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Abstract. A generic way to design lightweight cryptographic primitives is to construct simple rounds

using small nonlinear components such as 4x4 S-boxes and use these iteratively (e.g., PRESENT [1]

and SPONGENT [2]). In order to efficiently implement the primitive, efficient implementations of its

internal components are needed. Multiplicative complexity of a function is the minimum number of

AND gates required to implement it by a circuit over the basis (AND, XOR, NOT). It is known that

multiplicative complexity is exponential in the number of input bits n. Thus it came as a surprise that

circuits for all 65 536 functions on four bits were found which used at most three AND gates [3]. In

this paper, we verify this result and extend it to five-variable Boolean functions. We show that the

multiplicative complexity of a Boolean function with five variables is at most four.
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1 Introduction

One of the important challenges in lightweight cryptography is to find efficient implemen-

tations of secure cryptographic primitives. Many attempts [4–7] have been done to improve

the efficiency of the block cipher AES, in order to fit the implementations in resource-

constrained devices. However, even the best implementations of AES are usually too big for

constrained devices. A generic way to design dedicated lightweight cryptographic primitives

is to construct simple rounds using small nonlinear components such as 4x4 S-boxes and

iterate (this is done in, for example, PRESENT [1] and SPONGENT [2]). In order to ef-

ficiently implement the primitive, efficient circuits for the internal components are needed.

Efficiency of the implementations can be assessed using different metrics such as area, power,

and energy requirements. These metrics are strongly related to the number of logic gates

used to implement the primitive.

Gate complexity is defined as the minimum number of 2-input logic gates required to

implement the primitive in a circuit. Multiplicative complexity (MC) is another complexity

measure, which is defined as the minimum number of AND gates required to implement the

primitive by a circuit over the basis (AND, XOR, NOT), with an unlimited number of NOT

and XOR gates. This is the same as the number of multiplications needed for straight-line

programs that do arithmetic modulo 2.



Finding the gate complexity or the multiplicative complexity of a given function is compu-

tationally intractable, even for functions with a small number of variables. In 2006, Saarinen

[8] published the gate complexity distribution of 4-variable Boolean functions. In 2010, Boyar

et al. [9] proposed a two-stage heuristic method to minimize the gate complexity of Boolean

circuits. In the first state, the heuristics minimizes the number of AND gates required to

implement the circuit, and then in the second stage, the linear components are optimized.

Using this method, they constructed efficient circuits for the AES S-box over the basis (AND,

XOR, NOT).

Apart from possibly increasing the efficiency of the implementations, minimizing the

number of AND gates provides a tool for the cryptanalysis of the primitives. For example,

according to [10, 11], functions with low multiplicative complexity are more vulnerable to

algebraic attacks than those with high multiplicative complexity. This is an important ob-

servation, as a function representation tends to hide its true multiplicative complexity (e.g.

consider a random polynomial on five variables over GF (2), it is hard to see how it could

possibly be computed using only four multiplications).

Also, a relationship between collision resistance of a hash function and multiplicative

complexity is provided in [12]. Courtois et al. [10] argued that minimizing the number of

AND gates is important to prevent against side channel attacks such as differential power

analysis. Finally, we point out that the number and position of AND gates in a circuit is the

main determinant of whether the function can be used in the context of protocols that use

homomorphic encryption.

Multiplicative complexity of a randomly selected n-variable Boolean function is at least

2n/2 −O(n) [13]. Exhaustive study of the distribution of multiplicative complexity can only

be done for very small values of n. In 2013, we were surprised to find circuits for all 65 536

functions on four bits which used at most three AND gates [3]. Boyar et al. [12] conjecture

that some five-bit Boolean functions have multiplicative complexity five. It is shown in

[13] that there are at most 2k2+2k+2kn+n+1 many n-variable Boolean functions that can be

generated using k AND gates. This is a counting argument and it is not known how tight

it is. Using this bound, it is easy to see that there exist eight-bit Boolean functions with

multiplicative complexity of at least eight. So, it is an open question whether there exists

n-bit Boolean functions with multiplicative complexity n, for n = 5, 6, 7. Lower bounds are

extremely difficult: no specific n-variable function has yet been proven to have multiplicative

complexity larger than n− 1 for any n.

In this paper, we focus on the multiplicative complexity of four and five-variable Boolean

functions. Using the fact that multiplicative complexity is affine invariant, we first provide

a succinct proof (i.e. one that does not list all circuits) that the multiplicative complexity of



four-variable Boolean functions is at most three. Then, we extend the result for five-variable

Boolean functions and show that the conjecture given in [12] is false: any five-bit Boolean

functions can be implemented with at most four AND gates.

The organization of this paper is as follows. Section 2 provides definitions and some known

facts about Boolean functions, affine equivalence, and multiplicative complexity. Section 2

focuses on affine invariance of multiplicative complexity and provides results for four and

five-variable Boolean functions. Section 4 concludes the paper.

2 Preliminaries

2.1 Boolean Functions

Let F2 be the binary field. An n-variable Boolean function f is a mapping from Fn
2 to F2.

Let Bn be the set of n-variable Boolean functions. Note that |Bn| = 22n . Boolean functions

have various representations, some are canonical, some not so. The list of output values

for each n-bit input Tf = (f(0, . . . , 0), f(0, . . . , 0, 1), . . . , f(1, . . . , 1)) is called the truth table

representation of f . The number of ones in Tf is called the Hamming weight of f , denoted

wt(f). The Hamming distance between two Boolean functions f, g ∈ Bn, denoted d(f, g), is

wt(f + g). That is, the Hamming distance is the cardinality of the set {x ∈ Fn
2 |f(x) 6= g(x)}.

Boolean functions are also represented uniquely by the multivariate polynomial called

algebraic normal form (ANF)

f(x1, . . . , xn) =
∑
u∈Fn

2

aux
u (1)

where xu = xu1
1 xu2

2 · · · xun
n is a monomial composed of the variables for which ui = 1 and

au ∈ F2. This is also called the Zhegalkin polynomial of f . The degree of a Boolean function,

denoted df , is the degree of the highest-degree monomial in its ANF representation.

Let An be the set of n-variable affine functions, i.e., functions having degree at most one.

The nonlinearity of a Boolean function f , denoted Nf , is the minimum Hamming distance

of f to all affine functions, that is Nf = ming∈An d(f, g). The nonlinearity of an n-variable

Boolean function is upper bounded by 2n−1 − 2n/2−1.

2.2 Affine Equivalence

Affine transformations of a function f allow for linear operations to inputs and output

of f . There are several definitions in the literature, and they are not all equivalent to each

other. Here, we will use a definition from Berlekamp and Welch [14].



Definition 1. An affine transformation from g to f in Bn is a mapping of the form f(x) =

g(Ax + a) + b · x + c, where

– A is a non-singular n× n matrix over F2;

– x, a are column vectors over F2;

– b is a row vector over F2; and

– c ∈ F2.

It is not hard to prove that this defines an equivalence relation on the set of n-variable

Boolean functions. Two functions f, g are affine equivalent if there exist affine transforma-

tions between them. Affine equivalent Boolean functions are said to be in the same equiva-

lence class.

An algorithm to check whether two functions are equivalent is given in [15]. This algo-

rithm also outputs an affine transformation between the input functions, if one exists. The

equivalence classes can be constructed using exhaustive search for small values of n. For ex-

ample, the Boolean functions with three variables can be partitioned into three equivalence

classes, and a representative from each class can be given as {x1, x1x2 and x1x2x3}. The clas-

sification of five-variable Boolean functions was done in 1972 by Berlekamp and Welch [14].

Maiorana [16] proved that the number of classes in B6 is 150 357. This was independently

verified by Fuller [15] and by Braeken et al. [17]. For n = 7, Hou [18] determined that there

are 63 379 147 320 777 408 548 equivalence classes. Since the size of Bn is doubly exponential,

and each equivalence class can contain only an exponential number of functions, the number

of equivalence classes is asymptotically exponential in n (see Table 1).

Table 1. Number of equivalence classes for n ≤ 7

n |Bn| # of Equivalence Classes
3 28 3
4 216 8
5 232 48
6 264 150 357
7 2128 63 379 147 320 777 408 548 (this is between 265 and 266)

Some cryptographic measures such as nonlinearity, algebraic degree, and algebraic im-

munity remain unchanged after applying an affine transformation. Such measures are said

to be affine invariant [19]. Braeken et al. [17] studied the classification of Boolean functions

with respect to various cryptographic properties. Uyan [20] analyzed the Boolean functions

with respect to the Walsh Spectrum using equivalence classes.



2.3 Multiplicative Complexity

The multiplicative complexity C∧(f) of a Boolean function is the minimum number of

multiplications (AND-∧ gates) that are sufficient to evaluate the function over the basis

(AND, XOR, NOT). The multiplicative complexity of functions having degree d is at least

d− 1 [21]. This bound is called the degree bound. Calculating the multiplicative complexity

of a randomly selected Boolean function is hard even for small values of n 1.

3 Multiplicative Complexity of Boolean Functions

Multiplicative complexity is invariant under affine transformations. Thus, to bound the

multiplicative complexity distribution of n-bit Boolean functions, it is enough to bound the

multiplicative complexity of a single function from each equivalence class. Fuller presents an

algorithm to find a representative from each equivalence class [15]. Her method is practical

for values of n up to six.

In order to find a circuit for f ∈ Bn with a small number of AND gates, we use the

following approach.

1. Precomputation

(a) Using the algorithm given in [15], find a “simple” (e.g., one that has a small number

of monomials in its ANF) representative for each equivalence class in Bn.

(b) For each representative, find a circuit which is efficient with respect to multiplicative

complexity.

2. Find the equivalence class Cf of f .

3. Find the affine transformation from f ∗, the representative of Cf , to f using the algorithm

given in [15].

4. Apply the affine transformation to the circuit for f ∗. This yields a circuit for f . The circuit

will be efficient with respect to multiplicative complexity. Note that, if the circuit found

for f ∗ is not optimal, this still yields an upper bound on the multiplicative complexity of

f .

In the following subsections, we used this approach to bound the multiplicative complex-

ity of all Boolean functions on four and on five variables. The approach becomes impractical

as the number of variables increases due to the following reasons; (i) the number of equiv-

alence classes increases exponentially with the number of variables; (ii) finding an affine

transformation from f ∗ to f gets harder; and (iii) constructing circuits that are optimal with

respect to multiplicative complexity gets harder.

1 Lest the reader think this easy, he/she may attempt to compute the function f(x1, x2, x3, x4, x5) = x1x2x3x4x5 +
x1x2x3 + x1x2x4 + x2x3x4 + x1x2 + x1x3 + x1x4 + x2x4 + x3x4 using only four AND gates.



3.1 n = 4

There are eight equivalence classes of B4, with representatives {x1, x1x2, x1x2 + x3x4,

x1x2x3, x1x2x3+x1x4, x1x2x3x4, x1x2x3x4+x1x2, x1x2x3x4+x1x2+x3x4}. The representatives

are simple enough that optimal (with respect to multiplicative complexity) circuits can be

easily constructed. Table 2 provides a circuit with optimal number of AND gates for each of

these representatives. The optimality of the circuits follows from the degree bound for seven

(out of eight) of the equivalence classes. For example, according to the degree bound, the

multiplicative complexity of x1x2x3x4 + x1x2, is at least three. Optimality of the third class,

which is a sum of quadratic functions, cannot be verified by the degree bound. That two AND

gates are needed seems obvious, as the two quadratic terms have no common variables. For a

formal proof, see Mirwald and Schnorr [22], which shows that the multiplicative complexity

of a quadratic function of the form
∑k

i=1 x2i−1x2i is k.

It is easy to find the equivalence class of a given function f ∈ B4 by checking the

nonlinearity and degree of f , since the nonlinearity and the degree pair (Nf , df ) of the

representatives are distinct (See Table 2).

Table 2. Equivalence classes of B4

Class Representatives Implementation MC (Nf , df ) # Functions

1 x1 f = x1 0 (0,1) 32

2 x1x2 t1 = x1 ∧ x2 1 (4,2) 1120

t1 = x1 ∧ x2 2 (6,2) 896
3 x1x2 + x3x4 t2 = x3 ∧ x4

f = t1 ⊕ t2
4 x1x2x3 t1 = x1 ∧ x2 2 (2,3) 3840

f = t1 ∧ x3

t1 = x2 ∧ x3 2 (4,3) 26880
5 x1x2x3 + x1x4 t2 = t1 ⊕ x4

f = t2 ∧ x1

t1 = x1 ∧ x2 3 (1,4) 512
6 x1x2x3x4 t2 = t1 ∧ x3

f = t2 ∧ x4

7 x1x2x3x4 + x1x2 t1 = x1 ∧ x2 3 (3,4) 17920
t2 = t1 ∧ x3

t3 = t2 ∧ x4

f = t3 ⊕ t1
t1 = x1 ∧ x2 3 (5,4) 14336
t2 = x3 ∧ x4

8 x1x2x3x4 + x1x2 + x3x4 t3 = t1 ∧ t2
t4 = t3 ⊕ t1
f = t4 ⊕ t2

Example 1. Let f = 1 + x1 + x2 + x3 + x1x2 + x1x3 + x2x4 + x3x4 + x1x2x3 + x2x3x4 +

x1x3x4 + x1x2x3x4. In order to find a circuit for f with minimum number of AND gates, we



first need to find its equivalence class. Since (Nf , degree) = (3,4), f belongs to the seventh

equivalence class with representative f ∗ = x1x2x3x4 + x1x2. Then, we need to obtain the

affine transformation between f and f ∗. Using the algorithm in [15], the transformation is

obtained as

f(x) = f ∗(


1 0 1 1

1 1 1 1

0 1 1 0

1 0 1 0

x⊕ (0 0 0 0))⊕ (0 1 1 0)x⊕ 1. (2)

According to this transformation, input variables are transformed as follows; x1 → x1 +x3 +

x4, x2 → x1 +x2 +x3 +x4, x3 → x2 +x3, and x4 → x1 +x3, and the affine shift is equivalent

to XORing x2 +x3 + 1 to f . Given an efficient circuit for x1x2x3x4 +x1x2, an efficient circuit

for f can be found as is shown in Table 3. The first four equations in the implementation of

f are due to the linear transformations of input variables, whereas the last three equations

corresponds to the affine shift.

Table 3. Optimal circuit for f in terms of number of AND gates.

f ∗ f

t1 = x1 ⊕ x3

t2 = t1 ⊕ x4

t3 = t2 ⊕ x2

t4 = x2 ⊕ x3

t1 = x1 ∧ x2 t5 = t2 ∧ t3
t2 = t1 ∧ x3 t6 = t5 ∧ t4
t3 = t2 ∧ x4 t7 = t6 ∧ x3

f∗ = t3 ⊕ t1 t8 = t7 ⊕ t5
t9 = t8 ⊕ t3
t10 = t9 ⊕ t4
f = t10 ⊕ 1

ut

3.2 n = 5

Berlekamp and Welsh [14] provided the representatives of the 48 equivalence classes for

n = 5. Table 5 in the Appendix provides the circuits to implement the representatives of each

equivalence class. Most of the representatives are simple enough that the optimal circuits

are found trivially. The circuits corresponding to the representatives of the classes 14, 18, 26,



37, 44, 45, 46, 47, 48 are obtained using the heuristic provided in [23]. Optimality of thirty

circuits (out of 48) can be verified using the degree bound.

To find the equivalence class of a given function f ∈ B5, the nonlinearity and degree

of f can be utilized. Table 2 provides a classification of the equivalence classes based on

the nonlinearity of degrees. As seen from the table, for 10 of the equivalence classes, the

degree and nonlinearity uniquely determines the class representative. Moreover, checking

degree and nonlinearity of an input function significantly reduces the possible number of

equivalence classes.

Table 4. The distribution of equivalence classes of B5 according to degree and nonlinearity. The functions are written in an
abbreviated notation. For example, 123+145 indicates the representative of the form x1x2x3 + x1x4x5.

df
Nf 1 2 3 4 5
0 1 - - - -
1 - - - - 12345
2 - - - 2345 -
3 - - - - 12345+123
4 - - 123 2345+123 -

5
- - - - 12345+123+12

12345+123+145+12

6
- - 123+145 2345+23 -

2345+123+12
2345+123+145+45

7

- - - - 12345+12
12345+123+14
12345+123+145

12345+123+145+23
12345+123+145+45+23

8

- 12 123+14 2345+12 -
123+145+23 2345+123+24

2345+123+14
2345+123+145

2345+123+12+45

9

- - - - 12345+123+45
12345+123+12+45
12345+123+12+34
12345+123+145+24

12345+123+145+24+23
12345+123+145+35+24

10

- - 123+45 2345+23+45 -
123+145+24 2345+12+34

2345+123+45
2345+123+12+34
2345+123+14+35

2345+123+145+24+45
2345+123+145+35+24

11

- - - - 12345+12+34
12345+123+14+25

12345+123+145+35+24+23
12345+123+145+45+35+24+23

12
- 12+34 123+14+25 2345+123+24+35 -

123+145+23+24+35



4 Conclusion

We studied the multiplicative complexity of Boolean functions with four and five vari-

ables. For four variables, we confirmed that the multiplicative complexity is at most three

by producing circuits for a representative of each of the eight equivalence classes. We knew

this was true because one of us has posted circuits for all 216, each using at most three AND

gates [3]. Those circuits are also optimized for total number of gates: it turns out that no

more than seven XOR gates are needed by AND-optimal circuits.

For five variables, we disproved the conjecture that there exists Boolean functions with

multiplicative complexity five. We are in the process of extending this work to six-variable

Boolean functions. This will most likely require a computer proof, as there are 150 357

equivalence classes.
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Appendix

Table 5: Circuits for n = 5.

Class Representative Circuit MC

1 2345 t1 = 2 ∧ 3, t2 = 4 ∧ 5, f = t1 ∧ t2 3

2 2345⊕12 t1 = 3 ∧ 4, t2 = t1 ∧ 5, t3 = t2 ⊕ 1, f = 2 ∧ t3 3

3 2345⊕23 t1 = 2 ∧ 3, t2 = t1 ∧ 4, t3 = t2 ∧ 5, f = t1 ⊕ t3 3

4 2345⊕23⊕ 45 t1 = 2 ∧ 3, t2 = 4 ∧ 5, t3 = t1 ∧ t2, t4 = t3 ⊕ t1 3

f = t4 ⊕ t2

5 2345⊕12⊕34 t1 = 3 ∧ 4, t2 = t1 ∧ 5, t3 = t2 ⊕ 1, t4 = 2 ∧ t3, 3

f = t4 ⊕ t1

6 2345⊕123 t1 = 2 ∧ 3, t2 = 4 ∧ 5, t3 = t2 ⊕ 1, f = t3 ∧ t1 3

7 2345⊕123⊕12 t1 = 4 ∧ 5, t2 = 1⊕ t1, t3 = 3 ∧ t2, t4 = 1⊕ t3 3

f = 2 ∧ t4

8 2345⊕123⊕24 t1 = 4 ∧ 5, t2 = 1⊕ t1, t3 = 3 ∧ t2, t4 = 4⊕ t3 3

f = 2 ∧ t4

9 2345⊕123⊕14 t1 = 2 ∧ 3, t2 = 4 ∧ 5, t3 = 1⊕ t2, t4 = t1 ∧ t3 3

f = t4 ⊕ t2

10 2345⊕123⊕45 t1 = 2∧3,t2 = 4∧5, t3 = t2⊕1, t4 = t3 ∧ t1, 3

f = t4 ⊕ t2

11 2345⊕123⊕12⊕34 t1 = 2∧4, t2 = t1∧5, t3 = 1∧2, t4 = t2 ⊕ t3, ≤ 4

t5 = t4⊕4,t6 = t5∧3, f = t6 ⊕ t3

12 2345⊕123⊕14⊕35 t1 = 4 ∧ 5, t2 = 1⊕ t1, t3 = 2 ∧ t2, t4 = 5⊕ t3, ≤ 4

t5 = 3 ∧ t4, t6=1∧4, f = t5 ⊕ t6

13 2345⊕123⊕12⊕45 t1 = 2 ∧ 3, t2 = 1 ∧ 2, t3 = 4 ∧ 5, t4 = t2 ⊕ t3 ≤ 4

t5 = t1 ∧ t4, f = t5 ⊕ t4

14 2345⊕123⊕24⊕35 t1 = 4 ∧ 5, t2 = 1⊕ t1, t3 = 2⊕ 3, t4 = 1⊕ t3, ≤ 4

t5 = t4 ⊕ t1, t6 = t2 ∧ t5, t7 = 4⊕ t6, t8 = 2 ∧ t7,

t9 = 3 ∧ 5, f = t8 ⊕ t9

15 2345⊕123⊕145 t1 = 2 ∧ 3, t2 = 1⊕ t1, t3 = 4 ∧ 5 t4 = 1⊕ t3 3

t5 = t2 ∧ t4, f = 1⊕ t5

16 2345⊕123⊕145⊕45 t1 = 2 ∧ 3, t2 = 1⊕ t1, t3 = 4 ∧ 5, t4 = 1⊕ t3 3

t5 = t2 ∧ t4, f = t5 ⊕ t4

17 2345⊕123⊕145⊕24⊕45 t1 = 4 ∧ 5, t2 = 1⊕ t1, t3 = 2 ∧ 3, t4 = t3 ⊕ t1, ≤ 4

t5 = t2 ∧ t4, t6 = 2 ∧ 4, f = t5 ⊕ t6

18 2345⊕123⊕145⊕35⊕24 t1 = 2 ∧ 3, t2 = 1⊕ t1, t3 = t4 ∧ t5, t4 = t1 ⊕ t3, ≤ 4

t5 = t2 ∧ t4, t6 = 2⊕ 5, t7 = 3⊕ 4, t8 = t6 ∧ t7,

t9 =t3 ⊕ t8, f = t5 ⊕ t9

19 123 t1 = 1∧2, f = t1∧3 2

20 123⊕45 t1 = 1∧2, t2 = t1∧3, t3 = 4∧5, f = t2 ⊕ t3 3

21 123⊕14 t1 = 2∧3, t2 = t1⊕4, f = 1 ∧ t2 2

22 123⊕14⊕25 t1 = 2∧3, t2 = t1⊕4,t3 = t2∧1, t4 = 2∧5 3

f = t3 ⊕ t4

23 123⊕145 t1 = 2∧3, t2 = 4∧5, t3 = t1 ⊕ t2, f = 1 ∧ t3 3

Continued on next page



5 – continued from previous page

Class Representative Circuit MC

24 123⊕145⊕23 t1 = 2∧3, t2 = 4∧5, t3 = t1 ⊕ t2, t4 = 1 ∧ t3 3

f = t4 ⊕ t1

25 123⊕145⊕24 t1 = 2∧3, t2 = 4∧5,t3 = t1 ⊕ t2,t4 = 1 ∧ t3 ≤ 4

t5 = 2∧4,f = t4 ⊕ t5

26 123⊕145⊕23⊕24⊕35 t1 = 1 ∧ 5, t2 = 2⊕ t1, t3 = 1⊕ 3, t4 = 3 ∧ t3 ≤ 4

t5 = 4⊕ t4, t6 = t2 ∧ t5, t7 = 3 ∧ 5, f = t6 ⊕ t7

27 12 f = 1∧2 1

28 12⊕34 t1 = 1∧2, t2=3∧4, f = t1 ⊕ t2 2

29 1 f =1 0

30 12345 t1 = 1∧2, t2 = t1∧3,t3 = t2∧4, f = t3∧5 4

31 12345⊕12 t1 = 1∧2, t2 = t1∧3, t3 = t2∧4,t4 = t3∧5 4

f = t4 ⊕ t1

32 12345⊕12⊕34 t1 = 1∧2, t2=3∧4, t3 = t1 ∧ t2, t4 = t3∧5 4

t5 = t4 ⊕ t1, f = t5 ⊕ t2

33 12345⊕123 t1 = 1∧2, t2 = t1∧3, t3 = t2∧4, t4 = t3∧5 4

f = t4 ⊕ t2

34 12345⊕123⊕12 t1 = 1∧2, t2 = t1∧3, t3 = t2∧4, t4 = t3∧5 4

t5 = t4 ⊕ t1, f = t5 ⊕ t2

35 12345⊕123⊕14 t1 = 2∧3, t2 = 1∧4,t3 = t2∧5, t4 = t3⊕1 4

t5 = t1 ∧ t4, f = t2 ⊕ t5

36 12345⊕123⊕45 t1 = 1∧2, t2 = t1∧3,t3 = 4∧5, t4 = t2 ∧ t3 4

t5 = t4 ⊕ t2, f = t5 ⊕ t3

37 12345⊕123⊕14⊕25 t1 = 1⊕ 4, t2 = 3 ∧ t1, t3 = 4⊕ t2, t4 = 3⊕ 4 4

t5 = 2⊕ t4, t6 = 2 ∧ 5, t7 = 3⊕ t6, t8 = t5 ∧ t7

t9 = 1⊕ t8, t10 = t3 ∧ t9, f = t10 ⊕ t6

38 12345⊕123⊕12⊕45 t1 = 1∧2, t2 = t1∧3, t3 = 4∧5,t4 = t2 ∧ t3 4

t5 = t4 ⊕ t1, t6 = t5 ⊕ t2, f = t6 ⊕ t3

39 12345⊕123⊕12⊕34 t1 = 1∧2, t2 = 4∧5, t3 = t1 ∧ t2, t4 = t3 ⊕ t1 4

t5 = t4⊕4, t6=3∧t5, f = t1 ⊕ t6

40 12345⊕123⊕145 t1 = 2∧3, t2 = 4∧5, t3 = t1 ∧ t2, t4 = t1 ⊕ t2 4

t5 = t4 ⊕ t3, f = 1 ∧ t5

41 12345⊕123⊕145⊕12 t1 = 2∧3, t2 = 4∧5, t3 = t1 ∧ t2,t4 = t1 ⊕ t2 4

t5 = t4⊕2, t6 = t5 ⊕ t3, f = 1 ∧ t6

42 12345⊕123⊕145⊕23 t1 = 2∧3, t2 = 4∧5, t3 = t1 ∧ t2, t4 = t3 ⊕ t1 4

t5 = t4 ⊕ t2, t6 = 1 ∧ t5, f = t6 ⊕ t1

43 12345⊕123⊕145⊕45 t1 = 2∧3, t2 = 4∧5, t3 = t1 ∧ t2, t4 = t3 ⊕ t1 4

⊕23 t5 = t4 ⊕ t2, t6 = 1 ∧ t5, t7 = t6 ⊕ t1, f = t7 ⊕ t2

44 12345⊕123⊕145⊕24 t1 = 2⊕ 3, t2 = 1⊕ t1, t3 = 3 ∧ t2, t4 = 4⊕ t3 4

t5 = 1 ∧ 4, t6 = 5 ∧ t5, t7 = 2⊕ t6, f = t4 ∧ t7

45 12345⊕123⊕145⊕24 t1 = 2 ∧ 3, t2 = 3⊕ 4, t3 = 1⊕ t2, t4 = 1 ∧ 5 4

⊕23 t5 = 2⊕ t4, t6 = 4 ∧ t5, t7 = t3 ⊕ t6, t8 = t1 ∧ t7

f= t8 ⊕ t6

46 12345⊕123⊕145⊕35⊕24 t1 = 4⊕ 5, t2 = 1⊕ t1, t3 = 5 ∧ t2, t4 = 3⊕ t3 4

t5 = 2⊕ 3, t6 = 4 ∧ 5, t7 = 1⊕ t6, t8 = 2 ∧ t7
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t9 = t1 ⊕ t8, t10 = t4 ∧ t9, t11 = t6 ⊕ t3

f = t10 ⊕ t11

47 12345⊕123⊕145⊕35⊕24 t1 = 1⊕ 4, t2 = 1 ∧ t1, t3 = 2⊕ t2, t4 = 4⊕ 5 4

⊕23 t5 = 1⊕ 3, t6 = 2⊕ 3, t7 = 1⊕ t6, t8 = 5 ∧ t7

t9 = t5 ⊕ t8, t10 = 3 ∧ t9, t11 = t4 ⊕ t10

t12 = t3 ∧ t11, f = t12 ⊕ t8

48 12345⊕123⊕145⊕45⊕35 t1 = 2⊕ 4, t2 = 2⊕ 3, t3 = 2⊕ 5, t4 = t2 ∧ t3 4

⊕24⊕23 t5 = t1 ⊕ t4, t6 = 1⊕ t3, t7 = 4⊕ 5, t8 = t2 ⊕ t7

t9 = 1⊕ t8, t10 = 1 ∧ 4, t11 = t2 ⊕ t10, t12 = t9 ∧ t11

t13 = t6 ⊕ t12, t14 = t5 ∧ t13, f = t14 ⊕ t10


