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Abstract. The Simeck family of lightweight block ciphers was proposed
in CHES 2015 which combines the good design components from NSA
designed ciphers SIMON and SPECK. Dynamic key-guessing techniques
were proposed by Wang et al. to greatly reduce the key space guessed
in differential cryptanalysis and work well on SIMON. In this paper,
we implement the dynamic key-guessing techniques in a program to
automatically give out the data in dynamic key-guessing procedure and
thus simplify the security evaluation of SIMON and Simeck like block
ciphers regarding differential attacks. We use the differentials from Kölbl
et al.’s work and also a differential with lower Hamming weight we find
using Mixed Integer Linear Programming method to attack Simeck and
improve the previously best results on all versions of Simeck by 2 rounds.
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1 Introduction

SIMON and SPECK [17] are two lightweight block cipher families designed by
NSA that have attracted numerous cryptanalysis since their publication in 2013
[1,4,7,11,12,15,16,20]. SIMON is optimized for hardware implementation and
SPECK is optimized for software. In CHES 2015, Yanget al. combine their good
components and get a new design of block cipher family, called Simeck [10]. The
Simeck family applies a slightly modified version of SIMON’s round function and
reuses it in the key schedule like SPECK does. The hardware implementations
of Simeck block cipher family are even smaller than that of SIMON in terms of
area and power consumption in [10].

In [15], a new differential attack applying dynamic key-guessing techniques
was proposed to work on the reduced SIMON family. The basic idea of the attack
is to merge the classic differential attack [6] and the modular differential attack
which is widely used to attack hash functions [3,8,9,22,23]. This technique is
aimed at block ciphers with bitwise AND operator. Based on observations of
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differential propagation of the AND operator, attackers can deduce values of
some subkey bits and thus greatly reduce the key space that need to be guessed.
With differentials with high probability in previous papers [1,7,19], dynamic
key-guessing techniques were used to improved the best previous cryptanalysis
results by 2 to 4 rounds on family of SIMON block cipher in [15].

As dynamic key-guessing techniques were newly proposed, the designers of
Simeck did not consider its security regarding this technique. The designers of
Simeck give some other security analysis results including differential attacks [6],
linear attacks [14], impossible differential attacks [5], etc. mainly following the
attack procedure of SIMON due to their similarity. In [2] and [21], cryptanalysis
covering more rounds are given. In [21], the authors give differentials with high
probability of all three versions and launch differential attacks covering 19, 26
and 33 rounds of Simeck32/64, Simeck48/96 and Simeck64/128 respectively.
Though authors of [21] noticed the dynamic key-guessing method but they did
not implement it.

In this paper, we reveal some details in implementing the dynamic key-
guessing techniques and thus make it easy to launch a differential attack with
these techniques on SIMON and Simeck like block ciphers. Specifically, we write a
program to calculate the complexity in dynamic key-guessing procedure and then
estimate the complexities in differential cryptanalysis on family of Simeck block
ciphers. We find a 13-round differential of Simeck32/64 with lower hamming
weight with probability 2−29.64. Applying this differential and differentials from
[21] to attack Simeck with dynamic key-guessing techniques, we improve the
best previous results on all versions of Simeck block ciphers by 2 rounds. The
comparison of the cryptanalysis results for Simeck is in Table 1.

The organization of the paper is as follows. In Section 2 we give a brief
introduction of the Simeck family block cipher. In Section 3 we describe Wang et
al.’s dynamic key-guessing techniques in a general way and provide some details
in implementing the techniques. In Section 4 we give a 13-round differential
of Simeck32/64 found by MILP method and use it as well as differentials in
references to launch differential attack with dynamic key-guessing techniques on
Simeck. We conclude the paper in Section 5.
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Table 1: Comparison of Cryptanalysis Results of Simeck

Versions
Total Attacked Time Data Success

Reference
Rounds Rounds Complexity Complexity Prob.

Simeck32/64 32

18 263.5 231 47.7% [2]

19 236 231 - [21]

20 262.6 232 - [10]

21 248.5 230 41.7% This paper

22 257.9 232 47.1% This paper

Simeck48/96 36

24 294 245 47.7% [2]

24 294.7 248 - [10]

26 262 247 - [21]

28 268.3 246 46.8% This paper

Simeck64/128 44

25 2126.6 264 - [10]

27 2120.5 261 47.7% [2]

33 296 263 - [21]

34 2116.3 263 55.5% This paper

35 2116.3 263 55.5% This paper

2 The Simeck Lightweight Block Cipher

2.1 Notations

In this paper, we use notations as follows.

Xr−1 input of the r-th round

Lr−1 left half of Xr−1

Rr−1 right half of Xr−1

Kr−1 subkey used in r-th round

Xi i-th bit of X, indexed from left to right

X ≫ r right rotation of X by r bits

⊕ bitwise exclusive OR (XOR)

∧ bitwise AND

∆X X ⊕X ′

+ addition operation

% modular operation

∪ union of sets

∩ intersection of sets



4

2.2 Description of Simeck

The Simeck lightweight block cipher was introduced in [10]. It is a Feistel
structure and is denoted by Simeck2n/mn, where 2n is the block size and
mn the master key size. It includes three versions: Simeck32/64, Simeck48/96
and Simeck64/128 with number of rounds nr=32, 36 and 44 respectively. The
left half of input texts to i-th round is Li−1 = {Xi−1

n , Xi−1
n+1, · · · , X

i−1
2n−1} and

the right half is Ri−1 = {Xi−1
0 , Xi−1

1 , · · · , Xi−1
n−1} and the subkey is Ki−1 =

{Ki−1
0 ,Ki−1

1 , · · · ,Ki−1
n−1}. The round function of Simeck is

(Li, Ri) = (Ri−1 ⊕ F (Li−1)⊕Ki−1, Li−1)

where
F (x) = (x ∧ (x≪ 5))⊕ (x≪ 1)

for i = 1, · · ·nr. It can be seen that the round function of Simeck is similar to
that of SIMON. For coherence, we denote the rotation offsets by a, b and c. In
Simeck, a = 0, b = 5, c = 1 and in SIMON a = 1, b = 8, c = 2.

The structure of the key schedule of Simeck is similar to that of SPECK
while the update function reuses the round function of Simeck with constants
acting as round key. We refer the readers to [10] for details of Simeck.

3 Evaluating Security Regarding Differential Attack with
Dynamic Key-guessing Techniques

Differential attack [6] is one of the most powerful attacks on iterative block
ciphers. If there is an input difference that results in an output difference with
high probability against a reduced-round block cipher (called a differential), by
adding extra rounds before and after the differential, an attacker can choose and
encrypt an amount of plaintext pairs that may satisfy the input difference, and
then guess the subkey bits in the added rounds that influence the differential.
Right guess will lead conspicuous number of plaintext and ciphertext pairs to
the differential.

In [15], Wang et al. proposed dynamic key-guessing techniques to greatly
reduce the number of secret key bits that need to be guessed in differential
cryptanalysis. These techniques were based on observations that some subkey
bits can be deduced from equations invoked by certain input differences
of AND operator. Different input differences of AND operator result in
different conditions of subkey bits involved in the equations. Before using
these observations, attackers should find out the sufficient bit conditions that
act as equations in the extended rounds to make the differential hold. Thus
the preprocessing phase of differential cryptanalysis with dynamic key-guessing
techniques is divided into two stages when a differential with high probability
of the cipher has been found: firstly, generate the extended path and identify
the sufficient bit conditions to be processed and secondly generate the related
subkey bits corresponding to each bit condition in the first stage. In the following
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we illustrate the differential attacks with dynamic key-guessing techniques in a
general way and reveal some details of the implementation of the technique. We
refer the readers to [15] for some principles of the technique.

3.1 Generate the Extended Path with Sufficient Bit Conditions

Suppose a differential with probability p covering R rounds has been found,
we prefix r0 rounds on the top and append r1 rounds at the bottom. To get
the differential path of the prefixed r0 rounds, “decrypt” the input difference
of the differential according to the rules that the output differences of AND
operator is 0 if and only if its input differences are (0, 0). Otherwise set the
output difference of AND operator to ∗. For the appended r1 rounds, “encrypt”
the output difference of the differential according to the same rules.

The bit conditions to be processed in the extended path are sufficient bit-
difference conditions to make the differential path hold. Specifically, when the
input differences of AND operator are not (0, 0) and its output difference is
definite (0 or 1, not ∗), then this output difference is a sufficient bit condition.
Note that the prefixed r0 rounds should be processed in encryption direction to
lable sufficient bit conditions and the appended r1 rounds should be processed
in decryption direction.

3.2 Data Collection

Suppose there are l0 conditions in the plaintext differences and l1 sufficient bit
conditions in ∆X1. Divide the plaintexts into 2l0+l1 structures with 22n−l0−l1

plaintexts in each structure.
For two structures with different bits in positions with difference 1 in the

above (l0 + l1) bits, save the corresponding ciphertexts into a table indexed by
ciphertext bits in positions with difference 0. Suppose there are l2 ciphertext
bits are with difference 0, then for each such structure pair, there are about
22(2n−l0−l1)−l2 plaintext pairs remaining.

We build 2t plaintext structures, and filter out the remaining pairs by
decrypting one round. Suppose there are another k bit conditions to be satisfied
in ∆Xr0+R+r1−1 after one round decryption of the ciphertexts, then there are
2t−1+2(2n−l0−l1)−l2−k pairs left. Store them in a table T . At the same time, we
expect to get λr = 2t−1+2n−l0−l1 · p right pairs.

The plaintext pairs in the table T can still be filtered by bit conditions in∆X2

and ∆Xr0+R+r1−2 as some plaintext pairs may result in no subkey bit solution
to equations regarding sufficient bit conditions in ∆X2 and ∆Xr0+R+r1−2. The
procedure of generating subkey bits related to each sufficient bit condition is
described in next subsection.

3.3 Generate Related Subkey Bits for Each Sufficient Bit Condition

For each sufficient bit condition, we get two kinds of subkey bits related to this
bit - the subkey bits as variables of equations and subkey bits that need to be
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guessed to get the specific equation. In encryption direction, we have an equation
for sufficient bit condition ∆Xi

j+n = 0 or 1 where j ∈ [0, n− 1] and

∆Xi
j+n =∆Xi−1

(j+a)%n+n ∧X
i−1
(j+b)%n+n ⊕∆X

i−1
(j+b)%n+n ∧X

i−1
(j+a)%n+n

⊕∆Xi−1
(j+a)%n+n ∧∆X

i−1
(j+b)%n+n ⊕∆X

i−1
(j+c)%n+n ⊕∆X

i−2
j+n,

(1)

where
Xi−1

(j+b)%n+n =Xi−2
(j+b+a)%n+n ∧X

i−2
(j+b+b)%n+n

⊕Xi−2
(j+b+c)%n+n ⊕X

i−2
(j+b)%n ⊕K

i−2
(j+b)%n,

Xi−1
(j+a)%n+n =Xi−2

(j+a+a)%n+n ∧X
i−2
(j+a+b)%n+n

⊕Xi−2
(j+a+c)%n+n ⊕X

i−2
(j+a)%n ⊕K

i−2
(j+a)%n.

(2)

When (∆Xi−1
(j+a)%n+n, ∆X

i−1
(j+b)%n+n) = (0, 0) and ∆Xi−1

(j+c)%n+n ⊕∆X
i−2
j+n 6=

∆Xi
j+n, it is an invalid equation and we get no subkey bit solution. Therefore, for

sufficient bit conditions in ∆X2 and ∆Xr0+R+r1−2, this property can be used to
filter out the wrong plaintext pairs as∆X1, ∆X0 and∆Xr0+R+r1−1, ∆Xr0+R+r1

are independent to keys. For remaining plaintext pairs in table T , filter out the
wrong ones with sufficient bit conditions in ∆X2 and ∆Xr0+R+r1−2. Put the
remaining plaintext pairs in a table T1.

We refer to ∆Xi−1
(j+a)%n+n, ∆X

i−1
(j+b)%n+n, ∆X

i−1
(j+c)%n+n ⊕∆X

i−2
j+n as param-

eter differences for equation ∆Xi
j+n = 0 or 1. For valid equations, the subkey

bits related to the equation ∆Xi
j+n = 0 or 1 are divided into the following 3

conditions:
1. When

(∆Xi−1
(j+a)%n+n, ∆X

i−1
(j+b)%n+n) = (1, 0),

the variables of the equation are the subkey bits that are linear to Xi−1
(j+b)%n+n

and the subkey bits to be guessed are those that influence

Xi−2
(j+b+a)%n+n, X

i−2
(j+b+b)%n+n, X

i−2
(j+b+c)%n+n, X

i−2
(j+b)%n

and have not been deduced or guessed before;
2. When

(∆Xi−1
(j+a)%n+n, ∆X

i−1
(j+b)%n+n) = (0, 1),

the variables of the equation are the subkey bits that are linear to Xi−1
(j+a)%n+n

and the subkey bits to be guessed are those that influence

Xi−2
(j+a+a)%n+n, X

i−2
(j+a+b)%n+n, X

i−2
(j+a+c)%n+n, X

i−2
(j+a)%n

and have not been deduced or guessed before;
3. When

(∆Xi−1
(j+a)%n+n, ∆X

i−1
(j+b)%n+n) = (1, 1),
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the variables of the equation are the linear combination of subkey bits linear
to Xi−1

(j+b)%n+n and subkey bits linear to Xi−1
(j+a)%n+n and the subkey bits to be

guessed are those that influence

Xi−2
(j+b+a)%n+n, X

i−2
(j+b+b)%n+n, X

i−2
(j+b+c)%n+n, X

i−2
(j+b)%n, X

i−2
(j+a+a)%n+n,

Xi−2
(j+a+c)%n+n, X

i−2
(j+a)%n

and have not been deduced or guessed before.
For each text bit, we use a recursive algorithm to determine the subkeys bits

that influence it and subkey bits that are linear to it. The pseudo code is in
Algorithm 1.

Algorithm 1 Generate related key bits for Xi
j in encryption direction

1: Input Round i and bit position j
2: Output: [Influen keys, Linear keys]
3: function RelatedKeys(i, j)
4: Influent keys= [ ], Linear keys=[ ]
5: if i = 0 then
6: return [Influent keys, Linear keys]
7: else
8: if j < n then
9: return RelatedKeys(i− 1, j + n)

10: else
11: [I0, L0]=RelatedKeys(i− 1, (j + a)%n+ n)
12: [I1, L1]=RelatedKeys(i− 1, (j + b)%n+ n)
13: [I2, L2]=RelatedKeys(i− 1, (j + c)%n+ n)
14: [I3, L3]=RelatedKeys(i− 1, j%n)
15: Linear keys=L2 ∪ L3∪ Ki−1

j%n

16: Influent keys = I0 ∪ I1 ∪ I2 ∪ I3 ∪Ki−1
j%n

17: return [Influent keys, Linear keys]
18: end if
19: end if
20: end function

For sufficient key bits in the appended r1 rounds, we process each bit in
the decryption direction and give the formulas and pseudo code in Appendix A.
After processing all sufficient bit conditions in the prefixed and appended rounds,
we get a table of subkey bits variables corresponding to different parameter
conditions for each sufficient bit condition (see Table 5 for example).

It can be seen that whether a specific subkey bit can be deduced in an
equation corresponding to a sufficient bit condition depends on other 3 parameter
bit differences. Some bit differences may act as parameter in more than one
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sufficient bit conditions and therefore we should process such sufficient bit
conditions together. Specifically, we gather sufficient bit conditions with related
parameters into one group and calculate the average number of subkey bits values
for the group. In each round, suppose we put the original order of sufficient bit
conditions in Index order and the corresponding parameter sets in Para sets,
we use Algorithm 2 to group sufficient bit conditions.

Algorithm 2 Group sufficient bit conditions in one round

1: procedure Group(Index order, Para sets)
2: Assert length(Index order)=length(Para sets)
3: k=0
4: while k <length(Index order) do
5: flag=0
6: j=k+1
7: while j <length(Index order) do
8: if Para sets[j] ∩ Para sets[k] is not empty then
9: Index order[k] = Index order[k] ∪ Index order[j]

10: Remove Index order[j] from Index order
11: Para sets[k] = Para sets[k] ∪ Para sets[j]
12: Remove Para sets[j] from Para sets
13: flag=1
14: else
15: j++
16: end if
17: end while
18: if flag=0 then
19: k++
20: end if
21: end while
22: end procedure

In an actual attack, for each round, firstly guess the subkey bits to get the
specific equations in this round. Then deduce the values of subkey bit variables
in the equations according to parameter difference values group by group. In
the j-th group, if we guess gj subkey bits to get specific equations that totally
involve kj subkey bit variables and there are tj,i parameter conditions in each
of which we correspondingly get vj,i values of subkey bit variables, the average

number of values for the (gj +kj) subkey bits in this group is 2gj ·
∑

i tj,ivj,i∑
i tj,i

. For

all groups, we get
∏

j(2
gj ·

∑
i tj,ivj,i∑

i tj,i
) values of

∑
j(gj + kj) subkey bits. For all

extended rounds (or say groups), if the number of involved subkey bits (include
the guessed ones and deduced ones) is less than the length of master key, we are
able to launch an attack with time complexity less than exhaustive search.
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Note that there are two types of repeats in subkey bit variables and guessed
subkey bits when combing the numbers of values of subkey bits in all groups.
The first one is due to that some subkey bits are variables of more than one
group. The second one is that a linear combination of some subkey bits is a
variable of an equation that may be deduced and then each of the subkey bits
is again need to be guessed and thus one bit is repeated. When launching an
actual attack, all these bits should be preserved as there are conditions that no
specific value of the subkey bit variable is get from an equation. However, when
calculating the complexity of the attack, we should eliminate the repeated bits
as we take expected number of values of variables in each group.

3.4 Calculate Complexity of Attacks

Given the differential with high probability and number of rounds that we add
before and after the differential, the program can give out the number of all
subkey bits involved in the extended rounds |sk| and the number of solutions
to these subkey bits for each pair in T1, say Cs in [15]. According to [15], a
wrong subkey occurs with probability pe = Cs

2|sk| and the expected count of a
wrong subkey for all pairs in T1 is λe = Nr × pe. Combining the complexity
of searching subkey bits involved in the extended paths that get more than
s = bλrc hits and the complexity of tranverse the remaining subkey bits, the
time complexity of the attack is domimated by

Tes = 2mn × (1− Poisscdf(s, λe)), (3)

where Poissoncdf(x, y) is the cumulative distribution function of Poisson
distribution with expectation y. The success probability is

1− Poissoncdf(s, λr), (4)

where Poissoncdf(s, λr) denotes the probability that there is no subkey bits
with more than s hits.

4 Differential Attacks on Simeck with Dynamic
Key-guessing Techniques

4.1 A Differential of Simeck32/64

Though several differentials with high probability of Simeck family were given
in [21], we want to get new differentials with lower hamming weight. Using
automatic search method with MILP techniques [13,18,19,20], we find a 13-
round differential characteristic of Simeck32/64 with probability 2−38 (see Table
2). Then we search all differential characteristics with the same input and
output differences and with probability q such that 2−50 ≤ q ≤ 2−38. The
distribution of the differential characteristics is given in Table 3. Combing all
the differential characteristics we get that the probability of the differential
(0x0, 0x2)→ (0x2, 0x0) is about 2−29.64.
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Table 2: A differential characteristic of 13-round Simeck32/64 with probability
2−38

Rounds The input differences
0(Input) 0000000000000000 0000000000000010

1 0000000000000010 0000000000000000
2 0000000000000100 0000000000000010
3 0000000000001010 0000000000000100
4 0000000000010000 0000000000001010
5 0000000000111010 0000000000010000
6 0000000000001100 0000000000111010
7 0000000000101010 0000000000001100
8 0000000000010000 0000000000101010
9 0000000000001010 0000000000010000
10 0000000000000100 0000000000001010
11 0000000000000010 0000000000000100
12 0000000000000000 0000000000000010

13(Output) 0000000000000010 0000000000000000

Table 3: The distribution of the characteristics of Simeck32 in the differential
with input and output difference (0000, 0002) → (0002, 0000). The invalid
characteristics is due to the special property of the dependent inputs of the
AND operations in Simeck [1,19,20].

Prob. 2−38 2−40 2−41 2−42 2−43 2−44 2−45 2−46 2−47 2−48 2−49 2−50 Invalid
#Char. 4 62 52 427 637 2427 4384 12477 22742 48324 62039 50411 169458



11

4.2 Results on Simeck

We use differentials with high probability to evaluate the security of Simeck
family regarding differential attacks with dynamic key-guessing techniques.
The outputs of our program provide all information about the subkey bits
corresponding to all sufficient bit conditions. Due to page limits, we give the
details of dynamic key-guessing data in http://pan.baidu.com/s/1jGyBwj0

and give basic information of the attacks in the following.
For Simeck32/64, we adapt two differentials. The first one is (0x8000, 0x4011)

→ (0x4000, 0x0) that covers 13 rounds with probability 2−27.28 in [21]. We prefix
3 rounds and append 5 rounds to the differential. Building 214 structures with
216 plaintexts in each structure we are expect to get 231.2 pairs in T1 and finally
3.29 right pairs. In the dynamic key-guessing procedure we are expect to get
219.11 values of 53 subkey bits. According to the calculation method in Section
3.4, the time complexity and success probability of the attack are 252.34 and
41.7%. The extended differential path of the 21-round Simeck32/64 is in Table
4. We demonstrate the solutions of subkey bits in Round 2 in Table 5.

Table 4: Sufficient Conditions of Extended Differential Path of 21-round
Simeck32/64
Rounds Input Differences of Each Round

0 1, ∗, 0, 0, 0, ∗, ∗, ∗, 0, ∗, ∗, ∗, ∗, 1, ∗, ∗, ∗, ∗, ∗, 0, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗
1 0, ∗,0, 0,0,0, ∗,0,0,0, ∗, ∗, ∗,0,1, ∗, 1, ∗, 0, 0, 0, ∗, ∗, ∗, 0, ∗, ∗, ∗, ∗, 1, ∗, ∗
2 0,1, 0, 0, 0,0,0,0, 0,0,0,1,0, 0,0,1, 0, ∗, 0, 0, 0, 0, ∗, 0, 0, 0, ∗, ∗, ∗, 0, 1, ∗
3 1,0, 0, 0, 0, 0,0, 0, 0, 0,0,0,0, 0, 0,0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1

3→16 13-round differential
16 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0
17 1, ∗, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ∗, 0, 0, 0,0,1, 0, 0, 0, 0, 0,0, 0, 0, 0,0,0, 0, 0, 0
18 ∗, ∗, 0, 0, 0, 0, 0, ∗, 0, 0, 0, ∗, ∗, 0, 0, 1,1, ∗,0, 0, 0, 0,0,0, 0, 0,0,0, ∗, 0, 0,0
19 ∗, ∗, ∗, 0, 0, 0, ∗, ∗, 0, 0, ∗, ∗, ∗, 0, 1, ∗, ∗, ∗,0, 0, 0,0,0, ∗, 0,0,0, ∗, ∗,0,0,1
20 ∗, ∗, ∗, 0, 0, ∗, ∗, ∗, 0, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, 0,0,0, ∗, ∗,0,0, ∗, ∗, ∗,0,1, ∗
21 ∗, ∗, ∗, 0, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗,0,0, ∗, ∗, ∗,0, ∗, ∗, ∗, ∗, ∗, ∗, ∗

http://pan.baidu.com/s/1jGyBwj0
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Table 5: Solutions of Subkey Bits in Round 2 of 21-round Simeck32/64

Rounds Bit Conditions
Solutions of Key Conditions Leading

Pr PrF
Bits to Equations to Solutions

2(10)

∆X2
17 = 1⇔

∆(X1
17 ∧X1

22)

⊕∆X0
17 = 1

Discard the pair (∆X1
17,∆X

1
22,∆X

0
17) = (0, 0, 0) 1

8

* (∆X1
17,∆X

1
22,∆X

0
17) = (0, 0, 1) 1

8

K0
1 (∆X1

17,∆X
1
22) = (0, 1) 1

4

K0
6 (∆X1

17,∆X
1
22) = (1, 0) 1

4

k01 ⊕K0
6 (∆X1

17,∆X
1
22) = (1, 1) 1

4

∆X2
27 = 1⇔

∆X1
27 ∧X1

16

⊕∆X1
28 ⊕∆X0

27 = 1

Discard the pair (∆X1
27,∆X

1
28 ⊕∆X0

27) = (0, 0) 1
4

∗ (∆X1
27,∆X

1
28 ⊕∆X0

27) = (0, 1) 1
4

K0
0 ∆X1

27 = 1 1
2

∆X2
28 = 0⇔

∆(X1
28 ∧X1

17)

⊕∆X0
22 = 0

Discard the pair (∆X1
28,∆X

1
17,∆X

0
28) = (0, 0, 1) 1

8

∗ (∆X1
28,∆X

1
17,∆X

0
28) = (0, 0, 1) 1

8

K0
12 (∆X1

28,∆X
1
17) = (0, 1) 1

4

K0
1 (∆X1

28,∆X
1
17) = (1, 0) 1

4

K0
1 ⊕K0

12 (∆X1
28,∆X

1
17) = (1, 1) 1

4

∆X2
22 = 0⇔

∆(X1
22 ∧X1

27)

⊕∆X0
22 = 0

Discard the pair (∆X1
22,∆X

1
27,∆X

0
22) = (0, 0, 1) 1

8

∗ (∆X1
22,∆X

1
27,∆X

0
22) = (0, 0, 0) 1

8

K0
6 (∆X1

22,∆X
1
27) = (0, 1) 1

4

K0
11 (∆X1

22,∆X
1
27) = (1, 0) 1

4

K0
6 ⊕K0

11 (∆X1
22,∆X

1
27) = (1, 1) 1

4

∆X2
23 = 0⇔

∆X1
28 ∧X1

23

⊕∆X0
23 = 0

Discard the pair (∆X1
28,∆X

0
23) = (0, 1) 1

4

∗ (∆X1
28,∆X

0
23) = (0, 0) 1

4

K0
7 ∆X1

28 = 1 1
2

∆X2
26 = 0⇔

∆(X1
26 ∧X1

31)

⊕∆X1
27 ⊕∆X0

26 = 0

Discard the pair (∆X1
26,∆X

1
31,∆X

1
27 ⊕∆X0

26) = (0, 0, 1) 1
8

∗ (∆X1
26,∆X

1
31,∆X

1
27 ⊕∆X0

26) = (0, 0, 1) 1
8

K0
10 (∆X1

26,∆X
1
31) = (0, 1) 1

4

K0
15 (∆X1

26,∆X
1
31) = (1, 0) 1

4

K0
10 ⊕K0

15 (∆X1
26,∆X

1
31) = (1, 1) 1

4

∆X2
21 = 0⇔

∆X1
26 ∧X1

21

⊕∆X1
22 ⊕∆X0

21 = 0

Discard th pair (∆X1
26,∆X

1
22 ⊕∆X0

21) = (0, 1) 1
4

∗ (∆X1
26,∆X

1
22 ⊕∆X0

21) = (0, 0) 1
4

K0
5 ∆X1

26 = 1 1
2

∆X2
31 = 1⇔

∆X1
31 ∧X1

20

⊕∆X0
31 = 1

Discard th pair (∆X1
31,∆X

0
31) = (0, 0) 1

4

∗ (∆X1
31,∆X

0
31) = (0, 1) 1

4

K0
4 ∆X1

31 = 1 1
2

∆X2
25 = 0⇔
X1

25

⊕X1
26 ⊕∆X0

25 = 0

K0
9 1

∆X2
30 = 0⇔
X1

19

⊕X1
31 ⊕∆X0

30 = 0

K0
3 1

In the third column of Table 5, ∗ means the variables in this equation can take both values (0

and 1) and a specific subkey bit means this bit take a definite value. The bold lines are group

split lines.
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The second differential we use is the one from Section 4.1. We add 4 rounds
on the top and 5 rounds at the bottom. With 218 structures containing 214

plaintexts each, we are expected to get 231.9 pairs in T1 and finally 2.56 right
pairs. We are expect to get 221.09 values of 54 subkey bits in dynamic key-
guessing procedure. The time complexity and success probability are 257.88 and
47.1%. The extended differential path of 22-round Simeck32/64 is in Table 7 in
Appendix B.

For Simeck48/96, we use the differential (0x400000, 0xe00000)→ (0x400000,
0x200000) in [21] that covers 20 rounds with probability 2−43.65. We append 4
rounds on top and 4 rounds at bottom. With 218 structures with 228 plaintexts
in each, we are expected to get 250.46 plaintext pairs in T1 and finally 2.54
right pairs. There are 232.89 values of 75 subkey bits in dynamic key-guessing
procedure and the time complexity and success probability are 268.31 and 46.8%.
The extended differential path of the 28-round Simeck48/96 is in Table 8 in
Appendix B.

For Simeck64/128, we use the differential (0x0, 0x4400000)→ (0x8800000,
0x400000) in [21] that covers 26 rounds with probability 2−60.02. We append 4
rounds on top and 4 rounds at bottom. With 242 structures with 221 plaintexts
in each, we are expected to get 238.59 plaintext pairs in T1 and finally 3.94 right
pairs. There are 241.72 values of 82 subkey bits in dynamic key-guessing procedure
and the time complexity and success probability are 2116.27 and 55.5%. If we add
one more round on top, we are able to attack 35-round Simeck64/128 with the
same data and time complexity and success probability. The difference is that
we choose 231 structures of 232 plaintexts and we get 267.26 values of 118 subkey
bits in the dynamic key guessing procedure. The extended differential path of
the 35-round Simeck64/128 is in Table 9 in Appendix B.

We conclude the attacks on reduced versions of Simeck in Table 6.

Table 6: Differential Attacks on Reduced Simeck

Versions
Attacked

|sk| λe λr
Chosen Data Time Success

Rounds Count Complexity Complexity Prob.

Simeck32/64 21 53 2−2.678 3.29 4 230 248.52 41.7%

Simeck32/64 22 54 2−1 2.56 3 232 257.88 47.1%

Simeck48/96 28 75 2−8.365 2.54 3 246 268.31 46.8%

Simeck64/128 34 82 2−1.678 3.94 4 263 2116.34 55.5%

Simeck64/128 35 118 2−1.678 3.94 4 263 2116.34 55.5%
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5 Conclusion

In this paper, we apply Wang et al.’s dynamic key-guessing techniques to a new
lightweight block cipher family Simeck and give cryptanalysis results on it. The
differentials we use include ones in references and also the one we get using MILP
based method. We implement the dynamic key-guessing technique in a program
and in some way it can help to automatically give the security estimation of
SIMON and Simeck like block ciphers regarding differential attacks. As far as
we are concerned, the results on Simeck in this paper are the best ones in terms
of rounds attacked. Future work includes finding differentials with lower harming
weight that is more adaptable to dynamic key-guessing techniques and expand
the dynamic key-guessing technique to block ciphers of other structures.
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A Related Keys in Decryption Direction

For sufficient bit condition ∆Xi
j = 0 or 1 and j ∈ [0, n− 1], in decrypt direction

we have

∆Xi
j =∆Xi+1

(j+b)%n ∧X
i+1
(j+a)%n ⊕∆X

i+1
(j+a)%n ∧X

i+1
(j+b)%n ⊕∆X

i+1
j+b ∧∆X

i+1
(j+a)%n

⊕∆Xi+1
(j+c)%n ⊕∆X

i+2
j ,

(5)
where

Xi+1
(j+a)%n =Xi+2

(j+a+b)%n ∧X
i+2
(j+a+a)%n ⊕X

i+2
(j+a+c)%n⊕

Xi+3
(j+a)%n ⊕K

i+1
(j+a)%n,

Xi+1
(j+b)%n =Xi+2

(j+b+b)%n ∧X
i+2
(j+b+a)%n ⊕X

i+2
(j+b+c)%n⊕

Xi+3
(j+b)%n ⊕K

i+1
(j+b)%n.

(6)

Algorithm 3 demonstrates how to get subkey bits that influence Xi
j and that

are linear to Xi
j .

Algorithm 3 Generate related key bits for Xi
j in decryption direction

1: Input: Round i and bit position j
2: Output: [Influen keys, Linear keys]
3: function RelatedKeys(i, j)
4: Influent keys= [ ], Linear keys=[ ]
5: if i = r0 +R+ r1 then
6: return [Influent keys, Linear keys]
7: else
8: if j ≥ n then
9: return RelatedKeys(i+ 1, j%n)

10: else
11: [I0, L0]=RelatedKeys(i, (j + a)%n+ n)
12: [I1, L1]=RelatedKeys(i, (j + b)%n+ n)
13: [I2, L2]=RelatedKeys(i, (j + c)%n+ n)
14: [I3, L3]=RelatedKeys(i+ 1, j + n)
15: Linearkeys=L2 ∪ L3∪ Ki

j

16: Influent keys = I0 ∪ I1 ∪ I2 ∪ I3 ∪Ki
j

17: return [Influent keys, Linear keys]
18: end if
19: end if
20: end function
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B Sufficient Conditions of Extended Differential Path

In the following, we provide the sufficient conditions of extended differential path-
s of 22-round Simeck32/64, 28-round Simeck48/96 and 35-round Simeck64/128.

Table 7: Sufficient Conditions of Extended Differential Path of 22-round
Simeck32/64
Rounds Input Differences of Each Round

0 0, 0, 0, ∗, ∗, 0, 0, ∗, ∗, ∗, 0, 1, ∗, ∗, ∗, ∗, 0, 0, ∗, ∗, ∗, 0, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗
1 0, 0,0,0, ∗, 0,0,0, ∗, ∗,0,0,1, ∗, ∗,0, 0, 0, 0, ∗, ∗, 0, 0, ∗, ∗, ∗, 0, 1, ∗, ∗, ∗, ∗
2 0, 0, 0,0,0, 0, 0,0,0, ∗, 0, 0,0,1, ∗,0, 0, 0, 0, 0, ∗, 0, 0, 0, ∗, ∗, 0, 0, 1, ∗, ∗, 0
3 0, 0, 0, 0,0, 0, 0, 0,0,0, 0, 0, 0,0,1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ∗, 0, 0, 0, 1, ∗, 0
4 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0

4→17 13-round differential
17 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0,0, 0
18 0, 0, 0, 0, 0, 0, 0, 0, 0, ∗, 0, 0, 0, 1, ∗, 0, 0, 0, 0, 0,0, 0, 0, 0,0,0, 0, 0, 0,0,1, 0
19 0, 0, 0, 0, ∗, 0, 0, 0, ∗, ∗, 0, 0, 1, ∗, ∗, 0, 0, 0, 0,0,0, 0, 0,0,0, ∗, 0, 0,0,1, ∗,0
20 0, 0, 0, ∗, ∗, 0, 0, ∗, ∗, ∗, 0, 1, ∗, ∗, ∗, ∗, 0, 0,0,0, ∗, 0,0,0, ∗, ∗,0,0,1, ∗, ∗,0
21 0, 0, ∗, ∗, ∗, 0, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, 0,0,0, ∗, ∗,0,0, ∗, ∗, ∗,0,1, ∗, ∗, ∗, ∗
22 0, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗,0,0, ∗, ∗, ∗,0, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗
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Table 8: Sufficient Conditions of Extended Differential Path of 28-round
Simeck48/96

Rounds Input Differences of Each Round
0 ***000000***0**************0***0****************
1 ***00000000000***0****1****000000***0***********
2 ***0000000000000000***01***00000000000***0****1*
3 111000000000000000000000***0000000000000000***01
4 010000000000000000000000111000000000000000000000

4→24 20-round differential
24 010000000000000000000000001000000000000000000000
25 1*100000000000000000*000010000000000000000000000
26 ***000000000000*000***011*100000000000000000*000
27 ***0000000*000***0****1****000000000000*000***01
28 ***00*000***0**************0000000*000***0****1*

Table 9: Sufficient Conditions of Extended Differential Path of 34-round
Simeck64/128
Rounds Input Differences of Each Round

0 **********0000000*000**00***0*************00*000**00***0********
1 *0****1***000000000000*000**00************0000000*000**00***0***
2 *00***01**00000000000000000*000**0****1***000000000000*000**00**
3 *000**001*0000000000000000000000*00***01**00000000000000000*000*
4 00000100010000000000000000000000*000**001*0000000000000000000000
5 0000000000000000000000000000000000000100010000000000000000000000

5→31 26-round differential
31 0000100010000000000000000000000000000000010000000000000000000000
32 000**001*1000000000000000000000*00001000100000000000000000000000
33 00***01***0000000000000000*000**000**001*1000000000000000000000*
34 0****1****00000000000*000**00***00***01***0000000000000000*000**
35 **********000000*000**00***0****0****1****00000000000*000**00***
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