
Regulating the Pace of von Neumann Correctors

Houda Ferradi1, Rémi Géraud1,2, Diana Maimuţ1,
David Naccache1, and Amaury de Wargny2

1 École normale supérieure
45 rue d’Ulm, f-75230 Paris cedex 05, France

given_name.family_name@ens.fr
2 Ingenico Group

28-32 Boulevard de Grenelle, 75015 Paris, France
given_name.family_name@ingenico.com

Abstract. In a celebrated paper published in 1951, von Neumann pre-
sented a simple procedure allowing to correct the bias of random sources.
This device outputs bits at irregular intervals. However, cryptographic
hardware is usually synchronous.
This paper proposes a new building block called Pace Regulator, inserted
between the randomness consumer and the von Neumann regulator to
streamline the pace of random bits.

In a celebrated paper published in 1951 [1], von Neumann presented a
simple procedure allowing to correct the bias of random sources. Consider
a biased binary source S emitting 1s with probability p and 0s with
probability 1− p. A von Neumann corrector C queries S twice to obtain
two bits a, b until a 6= b. When a 6= b the corrector outputs a.

Because S is biased, Pr[ab = 11] = p2 and Pr[ab = 00] = (1− p)2, but
Pr[ab = 01] = Pr[ab = 10] = p(1− p). Hence C emits 0s and 1s with equal
probability.

Cryptographic hardware is usually synchronous. Algorithms such as
stream ciphers, block ciphers or even modular multipliers usually run in a
number of clock cycles which is independent of the operands’ values. Feed-
ing such HDL blocks with the inherently irregular output of C frequently
proves tricky3.

This paper proposes a new building block called Pace Regulator (de-
noted R). R is inserted between the randomness consumer F and C to
regulate the pace at which random bits reach F (Figure 1).

3 A similar problem is met when RSA primes must be injected into mobile devices on
an assembly line. Because the time taken to generate a prime is variable, optimizing
a key injection chain is not straightforward.

Randomness source S

von Neumann corrector C

Pace Regulator R

Randomness consumer F

MemoryM

Fig. 1. Source correction and regulation.

1 Model and Assumptions

In all generality we have at one end of a chain a generator G (here,
G = S ◦ C) that outputs a stream of objects, continuously but at a varying
rate. Objects are denoted by a1, a2, At the other end, there is a client
F that we wish to feed objects in a timely fashion, i.e. at a near-constant
rate.

We wish to design a state machine R that sits between G and F , and
turns the erratic output of G into a tame inflow for F . To this end, R
may employ a temporary limited storageM. The setting is illustrated in
Figure 2.

G (“Irregular”) Inflow−−−−−−−−−−−→ R (“Regular”) Outflow−−−−−−−−−−−−→F
↑↓
M

Fig. 2. Problem: Design R so that the outflow from R to F is as smooth
as possible, despite the outflow from G being variable.

The output rate of G is governed by a probability distribution: an ai is
emitted every t time units, where t is a random variable with probability
distribution T .

We make the following important assumptions:

(H1) T is compactly supported, i.e. there exists a maximum possible
waiting time tmax and a minimum waiting time tmin which we know.

(H2) The ais produced by G do not expire, their order does not matter,
and they can be stored inM indefinitely if needed. Hence we can
think ofM as a stack of size m.

(H3) Interaction between R and M is much faster than waiting times
and can for all practical purposes be considered instantaneous.

2 Generic Regulator Description

Informally, the idea behind the regulator concept is that we can useM to
store some ajs, which we may later insert between G’s outputs if G takes
“too long”. We cannot store infinitely many objects, and conversely we
cannot fill G’s gaps ifM is depleted. Therefore we must determine when
to store objects we receive, and when to emit stored objects.

Mathematically, let µ > 0 be some pivot value to be determined later.
We assume that R maintains a timer, so that we know the time ti elapsed
between the emission of ai−1 and ai. We then treat ais as follows:

– ti < µ : ai is “early”. Store ai inM for later use.
– ti = µ : ai is “timely”. Output ai immediately to F .
– If µ time units have elapsed, and still no ai has been received from
G (“late”), we fetch an aj from M, send aj to F , and act as if aj
were just received (i.e. ai is given µ additional time units to arrive:
ti ← ti − µ).

Therefore if µ is properly chosen, so thatM never overflows and is never
empty, R outputs one ai every µ.

Furthermore, we wish R to be as simple as possible, and in this work
consider that R is an event-driven state machine having access to the
following primitives:

– Push(a) pushes a on the stackM.
– Pop() pops an object a from the stack and emits it to F .
– Stack() returns the number of objects currently stored inM.
– Signal(t) registers an event EventSig (see below) to be called after time
t has elapsed.

The events are:

– EventSig is called when time t has elapsed since the call of Signal(t).
– ObjIn(a) is called when an object is received from G.

– Setup(x) is called once at initialization.
– Error() is called upon errors.

R is inactive between events: it is entirely characterized by describing
what it does when events occur.

2.1 Generic Regulator

The regulator’s functionality is achieved by using the event handlers
described in Algorithms 1 to 3. For the sake of simplicity, we allow R
to use a single global variable s for its operation which we do not count
as part of M in the following discussion. We purposely leave the error
handler unspecified.

Algorithm 1 Setup()
s← tmax
Signal(s)

Algorithm 2 ObjIn(a)
X ← Stack()
if X < |M| then

Push(a)
else

Error()
end if

Algorithm 3 EventSig
X ← Stack()
if 0 < X then
s← µ(X)
Pop()

else
Error()

end if
Signal(s)

The main question thus is how to choose the function µ appropriately.
ForM to be neither empty nor overflow in the long term, it is necessary

that the number of ajs being stored (“early ajs”) and the number of ajs
being fetched (“late ajs”) balance each other.

3 The Median Regulator

One way to achieve this balance is to choose µ(X) = µM such that
T (t < µM) = T (t > µM), which is exactly the definition of the median.
Hence, we can set

µM := t1/2 = Median(t) (1)

Implementing the generic regulator with this choice of µ yields the median
regulator. Note that the sample median could be estimated from the data
and used here, instead of the theoretical median (if unknown).

Equation (1) is not a sufficient condition: it may be that while being
zero on average, the amount of aj stored inM wanders around. Indeed,
there is a 1/2 probability to get an early (resp. late) ai4, so that the
population Xk ofM undergoes a random walk. We have

lim
k→∞

E
(
|Xk − m

2 |
)

√
k

=
√

2
π
⇒

∣∣∣∣Xk −
m

2

∣∣∣∣ ≈ √k
Therefore, on average, this regulator reaches an error state after receiving√
m ais. M could be chosen so that m ≈ k2 where k is the maximal

number of packets that we wish to process. However this limitation is
unsatisfactory and we will get rid of it.

4 Memory-Variance Trade-Off: Adaptive Regulators

The key observation is that Equation (1) is not a necessary condition
either: all that is required is really that E(µ) = t1/2. Now we may be
smarter and adjust the value of µ to the moment’s needs. Indeed, if we
are about to use too much memory, then decreasing µ would result in
more ajs being labelled “late”, and we would start emptying M. If on
the contraryM is getting dangerously empty, we may increase µ so that
more ajs become “early”, and start repopulatingM. Note that we may
vary µ slowly or quickly over time, this variation being itself irrelevant to
the statistical analysis.

Of course, such a strategy incurs a non-zero variance in the outflow,
but at this price we may lower the size ofM. More precisely, for any given

4 In other term, we consider that the probability of getting a timely ai is negligible.

memory capacity m = |M| and input-time distribution T , we want to
construct an R whose output-time distribution T ′m is such that

limm→∞ Var(T ′m) = 0
limm→0 Var(T ′m) = Var(T)

Var(T ′m) ≤ Var(T)

This is of course the ideal case and the further question now becomes:
How do we modulate µ at any given moment in time, to achieve this?

Let X denote the occupation ofM at a given point in time. If X = 0
then we must take in new ais, and we cannot output any more ajs,
therefore we have no choice but to set µ ← tmax. Conversely, if X = m
then we must empty the queue and set5 µ← tmin. We already saw that if
X = m/2 the best choice is the neutral µ← t1/2.

We wish to interpolate and describe the function µ(X) that is such
that

µ(0) = tmax, µ(m/2) = t1/2, µ(m) = tmin

There are several ways to do so.

4.1 Lagrange Regulator

Take for instance Lagrange interpolation polynomials: let

a = 2
m2

(
tmax + tmin − 2t1/2

)
b = 1

m

(
tmax + 3tmin − 4t1/2

)
c = tmax

Then we can take
µL(X) := aX2 + bX + c.

In the special case where T = Uniform(A, 3A), we have µL(X) = (3 −
2X/m)A.

5 We do not set µ ← 0 or any lower value for two reasons: first R would empty its
whole stack immediately, which is not the intended behaviour; and second this makes
interpretation and analysis harder.

4.2 Distributional Regulator

The main interest of the Lagrange Regulator is its simplicity. However,
there is no reason to consider that the choice of a µ polynomial in X is
optimal. Let Ft be the cumulative distribution function Ft(y) := T (t ≤ y)
and consider its inverse F−1

t . We define the distributional regulator as

µD(X) := F−1
t

(
1− X

m

)
.

Observe that we have

µD(0) = F−1
t (1) = tmax

µD

(
m

2

)
= F−1

t

(1
2

)
= t1/2

µD(m) = F−1
t (0) = tmin

This regulator assumes a complete knowledge of t’s distribution, but
provides the best results in the sense that it minimizes the variance of R’s
output. In the special case where T = Uniform(A, 3A), we have

µD(X) := F−1
t

(
1− X

m

)
= A+ 2A

(
1− X

m

)
=
(

3− 2X
m

)
A = µL(X)

that is, we get the exact same result as the Lagrange Regulator.

5 Parameters for the von Neumann Corrector

We can compute exactly the distribution T for the von Neumann corrector
if S outputs one random value every δ units of time. In that case, one
couple is generated every 2δ, and this couple has a probability 2p(1− p)
to be accepted. Each couple is generated independently from others, so
that the probability of k successive rejections is (1 − 2p(1 − p))k. Let
ε = 2p2 − 2p+ 1, we have 0 < ε < 1 and

T (2kδ) = εk(1− ε).

Observe that T is not compactly supported, as for any t > 0 we have
T (t) > 0. However we can define a cut-off value above which event
probability becomes negligible, i.e. T (t) < 2−N for some N ∈ N. This
gives

kmax = −N − log2(1− ε)
log2(ε) ⇒ tmax = −2δN − log2(1− ε)

log2(ε)

the minimum is tmin = 0, and the median is computed from the cumulative
probability

n∑
k=0

T (2kδ) =
n∑
k=0

εk(1− ε) = 1− εn+1

so that k1/2 = − 1
log2 ε

− 1, hence

t1/2 = −2δ
(1

log2 ε
− 1

)
Example 1. Assume δ = 1 and N = 80, we have the following parameters
for different biases p:

p ε tmin t1/2 tmax
1/2 1/2 0 4 162
1/4 5/8 0 4.95 241
1/32 481/512 0 24.19 1866

6 Experimental Results

To test our regulator we implemented a simulation in Python. The simula-
tion is event-driven: only ai reception and emission are considered, which
allows for an exact solution (in particular, there is no timer involved). ai
generation by G is simulated by inverse sampling of a given distribution.
In the simulation we assume that this distribution is known, and we imple-
ment the corresponding Lagrange regulator. The source code is provided
in Appendix A.

We choose a certain amount of memory m and run the simulation for
n� m objects. The output distribution is then measured.

After some warming-up time (which is of the order of m/2), the output
distribution reaches a steady state peaked around a central value µ′ ≈ µ.
The variance of this distribution is much smaller than the input variance
and a larger memory m results in a narrower distribution.

6.1 Uniform Input Distribution

Figure 3 shows the steady-state distribution of a Lagrange regulator
applied to a uniform generator. Memory usage X fluctuates around m/2.
Figure 4 shows the evolution of variance and interquartile range (IQR) as
a function of m.

385 390 395 400 405 410 415

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

D
en
si
ty

340 360 380 400 420 440 460

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

D
en
si
ty

Fig. 3. Left: Steady-state output distribution of a Lagrange regulator, with
input distribution T = Uniform(200, 600) and m = 1000. The distribution
peaks at µ′ = 400.0, and is contained in [390, 410]. Compare to the input
distribution (µ = 400, σ = 115.4). Average memory usage is 500 = m/2.
Right: same thing with m = 100 (blue), 500 (green) and 1000 (red).

Statistical dispersion around µ′ decreases quickly as m increases:
log log IQR decreases almost linearly with m. Both standard deviation
and IQR reach a minimum value. IQR decreases faster than standard
deviation, which yields a distribution with higher kurtosis as m increases.
These observations are consistent across various parameter choices.

6.2 Cut-off Geometric Input Distribution

The output times of the von Neumann corrector follow a geometric distri-
bution (cf. Section 5). Since this distribution is not compactly supported,
we define a cut-off value tmax.

We use the random.geometric function from numpy to automatically
generate sequence of appropriately distributed tis, with a cut-off at 280

for the distributional regulator.
Results are similar to the uniform case, but memory usage is higher on

average because of the input distribution’s large tail. The cut-off incurs a
non-zero (albeit negligible) failure probability, that must be dealt with:
When an exceptionally large delay occurs, the degraded operation simply
consists in outputting the late object as soon as it arrives.

20 40 60 80 100

10
20

30
40

50

Memory

IQR

Std dev.

Fig. 4. Steady-state IQR (black, circled) and standard deviation (green)
as a function of m, for the same parameter set as Figure 3. Both IQR and
standard deviation get lower for larger values of m, and reach a minimal
nonzero value; log log IQR is almost linear, with a slope of −0.008.

References

1. von Neumann, J.: Various techniques used in connection with random digits. National
Bureau of Standards Applied Math Series 12, 36–38 (1951)

A Source Code

import random
import numpy
import math

Available memory
m = 1000

Distributional regulator
mu_D = lambda x:icdf (1 - x/m)

def unif_icdf (x):
"""
Inverse cumulative distribution function for the uniform distribution
U(a, b)
"""
a = 200
b = 600
return a + x * (b-a)

def generator (icdf):
"""
Generates a random number distributed according to the provided
inverse cumulative distribution function
"""
return icdf(random . random ())

def simulate (input_events , mu):
"""
Simulation

input_events : relative time between input events
mu: regulator

"""

Stack population
X = 0

Current input
k = 0

Lookahead
j = 0

Absolute time for output events
M = []

Compute absolute time for input events
T = [0] * len(input_events)
for k in range (1, len(input_events)):

T[k] = T[k -1] + input_events [k]

Push the first input
X += 1

while k+j+1 < len(input_events) - 1:
j = 0
Push all early inputs on stack
while T[k+j+1] < M[-1]:

X+=1
j+=1

Memory overflow or underflow
if X < 0 or X >= m:

print (" Error ! Memory under - or overflow : X = %s"%X)

return []

Pop and emit an object
M. append (M[-1] + mu(X))
X -= 1
k += j

return M

def save_data (ret , filename):
"""
Saves data ret to the file ’filename ’
"""
f = open(filename ,’w’)
f. write ("%s\n"%("mu"))
for u in ret:

a = u
f. write ("%s\n"%(a))

f. close ()

def generate_events (N,icdf):
"""
Generates N events distributed according to the provided
inverse cumulative distribution function
"""
return [generator (icdf) for i in range (N)]

events = generate_events (100000 , unif_icdf)
ret = simulate (events , mu_D(unif_icdf))
save_data (ret , ’output .txt ’)

	Regulating the Pace of von Neumann Correctors
	Houda Ferradi cl@@auth, Rémi Géraud cl@@auth, Diana Maimut cl@@auth, David Naccache cl@@auth, Amaury de Wargny

