
Encryption Performance Improvements
of the Paillier Cryptosystem

Christine Jost1, Ha Lam2, Alexander Maximov3, and Ben Smeets3

1 Ericsson Research, Stockholm, Sweden, christine.jost@ericsson.com
2 work performed at Ericsson Research, San José, USA, hatlam@gmail.com

3 Ericsson Research, Lund, Sweden, {alexander.maximov,
ben.smeets}@ericsson.com

Abstract. Homomorphic encryption methods provide a way to out-
source computations to the cloud while protecting the confidentiality of
the data. In order to deal with the large and growing data sets that are
being processed nowadays, good encryption performance is an important
step for practicality of homomorphic encryption methods.
In this article, we study the encryption performance of the Paillier cryp-
tosystem, a partially homomorphic cryptosystem that allows to perform
sums on encrypted data without having to decrypt first. With a com-
bination of both new and known methods, we increase the encryption
performance by orders of magnitude compared to a näıve implementa-
tion. The new methods reduce the bottleneck of noise calculation by
using pre-computed noise to generate new noise in a much faster way
than by using standard methods.

1 Introduction

Homomorphic encryption schemes are currently attracting a lot of attention be-
cause they allow preserving confidentiality of sensitive data in cloud computing.
However, fully homomorphic encryption schemes, which enable both multiplica-
tion and addition operations on encrypted data, are currently still inefficient in
practical settings. For this reason, research efforts are also directed at different
classes of homomorphic encryption, one of which is partially homomorphic en-
cryption. These schemes allow performing one specific operation on encrypted
data, usually either addition or multiplication. In this text, we consider two vari-
ants of a well-known partially homomorphic scheme, the Paillier scheme [8]. It
allows performing sums on encrypted data, which is important in many use cases
such as encrypted SQL databases [9, 5], machine learning on encrypted data [1],
and electronic voting [8, 3].

In their most näıve implementation, both variants of the Paillier scheme have
a rather bad encryption performance. There exist a couple of standard methods,
some of which already mentioned in Paillier’s original article [8], that consider-
ably improve the encryption performance. In this article, we tune those existing
methods and combine them with new methods. By doing this, we reach an en-
cryption performance sufficient for high throughput use cases. On a commodity



machine, the throughput reached was between 30,000 and 190,000 encryptions
per second, depending on the security level. See sections 4 and 5 for details on
the results.

From a conceptual view point, encryption with the Paillier scheme consists
of a fixed basis modular exponentiation with the message as exponent, and the
generation of a noise factor used to mask the message. For fixed basis exponenti-
ation, it is well-known that the performance can be increased by pre-computing
powers of the fixed basis. By fine-tuning this and other known methods, we re-
duce the complexity of this step considerably. For the generation of the noise
factor, we apply a new method that consists of using pre-computed noise to
generate new noise factors. This reduces the bottleneck of noise computation
to a few modular multiplications. Together, these methods achieve the consid-
erable increase in encryption performance mentioned above. We elaborate on
these methods in section 3. We will also describe methods that can be used for
encrypting data sent in a data stream, especially a stream with irregular message
frequency.

There have been other works built on the original Paillier scheme that im-
prove its performance. Catalano et al. introduced an alternative decryption pro-
cedure, extending the scheme to allow an arbitrary exponent e instead of N ;
however, the drawback is that the system looses its additive homomorphic prop-
erty [2]. Damg̊ard et al. proposed a generalization of the scheme in which the
expansion factor is reduced and implementations of both the generalized and
original scheme are optimized without losing the homomorphic property [3].
Their system achieves the speed of 0.262 milliseconds/bit for the original Pail-
lier scheme, equivalent to 3,816.79 bits/sec. This performance was reached by a
clever choice of basis and using standard pre-computation techniques for fixed
basis exponentiation. However, the encryption performance can be increased
even further by using the techniques described in this paper. We reach a speed
of 9,197,824 to 48,810,496 bits/sec depending on the security parameter.

Some of the methods described in this article become especially efficient if
the message length is small compared to the key length, and hence also the
ciphertext. This has the disadvantage of a larger ciphertext expansion. In order
to reduce the ciphertext expansion, several smaller messages could be packed
into a larger one, as described in [4]. However, using this method requires using
a more complicated operation than simple multiplication in order to add the
corresponding plaintexts.

In the following, we start by briefly describing the Paillier cryptosystem in
Section 2, for completeness and in order to fix notation. We also comment on
practical issues with key generation and parameter choice that are not completely
addressed in the original article [8]. We continue by describing the methods we
use for performance improvement in Section 3. Finally, we summarize the results
in Section 4 and present our conclusion in Section 5.



2 The Paillier Cryptosystem, Key Generation and
Parameter Choice

In [8], Paillier describes two partially-homomorphic cryptosystems, called Scheme
1 and Scheme 3. Scheme 1 is the basic version of the Paillier scheme, Scheme 3
is a variant with faster decryption. The security of the Paillier scheme is based
on n-th residues in Z∗

n2 and the hardness of integer factorization. Here we only
briefly recall the basic facts and comment on key generation and parameter
choice. For details on the security of the scheme, we refer to the original article
[8]. The setting for the Paillier scheme is the multiplicative group Z∗

n2 , for n = pq
and two prime numbers p and q. Observe that Z∗

n2 has |Z∗
n2 | = φ(n2) = nφ(n) =

(p− 1)(q− 1)n elements. The Carmichael’s function on n, λ(n), is short-handed
to λ.

2.1 Scheme 1

In its most basic form, the Paillier scheme is described in Table 1.

Table 1. Paillier’s Scheme 1.

Parameters
prime numbers p, q
n = pq
λ = lcm(p− 1, q − 1)
g, with g ∈ Z∗

n2 and the order of g is a multiple of n
Public key

n, g
Private key

p, q, λ
Encryption

plaintext m < n
select a random r < n such that r ∈ Z∗

n

ciphertext c = gmrn mod n2

Decryption
ciphertext c < n2

plaintext m = L(cλ mod n2)

L(gλ mod n2)
mod n

Following the notation in [8], L(u) = u−1
n , for u = 1 mod n. This function is

only used on input values u that actually satisfy u = 1 mod n.

Key Generation and Secure Choice of Parameters. As the security of the
Paillier cryptosystem is based on integer factoring, the same conditions should
hold for n as for the modulus size in the RSA cryptosystem, which is recom-
mended to be either 2048 or 3072 bits according to NIST recommendations [6].



When choosing the parameter g, it needs to be checked whether the order
of the chosen g is a multiple of n. According to [8] equation (4), this can be
effectively checked by testing whether

gcd(L(gλ mod n2), n) = 1.

Also, according to Paillier, g should be small for performance reasons, e.g., g = 2.
In our implementation described in section 3, we choose to work with Scheme 3
instead that uses other values of g. This increases performance even further.

2.2 Scheme 3

This is a variant of the original Paillier scheme, with faster decryption. Instead
of working in the whole group Z∗

n2 , we work in the subgroup 〈g〉 generated by an
element g of order αn. This allows decryption by performing an exponentiation
with exponent α instead of λ, which speeds up decryption depending on the size
of α. Scheme 3 is described in Table 2.

Table 2. Paillier’s Scheme 3.

Parameters
prime numbers p, q
n = pq
λ = lcm(p− 1, q − 1)
α, a divisor of λ (see comment below)
g, with g ∈ Z∗

n2 and the order of g is αn
Public key

n, g
Private key

p, q, α
Encryption

plaintext m < n
select a random r < α (see comment below)
ciphertext c = gm(gn)r mod n2

Decryption
ciphertext c < n2

plaintext m = L(cα mod n2)

L(gα mod n2)
mod n

On α, Paillier only puts the restriction 1 ≤ α ≤ λ. However, as there is an
element g of order αn, it follows from Carmichael’s Theorem that α has to be a
divisor of λ. Similarly, on r, Paillier actually puts the restriction r < n. However,
it suffices to have r < α as the order of gn is α.

Key Generation and Secure Choice of Parameters. The same conditions
on p, q and n apply as for Scheme 1. Hence, in terms of parameters, we only
need to consider the choice of α. Paillier comments in [8] that the parameter α



needs to be sufficiently large in order to avoid baby-step-giant-step attacks on
α. We elaborate on this for the convenience of the reader.

The problem of computing α from the public keys g and n is the following:
Solve (gn)α = 1 mod n2 for α. This problem is similar to the discrete logarithm
problem, but not identical. To be more precise, instead of computing the discrete
logarithm in a subgroup of known order, this task consists of finding the order
of a given element. Hence, algorithms for solving the discrete logarithm problem
that use the order of the subgroup cannot be used for this related problem. This
includes the index calculus method and the Pohlig-Hellman algorithm. However,
as already commented by Paillier, a baby-step-giant-step attack can be used for
finding α. Applying this attack needs O(

√
α) multiplications.

Summing up, as the generic baby-step-giant-step method can be used to find
α, but not the index calculus method, the same recommendations should hold
for the size of α as for key size of ECC based systems. Also, it should be at least
as hard to determine α as to factor n, hence the security level for α should be at
least as high as the security level for n. According to NIST recommendations ([7]
Table 2), 2048 bit security (or 3072 bit security, respectively) for factoring-based
schemes is comparable to 224-255 bit security (256-383 bit security) for ECC
based schemes. Hence, if n has size 2048 bits, α should have at least 224 bits. If
n has size 3076 bits, α should have at least 256 bits.

The only new technical issue with parameter generation for Scheme 3 is to
generate g with the correct order αn. Fortunately, this can be achieved simply by
applying the DSA key generation twice, proper re-naming of variables and a few
additional computations. The DSA key generation applied twice produces g1 of
order α1 in Z∗

p and g2 of order α2 in Z∗
q , respectively. As next step, we interpret

g1 and g2 as elements in Z∗
p2 and Z∗

q2 , respectively. It is straight-forward to check
whether the order of g1 in Z∗

p2 is α1p and the order of g2 in Z∗
q2 is α2q indeed.

(In our experiments with the OpenSSL DSA key generation, this was always
the case.) One then finds g of order α1α2pq = αn in Z∗

p2q2 = Z∗
n2 by using the

Chinese Remainder Theorem. As can be easily checked, α is indeed a divisor of
λ.

In the OpenSSL implementation of the DSA key generation, we can vary the
size of the desired prime. Table 3 shows the bit sizes of different parameters for
the Paillier key obtained by applying DSA key generation twice.

Table 3. Key sizes in bits for Scheme 3 of the Paillier cryptosystem, obtained by using
OpenSSL DSA key generation twice.

p and q α1 and α2 n α

512 160 1024 320
1024 160 2048 320
1500 160 3072 320
2048 256 4096 512



2.3 Security of the Random n-th Powers rn and gnr

In [8], Paillier does not comment on how to generate the random n-th powers
rn (for Scheme 1) and gnr (for Scheme 3). The only restriction on rn, or gnr,
respectively, given by the schemes are the following: in Scheme 1, it suffices to
choose r smaller than n, in order to produce all n-th powers in Z∗

n2 . In Scheme
3, it suffices to choose r smaller than α, because the order of g is nα.

However, it may be possible to choose r from a smaller set, which is interesting
for performance reasons. In order to determine conditions on this smaller set,
we consider two attacks on r and gnr and measures to avoid them. We describe
them as attacks on Scheme 3. However, they work for Scheme 1 in an analogous
way.

The first attack on a specific ciphertext c = gmgnr is by guessing r. To
avoid this kind of attack, the set from which r is (pseudo-)randomly chosen may
have less elements than α, as long as it is sufficiently large to make guessing r
impossible in practice. Observe that, by guessing r, only a single ciphertext can
be decrypted, so guessing r does not break the whole system. Assuming that the
r’s are chosen randomly and no other relations between them can be used, then
the size of the random space hence only determines how hard it is to attack a
single ciphertext. Its size may be chosen depending on the importance of single
ciphertexts. For instance, for the performance tests in section 3.3, we choose r
randomly from at least 270 values. Hence we use at least 70-bit security for a
single ciphertext.

The other kind of attack is to use relations between the random values used
for different ciphertexts. Say we have the relation r3 = r2+r1. Then the attacker
can compute

c3
c1 · c2

=
gm3gnr3

gm1gnr1gm2gnr2
= gm3−m1−m2 .

Obtaining m3−m1−m2 is then a discrete logarithm problem. When the message
length is short, the discrete logarithm problem should be solvable in reasonable
time. In order to avoid this kind of attack, one should not introduce too much
structure in the choice of rn or gnr.

The method for generating noise described in section 3.3 is designed to with-
stand the two attacks described above.

3 Implementation

In this section we discuss both the known and the new methods we applied to
improve the encryption performance of the Paillier cryptosystem. We focus on
Scheme 3, which has a better decryption performance than Scheme 1. However,
the techniques can be used for Scheme 1 in an analogous way. Some of the
techniques assume that the message length is short compared to the key size.
As the key size is at least 2048 bits for modern applications and the messages
are integer values, this seems to be a reasonable assumption for real world use
cases. As mentioned in the introduction, an alternative way would be to use



the method described in [4], which reduces ciphertext expansion at the cost of
introducing a more complicated method for additions on plain texts.

3.1 Reduced Moduli

To start with, if the private keys are known to the entity performing encryption,
reduced moduli can be used. As n2 = p2q2, one can split up numbers modulo
n2 in two parts modulo p2 and q2. The moduli p2 and q2 can be further reduced
down to mod p and mod q. The computations are then be performed on the
parts.

3.2 Computing gm mod n2

In order to compute the message part gm mod n2 of the ciphertext, standard
methods for fixed basis modular exponentiation can be used. Pre-computations
of powers of g modulo n2 reduce the number of modular operations needed
to compute gm mod n2 considerably. This holds especially if the messages m
are rather short. There is of course always a trade-off between pre-computation
storage and time on the one hand, and encryption speed on the other hand.

In our experiments, we assumed that the messages are 32-bit integers. In the
pre-computation phase, we computed a large number of powers of g, namely
g(2

16)ij for i = 0, 1 and j = 0 . . . 216−1. In order to compute gm, we split m into
two 16-bit numbers ji, where ji = bm/(216)ic mod 216 for i = 0, 1. Then gm can

be computed in only one modular multiplication, by gm mod n2 = g2
16j1gj0 .

3.3 Computing (gn)r mod n2

For computing the noise part of the ciphertext, it is of course possible to use
similar pre-computation techniques as for the message part. However, in this
case only some random power of gn is needed to compute, not a specific power.
We describe a new method that makes use of this fact and is much more efficient.

The idea is to pre-compute a large number of random powers of gn and to
use them to produce new random powers. This works because any product of
random powers of gn will produce a new random power. So instead of explicitly
choosing r and computing (gn)r, we choose r implicitly while (gn)r is computed
as the product of previously computed random powers of gn.

There is a trade-off again, between storage of pre-computed powers, number
of multiplications and the “randomness” of the power of gn. In order to evaluate
the randomness of the power of gn, we make use of the considerations in section
2.3 on the security of the choice of r.

In our implementation, according to the considerations in section 2.3, we
want to make the probability of guessing r to be at most 2−70. We consider
pre-computing a table of 216 random (gn)r’s and multiplying 5 of them together



during encryption. The (gn)r’s chosen might repeat themselves, so the number
of possibilities is a 5-combination with repetitions, i.e.,((

216

5

))
=

(
216 + 5− 1

5

)
≈ 273.

In Table 4, we also consider other values for the size of the table of pre-computed
values. It details the pre-computation time (sec) and encryption speed (enc/sec)
for different key lengths (bits).

Table 4. Pre-computation time (sec) and encryption speed (enc/sec), depending on
the length of the key n, the number of pre-computed values, and the probability P of
guessing r for a single ciphertext.

216 pre-computed values, noise = 5 216 pre-computed values, noise = 8
⇒ P = 2−73 ⇒ P = 2−113

length of key n Precomp Enc Precomp Enc

1024 2.554725 190666 2.563800 116974
2048 5.661963 89483 5.848805 32480
3072 10.991574 35929 10.292777 42100
4092 25.156933 35236 25.510914 26553

216 pre-computed values, noise = 10 216 pre-computed values, noise = 16
⇒ P = 2−138 ⇒ P = 2−212

length of key n Precomp Enc Precomp Enc

1024 2.676721 108682 2.674735 70687
2048 5.733593 56558 5.973831 34955
3072 10.416214 32978 10.189774 25287
4092 24.990774 23759 25.657435 17659

220 pre-computed values, noise = 4 220 pre-computed values, noise = 7
⇒ P = 2−75 ⇒ P = 2−128

length of key n Precomp Enc Precomp Enc

1024 17.934370 205356 20.623479 121407
2048 42.923820 96326 43.360331 68066
3072 78.954561 57793 78.294688 42382
4092 188.125790 12140 188.942135 23693

220 pre-computed values, noise = 9 220 pre-computed values, noise = 15
⇒ P = 2−162 ⇒ P = 2−260

length of key n Precomp Enc Precomp Enc

1024 20.578311 98633 20.312363 62165
2048 43.011205 55688 43.059426 36991
3072 78.187848 35953 78.725464 24269
4092 188.286545 17684 186.999658 17268

So far, we have described the method for the case that the random noise is
of the form (gn)r. However, the same method can be employed for any random
noise where pre-computed noise can be used to produce new noise. Especially,
this method can be used for random noise of the form hr, where h is fixed and



r is random. It also can be used for noise of the form rn for random r and fixed
n, such as for Scheme 1 of the Paillier cryptosystem. The reason is that even in
this case new noise can be generated by multiplying pre-computed noise factors
of the same form.

3.4 Parallelization

As the encryption of different ciphertexts is independent of each other, it is
natural to use parallelization to encrypt large amounts of messages, or messages
arriving with high throughput. In our implementation, we use parallelization
using OpenMP, around the for loop that goes through the data set.

3.5 Inhomogeneous Throughput

In the performance tests presented here, we have worked under the assumption
that the messages either arrive as a large block of data, or arrive at constant
speed. However, in many practical use cases, data will arrive at a fluctuating rate.
In this case, it makes sense to split up the noise generation part from the message
encryption part. The noise (gn)r can be produced and stored either in a separate
machine or in parallel in the same machine that encrypts the messages. When
a message arrives in order to be encrypted, a new noise (gn)r will be requested
from the noise generation part. This noise will either taken from storage or be
produced on the fly. During this time, the message encryption part can start
computing the gm part of the ciphertext. When both the gm part and the (gn)r

noise part are present, they are multiplied in order to generate the ciphertext.
Although we have not tested this method, we believe that it should be very

suited for the case that messages arrive in a stream of fluctuating throughput,
such as produced by analytics flows. In one extreme form, all the noise parts of
the expected ciphertexts are computed beforehand. If this is possible, it provides
a very good encryption performance. This special case has been described before
in [8] and [9].

4 Results

Summing up the results of the performance tests in the last section, the sug-
gested improvements increase the encryption performance of the Paillier scheme
dramatically. Näıve implementations of Paillier’s Scheme 3 (and Scheme 1 as
well) are rather slow. In our tests, Scheme 3 has speed of approximately 500
encryptions per second for 2048 bit length of n, see Table 5.

In contrast, the implementation with all the proposed improvements featured
pre-computed tables of exponents, split of 32-bit number into smaller limbs,
reduced moduli, and parallelization, etc., see Section 3 for more details. The
speed increase that we gained is quite large. For 2048 key length, we achieved an
encryption speed of 89,483 encryptions/second or 2,863,456 bits/second. Table 5
summarizes the speed of encryption (enc/sec) for different key lengths.



Table 5. Encryptions per second with different variations of Paillier, depending on the
length of the key n. For our implementation, we use 73-bit security for guessing r.

length of key n Näıve scheme 3 Our implementation

1024 1898 190666
2048 522 89483
3072 269 35929

The computer used for all the experiments has an Intel i7-4600U CPU at
2.10GHz with 4 cores, it runs Ubuntu 64-bit v14.04. The compiler version was
g++ v4.8.2 with GMP v6.0.0 64-bit compiled against this setup.

Note that in our test cases, we were more interested in the number of encryp-
tions per seconds rather than the number of bits encrypted per second, hence
the improvements were optimized for messages of length 32 bits. For optimal
encrypted bits/sec, messages of keylength size should be chosen.

5 Conclusion

Although näıve implementations of the Paillier cryptosystem have rather poor
encryption performance, the performance can be improved considerable by us-
ing a combination of well-known and new methods. The well-known methods
are pre-computations of fixed-basis powers, computing with reduced moduli,
and parallelization. The new methods described in this article are a method
to increase the speed of producing noise, and a method to deal with varying
data rata of the message input stream. With these improvements, the Paillier
cryptosystem becomes practical even for use cases that need high encryption
throughput or have fluctuating data rate.

References

1. R. Bost, R. A. Popa, S. Tu, and S. Goldwasser, Machine Learning Classification
over Encrypted Data. NDSS Symposium, 2015.

2. D. Catalano, R. Gennaro, N. Howgrave-Graham, and P. Q. Nguyen, Paillier’s
cryptosystem revisited. Proceedings of the 8th ACM conference on Computer and
Communications Security, pp. 206-214, 2001.

3. I. Damg̊ard, M. Jurik, and J. B. Nielsen, A generalization of Paillier’s public-key
system with applications to electronic voting. International Journal of Information
Security 9, no. 6, pp. 371-385, 2010

4. T. Ge, and S. Zdonik, Answering Aggregation Queries in a Secure System Model.
Proceedings of the 33rd International Conference on Very Large Data Bases, pp.
519-530, 2007.

5. P. Grofig, M. Härterich, I. Hang, F. Kerschbaum, M. Kohler, A. Schaad, A.
Schröpfer, and W. Tighzert, Experiences and observations on the industrial imple-
mentation of a system to search over outsourced encrypted data. Sicherheit 2014:
Sicherheit, Schutz und Zuverlässigkeit, Beiträge der 7. Jahrestagung des Fach-
bereichs Sicherheit der Gesellschaft für Informatik e.V. (GI), pp. 115-125, 2014.



6. NIST. SP 800-56B: Recommendation for Pair-Wise Key Establishment Schemes
Using Integer Factorization Cryptography, 2009.

7. NIST. SP 800-57: Recommendation for Key Management - Part 1: General (Revi-
sion 3), 2012.

8. Pascal Paillier, Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. Advances in Cryptology - EUROCRYPT’99, vol. 1592 of Lecture Notes
in Computer Science, pp. 223-238, 1999.

9. R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan, CryptDB:
Protecting Confidentiality with Encrypted Query Processing. Proceedings of the
23rd ACM Symposium on Operating Systems Principles, pp. 85-100, 2011.


