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Abstract. We introduce the notion of asymmetric programmable hash functions (APHFs, for short),
which adapts Programmable Hash Functions, introduced by Hofheinz and Kiltz at Crypto 2008, with
two main differences. First, an APHF works over bilinear groups, and it is asymmetric in the sense
that, while only secretly computable, it admits an isomorphic copy which is publicly computable.
Second, in addition to the usual programmability, APHFs may have an alternative property that we
call programmable pseudorandomness. In a nutshell, this property states that it is possible to embed a
pseudorandom value as part of the function’s output, akin to a random oracle. In spite of the apparent
limitation of being only secretly computable, APHFs turn out to be surprisingly powerful objects. We
show that they can be used to generically implement both regular and linearly-homomorphic signature
schemes in a simple and elegant way. More importantly, when instantiating these generic constructions
with our concrete realizations of APHFs, we obtain: (1) the first linearly-homomorphic signature (in
the standard model) whose public key is sub-linear in both the dataset size and the dimension of the
signed vectors; (2) short signatures (in the standard model) whose public key is shorter than those
by Hofheinz-Jager-Kiltz from Asiacrypt 2011, and essentially the same as those by Yamada, Hannoka,
Kunihiro, (CT-RSA 2012).

1 Introduction

PROGRAMMABLE HASH FUNCTIONS. Programmable Hash Functions (PHF's) were introduced by
Hofheinz and Kiltz [28] as an information theoretic tool to “mimic” the behavior of a random oracle
in finite groups. In a nutshell, a PHF H is an efficiently computable function that maps suitable
inputs (e.g., binary strings) into a group G, and can be generated in two different, indistinguishable,
ways. In the standard modality, H hashes inputs X into group elements H(X) € G. When generated
in trapdoor mode, a trapdoor allows one to express every output in terms of two (user-specified)
elements g, h € G, i.e., one can compute two integers ax, by such that H(X) = g®Xh’X. Finally, H
is programmable in the sense that it is possible to program the behavior of H so that its outputs
contain (or not) g with a certain probability. More precisely, H is said (m,n)-programmable if for
all disjoint sets of inputs {X1,..., X,,} and {Z1, ..., Z,}, the joint probability that Vi,ax, = 0 and
Vj,az; # 0 is significant (e.g., 1/poly())). Programmability turns out to be particularly useful in
several security proofs. For instance, consider a security proof where a signature on H(X) can be
simulated as long as ax = 0 (i.e., g does not appear) while a forgery on H(Z) can be successfully
used if az # 0 (i.e., g does appear). Then one could rely on an (m,1)-programmability of H
to “hope” that all the queried messages X1, ..., X,, are simulatable, i.e., Vi,ax, = 0, while the
forgery message Z is not, i.e., az # 0. PHFs essentially provide a nice abstraction of the so-called
partitioning technique used in many cryptographic proofs.

* This article is based on an earlier article which appears in the proceedings of CRYPTO 2015, © TACR 2015.



1.1 Owur Contribution

ASYMMETRIC PROGRAMMABLE HASH FUNCTIONS. We introduce the notion of asymmetric pro-
grammable hash functions (APHFs) which modifies the original notion of PHFs [28] in two main
ways. First, an APHF H maps inputs into a bilinear group G and is only secretly computable. At the
same time, an isomorphic copy of H can be publicly computed in the target group G, i.e., anyone
can compute e(H(X), g)E] Second, when generated in trapdoor mode, for two given group elements
g,h € G such that h = ¢, the trapdoor allows one to write every H(X) as ¢°x(?) for a degree-d
polynomial ¢x(z).

We define two main programmability properties of APHFs. The first one is an adaptation of
the original programmability notion, and it says that H is (m,n, d)-programmable if it is (m,n)-
programmable as before except that, instead of looking at the probability that ax = 0, one now
looks at whether cx g = 0, where cx is the coefficient of the degree-0 term of the polynomial
cx(+) obtained using the trapdoorE] The second programmability property is new and is called
programmable pseudo-randomness. Roughly speaking, programmable pseudo-randomness says that
one can program H so that the values ¢¥:0 look random to any polynomially-bounded adversary
who observes the public hash key and the outputs of H on a set of adaptively chosen inputs. This
functionality turns out to be useful in security proofs where one needs to cancel some random
values for simulation purposes (we explain this in slightly more detail later in the introduction). In
other words, programmable pseudo-randomness provides another random-oracle-like property for
standard model hash functions, that is to “hide” a PRF inside the hash function. This is crucial in
our security proofs, and we believe it can have further applications.

APPLICATIONS. In principle, secretly computable PHFs seem less versatile than regular PHFs. In
this work, however, we show that, for applications such as digital signatures, APHFs turn out to
be more powerful than their publicly computable counterparts. Specifically, we show how to use
APHFs to realize both regular and linearly-homomorphic signatures secure in the standard model.
Next, we show efficient realizations of APHFs that, when plugged in our generic constructions, yield
new and existing schemes that improve the state-of-the-art in the following way. First, we obtain
the first linearly homomorphic signature scheme, secure in the standard model, achieving a public
key which is sub-linear in both the dataset size and the dimension of the signed vectors. Second,
we obtain regular signature schemes, matching the efficiency of the ones in [35], thus providing the
shortest signatures in the standard model with a public key shorter than in [27].
In the following we elaborate more on these solutions.

Linearly-Homomorphic Signatures with Short Public Key in the Standard Model. Imag-
ine a user Alice stores one or more datasets D1, Do, ..., Dy on a cloud server. Imagine also that some
other user, Bob, is allowed to perform queries over Alice’s datasets, i.e., to compute one or more
functions Fi,..., F,, over any D;. The crucial requirement here is that Bob wants to be ensured
about the correctness of the computation’s results F;(D;), even if the server is not trusted. An
obvious way to do this (reliably) is to ask Alice to sign all her data D; = mgz), e ,mg\lf). Later, Bob
can check the validity of the computation by (1) downloading the full dataset locally, (2) checking
all the signatures and (3) redoing the computation from scratch. Efficiency-wise, this solution is
clearly undesirable in terms of bandwidth, storage (Bob has to download and store potentially large

amount of data) and computation (Bob has to recompute everything on his own).

3 Because of such asymmetric behavior we call these functions “asymmetric”.
4 For d = 1, this is basically the same programmability of [28].



A much better solution comes from the notion of homomorphic signatures [I1]. These allow to
overcome the first issue (bandwidth) in a very elegant way. Using such a scheme, Alice can sign
mai,...,my, thus producing signatures o1, ..., oy, which can be verified exactly as ordinary signa-
tures. In addition, the homomorphic property provides the extra feature that, given o1, ...,on and
some function F': MY — M, one can compute a signature oF,y on the value y = F(my,...,mp)
without knowledge of the secret signing key sk. In other words, for a set of signed messages and
any function F', it is possible to provide y = F/(m1,...,my) along with a signature o, vouching
for the correctness of y. The security notion of homomorphic signatures guarantees that creating a
signature op+ for a y* # F(m,...,my) is computationally hard, unless one knows sk.

To solve the second issue and allow Bob to verify efficiently such signatures (i.e., by spending
less time than that required to compute F'), one can use homomorphic signatures with efficient
verification, a notion recently introduced in [17].

The notion of homomorphic signature was first introduced by Johnson et al. [30]. Since then
several schemes have been proposed. The first schemes were homomorphic only for linear functions
over vector spaces [T0R2TITT2IT5ITOITI2IT4/3I32] and have nice applications to network coding and
proofs of retrievability. More recent works proposed realizations that can support more expressive
functionalities such as polynomials [ITJI7] or general circuits of bounded polynomial depth [23/[13].

Despite the significant research work in the area, it is striking that all the existing homomorphic
signature schemes that are proven secure in the standard model [TJI5JT6ITI2IBI32/17/23/13] suffer
from a public key that is at least linear in the size N of the signed datasets. On one hand, the cost of
storing such large public key can be, in principle, amortized since the key can be re-used for multiple
datasets. On the other hand, this limitation still represents a challenging open question from both
a theoretical and a practical point of view. From a practical perspective, a linear public key might
be simply unaffordable by a user Bob who has limited storage capacity. From a theoretical point of
view, considered the state-of-the-art, it seems unclear whether achieving a standard-model scheme
with a key of length o(IV) is possible at all. Technically speaking, indeed, all these schemes in the
standard model somehow rely on a public key as large as one dataset for simulation purposes. This
essentially hints that any solution for this problem would require a novel proof strategy.

OUr CONTRIBUTION. We solve the above open problem by proposing the first standard-model
homomorphic signature scheme that achieves a public key whose size is sub-linear in the maximal
size N of the supported datasets. Slightly more in detail, we show how to use APHF's in a generic
fashion to construct a linearly-homomorphic signature scheme based on bilinear maps that can sign
datasets, each consisting of up to IV vectors of dimension 7T'. The public key of our scheme mainly
consists of the public hash keys of two APHF's. By instantiating these using (one of) our concrete
realizations we obtain a linearly-homomorphic signature with a public key of length O(v/N + /7).
We stress that ours is also the first linearly-homomorphic scheme where the public key is sub-linear
in the dimension T of the signed vectors. Concretely, if one considers applications with datasets of
1 million of elements and a security parameter of 128bits, previous solutions (e.g., [16/2]) require a
public key of at least 32 MB, whereas our solution simply works with a public key below 100 KB.

ON THE POWER OF SECRETLY-COMPUTABLE PHFS. The main technical idea underlying this
result is a new proof technique that builds on asymmetric hash functions with programmable pseudo-
randomness. We illustrate the technique via a toy example inspired by our linearly-homomorphic
signature scheme. The scheme works over asymmetric bilinear groups G1, Go, and with an APHF
H: [N] — G; that has programmable pseudo-randomness w.r.t. d = 1. To sign a random message



M € G; w.r.t. a label 7, one creates the signature

S = (H(r)- M)"/*
where z is the secret key. The signature is linearly-homomorphic — S Sy = (H(my)H(m) M)/, for
M = MM, — and it can be efficiently checked using a pairing — e(S, ¢5) = [ [, e(H(7:), g2)e(M, g2)
— and by relying on that e(H(+), g2) is publicly computable.

The first interesting thing to note is that having H secretly computable is necessary: if H is
public the scheme could be easily broken, e.g., choose M* = H(7)~!. Let us now show how to
prove its security assuming that we want to do a reduction to the following assumption: given
g1, 92, g5, the challenge is to compute W1/% e Gy for W # 1 of adversarial choice. Missing g5 seems
to make hard the simulation of signatures since M,S € G;. However, we can use the trapdoor
generation of H for d = 1 (that for asymmetric pairings takes g1, h1 = g{', g2, ha = ¢5> and allows
to express H(X) = g7 @ ’yQ)), by plugging hy = 1,hy = g5. This allows to write every output as
H(t) = g?(z) = g?’ﬁcmz. Every signing query with label 7 is simulated by setting M, = g—¢70
and S, = (g;""). The signature is correctly distributed since (1) S, = (H(7) - M;)'/* and (2) M,
looks random thanks to the programmable pseudo-randomness of H. To conclude the proof, assume
that the adversary comes up with a forgery M* S* for label 7* such that 7* was already queried,
and let S, M be the values in the simulation of the signing query for 7*. Now, S = (H(7*) - M)/
holds by correctness, while S$* = (H(7*) - M*)¥/# holds for M* # M by definition of forgery. Then
(M) M,S* / S) is clearly a solution to the above assumption. This essentially shows that we can
sign as many M’s as the number of 7’s, that is N. And by using our construction H = Hgq this
is achievable with a key of length O(v' N ). Let us stress that the above one is an incomplete proof
sketch, that we give only to illustrate the core ideas of using programmable pseudo-randomness.
We defer the reader to Section [4] for a precise description of our signature scheme and its security
proof.

Short Signatures from Bilinear Maps in the Standard Model. Hofheinz and Kiltz [28)]
proposed efficient realizations of PHFs, and showed how to use them to obtain black-box proofs
of several cryptographic primitives. Among these applications, they use PHFs to build generic,
standard-model, signature schemes from the Strong RSA problem and the Strong ¢-Diffie Hellman
problem. Somewhat interestingly, these schemes (in particular the ones over bilinear groups) can
enjoy very short signatures. The remarkable contribution of the generic construction in [2§8] is that
signatures can be made short by reducing the size p of the randomness used (and included) in the
signature so that p can go beyond the birthday bound. Precisely, by using an (m, 1)-programmable
hash function, m can control the size of the randomness so that the larger is m, the smaller is the
randomness. However, although this would call for (m,1)-PHFs with a large m, the original work
28] described PHFs realizations that are only (2, 1)-programmable[’]

Later, Hofheinz, Jager and Kiltz [27] showed constructions of (m,1)-PHFs for any m > 1.
By choosing a larger m, these new PHF's realizations yield the shortest known signatures in the
standard model. On the negative side, however, this also induces much larger public keys. For
instance, to obtain a signature of 302 bits from bilinear maps, they need a public key of more than
8MB. The reason of such inefficiency is that their realizations of (deterministic) (m, 1)-PHF's have
keys of length O(m?2¢), where £ is the bit size of the inputs. In a subsequent work, Yamada et al.
[35] improved on this aspect by proposing a signature scheme with a public key of length O(m+/¢).

5 [28] gives also a (1, poly)-programmable PHF which allows for different applications.



Signature Scheme Ass. | Signature Size (bits) | Eff. Public Key Size (KB)

[x=s0[x =128 [x=s80[x=128
[[34] Waters [CDH| 2[Gy] [ 320 [ 512 [2 x Exp| IG1]+ (£ + 3)[G2]] 6.5 [ 16.6 ]
[7] Boneh-Boyen ¢-SDH||G1| + |Zp|| 320 | 512 |1 X Exp 2|G2|| 0.08 | 0.13
28] Sigq-spH[Hwat] (m=2)|g-SDH| [G1|+p | 230 | 350 |1 x Exp (0 +1)[G1|+|G2|| 3.3 | 83
[27] Sigg-som[Het.) (m = 8)|¢-SDH| |G1|+p | 200 | 302 |1 x Exp (16m20)|G1| + |Ga||3276.8|8388.7
Zq_SDH[HaCfS} (m = 8)|g-SDH |G1‘ +p 200 302 |1 x Exp 4m[\/21(|G1| aF IGQD aF |(G2| 25 49.2
7] Sigq-oH[Hwat, Awat] (m =2)] ¢-DH | |G1]+p | 230 | 350 |1 x Exp C+DGi|+ (p+ 1)|Ga]| 49 | 11.2
7] Sigq-ph[Hets, Hwat] (m =8)| ¢-DH | |G1]+p | 200 | 302 |1 x Exp (16m20)|G1| + (p + 1)|G2||3278.4| 8391.6
[35] Zq-pH[Hacts; Hwat]l (m =8)| ¢-DH | |G1]|+p | 200 | 302 |1 x Exp|4m[v2](|G1| + [G2]) + (p +1)|G2|| 26.6 | 52.2

Table 1. Comparison between different standard-model signature schemes from bilinear maps. The shown values
consider: (i) security at both A = 80 and A = 128 against adversaries seeing up to ¢ = 2% signatures; (ii) an
implementation with Type-III pairings where |Gi| = p = 2\ and |G2| = 2|G4]; (iii) messages of 2) bits so as to
provide collision-resistance for A bits of security; (iv) the size of the randomness p = logq + [£7] according to the
analysis in [28]. We considered an implementation of Waters’ scheme which optimizes the signature size. Above Exp
denotes the cost of an exponentiation in G1.The grey rows point out the results from this paper.

Their solution followed a different approach: instead of relying on (m,1)-PHFs they obtained the
signature by applying the Naor’s transformation [9] to a new identity-based key encapsulation
mechanism (IBKEM).

Our REsuLTS. Our results are mainly two. First, we revisit the generic signature constructions
of [28)27] in order to work with (m,1,d)-APHFs. Our generic construction is very similar to that
in [28/27], and, as such, it inherits the same property: the larger is m, the shorter can be the
randomness.

Second we show the construction of an APHF, H,, that is (m, 1, 2)-programmable and has a
hash key consisting of O(m\/Z) group elements. By plugging H,cfs into our generic construction we
immediately obtain standard-model signatures that achieve the same efficiency as the scheme of
Yamada et al. [35]. Namely, they are the shortest standard model signature schemes with a public
key of length O(m+/?), that concretely allows for signatures of 302bits and a public key of 50KB. One
of our two schemes recover the one in [35]. In this sense we provide a different conceptual approach
to construct such signatures. While Yamada et al. obtained this result by going through an IBKEM,
our solution revisits the original Hofheinz-Kiltz’s idea of applying programmable functions.

We provide a detailed comparison of the schemes in Table

1.2 Other Related Work

Hanaoka, Matsuda and Schuldt [25] show that there cannot be any black-box construction of
a (poly, 1)-PHF. The latter result has been overcome by the recent work of Freire et al. [20] who
propose a (poly, 1)-PHF based on multilinear maps. The latter result is obtained by slightly changing
the definition of PHF's in order to work in the multilinear group setting. Their (poly, 1)-PHF leads to
several applications, notably standard-model versions (over multilinear groups) of BLS signatures,
the Boneh-Franklin IBE, and identity-based non-interactive key-exchange. While the notion of
PHF's in the multilinear setting of [20] is different from our APHF's (with the main difference being
that ours are secretly computable), it is worth noting that the two notions have some relation. As
we discuss in Section , our APHF's indeed imply PHFs in the bilinear setting (though carrying
the same degree of programmability).



The idea of using bilinear maps to reduce the size of public keys was used previously by Har-
alambiev et al. [26] in the context of public-key encryption, and by Yamada et al. [35] in the
context of digital signatures. We note that our solutions use a similar approach in the construction
of APHF's, which however also include the important novelty of programmable pseudorandomness,
that turned out to be crucial in our proofs for the linearly-homomorphic signature.

2 Preliminaries

In this section, we review the notation and some basic definitions that we use in our work.

Notation. We denote with A € N a security parameter. We say that a function € is negligible
if it vanishes faster than the inverse of any polynomial. If S is a set, x &£ S denotes the process
of selecting x uniformly at random in S. If A is a probabilistic algorithm, z & A(-) denotes the
process of running A on some appropriate input and assigning its output to x. Moreover, for a
positive integer n, we denote by [n] the set {1,...,n}.

2.1 Bilinear Groups and Complexity Assumptions

Let A € N be a security parameter and let G(1?) be an algorithm which takes as input the security
parameter and outputs the description of (asymmetric) bilinear groups bgp = (p, G1, G2, G, €, 91, 92)
where G1, G2 and G are groups of the same prime order p > 27, g1 € G1 and g9 € Gy are two
generators, and e : G; X Go — G is an efficiently computable, non-degenerate, bilinear map, and
there is no efficiently computable isomorphism between G; and Gs. We call such an algorithm G
a bilinear group generator. In the case G; = Go, the groups are said symmetric, else they are said
asymmetric.

In our work we rely on specific computational and decisional assumptions in such bilinear groups.

Definition 1 (¢-Strong Diffie-Hellman [7]). Let G be a generator of asymmetric bilinear groups,
let bgp = (p, G1,Ga,Gr, g1, 92, €) & G(1") where g1,g2 are two random generators, and let q =
poly(\). We say that the q-Strong Diffie-Hellman Assumption (q-SDH) is e-hard for G if, for every
PPT adversary A,

AQvIPH () = PrlA(gr 6%, 07 92.65) = (e, ) | 2 & 2] < e

Definition 2 (¢-Diffie-Hellman Inversion [6/33]). Let G be a generator of asymmetric bilinear
groups, let bgp = (p, G1,Ga, G, 91,92, €) & G(1Y) where g1, go are two random generators, and let
q = poly(X). We say that the q-Diffie-Hellman Inversion Assumption (q-DHI) is e-hard for G if,
for every PPT adversary A,

AAviPI () = PrlA(g1, 67,65, 97" g5 ) = g7 |2 & 2, < e

It is not hard to see that the above problem is equivalent to the one in which the adversary is given
the same input and is challenged to compute the “next power” gfq+1.

A weaker variant of the ¢-DHI assumption that we use in some of our proofs is the one in which
the adversary receives only g2, g5 in the group Gs. For coherence with [27] we call this assumption
q-Diffie-Hellman (¢-DH).



Definition 3 (External Decisional Diffie-Hellman in G,). Let G be a generator of asymmetric

bilinear groups, and let bgp = (p, G1, G2, G, g1, g2, €) & G(11). We say that the External Decisional
Diffie-Hellman Assumption (XDDH) is e-hard in Gy if, for every PPT adversary A, it holds

$ $
PrlA(g1, 95, 6%, 91°) = 1| a,b & Z,)) — Pr[A(g1, 97, 68, 95) = 1] a,b,c <~ Z,]| < e

Finally, we introduce the following static assumption over asymmetric bilinear groups, that we
call “Flexible Diffie-Hellman Inversion” (FDHI) for its similarity to Flexible Diffie-Hellman [24]. As
we discuss in Appendix [B], FDHI is hard in the generic bilinear group model.

Definition 4 (Flexible Diffie-Hellman Inversion Assumption). Let G be a generator of

asymmetric bilinear groups, and let bgp = (p, G1, Ga, Gr, g1, 92, €) & G(1Y). We say that the Flex-
ible Diffie-Hellman Inversion (FDHI) Assumption is e-hard for G if for every PPT adversary A:

1 z r
AAvEPHI(N) = Pr[W € Gi\{1g, JAW' = W=« (W, W')A(g1, 92, 65. 95, 97 . 95, 97 ) | 7m0 & Z,) < e

3 Asymmetric Programmable Hash Functions

In this section we present our new notion of asymmetric programmable hash functions.

Let bgp = (p,G1,Ga,Gr,g1,92,€) be a family of asymmetric bilinear groups induced by a
bilinear group generator G(1*) for a security parameter A € N EI An asymmetric group hash function
H: X — Gy consists of three PPT algorithms (H.Gen, H.PriEval, H.PubEval) working as follows:

H.Gen(1*,bgp) — (sek, pek): on input the security parameter A € N and a bilinear group descrip-
tion bgp, the PPT key generation algorithm outputs a (secret) evaluation key sek and a (public)
evaluation key pek.

H.PriEval(sek, X) — Y € G;: given the secret evaluation key sek and an input X € X, the deter-
ministic evaluation algorithm returns an output ¥ = H(X) € G;y.

H.PubEval(pek, X ) — Y € Gy: on input the public evaluation key pek and an input X € X, the
public evaluation algorithm outputs a value Y € Gp such that ¥ = e(H(X), g2).

For asymmetric hash functions satisfying the syntax described above, we define two different
properties that model their possible programmability.

The first property is a generalization of the notion of programmable hash functions of [28/29]
to our asymmetric setting (i.e., where the function is only secretly-computatble), and to the more
specific setting of bilinear groups. The basic idea is that it is possible to generate the function
in a trapdoor-mode that allows one to express every output of H in relation to some specified
group elements. In particular, the most useful fact of programmability is that for two arbitrary
disjoint sets of inputs X, Z C X, the joint probability that some of these group elements appear in
H(Z),YZ € Z and do not appear in H(X),VX € X is significant.

Definition 5 (Asymmetric Programmable Hash Functions). An asymmetric group hash
function H = (H.Gen, H.PriEval, H.PubEval) is (m,n,d, v, §)-programmable if there exist an efficient
trapdoor generation algorithm H.TrapGen and an efficient trapdoor evaluation algorithm H.TrapEval
such that:

5 Our definition can be easily adapted to work in symmetric bilinear groups where G; = Gs.



Syntax: H.TrapGen(1%,bgp, g1, hi, g2, Bz) — (td, pek) takes as input the security parameter X\, bi-
linear group description bgp and group elements gl,ﬁl € GI,QQ,% € Gao, and it generates
a public hash key pek along with a trapdoor td. H.TrapEval(td, X) — cx takes as input the
trapdoor information td and an input X € X, and outputs a vector of integer coefficients
cx = (coy...,cq) € 7 of a 2-variate polynomial cX(yl,yg) of degree < d.

Correctness: For all group elements gl,hl € Gy, gz,hz € Go such that hl = g{" and iLQ = 95
for some y1,y2 € Zy, for all trapdoor keys (td, pek) & H.TrapGen(1 A g1, ha, 6o, hg), and for all
inputs X € X, if cx < H.TrapEval(td, X), then

H(X) — giX(ylayQ)

Statistically-close trapdoor keys: For all generators g1, h1 € G1, g2, ha € G and for all (sek, pek) &

H.Gen(1%), (td, pek’) < H.TrapGen(1*, g1, h1, §o, ha), the distribution of the public keys pek and
pek’ is within statistical distance .

Well distributed logarithms: For all §1,h1 € G1, §o, ha € Go, all keys (td, pek) < H.TrapGen(1*,
a1, ﬁl,gg,hg), and all inputs X1,..., X, € X and Z1, ..., Z, € X such that X; # Z; for all i, j,
we have

Pr[ch,O =---=Cx,0= 0A CZ1,05+++5CZ, .0 #+ 0] >0

where cx,+H.TrapEval(td, X;) and cz,«+-H.TrapEval(td, Z;), and cx, o (resp. cz;0) is the coef-
ficient of the term of degree 0.

If v is negligible and § is noticeable we simply say that H is (m,n,d)-programmable. Furthermore,
if m (resp. n) is an arbitrary polynomial in X\, then we say that H is (poly,n,d)-programmable
(resp. (m, poly, d)-programmable). Finally, if H admits trapdoor algorithms that satisfy only the first
three properties, then H is said simply (d,~y)-programmable. Note that any H that is (m,n,d,~,0)-
programmable is also (d,~)-programmable.

Programmable Pseudo-randomness. The second main programmability property that we de-
fine for asymmetric hash functions is quite different from the previous one. It is called programmable
pseudo-randomness, and very intuitively it says that, when using the hash function in trapdoor
mode, it is possible to “embed” a PRF into it. More precisely, the trapdoor algorithms satisfy
programmable pseudo-randomness if they allow to generate keys such that even by observing pek
and H(X) for a bunch of inputs X, then the elements giX’O look random. The formal definition
follows:

Definition 6 (Asymmetric Hash Functions with Programmable Pseudorandomness).
An asymmetric hash function H = (H.Gen, H.PriEval, H.PubEval) has (d,, €)-programmable pseu-
dorandomness if there exist efficient trapdoor algorithms H.TrapGen,H.TrapEval that satisfy the
properties of syntax, correctness, and vy-statistically-close trapdoor keys as in Definition [J, and
additionally satisfy the following property with parameter e:

Pseudorandomness: Let b € {0,1} and let EXpPRH b(\) be the following experiment between an
adversary A and a challenger.

1. Generate bgp <& G(1Y), and run A(bgp), that outputs two generators hy € Gy, hy € Gy.

2. Compute (td, pek) & H.TrapGen(1*, g1, hi, g2, ha) and run A(pek) with access to the follow-
ing oracle:



— Ifb =0, A is given O(-) that on input X € X returns H(X) = ng(yl’yQ) and g;*°, where
cx<H.TrapEval(td, X);

— Ifb=1, A is given R(-) that on input X € X returns H(X) = ng(yl’yQ) and gi*, for a
randomly chosen rx & Zy (which is unique for every X € X).

3. At the end the adversary outputs a bit b, and b’ is returned as the output of the experiment.
Then we say that H.TrapGen, H. TrapEval satisfy pseudo-randomness for €, if for all PPT A

’Pr[Expif,ﬂH'o(A) =1]— Pr[ExpiﬁH'l(/\) =1]|<e

where the probabilities are taken over all the random choices of TrapGen, the oracle R and the
adversary A.

Remark 1 (On the mutual existence of programmability and programmable pseudorandomness).
We stress that the two properties of programmability and programmable pseudorandomness de-
fined above are mutually exclusive. Precisely, an APHF can have a pair of trapdoor algorithms
(TrapGen, TrapEval) that admits either (m,n,d,~,d)-programmability (for non-negligible §), or
(d,~, €)-programmable pseudorandomness (for negligible €). Intuitively, the reason why the same
trapdoor algorithms cannot satisfy both properties is that (m, n, d,y)-programmability implies that
for any elements Xi,..., X;, € X it holds cx, , = 0 with non negligible probability §. However, if
this holds then programmable pseudorandomness can be trivially broken, since g;Xi’o = 1 with non
negligible probability §.

On the other hand, it is quite interesting to observe that the same function can enjoy both
properties through different, appropriate, pairs of trapdoor algorithms. In fact, an asymmetric group
hash function can have a pair of trapdoor algorithms (TrapGen, TrapEval) for which (m,n,d,~)-
programmability holds, and another pair of trapdoor algorithms (TrapGen’, TrapEval’) for which
(d,~,d)-programmable pseudorandomness holds. Then, since all trapdoor generations produce keys
that are statistically indistinguishable from the real ones it follows that also the two trapdoor
modes are statistically indistinguishable. In a nutshell, this means that the same function can be
programmed in different modes in different steps of a security proof, a property which turns out to
be very useful, for example, in our proofs of Section [4.4]

Other variants of programmability. Here we define two other variants of the programmability
notion given in Definition

WEAK PROGRAMMABILITY. We consider a weak version of the above programmability property
in which one fixes at key generation time the n inputs Z; on which cz, o # 0.

Definition 7 (Asymmetric Weakly-Programmable Hash Functions). An asymmetric group
hash function H = (H.Gen, H.PriEval, H.PubEval) is weakly (m,n,d,, d)-programmable if there exist
efficient trapdoor generation H.TrapGen and trapdoor evaluation H.TrapEval algorithms such that:

— Syntax: H.TrapGen(1*,bgp, g1, k1, g2, ho, Z1, ..., Zn) — (td,pek) takes as input the security
parameter A, bilinear group description bgp, group elements gl,izl € Gl,gg,ﬂg € Go, and a
set of n inputs Z1,...,Z, € X. It generates a public hash key pek along with a trapdoor td.
H.TrapEval(td, X) — ex works ezactly as in Definition [5

— The properties of correctness and statistically-close trapdoor keys hold as in Definition[3. The
property of well-distributed logarithms is also the same except that the inputs Z1,...,Z, are
the ones fixed as input to H.TrapGen.



Remark 2. We remark that for those (deterministic) functions H whose domain X has polynomial
size any weak programmability property for an arbitrary m = poly trivially holds with § = 1.

DEGREE-d PROGRAMMABILITY. In our work we also consider a variant of the above definition in
which the property of well distributed logarithms is stated with respect to the degree-d coefficients
of the polynomials generated by H.TrapEval. In this case, we say that H is (m,n,d,~,d)-degree-d-
programmable.

3.1 Relation with existing notions

Before describing our realizations of APHFs, we discuss here the relation between our new notion
and two existing notions of programmable hash functions: the original one by Hofheinz and Kiltz
[28] and its adaptation to the multilinear setting recently proposed by Freire et al. [20].

When working over bilinear groups, the notion of programmable hash functions of [2§8] is essen-
tially a special case of ours. The main differences are: (1) PHFs are publicly computable, (2) the
trapdoor algorithms work with only two generators g, h and every output of the function can be
expressed as a linear function oA’ of these two generators. As we formally state in the following

theorem, a standard PHF is an APHF for d = 1:

Theorem 1. Let H = (PHF.Gen, PHF.Eval) be an (m,n,~,d)-programmable hash function such
that H : X — G. Define H.Gen = PHF.Gen, H.PriEval = PHF.Eval and (informally) H.PubEval =
e(PHF.Eval, g2). Then H = (H.Gen, H.PriEval, H.PubEval) is an asymmetric (m,n, 1,~, d)-programmable
hash function.

The proof is straightforward and is omitted.

Second, we analyze the relation between asymmetric hash functions and the PHFs in the mul-
tilinear setting introduced in [20]. Informally, for a setting of leveled multilinear groups Gy, ..., Gy,
[20] considers a group hash function H : X — Gy. Then, H is said (m,n)-programmable if
there exist two trapdoor algorithms PHF.TrapGen, PHF.TrapEval such that: PHF.TrapGen(1*, g1,

.., ge,h) takes as input g;,h € G; with b # 1 and outputs a trapdoor td and hash key hk;
PHF.TrapEval(td, X) on input X outputs an integer ax and an element Bx € Gy_; such that
H(X) = e(g1,...,90)"*e(Bx,h) € Gy. If we consider leveled bilinear groups where G = G; and
G = Gg, then asymmetric programmable hash functions (for d < 2) imply PHF's in the (symmet-
ric) bilinear group setting:

Theorem 2. Let G, Gr be symmetric bilinear groups, and let H = (H.Gen, H.PriEval, H.PubEval) be
an asymmetric (m,n, 2,7, d)-programmable hash function such that H: X — G. Define PHF.Gen =
H.Gen and PHF.Eval = H.PubEval. Then H = (PHF.Gen, PHF.Eval) is an (m,n,~,d)-programmable
hash function in the bilinear setting.

The proof is fairly easy. Here we provide a sketch. Basically, by assuming that H is programmable,
we have to show two algorithms PHF.TrapGen, PHF.TrapEval that satisfy the programmability of H
in the bilinear setting:

PHF.TrapGen(1*, g, h): run (td, pek) & H.TrapGen(1*, g, h) and output (td, pek).
PHF.TrapEval(td, X): run cx<+H.TrapEval(td, X) to generate the coefficient of a degree-2 polyno-
mial cx (y) where y = DLog,(h). Then output ax = cx,, and Bx = g°X1hex2,
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It is easy to see that if cx is such that H(X) = gexotexavtex2y® then
H(X) = e(H(X), g) = g, 9)*0e(gx 1+, g¥) = e(g, 9)*Xe(Bx, h)

Finally, the (m,n,~, §)-programmability of H is immediately implied by the well distribution of the
discrete logarithms in H for parameters (m,n,2,7,d).

3.2 An Asymmetric Programmable Hash Function based on Cover-Free Sets

In this section we present the construction of an asymmetric hash function, H,s, based on cover-
free sets. Our construction uses ideas similar to the ones used by Hofheinz, Jager and Kiltz [27]
to design a (regular) programmable hash function. Our construction extends these ideas with a
technique that allows us to obtain a much shorter public key. Concretely, for binary inputs of
size ¢, the programmable hash function Heg in [27] is (m, 1)-programmable with a hash key of
length O(¢m?). In contrast, our new construction H,e is (m, 1)-programmable with a hash key of
length O(m\/Z) While such improvement is obtained at the price of obtaining the function in the
secret-key model, our results of Section [5|show that asymmetric programmable hash are still useful
to build short bilinear-map signatures, whose efficiency, in terms of signature’s and key’s length
matches that of state-of-the-art schemes [35].
Before proceeding with describing our function, below we recall the notion of cover-free sets.

CoOVER-FREE FAMILIES. If S,V are sets, we say that S does not cover V if § 2 V. Let T,m, s
be positive integers, and let F' = {F;};c[,) be a family of subsets of [T]. A family F is said to be
m-cover-free over [T, if for any subset I C [s] of cardinality at most m, then the union U;crF;
does not cover Fj for all j ¢ I. More formally, for any I C [s] such that [I| < m, and any j ¢ I,
UierF; 2 F}j. Furthermore, we say that I is w-uniform if every subset F; in the family have size w.
In our construction, we use the following fact from [I831]:

Lemma 1 ([18)31]). There is a deterministic polynomial time algorithm that, on input integers
s = 2¢ and m, returns w,T,F where F = {Fi}icls) s a w-uniform, m-cover-free family over [T,
for w="T/4m and T < 16m?¢.

THE CONSTRUCTION OF H,cts. Let G(1%) be a bilinear group generator, let bgp = (p, G1, G2, Gr,
g1, 92, €) be an instance of bilinear group parameters generated by G. Let ¢ = ¢(\) and m = m(\)
be two polynomials in the security parameter. We set s = 2¢, T = 16m?¢, and w = T /4m as
for Lemma |1, and define t = [\/T']. Note that every integer k € [T] can be written as a pair of
integers (i,7) € [t] x [t] using some canonical mapping. For the sake of simplicity, sometimes we
abuse notation and write (4, j) € [T] where 4, j € [t].

In the following we describe the asymmetric hash function H,eis = (H.Gen, H.PriEval, H.PubEval)
that maps Haes : X — G1 where X = {0,1}". In particular, every input X € {0,1} is associated
to a set Fj, i € [2¢], by interpreting X as an integer in {0,...,2¢ — 1} and by setting i = X + 1. We
call F'x such subset associated to X.

H.Gen(1*, bgp): for i = 1 to t, sample ay, 5; & Z, and compute A; = ¢i", B; = g5'. Finally, set
sek = {a;, Bi}i_,, pek = {4;, B;}!_,, and return (sek, pek).
H.PriEval(sek, X): first, compute the subset Fix C [T] associated to X € {0,1}¢, and then return

Y:glz( Aery il EGl
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H.PubEval(pek, X): let Fix C [T] be the subset associated to X, and compute

V=[] e(4,B))=e(H(X),g)
(i,5)€Fx

Theorem 3. Let G be a bilinear group generator. The hash function Hacs described above is an
asymmetric (m,n,d,y,d)-programmable hash function withn =1,d=2,v=0 and § =1/T.

Proof. First, we describe the trapdoor algorithms:

H.TrapGen(1*, bgp, 41, hi, g2, ilg): first, sample a;, b; < Zy for all i € [t], and pick a random index
7 & [T]. Parse 7 = (i*, j*) € [t] x [t]. Next, set Ag = §1h%" | Bje = gohy™, A; = h%, Vi # *,
and B; = ﬁgj, Vj # j*. Finally, set td = (7, {a;, b;}i_,), pek = {A;, B;}!_,, and output (td, pek).

H.TrapEval(td, X): first, compute the subset Fy C [T'] associated to X € {0,1}, and then return
the coefficients of the degree-2 polynomial

ex (Y1, 42) = Z ai(y1) - Bj(y2)

where every «;(y1) (resp. 8j(y2)) is the discrete logarithm of A; (resp. Bj) in base g (resp. §2),
viewed as a degree-1 polynomial in the unknown y; (resp. y2).

Now, we show that the two trapdoor algorithms described above satisfy the four properties of
Definition [5l First, syntax and correctness immediately follow by construction. Second, observe
that each element A; (resp. Bj) in pek is a uniformly distributed group element in Gy (resp. G2),
exactly as in the output of H.Gen, hence v = 0. Third, we show that the algorithms allow for
well distributed logarithms for the case n = 1. Let Xy,..., X, Z € X such that Z # X; for
all 7. From the m-cover-free property of F' we have that there exist an index 7/ € F such that
7' ¢ U Fx,. Since 7 is chosen uniformly at random in [T], we have that 7 = 7/ with probability
d = 1/T. Now, assume that 7/ = 7 = (i*,5*) € [t] x [t]. Then for all (i,5) # (i*,5*) it holds
that the degree-0 coefficient of c(y1,y2) = a;(y1)B;j(y2) is co = 0, whereas for (i*,j*) the degree-0
coefficient of ¢*(y1,y2) = i (y1)Bj+(y2) = (amy1 + 1)(bjxy2 + 1), is ¢ = 1. Therefore, we have that
cx,;0 =0,Vi € [m] and ¢z = 1 holds with probability 4. O

3.3 An Asymmetric Programmable Hash Function with Small Domain

In this section, we present the construction of an asymmetric hash function, Hsqrt, whose domain is
of polynomial size T'. Hsqrt has a public key of length O(V/T), and it turns out to be very important
for obtaining our linearly-homomorphic signature scheme with short public key presented in Section
@ Somewhat interestingly, we show that this new function Hgq satisfies several programmability
properties, that make it useful in the context of various security proofs.

Let G(1*) be a bilinear group generator, let T = poly(\) and ¢ = [v/T']. The hash function
Hsqrt = (H.Gen, H.PriEval, H.PubEval) that maps Hsqrt : X — G1 with X = [T] is defined as follows.

H.Gen(1*,bgp): for i = 1 to t, sample o, 3; & Z, and compute A; = ¢, B; = g5'. Finally, set
sek = {a, Bi}i_,, pek = {4;, B;}'_,, and return(sek, pek).
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H.PriEval(sek, X): first, write X € [T] as a pair of integer (i, ) € [¢] x [t], and then return
Y = gixiﬂj e Gy
H.PubEval(pek, X): let X = (i, 7). The public evaluation algorithm returns

Y = e(A;, Bj) = e(H(X), g2)

Programmable Pseudorandomness of Hyq:. Here we show that Hgqt satisfies the programmable
pseudo-randomness property of Definition [6]

Theorem 4. Let Gy be a bilinear group of order p over which the XDDH assumption is € -hard.
Then the asymmetric hash function Hsq described above satisfies (2,0, €)-programmable pseudo-
randommness with ¢ = T - €. Furthermore, in the case when hy = 1 € Gy or hy = g1, Hsqrt has
(1,0, €)-programmable pseudo-randomness.

Proof. First, we describe the trapdoor algorithms:

H.TrapGen(1*, g1, h1, g2, ho): first, sample a;,r;, s;, b; & Zy for all i € [t] and then set A; =
hitglt, B; = h;igg". Finally, set td = ({ai, 7, si,bi}._,), pek = {A4;, B;}}_,, and output (td, pek).
H.TrapEval(td, X): let X = (7,7), and then return the coefficients of the degree-2 polynomial

ex (Y1, v2) = (yari + ai)(yQSj + bj)

First, it is easy to see that the two algorithms satisfy the syntax and correctness properties. Also,
in the case hy =1 (i.e., y1 = 0) or hy = g1 (i.e., y1 = 1), we obtain a degree-1 polynomial cx (y2).
Second, observe that each element A; (resp. B;) in pek is a uniformly distributed group element
in Gy (resp. G2), as in H.Gen, hence v = 0. Third, we show that the function satisfies the pseudo-
randomness property under the assumption that XDDH holds in G;. The main observation is that
for every X = (i,7), we have cxo = a;b; where all the values b; are uniformly distributed and
information-theoretically hidden to an adversary who only sees pek. In particular, this holds even
if hy = 1.

To prove the pseudo-randomness we make use of Lemma [2| below, which shows that for a

uniformly random choice of a,b < Z;,c & Z;Xt the distributions (gf,gf'bT) € Gix(tﬂ) and

(9%, 9%) € Gix(tﬂ) are computationally indistinguishable.

Lemma 2. Let a,b & Z;, c & Z;Xt be chosen uniformly at random. If the XDDH assumption is
¢-hard in Gy, then for any PPT B it holds | Pr[B(g®, ¢&b") = 1] — Pr[B(¢%,¢5) = 1]| < T - €.

We first show how to use Lemma [2| to prove that Hsqre has programmable pseudo-randomness.
The proof of Lemma [2] appears slightly below.

Let A be an adversary that breaks the e-programmable pseudo-randomness of Hgqrt. We con-
struct a simulator B that can distinguish the two distributions (g%, gi"bT) and (g%, ¢5) described
above with advantage greater than e.

B’s input is a tuple (A’,C) € G} x (G'-i” and its goal is to decide about the distribution of
C'. First, B runs A(bgp) which outputs the generators hq, ho. B then samples two random vectors

r,B< Z},, computes B = gg €eGL, A=hT-A €G!, sets pek = (A, B), and runs A(pek) Next,
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for every oracle query (i,7) made by A, B simulates the answer by returning to A: H(i, j) = Af J

and C; ;. It is easy to see that if C' = g¢ ab" then B is perfectly simulating Expp RH 0 , otherwise,
if C' is random and independent, then B is simulating Expfﬁfi rtl. As a final note, we Observe that
the above proof works even in the case hy = 1. O

Proof (Proof of Lemma @) To prove the above lemma, we define 7'+ 1 hybrid distributions as
follows. Let a, b & Z;; and ¢ & ZéXt be randomly chosen. For every 0 < k < T we define the matrix

My, € GY** by specifying the value My[i, j] of each entry (i,5) € [t] x [t] of the matrix. For every
k' € [T), let (i,7) € [t] x [t] be such that k' = j + (i — 1)t. Then:

— If K <k, My[i,j] = g7,
— K >k, Myl ] = g7

Notice that Mgy = gf‘bT while Mt = ¢f. Moreover,

Mﬂ

| Pr[B(g1'; Mo) = 1] = Pr{B(g7, Mr) = 1]| < } [Pr[B(g1, Mi-1) = 1] — Pr[B(g7, My) = 1]]

k=1
<T - [Pr[B(gt, My-1) = 1] = Pr[B(g7, M) = 1]|

We complete the proof of Lemma [2] by showing the following claim:
Claim 1 For every 1 < k < T, if XDDH is ¢'-hard in Gy, then

| Pr[B(gf, My_1 = 1] — Pr[B(g%, M) = 1]| < €

Assume by contradiction that |Pr[B(gf, My_1 = 1] — Pr[B(¢%, M) = 1]| > €. Then it is
possible to build a simulator B’ which breaks the XDDH assumption in G; with advantage greater
than €. B’ gets an XDDH instance (g1, g, gf ,97) and proceeds as follows:

— It samples c1,...,Cr_1 & L.
@G,y A, b .,bjil,bjﬂ, - & Zy, where (i,}) correspond to k,
ie, k=74 (—1)t. .
— It implicitly sets @ = (a1,...,a;_y,a,a;,,...ar) and b= (by,. .., bs 1, 8,65, 15 be).
B’ builds a matrix M € G}*" where:
o Ifk/ <k—1, M[i,j]=g;",
o If k' =k, M[i,j] =g],
o If k' > k, M[i,j] = g‘fi'bj . Notice that such value can be efficiently computed by B’ as it

— It samples aq, ..

i b . . -
knows gy’ :~g‘f‘, g9 = gf, a;, Vi # 1, bj,¥j # 7, and k' > k implies (4, j) # (2,7).
— B runs V< B(g{, M) and returns the same bit b'.

As one can check, if v = af3, then M’ is distributed as Mj,_;. Otherwise, if v is random and
independent, M’ is distributed as My. Therefore,

| Pr[B' (91,9897, 97") = 1] = Pr[B' (91,95, 97, 9]) = 1]| =
= | Pr[B(g%, My_1) = 1] — Pr(B(¢g¥, M) = 1]| > ¢
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(poly, 0, 2)-programmability of Hst. Below we show that Hsqr is (poly, 0,2, v, §)-programmable
for v = 0 and § = 1. While such (poly,0)-programmability might look uninteresting at first,
this property turns out to be useful in various security proofs, as shown in our application to
homomorphic signatures of Section

Theorem 5. The asymmetric hash function Hsqre described above is (poly, 0, d,~, §)-programmable
with d = 2, v =0 and 6 = 1. Furthermore, in the case when either iLl = g1 or ﬁg = G2, Hsqrt 15
(poly, 0,d,~, d)-programmable with d =1, v =0 and § = 1.

Proof. The trapdoor algorithms are defined as follows:

H.TrapGen(1*, g1, h1, g2, ho):  first, sample ry, 5; < Zy, for all i € [t] and then set A; = ﬁ?, B; = ﬁ;l
Finally, set td = ({r;, si}!_), pek = {A4;, B;}!_,, and output (td, pek).
H.TrapEval(td, X): let X = (¢,7), and then return the coefficients of the degree-2 polynomial

ex (1, y2) = (Y1y2)ris;

Syntax and correctness are easily seen by inspection. The public key generated by H.TrapGen is
distributed identically to the one generated by H.Gen, from which v = 0. Also, it is clear that for
any X € X, the degree-0 term of the polynomial cx computed by H.TrapEval is always 0. It is
straightforward to see that in the case y; = 1 (or y2 = 1) the function satisfies the programmability
with d = 1. O

Weak (poly, 1, 2)-programmability of Hs. Here we prove that Hgqy is weakly (poly, 1,2,7,0)-
programmable for v =0 and § = 1.

Theorem 6. The asymmetric hash function Hsqre described above is weakly (poly,1,d,~, §)-programmable
withd=2,v=0and § =1.

Proof. The trapdoor algorithms are defined as follows:

H.TrapGen(lA,gl,ﬁl,gg,fzg,Z): let Z = (i*,j*) € [t] x [t]. First, sample r;, s; & Zyp for all i € [t].
Next, compute A;x = Qlﬁ?* ,Bj = ggﬁ;*, A; = E?,Vi #1" and B; = ﬂ;j, Vj # j*. Finally, set
td = ({ri,si}i_,), pek = {A;, B;}!_;, and output (td, pek).

H.TrapEval(td, X): given X = (i, ), return the coefficients of the degree-2 polynomial

ex (Y1, y2) = ai(yr) - Bj(y2)

where a;(y1) (resp. 5;(y2)) is the discrete logarithm of A; (resp. B;) in base g1 (resp. g2), viewed
as a degree-1 polynomial in the unknown y; (resp. y2).

Syntax and correctness are easily seen by inspection. The public key generated by H.TrapGen is
distributed identically to the one generated by H.Gen, from which v = 0. Also, it is clear from the
construction that for Z = (i*,j*) we have cz(y1,y2) = (yir1 + 1)(y2s; + 1), and thus czp = 1,
whereas for every X # Z the degree-0 term of the polynomial ¢z (y1,y2) computed by H.TrapEval
is always 0. And this holds with probability § = 1. a
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Weak (poly, 1, 2)-degree-2-programmability of Hyt. Finally, we prove that Heqyt is also weakly
(poly, 1,2, v, 0)-degree-2-programmable for v = 0 and 6 = 1.

Theorem 7. The asymmetric hash function Hsqre described above is weakly (poly, 1,d,~, §)-degree-2
programmable with d =2, v =0 and § = 1.

Proof. The proof of this theorem can be seen as the “dual” version of the one of Theorem [6]
Instead of setting the simulated keys so that Z is the only input for which ¢z = 1, here the keys
are simulated in such a way that Z is the only input in which the term y;y2 appears. More precisely,
the trapdoor algorithms work as follows:

H.TrapGen(1*, 1, hi1, g2, ha, Z): let Z = (i*,5*) € [t] x [t]. First, sample r;, s; < Zy for all i € [t]
and then set Aj» = hig]"™, Bj« = hagy’", Ai = §}',Vi # i* and B; = §,,¥j # j*. Finally, set
td = ({ri, si}i_,), pek = {A;, B;}!_;, and output (td, pek).

H.TrapEval(td, X): let X = (4,7), and then return the coefficients of the degree-2 polynomial

ex (Y1, y2) = (1) - Bi(y2)

where o;(y1) (resp. Bj(y2)) is the discrete logarithm of A; (resp. B;) in base g1 (resp. g2), viewed
as a degree-1 polynomial in the unknown y; (resp. y2).

Syntax and correctness are easily seen by inspection. The public key generated by H.TrapGen is
distributed identically to the one generated by H.Gen, from which v = 0. By construction, we have
that for Z = (3%, j*), cz(y1,92) = (r1 + y1)(s; + y2), and thus cz2 = 1, whereas for every X # Z
the polynomial cx (y1,y2) has degree < 1, and thus cx 2 = 0. This property holds with probability
0 =1. O

4 Linearly-Homomorphic Signatures with Short Public Keys

In this section, we show a new linearly-homomorphic signature scheme that uses APHF's in a generic
way. By instantiating the APHFs with our construction Hgq given in Section |3} we obtain the first
linearly-homomorphic signature scheme that is secure in the standard model, and whose public
key has a size that is sub-linear in both the dataset size and the dimension of the signed vectors.
Precisely, if the signature scheme supports datasets of maximal size N and can sign vectors of
dimension 7', then the public key of our scheme is of size O(\/N +T ). All previously existing
constructions in the standard model achieved only public keys of length O(N + T'). Furthermore,
our scheme is adaptive secure and achieves the interesting property of efficient verification that
allows to use the scheme for verifiable delegation of computation in the preprocessing model [17].

Before describing our scheme, in the next section we recall the definition of homomorphic
signatures.

4.1 Homomorphic Signatures for Multi-Labeled Programs

In this section we recall the definition of homomorphic signatures as presented in [17]. This definition
extends the one by Freeman in [I9] in order to work with the general notion of multi-labeled
programs [22/4].

Multi-Labeled Programs. A labeled program P is a tuple (f, 71, ...,7,) such that f: M"™ — M
is a function of n variables (e.g., a circuit) and 7; € {0,1}* is a label of the i-th input of f. Labeled
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programs can be composed as follows: given Py, ..., P; and a function g : M? — M, the composed
program P* is the one obtained by evaluating g on the outputs of Py, ..., P, and it is denoted as
P* = g(P1,...,P:). The labeled inputs of P* are all the distinct labeled inputs of Py, - -- Py (all the
inputs with the same label are grouped together and considered as a unique input of P*).

Let fiq : M — M be the identity function and 7 € {0,1}* be any label. We refer to Z, = (fiq, 7)
as the identity program with label 7. Note that a program P = (f,71,---,7,) can be expressed as
the composition of n identity programs P = f(Z,,--- ,Z;,).

A multi-labeled program P is a pair (P, A) in which P = (f, 7, -+ ,7,) is a labeled program
while A € {0,1}* is a data set identifier. Multi-labeled programs can be composed within the same
data set in the most natural way: given (P1, A),..., (P, A) which has the same data set identifier
A, and given a function g : M* — M, the composed multi-labeled program P% is the pair (P*, A)
where P* is the composed program g(Pi,---,P:), and A is the common data set identifier for all
the P;. As for labeled programs, one can define the notion of a multi-labeled identity program as

Ziar = ((fia,7),4Q) -

Definition 8 (Homomorphic Signatures). A homomorphic signature scheme HSig consists of
a tuple of PPT algorithms (KeyGen, Sign, Ver, Eval) satisfying the following four properties: authen-
tication correctness, evaluation correctness, succinctness and security. The four algorithms work
as follows:

KeyGen(1*, £) the key generation algorithm takes as input a security parameter \, the description
of the label space L (which fizes the mazimum data set size N ), and outputs a public key vk
and a secret key sk. The public key vk defines implicitly a message space M and a set F of
admissible functions.

Sign(sk, A, 7,m) the signing algorithm takes as input a secret key sk, a data set identifier A, a label
T € L a message m € M, and it outputs a signature o.

Ver(vk, Pa,m,0) the verification algorithm takes as input a public key vk, a multi-labeled program
Pa=((f,71,... ), Q) with f € F, a message m € M, and a signature o. It outputs either 0
(reject) or 1 (accept).

Eval(vk, f, o) the evaluation algorithm takes as input a public vk, a function f € F and a tuple of
signatures {o;}1'_, (assuming that f takes n inputs). It outputs a new signature o.

Below we describe the four properties mentioned above:

AUTHENTICATION CORRECTNESS. Intuitively, a homomorphic signature scheme has authentication
correctness if the signature generated by Sign(sk, A, 7,m) verify correctly for m as the output of
the identity program Zx r. More formally, the scheme HSig satisfies the authentication correctness
property if for a given label space £, all key pairs (sk, vk) < KeyGen(1*, £), any label 7 € £, data
identifier A € {0,1}*, and any signature o < Sign(sk, A, 7,m), Ver(vk,Za »,m, o) outputs 1 with
all but negligible probability.

EvaruaTiON CORRECTNESS. Intuitively, this property says that running the evaluation algo-
rithm on signatures (o1, - ,0,) such that each o; verifies for m; as the output of a multi-labeled
program (P;, A), produces a signature o which verifies for f(mi,---,m;) as the output of the
composed program (f(P1, -+ ,Pn), A). More formally, fix a key pair (vk,sk) < KeyGen(1*, L), a
function g : M! — M, and any set of program/message/signature triples {(P;, m;, 0;)}!_; such that
Ver(vk, P;,m;,0;) = 1. It m* = g(mq,...,my), P* = g(P1,--- ,Pt), and o* = Eval(vk, g, (01, ...,0%)),
then Ver(vk, P*,m*,o*) = 1 holds with all but negligible probability.
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SUCCINTNESS. A homomorphic signature scheme is said to be succint if, for a fixed security
parameter A, the size of signatures depends at most logarithmically on the data set size N.

SECURITY. To define the security notion of homomorphic signatures we define the following ex-
periment HomUF-CMA 4 Homsign () between an adversary A and a challenger C:

Key Generation C runs (vk,sk) < KeyGen(1*, £) and gives vk to A.

Signing Queries A can adaptively submit queries of the form (A, 7, m), where A is a data set
identifier, 7 € £, and m € M. The challenger C proceeds as follows: if (A, 7,m) is the first
query with the data set identifier A, the challenger initializes an empty list Th = (0 for A.
If T does not already contain a tuple (7,:) (which means that A never asked for a query
(A, T,+)), the challenger C computes o & Sign(sk, A, 7,m), returns o to A and updates the list
Ta < Ta U (1,m). If (1,m) € Ta (which means that the adversary had already queried the
tuple (A, 7,m)), then C replies with the same signature generated before. If T4 contains a tuple
(1, m') for some message m’ # m, then the challenger ignores the query.

Forgery At the end A outputs a tuple (P}.,m*,0").

The experiment HomUF-CMA 4 Homsign(A) outputs 1 if the tuple returned by A is a forgery, and
0 otherwise.

To define what is a forgery in such a game we recall the notion of well defined program with
respect to a list T [17].

Definition 9. A labeled program P* = (f*,7{,..., 1) is well defined with respect to Ta« if one of
the two following cases holds:

— 3dmy,...,my st (17,m;) € Ta- Vi=1,...,n.

—Jie{l,,n} st (7,0) & Tas and f*({my}(z;.m;)erar YU {M(r;,)¢1a. }) does not change for
all possible choices of mj € M.

Intuitively, the first case says that the challenger has generated signatures for the entire input
space of f for the data set A*, while the second one means that the inputs that were not signed
during the experiment do not contribute to the result of f.

Using this notion, it is then possible to define the three different types of forgeries that can
occur in the experiment HomUF-CMA:

Type 1: Ver(vk, P}.,m*, 0*) = 1 and the list Th- was not initialized during the game (i.e., no
message was ever signed w.r.t. data set identifier A*).

Type 2: Ver(vk, P4.,m", ") = 1, P* is well defined with respect to Ta+ and m* # f*({m;}(, m,)ers:)
(i.e., m* is not the correct output of P* when executed over previously signed messages).

Type 3: Ver(vk, Pi.,m*,0*) =1 and P* is not well defined with respect to Ta-.

Then we say that HSig is a secure homomorphic signature if for any PPT adversary A, we have
that Pr{HomUF-CMA 4 Homsign(A) = 1] < €(A\) where €()) is a negligible function.

We recall that, as proved by Freeman in [19], in a linearly-homomorphic signatures scheme any
adversary who outputs a Type 3 forgery can be converted into one that outputs a Type 2 one.

Proposition 1 ([19]). Let HSig be a linearly homomorphic signature scheme with message space
M C R™ for some ring R. If HSig is secure against Type 2 forgeries, then HSig is secure against
Type 3 forgeries.
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Homomorphic Signatures with Efficient Verification. We recall the notion of homomorphic
signatures with efficient verification introduced in [I7]. The property states that the verification
algorithm can be split in two phases: an offline phase where, given the verification key vk and a
labeled program P, one precomputes a concise key vkp; an online phase in which vkp can be used to
verify signatures w.r.t. P and any dataset A. To achieve (amortized) efficiency, the idea is that vkp
can be reused an unbounded number of times, and the online verification is cheaper than running
P. Below is the formal definition.

Definition 10. Let HSig = (KeyGen, Sign, Ver, Eval) be a homomorphic signature scheme for multi-
labeled programs. HSig satisfies efficient verification if there exist two additional algorithms (VerPrep,
EffVer) such that:

VerPrep(vk, P): on input the verification key vk and a labeled program P = (f,11,...,Tn), this
algorithm generates a concise verification key vkp. We stress that this verification key does not
depend on any data set identifier A.

EffVer(vkp, A, m,0): given a verification key vkp, a data set identifier A, a message m € M and
a signature o, the efficient verification algorithm outputs 0 (reject) or 1 (accept).

The above algorithms are required to satisfy the following two properties:

CORRECTNESS.  Let (sk,vk) & KeyGen(1}) be honestly generated keys, and (Pa,m,c) be any
program/message/signature tuple with Py = (P, A) such that Ver(vk,Pa,m,o) = 1. Then, for
every vkp & VerPrep(vk, P), EffVer(vkp, A, m,0) = 1 holds with all but negligible probability.

AMORTIZED EFFICIENCY. Let Pa = (P, A) be a program, let (my,...,my) € M"™ be any vector of
inputs, and let t(n) be the time required to compute P(mi,...,my). If vkp<VerPrep(vk, P), then
the time required for EffVer(vkp, A,m, 1) is t' = o(t(n)).

4.2 Our Construction

Let X' = (KeyGen',Sign’, Ver') be a regular signature scheme, and F : K x {0,1}* — Z, be a
pseudorandom function with key space K. Our linearly-homomorphic signature scheme signs 7T'-
dimensional vectors of messages in Z,, and supports datasets of size N, with both N = poly(X)
and T = poly()\). Let H = (H.Gen, H.PriEval, H.PubEval) and H' = (H.Gen’, H.PriEval’, H.PubEval’)
be two asymmetric programmable hash functions such that H : [N] - G; and H' : [T] — G;.

We construct a homomorphic signature HSig = (KeyGen, Sign, Ver, Eval) as follows:

KeyGen(1*, £,T). Let A be the security parameter, £ be a set of admissible labels where £ =
{1,...,N}, and T be an integer representing the dimension of the vectors to be signed. The
key generation algorithm works as follows.

— Generate a key pair (vk',sk’) & KeyGen'(1*) for the regular scheme.

— Run bgp & G (1) to generate the bilinear groups parameters bgp = (p, G1, G2, G, g1, g2, €¢)where

G1,Gy and Gy are groups of prime order p ~ 2*, g1 € Gi, go € Gy are generators and

e : G1 X Gy — Gr is an efficiently computable, non-degenerate bilinear map.

Choose a random seed K & K for the PRF Fy : {0,1}* — L.

— Run (sek, pek) <~ H.Gen(1*, bgp) and (sek’, pek’) < H.Gen’(1*, bgp) to generate the keys of
the asymmetric hash functions.

— Return vk = (vk’, bgp, pek, pek’) and sk = (sk/, K, sek, sek’).
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Sign(sk, A, 7,m). The signing algorithm takes as input the secret key sk, a data set identifier
A €{0,1}*, a label 7 € [N] and a message vector m € Z]', and proceeds as follows:
1. Derive the integer z <— Fi(A) using the PRF, and compute Z = g3.
2. Compute o < Sign’(sk’, A|Z) to bind Z to the dataset identifier A.

3. Choose a random R < G; and compute

1
T /7

S = [ H.PriEval(sek,7) - R - | [ H.PriEval'(sek’, )™
j=1

4. Return a signature o = (oa, Z, R, S).

Essentially, the algorithm consists of two main steps. First, it uses the PRF Fg to derive a
common parameter z which is related to the data set A, and it signs the public part, Z = g3,
of this parameter using the signature scheme X’. Second, it uses z to create the homomorphic
component R, S of the signature, such that S is now related to all (A, 7, m).

Eval(vk, f, o). The public evaluation algorithm takes as input the public key vk, a linear function
i Zﬁ — Zjp described by its vector of coefficients f = (fi,..., f¢), and a vector o of ¢
signatures oy,...,00 where 0; = (04, Z;, R;, S;) for i = 1,...,¢. Eval returns a signature
o= (oa,,Z,R,S) that is obtained by setting Z = Z;, 0o = 04,1, and by computing

l L
R=T[Rl s=]]s’
i=1 i=1

Ver(vk, Pa,m, o). Let Pa = ((f,71,...,7¢), Q) be a multi-labeled program such that f : Zf, — Zp
is a linear function described by coefficients f = (f1,..., f¢). Let m € Zg be a message-vector
and 0 = (o, Z, R, S) be a signature.

First, run Ver'(vk’, A|Z, 0 A) to check that o 4 is a valid signature for Z and the dataset identifier
A taken as input by the verification algorithm. If o4 is not valid, stop and return 0 (reject).
Otherwise, output 1 if and only if the following equation is satisfied

¢ T
€8, 2) = (HH'PubEval(pek,n)ﬁ) -¢(R,go) - | [ H-PubEval (pek/, j)™ (1)

i=1 Jj=1

Finally, we describe the algorithms for efficient verification:

VerPrep(vk,P). Let P = (f,71,...,7¢) be a labeled program for a linear function f : Zf, — Zp.

The algorithm computes H = Hle H.PubEval(pek, 7;)i, and returns the concise verification
key vkp = (vk', bgp, H, pek’).

EffVer(vkp, A, m,0). The online verification is the same as Ver except that in the verification
equation the value H has been already computed in the off-line phase (and is included in vkp).

Clearly, running the combination of VerPrep and EffVer gives the same result as running Ver, and
EffVer’s running time is independent of f’s complexity /.

We formally show the correctness of our homomorphic signature scheme in Section The
following theorem states the security of the scheme. Its proof appears in Section 4.4
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Theorem 8. Assume that X' is an unforgeable signature scheme, F is a pseudorandom function,
and G is a bilinear group generator such that: H has (1,7, €)-programmable pseudorandomness; H’

is weakly (poly, 1,2,~',0")-degree-2-

programmable, weakly (poly, 1,2,~',¢")-programmable and (poly,0,1,~",")-

programmable; the 2-DHI and the FDHI assumptions hold. Then HSig is a secure linearly-homomorphic
stgnature scheme.

We note that our scheme HSig can be instantiated by instantiating both H and H' with two
different instances of our programmable hash Hsq described in Section As one can check
in Section , Hsqre allows for the multiple programmability modes required in our Theorem
Let us stress that requiring the same function to have multiple programmability modes is not
contradictory, as such modes do not have to hold simultaneously. It simply means that for the same
function there exist different pairs of trapdoor algorithms each satisfying programmability with
different parameters/]

4.3 Proof of Correctness

Theorem 9. If X’ is a correct signature scheme, and H, H' are asymmetric hash functions for
bilinear groups, then the scheme HSig satisfies the authentication correctness property.

Proof. Let (sk, vk) be a pair of honestly generated keys and let o < Sign(sk, A, 7,m) be a honestly
generated signature, with o = (o4, Z, R+, S;). In order to prove that the verification algorithm
Ver(vk, Z a -, m, o) outputs 1 with all but negligible probability, the first observation to do is that
by the correctness of X’ the signature o verifies correctly for Z and A. Then, by construction of
HSig, we can see that

1/z
T
S; = | H.PriEval(sek,7) - R - H H.PriEval’(sek’, )™
j=1
Hence, we have that
T 1/z
e(Sr, Z) =e | | H.PriEval(sek,7) - R, - | [ H.PriEval(sek’, /)™ | ,Z
j=1
T
=e | H.PriEval(sek, 7) - R; - H H.PriEval’(sek’, 7)™, g2
j=1
T
= ¢ (H.PriEval(sek, 7), g2) - e(Rr, go) - € H H.PriEval’(sek’, j)™, go
j=1
T
= H.PubEval(pek, 7) - e(R;, g2) - H H.PubEval’(pek’, 7)™
j=1

where the last equation holds by definition of H.PubEval and H.PubEval'.

7 We also stress that, by definition, the outputs of these trapdoor algorithms are statistically indistinguishable.
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Theorem 10. If X' is a correct signature scheme, and H, H' are asymmetric hash functions for
bilinear groups, then the scheme HSig satisfies the evaluation correctness property.

Proof. Let (sk,vk) be a pair of honestly generated keys, and let {m(?), Pin,oi = (on, Z, Ri, Si) Yoy
be messages, labeled programs and signatures such that Ver(vk,Pi,A,m(i),ai) =1, foralli=1
to ¢. Let o < Eval(vk, f,o = (01,...,0¢)) be a a signature obtained by running Eval on signatures
(01,...,0¢0), where ¢ = (oa,Z,R,S). By construction of Eval, we have R = Hle lei and S =
Hle Szfl So, if we let m = f(mW), ..., m®)) = Zle fi - mY | for evaluation correctness we want
to prove that the verification algorithm Ver(vk, P, m, o) outputs 1.

The fact that o verifies correctly for Z and A is immediate by correctness of X’ and by
construction of Eval (which simply copies one of these honestly-generated signatures).

Since each o; verifies correctly, for every i = 1,...,¢ we have

T (%)
e(Si, Z) = H.PubEval(pek, ;) - €(R;, g2) - | | H-PubEval’(pek’, )™

j=1

Then, by the previous equations and the fact that H, H' are asymmetric hash functions for
bilinear groups, we obtain the desired equation:

L
e(S,Z2)=e (HS{ZZ)
i=1
¢ T 1/z
. o (8)
=e H H.PriEval(sek, 7)/i - lez : H H.PriEval’ (sek’, 7)™ Z
i=1 j=1

¢ T
4 (2)
= (H H-PubEvaerkm)ff) e(R, go) - | [T H-PubEval (pek’, j)=is S

i=1 j=1

¢ T
— (H H.PubEvaI(pek,T)fi> -e(R,g2) - H H.PubEval'(pek’, j)™

i=1 j=1

4.4 Proof of Security

To prove Theorem [§], we show that for every PPT adversary A running in the security experiment
HomUF-CMA 4 Hsig, the probability that the experiment outputs 1 is negligible. We do the proof by
describing a series of hybrid games. We write G;(.A) to denote the event that a run of Game i with
adversary A returns 1. Some of the games use some flag values bad; that are initially set to false.
If at the end of a game any of these values is set to true, the game simply outputs 0. We call Bad;
the event that bad; is set to true during the run of an experiment. Essentially, whenever an event
Bad; occurs in Game %, the game may deviate its outcome.

Finally, we note that in the following proof we directly use the result of Proposition [1|so that we
only have to deal with Type-1 and Type-2 forgeries, since Type-3 ones can be converted in Type-2.

Game 0 This game is the security experiment HomUF-CMA 4 ysig (where A only outputs Type-1
or Type-2 forgeries).
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Game 1 This game is defined as Game 0 apart from the fact that whenever A returns a forgery
o* = (0}, 7Z*, R*,S*) such that Z* was not generated by the challenger in the signing query
phase, then Game 1 sets bad;+true. As we show in Lemmal3] any noticeable difference between
Game 0 and Game 1 can be reduced to producing a forgery for the regular signature scheme
Y. Furthermore, it is worth noting that after this change, the game never outputs 1 if the
adversary returns a Type-1 forgery.

Game 2 This game is defined as Game 1 except that the pseudorandom function F' is replaced
by a random function R : {0,1}* — Z,. It is easy to see that Game 1 is computationally
indistinguishable from Game 2 under the assumption that F' is pseudorandom.

Game 3 is defined as Game 2 except for the following change. Let (P}.,0*, m*) be the forgery
returned by the adversary where Ph. = (f*,L*), o* = (¢}, Z*, R*,S*) and A* = A, for some
€ [Q] where @ is the number of distinct datasets asked by A during the game (note that
such p must exist at this point since the adversary can win only with a Type-2 forgery). The
challenger computes S = [, . (S:)/7, B = [Lcp-(R)7F 10 =3, oo f1-m, where {R;, S, },
are the signature components generated by the challenger in all the signing queries (A, 7, m,).
If the forgery verifies correctly, i.e., Ver(vk, Ph.,m*, 0*) = 1, and m* # 1 and S* = S, then
the challenger sets bads<«true.

It is easy to see that Pr[G2(A)]—Pr[G3(A)] < Pr[Bads]. In Lemma5| we show that any adversary
for which Badg occurs can be reduced to a solver for the 1-DHI problem.

Game 4 This game proceeds as Game 3 except for the following change: at the beginning, the
challenger chooses a random index p <& [Q], where @ = poly()) is the number of signing queries
made by A during the game. Let Aq,..., Ag be all the datasets queried by A. Then if the
dataset A* used by A in the forgery is not A,, the challenger sets bads<—true. As one can check,
we have that Pr[G3(A)] = Q - Pr[G4(A)].

Game 5 proceeds as Game 4 except that at the end the challenger runs the following additional
check: if Ver(vk, P}.,m*,0%) = 1 and m* # 1 and S* # S and R* = R, then the challenger
sets bads<—true. It is easy to see that Pr[G4(A)] — Pr[G5(A)] < Pr[Bads]. In Lemma [7| we show
that any adversary for which Bads occurs can be reduced to a solver for the 2-DHI problem.

Game 6 proceeds as Game 5 with the following modification. At the very beginning, the challenger
chooses the value z, & Zy that will be used to generate the signatures for u-th dataset A,. It
sets 7, = g5". Second, instead of generating the key pek of the hash function H using H.Gen, the

challenger runs (td, pek) & H.TrapGen(1*, bgp, 91, 91, 92, Z,,) where H.TrapGen is the algorithm
for which H has (1,~, €)-programmable pseudo-randomness. Then the challenger uses td when
it needs to compute H(-) during the experiment.
If H hash (1,7, €)-programmable pseudorandomness we immediately obtain that Game 5 and
Game 6 are within statistical distance v, i.e., | Pr[G5(A)] — Pr[Gs(A)]| < 7.

Game 7 This game is the same as Game 6, except that in the signing queries (A, 7, m) such that
A is the p-th distinct dataset queried by A, the challenger first computes ¢,<—H.TrapEval(td, 7)

Cro - .
™" instead of choosing

and then generates the signature component R, by setting R, = g;
R. &Gy randomly as done up to Game 6.

As we show in Lemma [8] Game 6 is computationally indistinguishable from Game 7 under the
assumption that H has programmable pseudo-randomness. Moreover, note that due to the pre-
vious modifications, Game 7 can output 1 only if the adversary outputs a forgery (Ph.,o*, m*)

such that Ver(vk, Ph.,m*,0%) = 1 and m* # 1 and S* # S and R* # R. We conclude the
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proof by showing in Lemma [J] that an adversary that wins in Game 7 can be used to solve the
FDHI problem (Definition [4)).

We proceed with the proof by formally bounding the difference between each consecutive pair
of games, and eventually the probability that an adversary wins in the last game. The proof of
Theorem [§] is finally obtained by putting together all the bounds.

Before proceeding with the actual proof we recall that the function H’ is defined over a domain
of polynomial size. By Remark [2| (Section [3)) this means that the programmability properties stated
in the theorem hold with probability 6’ = 1. This fact is always implicitly considered when proving
the lemmas below.

Lemma 3. For every PPT A there exists a PPT forger F such that Pr[Go(A)] — Pr[G1(A)] <
AdvIFEMAN).

Proof. The two games differ only if Bad; occurs in Game 1, i.e., | Pr[Go(A)]—Pr[G1(A)]| < Pr[Bad].
However, by the construction of HSig, if Bad; occurs, it means that the forgery returned by A
includes a valid signature o+ on (A*|Z*) although no signature on (A*|-) was ever returned by the
challenger during the experiment. It is straightforward to show that, for any such a PPT A, there
exists a PPT forger algorithm F that breaks the unforgeability of the regular signature scheme X",
Le., Pr[Badi] < Advy ;SMA(N).

Lemma 4. For every PPT A there exists a PPT distinguisher D such that | Pr[G1(A)]—Pr[G2(A)] |<
Advi (M.

Proof. Game 1 and Game 2 differ just for the fact that the PRF F'is replaced by a random function
R. It is easy to do a reduction to the security of the PRF to show that for any adversary A such
that | Pr[G1(A)] — Pr[G2(A)]| > € is non-negligible it is possible to construct a PPT distinguisher
D that archives advantage e against the pseudo-randomness of F'.

Lemma 5. If H is simply (1,~)-programmable, and H' is weakly (poly,1,2,~',0")-degree-2 pro-
grammable, then for every PPT A running in Game 3 there exists a PPT simulator B such that
Pr[Bads] < T - AdvgPHI(N) 4~ + 4.

Proof. Assume there exists a PPT adversary A such that Pr[Bads] > €. Then we show how to build

a PPT simulator B that breaks the 1-DHI assumption with advantage greater than /T — v —+/'.
B takes as input a tuple (g1, 92, 97, 95), and its goal is to compute gf2. Precisely, here we use the

fact that this problem is equivalent to the 1-DHI problem in which the adversary has to compute

gi/ *. So, B proceeds as follows.

Setup: B starts by sampling a random y & Zy and runs (td, pek) & H.Tra pGen(1*, bgp, g1, 91, 92, 95)-
Note that since B had set h; = g1, the polynomials cx generated by H.TrapEval(td, X) will be
univariate polynomials cx (y). Next, it chooses a random index v < [T], which represents a
guess on the index where the message vector m* returned by the adversary in the forgery
will differ from the “correct” result . Then B sets h1 = gf,h2 = g5 and runs the trap-
door generation (for weakly degree-2 programmability) of the asymmetric hash function H" —
(td’, pek’) & H’.TrapGen(1*, bgp, g1, h1, go, h2, ) — by providing v as the input on which the co-
efficient ¢, 2 # 0. Indeed, notice that by giving h; = gf, ha = g5 to H.TrapGen, the polynomials
generated H'.TrapEval(td’, X) will be univariate polynomials cx (z).
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Finally, the simulator generates the keys (sk’,vk’) of the scheme X', sets vk = (vk’, pek, pek’),
stores sk, td, td’, and returns vk to A.

Signing queries: Let k<1 be a counter for the number of datasets queried by A. For every new

queried dataset A, B creates a list T'a of tuples (7, m, o), which collects all the label/message
pairs queried by the adversary on A, and the respectively generated signatures. Moreover,
whenever the k-th new dataset Ay is queried, B samples a random & & Ly, computes Zj =
(93)% and stores &. Note that all the values { Zj }x¢(g) are random in G and thus are distributed
exactly as in Game 3.
Given a signing query (A, 7,m) such that A = Ay is the k-th dataset, B proceeds as follows.
First, it runs ¢;<H.TrapEval(td, 7), and cé(—H’.TrapEvaI(td’,j) for all j = 1 to T'. Notice that
by the weak (poly, 1,2) degree-2 programmability of H' we have 03’2 = 0 for all j # v, whereas
02,2 # 0.

Therefore, B samples a random p, & Z,, and computes

1
—er()-5T, ¢ gm; ST m, , &
R =g U (g)Pr, Sy = <gf cgr T (g )™

As one can see, the value R, is a uniformly distributed G; element as in Game 3. Moreover, S,
is a correctly distributed signature since

1

1
T / i . T / . )
Sy = (95” g <gf>0’”*2m”> - (gfﬂf g (9%2)0'”’2mu> ’

T ’ X T ’ . T / . z
| erly)  —er()=3—1 € omy 2 2j=1%,0™M  25=17C5 1M 22 el oy |k
= <g1 "Y1 (9" o "0 (g7 )2

1
ST (d, g+ 2+ 5 22)m; \ %k
— (H(T) . RT ' J=13173,0 ' 75,1 7>2 J

1 1
2p T 23

T , ,
= (@& JTo? ™™ | = (HE- R TTHG)™
j=1

Finally, B returns to A the signature o = (o, Zk, R;, S:), where o a & Sign(sk’, A| Zy).

Forgery: Let (P}.,0", m*) be the forgery returned by the adversary. B proceeds exactly as the
challenger in Game 3 in order to compute ]%, S, 7. If Bads occurs, since (Ph«, 0%, m*) verifies
correctly the following two equations hold

T
e(8*,2,) = A-e(R", g2) - H H.PubEval’ (pek’, 7)™,
j=1

T
e(S,2,) = A-e(R,g2) - H H.PubEval’(pek’, j)™
j=1

where A = ] .- H.PubEvaI(pek,T)f:. If we divide the two equations and consider that, by
definition of Bads, it holds §* = S, then we obtain

~ T

R N —

o =[Hem
=1
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By correctness of the trapdoor algorithms of H" we know that H'(j) = ¢ where
¢ = 0 for all j # v whereas c,,, # 0. Furthermore, since the simulation provided to A so far
was distributed statistically close to the real execution of Game 3 (close by a factor v 4+ due
to the use of TrapGen in H and H’), v is information-theoretically hidden to .A. Hence,

T ~ T ~ Py
R . Zj:1(c;’o+cg-7lz+c;,222)(m;—m]-)_ Ejzl(c;,o-l—c;.,lz)(m;—m‘j)+ci,Y2z2(m§—ml,)

ﬁ—% 1

Since m* # 7 there must exist an index v/ € [T such that m}, # m,,. If ' # v then B aborts,
otherwise it computes

[
Zszl(C;,oJrCQ,lZ)(m;—mj) oy, p(mi—mw)

> [R-g;

R*

It is easy to see that if B does not abort, B is able to compute the solution ng of the 1-DHI
problem. The probability that B does not abort is Pr[v/ = v] = 1/T since v is uniformly distributed
and completely hidden from the view of A. In conclusion, we have that if Pr[Bads] > € then B has
advantage at least ¢/T — v — 7. O

Lemma 6. Pr[G3(A)] = Q - Pr[G4(A)]

Proof. First, note that Pr[G4(A)] = Pr[G4(A)ABad4]+Pr[G4(A)A—Bady] = Pr[G4(A)|-Bads] Pr[—Bady]
since Game 4 outputs 0 whenever Bad, occurs. Second, observe that when Bad4 does not occur
(i.e., the challenger guesses correctly the query index p of the dataset A*) then the outcome of
Game 4 is identical to the one of Game 3, i.e., Pr[G4(A)|-Bad4] = Pr[G3(A)]. Since p is chosen
uniformly at random and is completely hidden to A we have that Pr[-Bady] = 1/@Q, from which

the lemma follows.

Lemma 7. If H is simply (1,~)-programmable, and H' is weakly (poly, 1,2,~',¢")-programmable,
then for every PPT A running in Game 5 there exists a PPT simulator B such that Pr[Bads] <
T-AdvEPHI(N) 44 4+ 4.

Proof. Assume there exists a PPT adversary A such that Pr[Bads] > e. Then we show how to
build a PPT simulator B that breaks the 2-DHI assumption in Gy with advantage greater than
e/T —~v—+.

B takes as input a tuple (gl,gg,gf,gg,gfz,QSQ), and its goal is to compute gi/z. To do so B
proceeds as follows.

Setup: B proceeds as the challenger in Game 5 by choosing a random index p & [Q]. Second, B
picks a random y & Zy and runs (td, pek) & H.TrapGen(1*, bgp, g1, g1, g2, g5 ). Note that since B
had set hy = g1, the polynomials cx generated by H.TrapEval(td, X') will be univariate, degree-1,
polynomials cx (y). Next, it chooses a random index v & [T], which represents a guess on the
index where the message vector m* returned by the adversary in the forgery will differ from the
“correct” result . It runs the trapdoor generation (for weak (poly, 1, 2)-programmability) of
the asymmetric hash function H — (td’, pek’) & H’.TrapGen(1*, bgp, g1, g%, 92, g5, V) — providing
v as the input on which the coefficient ¢, o # 0. Notice that by giving h1 = gf,he = g5
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to H'.TrapGen, the polynomials generated H’.TrapEval(td’, X) will be univariate polynomials
ex(z) = ex0 + cxz + ex 27’
Finally, it generates the keys (sk’,vk’) of the scheme X', sets vk = (vk,pek,pek’), stores
sk’, td, td’, and returns vk to A.

Signing queries: Let k<1 be a counter for the number of datasets queried by A. For every new
queried dataset A, B creates a list T'a of tuples (7, m, o), which collects all the label/message
pairs queried by the adversary on A and the respectively generated signatures. Moreover, when-
ever the k-th new dataset Ay is queried, B does the following: if £ = u it samples a random
13 & 2, computes Z,, = (93)¢ and stores &; if k # p, B samples directly a random 2z, & Lo,
computes Z = g5* and stores z;. Note that all the values {Zk}re|q) are random in G2 and thus
are distributed exactly as in Game 5.

Given a signing query (A, 7,m) such that A = Ay, is the k-th dataset, B first computes o4,
Sign(sk’, Ay, Z,), and then proceeds as follows.
— If k& # p, B runs c.«H.TrapEval(td, 7), and c}<—H’.TrapEvaI(td',j) forall j =1 to T. It

samples R, & G1, and computes

1

%k

T

cr c(z)m;

Se= o R [ ™™
i=1

In particular, note that every g;j(z) can be computed by B using the values g7, gf2.
— If k = p, B runs ¢.<H.TrapEval(td, 7), and c;-<—H'.TrapEva|(td’,j) for all 7 = 1 to T'. Notice
that by the weak (poly, 1,2)-programmability of H', ¢}, = 0 for all j # v, whereas ¢, # 0.

Therefore, B samples a random p, & Z, and computes

ey

—Cr —Cp v T ET: (C/' +C/' Z)WL'
R = g O (g8 (gf gl )

As one can see, the value R, is a uniformly distributed G element as in Game 5. Moreover,
S; is a correctly distributed signature since

1
g _ <gpf,gz;‘fﬂ(c;-,ﬁc;,gz)mj)f _ <gzm.ngzl(c;,lzw;gzz)mj)
T 1 1 - 1 1

1

_ _ T / / / 2 \ z€
| e (y) er(U)—cLomv  zp 2j=1(c otzc] 1 +) 027 )m;
= (9{ "9 91 9

n
m"‘

1
ST (¢ g+zc (+¢ 522 my | #E
— (H(T) . RT - gy J=1173,0 7,17 75,2 J

1
T 2l

= [ H@) - R - [THG)™

J=1

Finally, B returns to A the signature o = (o4, , Zk, Rr, S7).
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Forgery: Let (P}.,0", m*) be the forgery returned by the adversary. B proceeds exactly as the
challenger in Game 5 in order to compute R, S,7n. If Bads occurs, since (P}., 0", m*) verifies
correctly the following two equations hold

T
e(S*,Z,) =A-e(R", g2) - H H.PubEval’ (pek’, j)™7,
j=1

T
e(S,2,) = A-e(R, g) - [ [ H-PubEval'(pek’, )™
j=1
where A = [] ... H.PubEval(pek,7)/7. If we divide the two equations and consider that by
definition of Bads, S* # S but R* = R we obtain

z€

S
S

T A
[THGym ™
j=1

/ / / 2
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By using the H'.TrapEval algorithm we know that H'(j) = g,

where c;-’o =0 for all
j # v. Hence,

*__

5 (gl/(ZO) erzl(c;’0+zcgﬂl+c;’2z2)(m] mj) _ (gl/(zé))clyo(m’iim”) gZ]T:l(c;’l—i-c;ﬂz)(m;f —m;) /€
5 1 - 1 1

S

Since m* # 7 there must exist an index v/ € [T such that m?, # /. If ' # v then B aborts,
otherwise it computes

3
- Zrzl(cl‘ 1+C/‘ QZ)(WL*f 7mj)/£ Ci, Q(W;*”ﬁu)
gl/z B q* g J 4,175, J ,
1 =

S

Note that the simulation of Game 5 provided by B to A is statistically close (by a factor v 4/
due to the use of TrapGen in H and H’) to the real execution of Game 5. Then, it is easy to see that
if B does not abort, it is able to compute the solution of the 2-DHI problem g%/ “. The probability
that B does not abort is Pr[v/ = v] = 1/T since v is uniformly distributed and completely hidden
from the view of A. In conclusion, we have that if Pr[Bads] > ¢ then B has advantage at least

e/T —~—7. 0

Lemma 8. If the asymmetric hash function H has (1,7, €)-programmable pseudo-randomness then

| PrCo(A)] — Pr[Gr(A)]| < e.

Proof. We do the proof by contradiction. Assume there exists a PPT adversary A such that
| Pr[G1]—Pr[G2]| > €. Then we show how to build a PPT simulator B that breaks the programmable
pseudo-randomness of H with advantage e. We build such a simulator B as follows:

Setup: B first receives the bilinear group parameters bgp, which includes the two generators g1, gs.
B proceeds as the challenger in Game 6 by choosing a random index p & [Q] and a random
2y & Z,. 1t also prepares Z,, = gg". Then it sets hy = g1 € G1, ha = Z,, and returns (hy, ha) to
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its challenger. It receives back a public key pek for H, and also gets access to an oracle that on
input 7 outputs H(7) and either g;™° or g|.

BB then queries its oracle on all inputs 7 € [N] and stores all the answers {Y7, C; } -¢|n]- Moreover,
B chooses in advance the values zj, <- Zyp, Yk € [Q] \ {u}, and stores {z, Zy = g5*}. Next, it
generates the keys (sk’,vk’) of the scheme X', the keys (sek’, pek’) of the asymmetric hash H’,
it sets vk = (vk/, pek, pek’), stores sk, sek’, and returns vk to A.

Signing queries: Let k<1 be a counter for the number of datasets queried by A. For every new
queried dataset A, B creates a list T'a of tuples (7, m, o), which collects all the label/message
pairs queried by the adversary on A and the respectively generated signatures.

On the k-th query (A, 7,m), B proceeds as follows:
— If k # u, B first generates the signature oa on (A, Z;) using the secret key sk’. Next, it
chooses a random value R, & G, and computes S, = (Y:-R; H;-le H.PriEval’(sek’, 7)™ )1/ %
— If k = p, B works exactly as above except that it sets R, = C; 1.
Finally, B returns to A the signature o = (0, Zk, R;, S;), where o a & Sign(sk’, A| Zy).

Forgery: Let (P}.,0*,m*) be the forgery returned by the adversary. B proceeds exactly as the
challenger in Game 7 in order to determine the outcome of the experiment, and outputs 0 or 1
accordingly.

It is easy to see that if B receives from its oracle values C; with the pseudorandom distribution,
then B is perfectly simulating Game 7 to A. Otherwise, if the values C; are random then B is
simulating Game 6. Therefore,

|Pr[Expg’ﬁH70 =1]— Plr[Expgl;EHf1 = 1]| = | Pr[G7(A)] — Pr[Gs(A)]| = ¢
O

To conclude the proof, we are left with showing that any PPT adversary has negligible proba-
bility of winning in Game 7. We show this in the following lemma where we prove that this holds
under the Flexible Diffie-Hellman Inversion Assumption (FDHI) given in Definition

Lemma 9. IfH has (1,7, €)-programmable pseudo-randomness and H' is (poly, 0,1,+/, §")-programmable,
then for any PPT A running in Game 7 there is a PPT B against the FDHI assumption such that
Pr[Gr(A)] = Advg "M () + 4+ 7.

Proof. Assume that A is a PPT adversary such that Pr[G7(A)] = €. Then we show how to build a
PPT simulator B which uses A to solve the FDHI problem with advantage €. B receives an FDHI

instance (91,92, 95, 9%, 97 , g}, 97 ) and works as follows.

Setup: B proceeds as the challenger in Game 6 by choosing a random index pu & [@]. Next,
it runs the trapdoor generation algorithm for the programmable pseudo-randomness of H,
(td, pek) & H.TrapGen(1*, bgp, g1, 91, g2, g5), and the trapdoor generation algorithm for the
(poly, 0, 1)-programmability of H', (td’, pek’) &~ H'.TrapGen(1*, bgp, g1, g1, g2, 43)-

Finally, it generates the keys (sk’,vk’) of the scheme X', sets vk = (vk/, pek, pek’), stores
sk’,td, td’, and returns vk to A.

Signing queries: Let k<1 be a counter for the number of datasets queried by A. For every new
queried dataset A, B creates a list Ta of tuples (7, m, o), which collects all the label /message
pairs queried by the adversary on A and the respectively generated signatures.

29



Moreover whenever the k-th new dataset Ay is queried, B does the following: if k& = p it samples
a random &, & Z,, computes Z, = (g3)% and stores Zu,&us if k # p, B samples a random

& & Zy, and computes Zj = (g3)% and stores Zj,&. Note that all the values {Zk}re(q) are
random in Gy and thus are distributed exactly as in Game 7.

Given a signing query (A, 7,m) such that A = Ay, is the k-th dataset, B first computes o4,
Sign(sk’, Ay, Z,), and then proceeds as follows.

— If k # p: B runs ¢.<H.TrapEval(td, 7), and c}<—H'.TrapEva|(td’,j) for all 7 = 1 to T'. Notice
that by the (1,7, €)-programmability of H we have that ¢, is a degree-1 polynomial in z:
¢r(2) = ¢r0+¢r12. Similarly, the polynomials c;» generated by H'.TrapEval are also of degree
1 in the sole variable z, and by the (poly, 0, 1)-programmability of H’ they are all such that

/ _ : / A
o =0, e, cj(z) =}z

Next, it samples p, & Z,,, computes

T T % T % T % Tf /< 1 5
R =g (gD, S = ((g1)" - (g7)"" - (g7 o1 G ) &

and returns o = (Zy,04,, Rr, S7) to A.

Note that the signature is correctly distributed as in Game 7, since R, is a uniformly
distributed G1 element, and

z T 1 L
Sr = ((g1)ert - (g )77 - (g ) Z= 1™ )

T
= |H() - R J[HG)™
j=1

— If k = p: B runs ¢.+H.TrapEval(td, 7), and c}<—H’.TrapEva|(td/,j) for all j =1 to T. It sets

—C
R; =g; " and computes
1
cr,1 Zszl 09,17”3' &
Sr=191" "9

and returns o = (Z,,04,, R, S;) to A.
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As one can check, such signature is distributed as a signature in Game 7: R; = g; % as in
the definition of Game 7 (for the u-th dataset) while for S; we have

1 1
T / N\ £, T / X z€
_ Cra 2oj=1C51my | oK _ zer1  Z2j=1Cj 1My s
Sr = (91 "0 = \9% " 91

T (2)m;\ 2 ! (2)m; -
= <H(7_)'RT'glz:j=1 J() J) ! = H(T) RT H 1]() ’
j=1
1
T Zp
= | H() - Ry - [[H ()™
j=1

Forgery: Let (P}.,0*,m*) be the forgery returned by the adversary. B proceeds exactly as the
challenger in Game 7 in order to compute R, S, m.

By definition, if Game 7 outputs 1, since (P}.,0*, m*) verifies correctly, the following two
equations hold

T
e(8*,2,) = A-e(R", g2) - H H.PubEval’ (pek’, 7)™,
j=1
A T N
e(S,2,) = A-e(R, g) - [ ] H.PubEval'(pek’, )™
j=1

where A = [] ... H.PubEval(pek, 7)/7. If we divide the two equations and consider that by
definition of Game 7, it must be S* # § and R* # R, then we obtain:

1 1
T 23" T z€u
S* R* *_gm R* ¢l 1 z(m*—1nj)
~ — ~ ° H,(])m] mJ = _ glj’l J J
s\ R ].I_Il R ].I_Il

1 d ( ) EL
z€p 03-71 m;—fnj
= =< . 2
<R> | | 91 (2)

j=1

Therefore B can compute

W = RA*’ W = (5;)@ » T ¢ (hy—m?)

and returns (W, W’) as a solution for the FDHI assumption.
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To see that (W, W’) is a solution for the FDHI assumption, i.e., W’ = W/ observe that by
equation (2)) it holds

S* #u ST 2, (mj;—m7)
(WI)Z — < _ > gl Jj=1 7,1 J
S
A A)g”zgu STy -y R
_ 2Ep . ¢t m;fmj ) J=1%C51 mjfm; _ W
<R> ]1_1191 91 R

Note that the simulation of Game 7 provided by B to A is statistically close (by a factor v+~
due to the use of TrapGen in H and H’) to the real execution of Game 7. Then, it is easy to see
that if Game 7 outputs 1, B is able to compute the solution of the FDHI problem, as described
above. In conclusion, if Pr[G7(A)] > € then B has advantage at least € —y — +/ in solving
FDHI. O

5 Short Signatures with Shorter Public Keys from Bilinear Maps

In this section we describe how to use APHFs to construct in a generic fashion standard-model
signature schemes over bilinear groups. We propose two constructions that are provably-secure
under the ¢-Strong Diffie-Hellman [7] and the ¢-Diffie-Hellman [6] assumptions. These constructions
are the analogues of the schemes in [28] and [27] respectively. The basic idea behind the constructions
is to replace a standard (m,1)-PHF with an (m,1,d)-APHF. In fact, in this context, having a
secretly-computable H does not raise any issue when using H in the signing procedure as the signer
already uses a secret key. At the same time, for verification purposes, computing the (public)
isomorphic copy of H in the target group is also sufficient. Our proof confirms that the (m, 1, d)-
programmability can still be used to control the size of the randomness in the same way as in
[28127]. One difference in the security proof is that the schemes in [2827] are based on the ¢-(S)DH
assumption, where ¢ is the number of signing queries made by the adversary, whereas ours have
to rely on the (¢ +d — 1)-(S)DH problem. Since our instantiations use d = 2, the difference (when
considering concrete security) is very minor.

When plugging into these generic constructions our new APHF, H,, described in Section
which is (m, 1, 2)-programmable, we obtain schemes that, for signing ¢-bits messages, allow for
public keys of length O(m~/¢) as in [35].

We describe the scheme based on ¢-SDH in Section and the one based on ¢-DH in Section
As discussed in [27], the advantage of the scheme from ¢-DH compared to the one from ¢-SDH
is to be based on a weaker assumption.

5.1 A g-Strong Diffie-Hellman Based Solution

In this section we revisit the ¢-SDH based solution of [28]. The signature Yyspy = (KeyGen, Sign,
Ver) is as follows:

KeyGen(11). Let A be the security parameter, and let £ = £(A\) and p = p()\) be arbitrary polyno-
mials. Our scheme can sign messages in {0, 1} using randomness in {0, 1}*. The key generation
algorithm works as follows:
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— Runbgp & G(1*) to generate the bilinear groups parameters bgp = (p, G1, Ga, Gr, g1, g2, €)where

G1, Gy and G are asymmetric groups of prime order p = 2*, g1 € G1, g € Gy are generators
and e : G; X Go — Gr is an efficiently computable, non-degenerate bilinear map.

— Run (sek, pek) <~ H.Gen(1*, bgp) to generate the keys of the asymmetric hash function.
— Choose a random z <& Zy; and set X < g5. Return vk = (bgp, pek, X) and sk = (sek, z).
Sign(sk, M). The signing algorlthm takes as input the secret key sk, and a message M € {0 1}
It starts by generating a random r & {0,1}#. Next, it computes o = H.PriEval(sek, M)1+T and
outputs (o, 7).
Ver(vk, M, (o,7)). To check that (o,r) is a valid signature, check that r is of length p and that

e(o, X - g5) = H.PubEval(pek, M)

We state the security of the scheme in the following theorem. We note that for simplicity our
proof assumes an (m, 1,d)-APHF for d = 2, which matches our realization. A generalization of
the theorem for a generic d can be immediately obtained, in which case one would rely on the
(¢ + d — 1)-SDH assumption.

Theorem 11. Assume that G is a bilinear group generator such that the (q+ 1)-SDH assumption
holds in Gy and H is (m, 1,2,7,)-programmable, then Xqspn is a secure signature scheme. More
precisely, let B be an efficient (probabilistic) algorithm that runs in time t, asks (up to) q signing
queries and produces a valid forgery with probability e, then there exists an equally efficient algorithm
A that confutes the (q+ 1)-SDH assumption with probability

;0 g qm!
€e>—-le—y—=—
q p 2

Proof. This proof is almost identical to the corresponding one from [28], we rewrite it here mainly
to show how to use APHFs in place of standard PHFs.

Let B be an adversary against the signature scheme. Assuming that B asks (up to) ¢ signing
queries, and denote with M; the i-th queried message and with (o;,7;) the corresponding signature.
Also, let M*, (c*,r*) be the produced forgery. We distinguish two types of forgeries:

Type I forgery: It holds that r* = r; for some ¢ € [q].
Type II forgery: It holds that r* # r; Vi € [q].

Notice that these two cases are mutually exclusive and completely cover the set of possible forgeries.
Now we show that both types of forgeries can be used to violate the (¢ 4+ 1)-SDH assumption.

Lemma 10 (Type I forgeries). Let B be a type I forger that breaks the signature scheme with ad-
vantage €1 (and making up to q signature queries). Then there exists an (equally efficient) adversary
A that breaks the (¢ + 1)-SDH assumption with advantage €', where

We prove the lemma via a sequence of games. We denote with GG; the event that Game 7 outputs
1, i.e., that B (successfully) forges in Game i.
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Game 0 This game is the standard existential unforgeability experiment ExngCMA. Clearly,
P T[Go] = €1

Game 1 This is the same as the previous game but the parameter of the APHF are generated
using H.TrapGen (rather than H.Gen). More precisely, A runs H.TrapGen(1*, g1, h1, g, ha), where
g1, g2 are, randomly chosen, generators and hy = g{', ha = g5 for a randomly chosen « & L.
By the ~-closeness of the trapdoor keys, we have:

Pr[G1] > Pr[Go] — v

Game 2 In this game we do the following changes. First, we choose the r;’s used to answer signing
queries all in advance (rather than one by one when needed). Since the r;’s are chosen at random
and independently anyway this change cannot affect B’s advantage at all. Second, we modify the
way g1, h1, g2, ha are chosen when executing H.TrapGen. Specifically, let g1 be a generator of Gy
and gs be a generator of Go. We choose i* €g {1,..., ¢} and we set r* =14+, R =U}_ r;, R* =
R\ {r*} and R*" = R\ {r*,r;}. Next, we define the polynomials p*(z) = [],cp«(z + 7) mod p
and p(z) = p*(z)(z + r*) mod p. Notice that both polynomials are of degree < ¢. Thus, from

Ql,ﬁf,...,g‘fq it is possible to compute g; = sz*(m) and h; = f]f(gﬁ). Next we set go = g9,
X =g5 and hy = géerT ). The distribution of g1, go is identical to the one in Game 1. The only

difference might occur in the case p(x) = 0, as in this case g1, h; would not be generators. By
the Schwartz-Zippel lemma, however, this happens only with probability at most ¢/p. Thus

Pr[Gs] > Pr[Gy] — %

Game 3 Let Bads be the event that the same r; is used to sign more than m different messages.
This means that if Bads occurs there are, at least, m + 1 indices i1, ..., %y,+1 such that r;, =
... =Ti,.,- On ¢ signing queries there might be up to (m‘il) < ¢™*1 such tuples. Moreover, a
given tuple is of the form 7;, = ... =1, with probability 2¢/2°(m+1)_ This means that

m+1

q
Pr[Badg] < opm

We modify Game 2, by assuming that the simulation aborts if Bads occurs. Thus,
m+1

q
20m

Pr[Gg] > PI"[GQ] -

Game 4 Let Bady be the event that B outputs a value r* such that »* = r;, but i # *. We modify
the previous game by imposing that the simulation aborts if Bad, occurs. Thus,

1
PI‘[G4] = PI‘[G4 AN —|Bad4] = 5PT[G3]

Game 5 Let Bads be the event that either there is an index ¢ € [¢] such that r; = r* such that
c,0 # 0, or it occurs cp+ o = 0. Game 5 proceeds as Game 4 except that it aborts if Bads
occurs. Using the programmability of H, we can bound the probability of Bads. Precisely, we
have that Pr[-Bads] > 0, from which we have

Pr[G5] = PI“[G5 A —|Bad5] = 5P1"[G4]
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Game 6 We further modify the simulation by using the alternative signing mechanism, from [7].
In particular, to sign the i-th queried message M;, one proceeds as follows. First, compute
cy;<—H. TrapEval(td, M;). Notice that by the setting of hy, ha and by the definition of TrapEval,
cu; is a degree-2 polynomial cyy,(z + 7*). Let us write cay, (v +7%) = cag 0 + ¢y (z +7%) by
removing the degree-0 term. Hence, one computes

1

e oFchy (@) T
0; = H.PriEval(sek, M;) 770 = (gfw Chry ot >>

1

AP (®)en; 0 N (m)c/Mi (z+r*)\ z+r;
=19 91

o ACMI-,O HTER*vi (J?Jr’f’) Acljwi (J?+T*) HTGR*7i (2?-‘1—7‘)
=4 91

Moreover, for all the signing queries that do not cause Bads, notice that cp;, 0 = 0 and thus
such signing queries can be answered without any explicit knowledge of x. As a consequence,

Pr[Gg] = Pr[G5]

Notice also that in Game 6, we are assuming that neither Bads nor Bad, occur. This means
that, for the the forged signature (M*,o*,7*) one has that H.PriEval(sek, M*) = g{" @) and
cm=,0 7 0. Using the same notation as above, using the ¢-SDH instance we can compute

c,/,ni (:c+r*)

y=g; "

as ¢, (x + r*) is a polynomial of degree < 2 without the constant term, i.e, ¢, (z + r*) is

7 i

divisible by (z + r*). We set

/ 1\1/em* 0 : =
_ * — m* 0 _  _x+r* _ Azt
o' =(0"y) =g =0y

1
Using standard techniques [728], o’ can be used to extract the required g;*"" . This means that
Pr[Gg] < e. Finally, putting together the bounds from the games above yields the lemma.

Lemma 11 (Type II forgeries). Let B be a type II forger that breaks the signature scheme with
advantage €2 (and making up to q signature queries). Then there ezist (equally efficient) adversaries
Ay, that breaks the (¢ + 1)-SDH assumption with advantage €, and As that breaks the discrete
logarithm problem with advantage epr,, where

etepr >e—q/p—7

Again we prove the lemma via a sequence of games, and use G; to denote the event that B (suc-
cessfully) forges in Game i.

Game 0 This game is the standard existential unforgeability experiment ExngCMA. Clearly,

P?“[Go] = €2
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Game 1 This is the same as Game 1 above, (i.e. the parameter of the programmable hash function
are generated using H.TrapGen (rather than H.Gen). Thus,

Pr[G1] > Pr[Go] — v

Game 2 In this game we do the following changes. First, we choose the r;’s used to answer signing
queries all in advance (rather than one by one when needed). Second, we modify the way
g1, h1, g2, ho are chosen when executing H.TrapGen. Specifically, let §; be a generator of Gy
and g2 be a generator of Gy. We we set R = U!_,r;. Next we define the (degree-q) polynomial

(z)

p(2) = [I,er(z+7) mod p . From g1, 47, ... ,§%" it is possible to compute g1 = ¢} and hy = §¢

(for random « & Zp). Next we set go = g2, X = g5, and hy = g5 Note that the distribution
of g1, go is identical with respect to Game 1. Again, the only difference might occur in the case
when p(z) = 0, as in this case g; would not be a generator. Thus

Pr[Ga] > Pr[G1] — %

Game 3 Let M* be the message used in the forgery, and let cjs-<—H.TrapEval(td, M*). We define
Bads as the event that cps«(a) = 0. Then, if Bads happens Game 3 aborts. It is not hard to

show, that if Bads occurs, then one can break the discrete log assumption (which in turn is
implied by the (¢ + 1)-SDH). Thus

Pr[Gg] 2 PT[GQ] — €pL

Game 4 We further modify the simulation by using the alternative signing mechanism, from [7]. In
particular, to sign the i-th message M; one obtains ¢y, <—H.TrapEval(td, M;) and then computes

o; = H.PriEval(sek, Mz)ﬁ% = (giMi(a)> ﬁ” = (gf(x)CMi(a))mj”

ACJWZ‘ (a) H'I‘ER\{TZ'} (1’+7")
= gl

Since all the signing queries, can be answered without any explicit knowledge of « we have that

Pr[G4] = Pr[G3]

Notice also that since we are assuming that Bads does not occur we have that, from the produced
forgery on M™* we can extract

1 p(z)
0_/ — (U*)I/CM*(O‘) — gfﬂ—r* — glm-&-r*
—
Again, by using standard techniques [7I28], ¢’ can be used to extract the required §;™" . Hence,

Pr[G4] <e.
Finally, putting together the bounds from the games above yields the lemma.

36



5.2 A ¢g-Diffie Hellman based solution

In this section we show how to revisit the ¢-DH based scheme of [27] in order to work with APHF's.
Our construction uses a standard PHF as an additional building block. We construct a signature
Yqpn = (KeyGen, Sign, Ver) as follows:

KeyGen(11). Let X be the security parameter, and let £ = £(A\) and p = p()\) be arbitrary polyno-
mials. The scheme can sign messages in {0, 1} using randomness in {0, 1}”. The key generation
algorithm works as follows:

— Run bgp & G(1*) to generate the bilinear groups parameters bgp = (p, G1, Gz, Gr, g1, g2, ¢)where
G1,Gy and Gy are groups of prime order p ~ 2*, g1 € Gi, go € Gy are generators and
e : G1 X Go — Gr is an efficiently computable, non-degenerate bilinear map.

— Run (sek, pek) <~ H.Gen(1*, bgp) to generate the keys of the asymmetric hash function.

— Let D = (PHF.Gen, PHF.Eval) be a group hash function [28] over Gy with input length
p such that D is programmable using the algorithms (PHF.TrapGen, PHF.TrapEval). Run
(k,7) < PHF.TrapGen(1*, g1, ¢!), for a random y & L.

— Return vk = (bgp, pek, k) and sk = (sek, 7, y). In what follows, we use the same notation of
[27], and use d(r) as a shorthand for (a,b) <— PHF.TrapEval(7,r), d(r) = a + yb.

Sign(sk, M). The signing algorithm takes as input the secret key sk, and a message M € {10, 1}

It starts by generating a random r € {0, 1}”. Next, it computes o = H.PriEval(sek, M )" and
outputs (o, 7).
Ver(vk, M, (o,r)). To verify that (o, r) is a valid signature, check that r is of length p, that d(r) # 0
and that
e(o, PHF.Eval(r)) = H.PubEval(pek, M)

We prove the security of the scheme in the following theorem. We note that for simplicity our
proof assumes an (m, 1,d)-APHF for d = 2, which matches our realization. A generalization of
the theorem for a generic d can be immediately obtained, in which case one would rely on the
(¢ + d — 1)-DH assumption.

Theorem 12. Assume that G is a bilinear group generator such that the (¢ + 1)-DH assumption
holds in Gy, H is an asymmetric (m,1,2,~,0)-programmable hash function, D is a (1, poly,~’,d)
programmable hash function over Go then Ypn is a secure signature scheme. More precisely let
B be an efficient (probabilistic) algorithm that runs in time t, asks (up to) q signing queries and
produces a valid forgery with probability €1, then there exists an equally efficient algorithm A that
confutes the (q+ 1)-DH assumption with probability

m
6'255'(61—7—qm>
q 20

Proof. Again the proof is almost identical to the corresponding one from [28], we rewrite it here for
completeness. Let B be an adversary against the signature scheme. Assuming that B asks (up to)
q signing queries we denote with M; the i-th queried message and with (o;,7;) the corresponding
signature. Also, let M*, (o*,7*) be the produced forgery. We distinguish two types of forgeries

Type I forgery : It holds that r* = r; for some i € [q].
Type II forgery : It holds that r* # r; Vi € [q].
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Notice that these two cases are mutually exclusive and completely cover the set of possible forgeries.
Now we show that both types of forgeries can be used to violate the (¢ + 1)-DH assumption.

Lemma 12 (Type I forgeries). Let B be a type I forger that breaks the signature scheme with ad-
vantage €1 (and making up to q signature queries). Then there exists an (equally efficient) adversary
A that breaks the (¢ + 1)-DH assumption with advantage €', where

m
6'255'(61—7—qm>
q 2

Again we prove the lemma via a sequence of games, and use G; to denote the event that B (suc-
cessfully) forges in Game 1.

Game 0 This game is the standard existential unforgeability experiment Exp%ECMA. Clearly,
Pr(Go]l = &1

Game 1 Let Bad; be the event that the same r; is used more than m times. We change the
simulation by forcing an abort if Bad; occurs. As done in lemma [L0] we have that

qm+1

PI‘[Gl] Z Pr[Go] - opm

Game 2 In this game we do the following changes. First, we choose the r;’s used to answer signing
queries all in advance (rather than one-by-one when needed). Since the 7;’s are chosen randomly
and independently anyway, this change cannot affect B’s advantage at all. Second, we guess the
index 7 such that i = i* and we abort if this does not happen (i.e. B outputs an r* # r;). Clearly,

Pr(Gy] > ;Pr[Gl]

Game 3 In this game we do the following changes. First, the parameter of the asymmetric pro-
grammable hash function are generated using H.TrapGen (rather than H.Gen). Next, we modify
the way g1, h1, g2, ho are chosen when executing H.TrapGen. Specifically, let §; be a generator of
G1 and g2 be a generator of Gy. Let R = UY_;r;, R* = R\ {r*} and R*" = R\ {r*,r;}. We set

— g}—[TER* d(r‘) hl — gFTER d(r) h Ad(r*)

g1 92 = g2 2 = o

The v-statistical closeness of H’s trapdoor keys implies
Pr[Gs] > Pr[Ga] — v

Game 4 Let Bady be the event that, letting ez, —H.TrapEval(td, M;), the following happens. Ei-
ther cp, 0 # 0 for some 4 for which r; = r*, or ey« 9 = 0 (where cpz-<—H.TrapEval(td, M*)).
Game 4 proceeds as Game 3 except that it it aborts if Bady occurs. The programmability of H
implies that

PI"[G4] = Pr[G3 A —|Bad4] > 5PI’[G3]
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Game 5 Now we change the way signing queries are answered. Whenever a message M; is queried,
the simulator computes ¢y, <—H.TrapEval(td, m;) and sets

;= giMi (NI, epxid(r)

Notice that it is possible to sign all the received signing queries as, by Game 4, for all r; = r*, it
holds cpr; 0 = 0. Game 5 is perfectly indistinguishable from Game 4, from B’s perspective, i.e.,

Pr[Gs] = Pr[G4]

Game 6 Now for each r; we compute (a;,b;) < PHF.TrapEval(7, ;) (for the received forgery we
would get (a*,b*)). Let Badg be the event that, either a; = 0 mod p for some i such that r* = r;,
or a* # 0. If Badg occurs, Game 6 aborts. By the (1, poly,+/, ") programmability of D

PI‘[G@] > (5/ PI‘[G5]
Now we embed the received (¢ + 1)-DH challenge (gl,g%,...,g%qﬂ,gg,g;’) as input, and we
proceed as before (but using the fact that we do not explicitly know y). It is easy to check that
all signing queries can be answered. Moreover, once the forgery (M*,o*,r*) is produced, we can
extract a solution of the (¢ + 1)-DH challenge as follows. First, since by Game 4 ¢y« # 0, we

can write
¥ b*/CM*,o
o
z =
QC’M* d(*) I1,ep* (art+ybr)
1

where, ¢, (d(r*)) is the polynomial obtained from cys«(d(r*)) by removing the constant term
cm+ o and dividing by d(r*)).

b* [epr « . e .
(H.PriEvaI(sek, M*)@ ) femno ( g @)/dr) >b L
z = _
)

AChpx ([d(*) e g (ar+ybr) AChpx (d(r*) [, g+ (ar+ybr
91 9

cearx o/d(r™) o (d(r* rer* (artybr
:<g1M,O/()g1M(())HeR( ybr)

b*/CM*,o
_ ( CM*yo/d(r*)) b™/enr* 0
gc/]V[* (d(’l"*)) HT‘GR* (ar+ybr) gl
1

_ ( giM*,o/@b*))b*/“M*@ _ g

Finally, by using techniques from [7] one can easily get the desired result g}/ Y,
Lemma 13 (Type II forgeries). Let B be a type II forger that breaks the signature scheme
with advantage €2 (and making up to q signature queries). Then there exists an (equally efficient)
adversary A that breaks the (q+ 1)-DH assumption with advantage € and an adversary that breaks
the discrete logarithm assumption with advantage € where
6/+5161/ 2 5/(62 _ry)
This lemma can be proved by easily adapting the proof of lemma [11] to this setting.
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A Digital Signatures

A digital signature scheme consists of three algorithms > = (KeyGen, Sign, Ver) such that:

KeyGen(1*) the key generation takes as input a security parameter A and returns a secret key sk

and a public verification key vk.

Sign(sk,m) on input a secret key sk and a message m, the signing algorithm generates a signature

g.

Ver(vk,m, o) given a triple vk, m,o the verification algorithm outputs 1 (accept) if o is a valid

signature on m for verification key vk, and 0 (reject) otherwise.

The security of a signature scheme, called existential unforgeability against chosen message attacks
(UF-CMA) is defined via the following experiment:

UF—CMA(/\)

Experiment Expy 5

(sk, vk) & KeyGen(1%)
(m*’g*) <i ASign(sk,-)(Vk)

If Ver(vk, m*,0*) = 1 and m* # m, for all m; queried to Sign(sk, -), output 1
Else Output 0

The advantage of A in breaking the UF-CMA-security of X' is Adv}f"’}CMA(A) = Pr[Exp%}CMA()\)

1]. Then we say that A (t,Q,¢€)-breaks the UF-CMA-security of X if A runs in time ¢, makes at

most ) signature queries, and AdvglECMA()\) =e

A digital signature scheme Y is UF-CMA-secure if for any PPT A, Advﬂf&CMA(A) is negligible.
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B On the Hardness of the FDHI Assumption

To gain confidence in the FDHI assumption we show that FDHI is implied by the following decisional
assumption:

Definition 11 (Decisional Assumption 1). Let G be a generator of asymmetric bilinear groups,

let bgp = (p, G1,Ga,Gr, g1, g2, €) & G(1*) where g1, go are two random generators. The Decisional
Assumption 1 is e-hard for G if for every PPT adversary A:

Z r 1 z r
| Pr[A(g1, 92, 65, 65, 97+ 65, 97+ 95 *)] — PrLA(g1, 92, 95, 95, 97 95, 91, 9b)]| < e
where z,v,r,t & L.

Proposition 2. For any A which e-breaks the FDHI assumption, there is B which € -breaks As-
sumption 1 where € >e—1/p

Proof (Sketch). Let (91,92, 95,95, 97,97, 97, T) be the input of B where T can be either g;/z or gb

for a random and independent ¢. B runs (W, Y)H.A(gl,gg,gg,gg,glg,g{,glg). If e(Y,g95) = e(W, g2)

(i.e., A succeeds), then B returns 1 if e(W,T') = e(Y, g2) holds, and 0 otherwise.

Clearly, if T' = g%/z, e(W,T) = e(W, g;/z) = e(WV?, go) = e(Y, g2). Instead, if T' is random and

independent, the equation holds only with negligible probability 1/p.

As a next step, we show that Assumption 1 can be equivalently re-written in the following
Assumption 2 without rational exponents:

Definition 12 (Decisional Assumption 2). Let G be a generator of asymmetric bilinear groups,

let bgp = (p, G1,Ga,Gr, 91,92, €) & G(1"). Let hy € Gy, hy € Gy be two random generators. The
Decisional Assumption 2 is e-hard for G if for every PPT adversary A:

| Pr[A(ha, ho, B3, b3, Y, B B, b5 )] — PrA(hy, ho, S, by, B, b, 5", B)]| < e
where x,u,r,t & L.
Proof. The equivalence between the assumptions is obtained by setting the following equalities:
g1= i g2 = 15,05 = ho. g8 = .97/ = hu. g = Wi, g}/ = Wi, T =T

Finally, it is not hard to see that Assumption 2 is hard in the generic bilinear group model.
When framing the assumption according to the master theorem in [8], the polynomial 2?2 (in the
group Go) is in fact linearly-independent from the other polynomials representing the instance of
the assumption. To confirm the validity of Assumption 2, we also automatically tested it using the
generic group tool of [5]@

8 The simple script describing the assumption is available upon request.
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