importantly has a specially designed trapdoor. This special trapdoor
makes MI-T-HFE have several attractive advantages over QUARTZ. First of all, the
core map and the public map of MI-T-HFE are both surjective. This surjectivity
property is important for signature schemes because any message should always have
valid signatures; otherwise it may be troublesome to exclude those messages without
valid signatures. However this property is missing for a few major signature schemes,
including QUARTZ. A practical parameter set is proposed for MI-T-HFE with the
same length of message and same level of security as QUARTZ, but it has smaller
public key size, and is more efficient than (the underlying HFEv- of) QUARTZ with
the only cost that its signature length is twice that of QUARTZ.

Keywords: post-quantum cryptography, multivariate signature scheme, QUARTZ,
HFEv

1 Introduction

Multivariate public key cryptosytems (MPKCs) are constructed using polynomials
and their public keys are represented by a polynomial map F = (f1, . . . , fm) : Fnq →
Fmq where Fq is the field of q elements and each fi is a polynomial. The security of
MPKCs relies on the following MP problem:

MP Problem Solve the system f1(x) = 0, . . ., fm(x) = 0, where each fi is a
polynomial in x = (x1, . . . , xm) ∈ Fnq and all coefficients are in Fq.

This problem is usually called the MQ problem if the degree of the system is two;
namely each fi is a quadratic polynomial. The MP problem is NP-hard if the de-
gree is at least two [GJ79]. Especially the MQ problem is also NP-hard in general.
Based on this NP-hardness and along with its computational efficiency, MPKCs is
considered as a potential candidate for post-quantum cryptography.

To use polynomial maps F = (f1, . . . , fm) : Fnq → Fmq for public key cryptog-
raphy, one needs to design trapdoors in the polynomial maps. Currently the most
common construction of such a trapdoor is of the following bipolar form [DY09]:

F̄ = L ◦ F ◦R : Fnq
R−→ Fnq

F−→ Fmq
L−→ Fmq



where L,R are invertible affine maps and F = (f1, . . . , fm) is a polynomial map.
The public key is F̄ while the secret key usually consists of L,R, F . It should be
efficient to invert the central map F but infeasible to invert F̄ unless one knows
L,R, F .

In MPKCs multivariate polynomials can be used for both encryption schemes
and signature schemes, and encryption schemes can often be converted to signature
schemes, but here we shall focus on signature schemes only. The public key of a
multivariate signature scheme is a specially designed polynomial map F : Fnq → Fmq ,
a message is a vector y ∈ Fmq and a signature is a vector x ∈ Fnq . Given any
message y, the signer need to solve the equation F (x) = y using the trapdoor to
find a solution as a signature x. The verifier verifies if a signature x is valid by
checking if it satisfies the equation F (x) = y. Notice that any message should have
valid signatures in general. Hence F should be a surjective map, or otherwise there
should be a good control on those invalid messages, i.e., those messages having
no valid signatures. However having a good control on invalid messages may be
troublesome, so it is preferred to have F being surjective.

Since the famous Matsumoto-Imai (MI) cryptosystem [MI88] was proposed in
1980’s, various multivariate encryption and signature schemes have been constructed.
The MI cryptosystem was broken by Patarin in 1995 [Pat95], but it has influenced
many important variants. A few of them are to modify the MI cryptosystem by
simple methods, such as FLASH for signature [PCG99] and Ding’s internal per-
turbation of MI for encryption [Din04]. However all these simple modification of
MI turned out to insecure. In 1996, Patarin [Pat96] proposed the famous Hidden
Field Equation (HFE) encryption scheme which has been developed into a big fam-
ily. Though the original HFE has been thoroughly broken [KS99, GJS06, BFP13],
some of its variants still survive until now, such as HFEv for encryption and HFEv-
for signature, especially QUARTZ as an instance of HFEv- [PCG01]. Inspired by
the linearization attack to the MI cryptosystem, Patarin proposed the Oil-Vinegar
(OV) signature scheme [Pat97]. OV was broken soon, but its variant Unbalanced Oil-
Vinegar signature scheme [KPG99] and Rainbow [DS05b] survive until now. There
were also many other schemes intended for signatures, but major signature schemes
that remain secure are HFEv, HFEv-, QUARTZ, UOV, Rainbow, etc. However, the
public map of HFEv, HFEv- generally cannot be surjective because their central
polynomials are chosen randomly with restriction only on the degree. For UOV and
Rainbow, it is not guaranteed that any message do have a valid signature though
the failure probability is very small. So to implement these schemes in practice, one
still has to handle those invalid messages.

In this paper, we propose a new multivariate signature scheme, named MI-T-
HFE, to resolve the problem on surjectivity while maintaining efficiency and security.
The core map of MI-T-HFE is a definitely surjective polynomial map, indeed an
HFEv polynomial, and thus its public map is also surjective. The design of MI-T-
HFE is motivated by the idea of [ZT14] where they propose a double perturbation of
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the MI cryptosystem by two perturbation methods, triangular perturbation and dual
perturbation. Here we also modify the MI cryptosystem by two maps, an extended
version of triangular maps and a special type of HFEv polynomials. The final map
of this modification is an HFEv polynomial which has a large number of vinegar
variables. This construction can also be viewed as an HFEv polynomial with a
trapdoor embedded in its vinegar variables. In the name MI-T-HFE, MI, T and
HFE stand for the MI cryptosystem, triangular perturbation and HFE polynomials
respectively. Compared to QUARTZ, the signature generation of MI-T-HFE can be
performed much faster, and MI-T-HFE can have smaller public key size. We examine
the security of this construction against current main attacks in multivariate public
key cryptography, and show that it can have the same level of security as QUARTZ.

This paper is organized as follows. Section 2 is a brief review of some previous
results to be used in this paper. Our new signature scheme MI-T-HFE is then
constructed in Section 3. Section 4 is devoted to the cryptanalysis of MI-T-HFE,
then followed by a practical example given in Section 5. Finally Section 6 concludes
this paper.

2 Preliminaries

In this section, we shall briefly review a few previous results which will be used in
the rest of this paper.

2.1 The Matsumoto-Imai Cryptosystem

We first recall the Matsumoto-Imai (MI) cryptosystem [MI88] as follows. Let q be
a power of 2, K a degree n extension of Fq and φ : K → Fnq the standard Fq-linear
map

φ(a0 + a1x+ · · ·+ an−1x
n−1) = (a0, a1, . . . , an−1).

Let θ be an integer such that, 0 < θ < n and gcd(qθ + 1, qn − 1) = 1. Define the
following simple polynomial

F̃ : K→ K, F̃ (X) = X1+qθ .

This polynomial F̃ is invertible and its inverse is F̃−1(Y ) = Y η where η(1 + qθ) ≡ 1
mod qn − 1.

The MI cryptosystem uses F = φ ◦ F̃ ◦φ−1 : Fnq → Fnq as the central map and its
public map is constructed from F by composing two invertible affine transformation
at the two ends F̄ = L ◦ F ◦ R. Since F is invertible, the MI cryptosystem is an
encryption scheme. For convenience, we shall call such an F an MI map.
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2.2 HFE

After breaking the MI cryptosystem [Pat95], Patarin then proposed Hidden Field
Equations (HFE) for encryption in 1996 [Pat96] which significantly influences the
development of multivariate public key cryptography.

Let q be a power of a prime (odd or even) and K a degree n extension of Fq.
HFE uses the following type of polynomials over K as the central map

H(X) =
∑

aijX
qi+qj +

∑
biX

qi + c.

where the coefficients are randomly chosen in K and the degree of H is bounded by
a relatively small number D. We shall call such an F an HFE map (polynomial).

The parameter D determines the efficiency and security level of HFE. H(X) = Y
can be solved by Berlekamp’s algorithm and the complexity is known as

O(nD2 logqD +D3)

So it can be efficient if deg(H) ≤ D is small enough. However, it is first found that
D cannot be too small otherwise it can be broken by attacks [KS99, Cou01, FJ03],
and later on HFE was thoroughly broken by [GJS06, BFP13].

2.3 HFEv

Though HFE has been broken, some simple modification can make it secure against
those attacks to HFE: HFEv which adds vinegar variables and HFEv- which deletes
a few components from the public map.

HFEv uses the following type of polynomials as the central map

H(X,V ) =
∑

aijX
qi+qj +

∑
bijX

qiV qj +
∑

cijV
qi+qj +

∑
diX

qi +
∑

eiV
qi + f

where the degree of X is bounded by a relatively small parameter D but the degree
of V can be arbitrary high. In addition, V varies only in a certain subspace of K of
dimension v corresponding to the subspace Fvq of Fnq . To invert H, one first assign a
random value to V and then H is reduced to an HFE polynomial and thus can be
solved by Berlekamp’s algorithm. If HFEv is used for encryption, the parameter v
should be small so that decryption won’t be too slow.

HFEv- is HFEv with a few components deleted from the public map. It is in-
tended for signature schemes. The most famous example of HFEv- is QUARTZ
[PCG01] which has parameters (q,D, n, v, r) = (2, 129, 103, 4, 3) where r is the num-
ber of components deleted.

The central polynomials of HFE, HFEv and HFEv- are randomly chosen with
only one restriction on the degree, so the probability that are surjective is very small.
Additional effort is then necessary to take care of those messages without valid
signatures when using them for signature schemes. This could be quite troublesome,
so a signature scheme with the public map being surjective is still preferred.
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2.4 Triangular Maps and Perturbation

Triangular maps are of the following form

G(x) =


x1
x2 + g1(x1)
...
xn + gn−1(x1, . . . , xn−1)


where g1, . . . , gs are randomly chosen polynomials. The great advantage of this trian-
gular structure is that G is bijective and it is very easy to solve G(x) = y inductively.

In [ZT14], triangular maps are turned into a modification method, called triangu-
lar perturbation. Their method is to add to the central map the following triangular
map

G(x) = G(x1,x2) =


xn+1 + g1(x1)
xn+2 + g2(x1, xn+1)
...
xn+s + gs(x1, xn+1, . . . , xn+s−1)


Namely, the modified central map is

F ′(x) = F (x1) + S ·G(x1,x2)

where S is a randomly chosen m×s matrix. Triangular perturbation can preserve the
efficiency and surjectivity of the original scheme, because G(x1,x2) = y always has
a solution x2 = (xn+1, . . . , xn+s) for any x1,y and xn+1, . . . , xn+s can be computed
straightforward by induction. However it cannot enhance the security if it is applied
alone as its triangular structure is vulnerable to high rank attack.

In [ZT14], they also propose another modification method, called dual pertur-
bation, and a new signature scheme by combining the two methods. They claim
that the two methods can protect each other to resist current attacks. However we
find that their scheme is indeed insecure. The reason is that their dual perturbation
can be simplified as adding a random polynomial only on the second part of the
variables after a linear transformation on the variables, and thus can be removed,
contradicting their claim on the security.

3 The New Multivariate Signature Scheme MI-T-HFE

Though the construction of [ZT14] is insecure due to the failure of dual perturba-
tion, we find that their idea of double perturbation, i.e., using two maps to protect
each other remains interesting. In this section, we will apply their idea to embed a
trapdoor into HFEv and thus construct a new signature scheme, named MI-T-HFE.
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3.1 Preparation

Before giving the construction of MI-T-HFE, we shall first introduce two types
of polynomial maps. The first type of polynomial map is an extended version of
triangular maps,

G(x) = G(x1,x2) =


φ1(xn+1) + g1(x1)
φ2(xn+2) + g2(x1, xn+1)
...
φs(xn+s) + gs(x1, xn+1, . . . , xn+s−1)


where g1, . . . , gs are randomly chosen polynomials and φi : Fq → Fq are invertible
polynomials, which can be easily inverted. If we want G to be quadratic, then choose
gi, φi to be quadratic. For example, if k > 1, F2k → F2k , x 7→ x2 has an inverse

y 7→ y2
k−1

. Then each φi : F2k → F2k can be chosen as φi(x) = aix
2 where ai ∈ F2k

and ai 6= 0. This type of maps with each φi(x) = x2 appears in [PG97]. We make
the convention that if q = 2, we choose each φi(x) = x and if q > 2, we choose each
φi(x) = aix

2 for a constant ai 6= 0.
Like the triangular perturbation [ZT14], extended triangular maps can also be

used as a modification method, called extended triangular perturbation. It also pre-
serves the efficiency and surjectivity of the original scheme, but is insecure against
high rank attack. To protect (extended) triangular perturbation, the triangular
structure should be hidden by adding a large amount of quadratic terms and cross
terms of x1,x2.

Next we propose a special type of HFEv polynomials. Let K = Fq[x]/(g(x)) be
a degree t extension of Fq where g(x) ∈ Fq[x] is a degree s irreducible polynomial.
Let φ : K→ Ftq be the standard Fq-linear map

φ(a0 + a1x+ · · ·+ at−1x
t−1) = (a0, a1, . . . , at−1).

Define the following type of polynomial over K:

H(X1, X2) =
∑
0≤i<t

∑
1≤qj≤D

aijX
qi

1 X
qj

2 +
∑

1≤qi+qj≤D

bijX
qi+qj

2 +
∑

1≤qj≤D

cjX
qj

2 .

Here D is a relatively small number. Fixing a value of X1, H(X1, X2) is then an
HFE polynomial of X2, so X2 can be solved efficiently from H(X1, X2) = 0 with
a given X1. Notice that this equation always has the zero solution X2 = 0, but a
nonzero solution is preferred. We can apply Berlekamp’s algorithm to solve it and
among those solutions, we pick a nonzero solution as X2. We shall accept the zero
solution X2 = 0 if there is only the zero solution. It would be ideal that there is a
nonzero solution for most values of X1.

For x1,x2 ∈ Ftq, define the following map to be used next

H̄ : Ftq × Ftq → Ftq, H̄(x1,x2) = φ(H(φ−1(x1), φ
−1(x2))).
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3.2 Construction of MI-T-HFE

Let q be a power of 2, F : Fnq → Fnq an MI map, 1 ≤ s ≤ n and 1 ≤ t ≤ n. Combining
the extended triangular map G and the HFEv map H defined above, we define the
following trapdoor function for x1 ∈ Fnq , x2 ∈ Fsq, x3 ∈ Ftq,

F ′ : Fn+s+tq → Fnq ,

F ′(x1,x2,x3) = F (x1) + S ·G(x1,x2) + T2 · H̄(T1 · (x1,x2),x3) (3.1)

where S is an n× s matrix, T1 an t× (n+ s) matrix and T2 an n× t matrix. This
trapdoor function will serve as the central map of MI-T-HFE.

It should be noted that F ′ is indeed an HFEv map with (x1,x2) as the n + s
vinegar variables. In addition, it is also a scheme obtained from the MI cryptosystem
by perturbing it using an extended triangular map and an HFEv map just like the
situation in [ZT14].

Randomly choose two invertible affine transformations L1 : Fn+s+tq → Fn+s+tq

and L2 : Fnq → Fnq . Then the public map of MI-T-HFE is

P (x1, . . . , xn+s+t) = L2 ◦ F ′ ◦ L1 : Fn+s+tq → Fnq .

The signature scheme MI-T-HFE is described as follows.

Public Key: The public key of MI-T-HFE consists of
1. The finite field Fq.
2. The n polynomials in P (x1, . . . , xn+s).

Private Key: The private key of MI-T-HFE consists of
1. The θ of the MI map F .
2. The extended triangular map G.
3. The matrix S.
4. The polynomial H.
5. The two matrices T1, T2.
6. The two invertible affine transformations L1, L2.

Signature Verification: For a given a message y ∈ Fnq , a signature x ∈ Fn+s+tq

will be accepted if it satisfies F̄ ′(x) = y.
Signature Generation: For a given message y ∈ Fnq , a valid signature is generated

in the following procedure:
1. Compute y′ = L−12 (y).
2. Randomly choose u = (u1, . . . , us) ∈ Fsq, then solve F (x1) = y′−S ·u to get

a solution x1.
3. Substitute x1 into G(x1,x2) = u to get a solution x2 given by

xn+1 = φ−11 (u1 − g1), . . . , xn+s = φ−1s (us − gs). (3.2)

4. Substitute x1,x2 into the equation H̄(S1 · (x1,x2),x3) = 0 and solve it by
Berlekamp’s algorithm.
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5. Among those solutions, pick a nonzero solution and assign it to x3. If there
is only the zero solution, then let x3 = 0.

6. Then x = (x1,x2,x3) is a solution to F ′(x) = y.
7. Finally compute x = L−11 (x1,x2,x3) which is then a signature.

From the above signature generation, it is easy to see that for any message, there
is always a valid signature. Namely the trapdoor function is a surjective map. This
is very important for a signature scheme. In addition, we remark that the MI map
F in MI-T-HFE can be replaced by any other trapdoor function.

4 Security Analysis

In this section, we shall analyze the security of MI-T-HFE against current major
attacks and discuss the choice of parameters accordingly.

The trapdoor function (3.1)

F ′(x1,x2,x3) = F (x1) + S ·G(x1,x2) + T2 · H̄(T1 · (x1,x2),x3)

of MI-T-HFE is a sum of the following three parts:

1. The inner map is an MI map F (x1),
2. The middle map is an extended triangular map S ·G(x1,x2), and
3. The outer map is an HFEv map T2 · H̄(T1 · (x1,x2),x3).

From the point of view of perturbation [ZT14], the extended triangular map and
the HFEv map in MI-T-HFE are designed to help each other similar to [ZT14]. One
reason for this design is that the middle triangular map has an amount of random
quadratic terms of the variables x1 to hide F (x1), but its triangular structure makes
the additional variables x2 detectible by high rank attack. The outer map does not
have quadratic terms of x1,x2 but has all other quadratic terms of the variables. So
the middle map can add random quadratic terms of x1 to perturb F (x1) while the
outer map can cover the triangular structure of the middle triangular map if t is big.
Further reasons for the design of the trapdoor will become clear in the cryptanalysis
below.

We first explain why the design of MI-T-HFE can prevent the simple attack
of collecting a large amount of pairs of messages and signatures. In the signature
generation, a random value u ∈ Fsq is assigned to G and x1 is solved from F (x1) =
y − S · u with y perturbed by the random value S · u. In addition, notice that x3

can be zero in the signature generation, but in the signature generation, a nonzero
solution to H is preferred and it is of high probability that there is a nonzero
solution for a given message by the properties of HFE polynomials. The first feature
can randomize x1 to break relationship between x1 and y, and the second feature
can assure that most x3 are nonzero so that information of the subspace of vectors
(x1,x2, 0) won’t be recovered from the collected pairs of messages and signatures.
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In the rest of this section, we will consider rank attacks, differential attack,
linearization attack, and attacks to HFE (including MinRank attack and direct
attacks).

4.1 Rank Attacks

There are two types of rank attacks, MinRank attack (or called low rank attack)
and high rank attack. The MinRank attack tries to find those central polynomials
or their linear combinations with the least number r of variables. Its complexity is
dominated by O(qr) and successfully break Triangle-Plus-Minus schemes [GC00].
However, this attack is not applicable to MI-T-HFE in practice, because the least
number of vairables that the central map has is no less than n which is large enough,
noticing that the public map is F ′ from Fn+s+tq to Fnq . The high rank attack, on the
contrast, tries to find those central polynomials or their linear combinations with
the most number of variables, or equivalently to find those variables which appears
the fewest times r in the central map. It has complexity O(qr) and is a powerful
way to break triangular schemes [CSV97, GC00, YC05]. In the case of MI-T-HFE,
if the outer map is small, i.e., if t is small, then high rank attack can be applied to
find the last variables x3 first and then find the triangular structure of the second
map; namely the three parts of the trapdoor function (3.1) of MI-TT-HFE can be
separated. Hence t should be big enough to protect the trapdoor against high rank
attack. For example, to have the security level of at least 280, we should have t such
that qt ≥ 280.

4.2 Differential Attack

Although the public map F ′ of MI-T-HFE is an HFEv map and it has been shown
that HFE, HFE- and HFEv are generally secure against differential attack [DST14],
the differential attack [FGS05] to Ding’s internal perturbation of the MI cryptosys-
tem (IPMI) [Din04] should still be taken into account.

The differential attack to IPMI relies on the two facts: 1) there is a large linear
subspace U restricted to which the internal perturbation disappears; 2) a vector
u can be detected if it is in U by checking if the dimension of the kernel of the
differential at u is a specific number.

For MI-T-HFE, we find that the first fact does hold here. Notice that if x3 = 0,
the HFEv polynomial H then automatically disappears. So the linear subspace of
vectors (x1,x2, 0) is an important subspace. If there is no triangular map in the
middle, i.e., s = 0, then the situation is similar to IPMI and thus the differential
attack to IPMI applies. Notice that (extended) triangular maps can resist differential
attack and perturbing the MI map by an (extended) triangular perturbation can
break the differential invariant. Namely if s > 0 then the second fact does not hold
anymore, and when s increases, the dimension varies in a bigger range so that the
differential attack [FGS05] is no longer applicable here. To resist the differential
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attack, we guess that s can be just a small number but further careful analysis is
needed to estimate it.

4.3 Linearization Attack

The linearization attack is proposed by Patarin [Pat95] to break the MI cryptosys-
tem. The MI cryptosystem and some other schemes may have a large amount of
linear equations between x and y (or linear on x but nonlinear on y). From these
equations, part of x may be computed and the rest of x may be tried one by one.
However it is known that linearization attack is not applicable to triangular maps
and HFE maps. The trapdoor function (3.1) of MI-TT-HFE is a mixture of an MI
map, an extended triangular map and an HFE map which breaks the linear rela-
tionship. So if t is big, there would be very few linear equations among x1 and y
so that linearization attack is resisted. Moreover even if x1 could be recovered, the
rest of the variables x2,x3 are still unknown and the number of them is big enough
so that guessing all of them is infeasible.

4.4 Attacks to HFEv

If we lift the trapdoor function (3.1)

F ′(x1,x2,x3) = F (x1) + S ·G(x1,x2) + T2 · H̄(T1 · (x1,x2),x3)

of MI-T-HFE to the extension field K, it has the following form of an HFEv poly-
nomial

H ′(V,X) =
∑

a′ijV
qi+qj +

∑
b′iV

qi

+
∑
0≤i<t

∑
1≤qj≤D

aijV
qiXqj +

∑
1≤qi+qj≤D

bijV
qiXqj +

∑
1≤qj≤D

cjX
qj .

Here the vinegar variable V corresponds (x1,x2) and variable X corresponds to x3;
F +SG corresponds to the sum of the monomials V qi+qj , V qi and T2H̄ corresponds
to the sum of the rest monomials.

Attacks applicable to the HFE family are Kipnis-Shamir’s attack [KS99] based
on the MinRank problem and direct attack [FJ03]. In [DS05a] Ding and Schmidt
improve Kipnis-Shamir’s attack to cryptanalyze HFEv. They show that Kipnis-
Shamir’s attack can break HFEv for very small v such as v = 1, but as v increases,
the complexity increases fast and when v is close to the extension degree of the field
K over Fq, HFEv would be just like a random system of quadratic polynomials.

For direct attack, Ding and Yang provide in [DY13] a solid theoretical estimation
on the complexity of direct attack on HFEv and HFEv- by calculating the degree
of regularity. Their conclusion is the same as the case of Kipnis-Shamir’s attack;
namely, direct attack remains feasible for very small v but infeasible for big v. Espe-
cially for QUARTZ whose parameters are (2, 129, 103, 4, 3), its degree of regularity
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is bounded by 9 and its security level is estimated as 292 in [DY13]. Notice that
QUARTZ has 4 vinegar variables only.

In the case of MI-T-HFE, the number of vinegar variables is n + s bigger than
the extension degree t. So if qt is big enough, such as qt ≥ 280 and D is around
100, then MI-T-HFE is just like a random system of quadratic polynomials against
Kipnis-Shamir’s attack, and has high degree of regularity by the formulas in [DY13]
so that it is secure against direct attack.

5 A Practical Example and Comparison with QUARTZ

Based on the cryptanalysis in the preceding section, we shall propose a practical
parameter set to compare with QUARTZ. It should be mentioned that here we are
comparing the essential part of QUARTZ, i.e, the HFEv- scheme with the QUARTZ
parameters (2, 129, 103, 4, 3). The full design of QUARTZ [PCG01] applies this es-
sential part a few times iteratively to increase the security but it was later found
that this iterative structure does not contribute to the security. We shall propose a
parameter set with (almost) identical length of message and same level of security,
and compare the key sizes and efficiency.

We suggest the following set of parameters for MI-T-HFE

(q, n, s, t,D) = (8, 33, 5, 32, 72).

According to the cryptanalysis, the best attack to MI-T-HFE with this set of pa-
rameters is the high rank attack, and its complexity is 296. In other words, MI-
T-HFE with parameters (8, 33, 5, 32, 72) has 96-bit security. As a comparison with
QUARTZ, its degree of regularity is bounded by 143.5 according to the formulas in
[DY13], which is much higher than the bound, 9, for QUARTZ. Based on the degree
of regularity, the security level of MI-T-HFE (8, 33, 5, 32, 72) against direct attack
should be higher than QUARTZ, which is estimated as 292 in [DY13]. So the overall
security of the two schemes are 296 and 292 respectively, which may be regarded as
at the same level.

For MI-T-HFE with parameters (8, 33, 5, 32, 72), a message is a vector in F33
8

whose length is 99 bits, and a signature is vector in F70
8 whose length is 210 bits.

Its key sizes are calculated as follows. The public map P : Fn+s+tq → Fnq has n
components and each component is a quadratic polynomial with (n+ s+ t)(n+ s+
t+1)/2 quadratic terms, n+s+ t linear terms and 1 constant term. Thus the public
key size is

1

2
n(n+ s+ t+ 1)(n+ s+ t+ 2) log2 q bits.

With parameters (8, 33, 5, 32, 72), the public key size is 31.6 Kbytes.

The private key consists of several parts. S has ns entries in Fq, T1, T2 together
have 2nt+ st entries in Fq, and L1, L2 together have (n+ s+ t)2 + n2 entries in Fq.
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G has 3165 coefficients in Fq, and H has 101 coefficients in K ∼= Fqt , equivalently
3232 coefficients in Fq. So the private key size is 5.6 Kbytes.

As comparison, a message of QUARTZ is 100 bits and a signature is 107-bit.
Its public key consists of 100 quadratic polynomials each with 107 variables. Thus
its public size is 72.3 Kbytes, more than twice that of MI-T-HFE (8, 33, 5, 32, 72).
Similarly its private key size is 3.9 Kbytes, a bit smaller than that of MI-T-HFE
(8, 33, 5, 32, 72).

We next consider the efficiency of signature generation. In the signature genera-
tion of HFEv and the core part of QUARTZ, one first assigns random values to the
vinegar variables and then one solve the resulted HFE polynomials; if no solution
then try other values of the vinegar variables. This design lowers down the efficiency
as one may need to solve HFE polynomials a few times. MI-T-HFE has different
design on signature generation: one first solve an MI map to get x1, then solve a
triangular map to get x2, and finally solve the resulted HFE polynomial only once.
This is because the resulted HFE equation in MI-T-HFE is of the following form∑
aijX

qi+qi +
∑
biX

qi = 0 which always has solutions — a nonzero solution is
preferred if there is one. The first two steps are very fast with little computation
time, confirmed by computer experiments, as inverting an MI map and a triangular
map are both extremely fast. So the main cost for inverting the central map is on
inverting the HFE polynomial of MI-T-HFE. Recall that the complexity of inverting
an HFE polynomial by Berlekamp’s algorithm is O(nD2 logqD+D3). The value of
nD2 logqD+D3 for MI-T-HFE (8, 33, 5, 32, 72) is 1.2× 106, much smaller than the
value 14.2×106 for QUARTZ. So it is expected that the complexity of inverting the
HFE map of MI-T-HFE is much less than that of HFEv and QUARTZ. We did com-
puter experiments on MAGMA to compare the computation time of inverting their
core HFE maps and found that it is on average about 0.42 seconds for QUARTZ and
0.13 seconds for MI-T-HFE (8, 33, 5, 32, 72); namely the latter is more than three
times faster. Hence we may conclude that MI-T-HFE (8, 33, 5, 32, 72) is about three
times faster than the underlying HFEv- of QUARTZ when generating a signature.
Full implementation will be conducted to justify this claim in the future.

To summarize, QUARTZ, or its underlying HFEv- scheme with the QUARTZ
parameters (2, 129, 103, 4, 3), uses an HFE polynomial with very small number of
vinegar variables but relatively higher degree to have a short signature and high
enough security level, but the cost is bigger public key size and low efficiency. On
the contrary, MI-T-HFE (8, 33, 5, 32, 72) uses a special HFE polynomial with large
number of vinegar variables but relatively smaller degree to have smaller public key
size, better efficiency and high enough security level, and the only cost is longer
signatures. Moreover MI-T-HFE is a definitely surjective scheme but QUARTZ is
not.
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6 Conclusion

In this paper we have constructed a new multivariate signature scheme, named
MI-T-HFE, whose core map is of an HFEv type but has a trapdoor embedded in
it. MI-T-HFE has a special HFE polynomial with relatively low degree and a large
number of vinegar variables. Unlike the usual HFEv schemes, these vinegar variables
are not randomly assigned values but have special structure; namely it is a certain
combination of a Matsumoto-Imai map and a kind of extended triangular maps.
This trapdoor can also be viewed as a double perturbation of the Matsumoto-Imai
cryptosystem by extended triangular maps and HFEv maps. With this trapdoor, MI-
T-HFE is a surjective signature scheme, namely there are always valid signatures
for any message. The special HFE polynomial of MI-T-HFE and its low degree
guarantee its efficiency, while the large amount of vinegar variables backs its security
but does not distract efficiency. To be comparable with QUARTZ, we propose a
parameter set for MI-T-HFE with the same length of message and same security
level as QUARTZ. With the proposed parameters, the public key size of MI-T-HFE
is about half of QUARTZ, and signature generation is about three times efficient
than the underlying HFEv- scheme with the QUARTZ parameters — thus much
more efficient than QUARTZ. Its disadvantage is that its signature length, 210 bits,
is about twice that of QUARTZ. Hence we suggest to use MI-T-HFE instead of
QUARTZ if longer signatures are accepted.
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