Cryptanalysis of Gu’s ideal multilinear map

Alice Pellet-Mary and Damien Stehlé

ENS de Lyon, Laboratoire LIP (U. Lyon, CNRS, ENSL, INRIA, UCBL), France.

Abstract In March, 2015 Gu Chunsheng proposed a candidate ideal multilinear map [9]. An ideal
multilinear map allows to perform as many multiplications as desired, while in k-multilinear maps
like GGH [5] or CLT [3,4] one we can perform at most a predetermined number x of multiplications.
In this note, we show that the extraction Multilinear Computational Diffie-Hellman problem (ext-
MCDH) associated to Gu’s map can be solved in polynomial-time: this candidate ideal multilinear
map is insecure. We also give intuition on why we think that the two other ideal multilinear maps
proposed by Gu in [9] are not secure either.

1 Introduction

Multilinear maps are a very powerful tool in cryptography. Their possible applications include one-round
multipartite key exchange [1], attribute based encryption [7], obfuscation [6], etc. Multilinear maps were
first introduced by Boneh and Silverberg in 2003 [1]. Then, during ten years, there was no candidate
multilinear map for enabling promising applications. In 2013, Garg, Gentry and Halevi proposed the first
candidate multilinear map [5], which we will refer to as the GGH map. This map was recently shown
insecure by Hu and Jia in 2015 [10]. Back in 2013, some months after the publication of the GGH map,
Coron, Lepoint and Tibouchi proposed another candidate multilinear map [3] based on integers instead of
polynomials. This map was shown insecure by Cheon et al. in 2014 [2], but Coron, Lepoint and Tibouchi
proposed a new version of their map in 2015 [4] that seems immune to the attack of Cheon et al.

Currently, the CLT map proposed by Coron, Lepoint and Tibouchi [4] seems to be the only candidate
multilinear map that has not been shown insecure. Note that in [8], Gentry, Gorbunov and Halevi proposed
a so-called graph-induced multilinear map, which can be seen as a variant of a multilinear map. All these
candidate multilinear maps are in fact only approximations to multilinear maps: the encodings of elements
involve a noise term, which grows every time an arithmetic operation on these encodings is performed.
For this reason, the number of multiplications that can be performed is bounded: given a desired number
of multiplications, one can derive scheme instantiations allowing this number of multiplications, but once
the scheme is instantiated, the number of allowed multiplications cannot be increased.

In March 2015, Gu Chunsheng proposed three candidate multilinear maps [9]. We will describe here
the first of these multilinear maps ([9, Section 3]), which we will call the Gu basic map. The two other
maps described by Gu in [9] follow the same design principle. Gu’s goal was to build an ideal, noiseless,
multilinear map, making it possible to perform as many multiplications as desired, even after the map
has been generated.

However, we show in Section 4 that the Gu basic map is not secure: there exists a polynomial-time
algorithm for solving the extraction Multilinear Computational Diffie-Hellman problem (ext-MCDH)
associated to that map. In Section 5, we briefly explain why we believe that the two other maps proposed
by Gu in [9] are not secure either.

2 Notations and Definitions

The Gu basic map, like the GGH map, is not a genuine multilinear map but only a graded encoding
scheme.
2.1 Graded encoding schemes

In a graded encoding scheme, there are different levels of encodings. A level-0 encoding corresponds to a
plaintext (i.e., a message that is not encoded) belonging to some ring R. From a level-i encoding with

i > 0, it should be hard to recover the corresponding plaintext (or even any level-j encoding of the same
plaintext with j < i). We will denote by S¢, the set of all level-i encodings of the plaintext m € R.

The first difference between the GGH map and the Gu basic map is that the GGH map is a x-graded
encoding scheme, meaning that the level of an encoding is always between 0 and a predetermined value «.
The Gu basic map is an ideal multilinear map, meaning that we can have encodings of levels as large as
desired.

A graded encoding scheme supports linear operations and multiplications: it should have two procedures
Add and Mult such that, for all m,, ms € R and 4,5 > O:

o Ifc; € anl and cg € Sfm then Add(ci,ca) € anﬁmQ.
e Ifc € anl and cg € SZM then Mult(cy,co) € S};;“l];nf

Note that when we multiply encodings the level of the encoding increases. A graded encoding scheme
should also have two procedures ZeroTest and Extract such that for all m € R

o If c € SI then ZeroTest(c) = 1 if and only if m = 0. This procedure tests whether a level-x encoding
is an encoding of 0 or not.

o If ¢1,c0 € S}, then Extract(ci) = Extract(cz) € {0, 1}*. This procedure enables to extract the same
string from different encodings of the same plaintext.

In the above, x is the maximum level of an encoding if we are using a x-graded encoding scheme, or & is
any positive integer if we are using an ideal graded encoding scheme.

Even though graded encoding schemes are not genuine multilinear maps, they can still be used for
many protocols that can be obtained from multilinear maps. This is the case for instance for 1-round
(k 4 1)-party key exchange. Using a k-graded encoding scheme, the protocol is as follows:

(1) Each user ¢ for 0 < i < k chooses a random plaintext m; and computes a level-1 encoding ¢; of m;.

(2) Each user i sends ¢; to all other users.

(3) Each user ¢ computes ¢; = Mult(cg, 1, ..., Ci—1, M, Cit1,- - -, Cx). Note that user i replaces ¢; by its
secret m; so that ¢; is a level-x encoding of the element [], m; and not a level-(x + 1) encoding. At
this stage, all users have a (possibly different) level-x encoding of [, m;.

(4) Each user ¢ compute s = Extract(¢;). The secret s is the same for all users.

With an ideal graded encoding scheme like the Gu basic map, one could even perform 1-round key
exchange between k + 1 users for any positive integer k. However, we will see later that the protocol
above should not be used with an ideal graded encoding scheme, as otherwise the naive attack described
in Section 3.1 would apply. We describe later how one can perform key exchange between any number of
users.

One classical problem related to k-graded encoding schemes is the Graded Decisional Diffie-Hellman
problem, introduced by Garg, Gentry and Halevi in [5].

Definition 1 (The Graded Decisional Diffie-Hellman problem (GDDH)). Let (m;)o<i<x be K+1
uniform messages in the plaintext space, and let ¢; be a level-1 encoding of m; for all i. Let Cy be a
(randomized) level-x encoding of [[;_,m; and Cy be a (randomized) level-x encoding of a uniformly
random plaintext. Then the GDDH problem is, given the c;’s for all i, to distinguish between C7 and Cs.

2.2 Algebraic background

We work in the ring R = Z[X]/(X™ + 1) for n a power of 2. This ring is the ring of integers of the number
field K = Q[X]/(X™ 4+ 1), and so R is a Dedekind ring, which means that all non zero ideals of R are
invertible. We also take a large prime integer ¢. When we say that an element is small, then it means
small relative to q.

Ife =xo+21 X+ +2,_1 X" ! € K, we call the size of z its Euclidean norm |z| := \/2?21 mf We say
that an element x € K is smaller than a > 0 if |z| < «. For x,y € K, we have that |z+y| < 2max(|z], |y|)
and |z -y| <n-|z|-|y|. Most of the time, we will not be interested in constant factors, or even factors
polynomial in n.! If z € R, we will let [z], or (mod ¢) denote the element of R congruent to z modulo ¢
and with all its coefficients in [—¢q/2, ¢/2).

! When we say that an element is small or large, it means small or large relative to ¢, and ¢ is exponential in n,
so a polynomial in n is something very small.

If F € R, we denote by (F) the ideal of R generated by F. We also define N'(F') as the cardinality of
R/(F). In what follows, we will sometimes invert some element g € R modulo an element F' € R. Here,
we show that if ged(N(g), N(F)) = 1, then g is invertible modulo (F') and its inverse can be computed
in polynomial time. The norm N (g) of g € R is the product of its canonical embeddings in C. If we
identify the variable X € R with a primitive complex 2n-th root of unity, these embeddings can be seen as
automorphisms of R (sending X to X2+ for 0 < i < n), and one of them is the identity. So there exists
an element § € R such that gj = A(g). Similarly, there exists an element F' € R such that FF = N (F).
As we assumed that ged(N(g), N(F)) = 1, there exist integers u and v such that uN (g) + v N (F) = 1.
This can be rewritten as

ugg + vFF =1.

This equation implies that ugg = 1 (mod F') and then ug is the inverse of ¢ modulo F. Furthermore, we
can compute ug in time polynomial in n, log(N (g)) and log(N (F)).

3 The Gu Basic Multilinear Map

In [9], Gu proposed three candidate multilinear maps. We describe here the first of these candidate
multilinear maps ([9, Section 3]), the two others following the same design principle. A consequence of
the fact that there is no a priori restriction on the level of encodings, one should also be able to zero-test
at any level (in the GGH and CLT maps, we can only zero-test for encodings of levels < k, for some
predetermined k).

3.1 Naive attack

Assume we have a multilinear map such that we can zero-test at any level, and we know a level-1
encoding v together with its level-0 plaintext m, # 0. Then we can solve the GDDH problem at any
level k.

Indeed, assume we have k + 1 level-1 encodings ¢;, that encode the level-O plaintexts m;, and we
want to decide whether c is a level-x encoding of [[/_,m; or a level-x encoding of a random element.
We then compute dy = Mult(my,co,c1, ..., ¢x), which is a level-(k + 1) encoding of m, - [[;_, m;, and
dy = Mult(v,c) which is either a level-(k + 1) encoding of m,, - [[;_, m; or a level-(x + 1) encoding of a
random multiple of m,, (there are at least two different multiples of m,, since m,, # 0). As we can zero-test
at every level, we can test if d; = dy and then decide whether ¢ is an encoding of [['_, m; or not.

This shows that if we want a multilinear map for which GDDH is hard and we can zero-test at every
level, then we cannot publicly give a level-1 encoding together with its level-O plaintext.

3.2 Description of the Gu basic map

The design of the Gu basic map [9] is close to that of the GGH map, but, as we have seen, we cannot
publicly give a level-1 encoding of 1. In the GGH map, the level-1 encoding of 1 is what enables each
user to encode its secret plaintext to get a level-1 encoding. Here, the authority provides some level-1
encodings y; and then anyone can generate a level-1 encoding by computing a linear combination of
the y;’s: >, r;y; with small randomizers ;. However, we have seen that we cannot publicly give the
level-0 plaintexts corresponding to the y;’s, so the secret related to ZZ r;y; will be the r;’s. From Ez Tilis
it should be hard to recover small r;’s that give the same result.
The Gu basic map works as follows.

SETUP. We work in the ring R = Z[X]/(X™ + 1) for n a power of 2, and we have a large prime integer ¢
which is exponential in n.

(1) Sample elements (f;)1<i<m and g in R with small coefficients (integer m is of the order of the security
parameter \). Let f =[]\~ fi.

(2) Compute F = pgf for a small random element pg in R.

(3) Generate 7 = O(n?) elements y; = (a;g + t;f) mod F with a; and ¢; small random elements of R for

all1 <i < 7.
(4) For all 1 <i <, generate p..; = [>_;— hj(a; + si,jfj)fjfl]q with h; and s; ; small random elements
of R.

All the random small elements that are used in this initialization step are sampled according to a (discrete)
Gaussian distribution with small standard deviation (but not necessarily the same standard deviation
for all elements). The exact distribution of the elements is not important for the attack, so we will not
explicit it. More details can be found in [9)].

Note that so far, everything is small (compared to ¢), except the f;l (mod ¢) in the p,,; parameters.
Also, the element F' is a multiple of f, so if we perform computations modulo F' and then reduce the
result modulo f, it will give the same result as if we had performed the computations directly modulo f.
Giving F' allows to perform computations modulo F' and so have encodings of bounded size without
making f public.

The authority publicly gives F, the y;’s and the p,;’s (f, g and the a;’s are kept secret).

LEVEL-i ENCODINGS. The plaintext space is P = R/(f). A level-i encoding of m € P is an element c
reduced modulo F such that ¢ = mg’ mod f. When adding or multiplying encodings, the results are
reduced modulo F' in order to keep the size of the encodings bounded, and as F' is a multiple of f, this
will not change the result modulo f. As a consequence, adding two encodings of level i gives a level-i
encoding of the sum, and multiplying a level-i encoding by a level-j encoding gives a level-(i + j) encoding
of the product.

To generate a level-j encoding, we choose 7 small elements r; € R and output ¢ =), ri(y;)? mod F.
We cannot know the level-0 plaintext of the encoding we generate, but the analogue of the level-0 secret
are the r;’s, which tell how to generate ¢ with small elements.

ZERO-TESTING. In order to test if a level-j encoding c is an encoding of zero, we take any linear combination
Dot = Zz WPt with small w; in R (for instance we can simply take p,; = p,¢,1) and we compute [c'pzt]q.
If this is small compared to ¢, then c is an encoding of zero, otherwise it is not. The idea underlying
correctness is that ¢ is an encoding of zero if and only if it is a multiple of f, and in p,;, the large terms
come from the | fj_l]q, so if we multiply p.: by a multiple of f the term | fj_l]q cancels out and the result
is small, otherwise the result is of the order of ¢ with overwhelming probability.

EXTRACTION. If we just want a way to extract from an encoding a string s that depends only on the
hidden plaintext we could compute s = MSB([p,¢1 - ¢],) where MSB denotes the most significant bits
of the result, and c is an encoding of any level greater than zero. However, this simple procedure will
not enable us to perform key exchange for instance, because we do not have access to the corresponding
level-0 plaintext when we encode a message. To circumvent this problem, Gu proposed an extraction
procedure that multiplies by a level-0 plaintext at the same time as it extracts. The procedure Extract
takes as input 7 small elements r; with 1 < ¢ < 7 in addition to the encoding c. Then, if we denote by
m the plaintext corresponding to the encoding >, 7;y;, we can interpret the extraction procedure as
“multiply ¢ by the level-0 plaintext m and then extract.”
More formally, the extraction procedure works as follow:

Extract((r;)i1<i<r,C) = MSB([(Z TiPzt,i) Clq)-

We will now see how to use this extraction procedure to perform key exchange.

MULTIPARTITE KEY EXCHANGE. Assume we have k + 1 users (k is not fixed here) that generate level-1
encodings ¢; for 0 < j < k. User j cannot compute m; -], 25 ¢ like before, as it does not know the level-0
plaintext associated to its encoding. The idea is that when it performs the extraction, it also multiplies
by his level-0 plaintext, obliviously.

For all 1 < i < 7, the level-0 plaintext of y; (which is the a; kept secret by the authority) is hidden in
the associated parameter p,;;, so if user j generates m; = Zl r;,;Y; With r; ; small, it knows the r; ;’s

and can compute pg) = >, Ti Pzt that is associated to its encoding. Then, when it multiplies [, 25 Cl
by pg), it multiplies by his secret level-0 plaintext at the same time as it extracts the shared secret. The
k + 1 multipartite key exchange is then the same as for a x-graded encoding scheme, except for the

Extract procedure:

. << Nicien | . i

(1) Each user j for 0 < j < k chooses random small elements (7; ;)i1<i<- in R and computes its level-1
encoding ¢; = >, 7 ;Y.

(2) Each user j sends c¢; to all other users.

(3) Each user j computes s = Extract((r;;)i<i<r, Hl# ¢;). The secret s is the same for all users.

The following result ensures the correctness of this multipartite key exchange protocol.

Lemma 1 (Adapted from [9, Lemma 3.7]). If two users j1 and jo compute their respective zero-
testing parameters p(zjtl) = i Tij1Pzt,i and pgf) = >, TijaD=t,i, then, with overwhelming probability, the

elements [piil) 111y, alq and [pi]f) “[1145, ctlq have the same most significant bits, i.e.,

Emtract((riﬁjl)lgigﬂ H Cl) = E:I:t'r‘act((rmz)lgigq-, H Cl).
I#51 I#352

3.3 Algorithmic problems

As we do not have access to level-0 plaintexts in the Gu basic map, the GDDH problem defined in
Section 2.1 does not seem interesting, at least from the perspective of key exchange. Instead of GDDH,
we will be interested in two algorithmic problems proposed by Langlois, Stehlé and Steinfeld in [11], that
are generalizations of the classical Decisional Diffie-Hellman (DDH) and Computational Diffie-Hellman
(CDH) problems.

Definition 2 (The Extraction Graded Computational Diffie-Hellman problem (ext-GCDH)).
Let k be an arbitrary positive integer. For 0 < j <k and 1 <1 < 7, let r; ; be random small elements
of R. Then let c; = >, 7 ;y; for all0 < j < k. The ext-GCDH problem is, given the c¢;’s for all j, to
construct s = Eztract((rio)i<i<r,[[;50¢)-

Definition 3 (The Extraction k-Graded Decisional Diffie-Hellman problem (ext-GDDH)).
Let k be an arbitrary positive integer. For 0 < j <k and 1 <1 < 7, let 7 ;5 be random small elements
of R. Then let ¢c; = Y 1 y; for all 0 < j < k. Let (u;)1<i<r be small random elements of R and
define s = Emtract((ri70)1§i§7,nj>0 ¢;) (the genuine secret) and sy = Emtra,ct((ui)lgiST,Hj>o cj)-
The ext-GDDH problem is, given the c;’s for all j, to distinguish between s1 and ss.

Note that ext-GDDH reduces to ext-GCDH. In [9], Gu based the security of his basic map on the
presumed hardness of ext-GDDH. We will show that ext-GCDH can be solved in polynomial time for the
Gu basic map.

4 Cryptanalysis of the Gu Basic Map

Even though the naive attack does not work for the Gu basic map, we prove that ext-GCDH can be
solved in polynomial time for this map, for any positive integer k.

Let k be a positive integer and assume we are given x + 1 level-1 encodings ¢; = m;g (mod f) for
j=0,...,k (the m;’s are kept secret). The attack proceeds as follows:

(1) Compute ¢ = [];¢; (mod F). We have that ¢ = ([]; m;) - g"*! (mod f). This is a level-(k + 1)
encoding of []7_, m;.

(2) Sample small elements (7;)1<;<- in R and compute ¢y =), r;y; mod F. We restart this step until
we obtain ¢y invertible modulo F (if one of the y; is invertible modulo F, it can be taken directly).
See Remark 2 below for an estimation of the number of times we have to restart to get a good co.
We have ¢y = mpg (mod f) for some mg € P.

(3) Compute d = c¢-é~ " (mod F). As F is a multiple of f, we know that computing modulo F and then

reducing modulo f is the same as computing directly modulo f, so d = ([]; m;) - mo " - g"(mod f).

Moreover, d is reduced modulo F, so d is a level-x encoding of ([]; mj)frib_l (mod f). Note that d is
exactly what user 0 would get by multiplying the other’s encodings if he had generated ¢y as level-1
encoding (and user 1 had generated c¢;(co/¢p) in order to get the same final product). And we know
the secret r;’s associated to ¢y. So at this point, we are like one of the genuine key-exchange users.

(4) Extract the secret using p.¢ = >, 7p.¢,; in order to multiply by mg at the same time as we extract:
return s = Extract((r;)1<i<r,d) = MSB([p.:d],), the shared secret.

Remark 1. This attack works well here because we can divide a level-i encoding by a level-j encoding
(¢ > j) and obtain a level-(i — j) encoding of the division. This is not the case in the GGH and CLT maps
since the numerators of the encodings must be small and, when dividing two small elements modulo g,
the result is likely to be of the order of g, i.e., not small at all.

Remark 2. For this attack, we need to find in polynomial time an element ¢ invertible modulo F'. We
have seen in Section 2.2 that if ged(N(cy), N (F)) = 1, then ¢ is invertible modulo F' and we can compute
its inverse in polynomial time. But are there a lot of ¢y such that ged(N(cg), N(F)) = 1?7 We will assume
here that the norm of ¢ is uniform modulo N (F) =: N. We then want to know the proportion of
invertible elements in Z/NZ. This is exactly ¢(N)/N, where ¢ denotes Euler’s totient function. Using
Martens’ second formula, we can see that in the worst case, this is asymptotically m. So in average,
it suffices to pick at most loglog(N (F)) elements ¢ to get an invertible one. The norm of F' is of the
order of |F|", hence loglog(N(F)) ~ log(nlog(|F|)), which is polynomial (and even logarithmic) in the
bit-size of F.

To conclude, this attack solves ext-MCDH for the Gu basic map in polynomial time.

5 Other Maps Proposed by Gu

Gu also described in [9] two other candidate ideal multilinear maps (i.e., with s that can be chosen
arbitrarily large even after the generation of the map). The second map is very close to the first one we
described above. The only difference is that the procedure to extract is more involved. It does not seem
immune to the attack described in Section 4, because this attack extracts like a regular user.

The third map proposed by Gu again uses the same principle but the elements are replaced by matrices.
However, in this third scheme, we are given level-1 encodings y; but we are also given the corresponding
level-0 plaintexts z;. So the naive attack described at the beginning of Section 3 to solve the GDDH
problem should work against this third map.

To conclude, none of the maps described by Gu in [9] seems secure.

Acknowledgments. This work has been supported in part by ERC Starting Grant ERC-2013-StG-
335086-LATTAC.

References

1. D. Boneh and A. Silverberg. Applications of multilinear forms to cryptography. Contemporary Mathematics,
324(1):71-90, 2003.
2. J. H. Cheon, K. Han, C. Lee, H. Ryu, and D. Stehlé. Cryptanalysis of the multilinear map over the integers.
In EUROCRYPT, pages 3—12. Springer, 2015.
3. J.-S. Coron, T. Lepoint, and M. Tibouchi. Practical multilinear maps over the integers. In CRYPTO, pages
476-493. Springer, 2013.
4. J.-S. Coron, T. Lepoint, and M. Tibouchi. New multilinear maps over the integers. TACR Cryptology ePrint
Archive, 2015:162, 2015.
5. S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal lattices. In EUROCRYPT, volume
7881 of LNCS, pages 1-17, 2013.
6. S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate indistinguishability obfuscation
and functional encryption for all circuits. In FOCS, pages 40-49. IEEE Computer Society Press, 2013.
7. S. Garg, C. Gentry, S. Halevi, A. Sahai, and B. Waters. Attribute-based encryption for circuits from multilinear
maps. In CRYPTO, pages 479-499. Springer, 2013.
8. C. Gentry, S. Gorbunov, and S. Halevi. Graph-induced multilinear maps from lattices. In TCC, pages 498-527.
Springer, 2015.
9. C. Gu. Ideal multilinear maps based on ideal lattices. TACR Cryptology ePrint Archive, 2015:269, 2015.
10. Y. Hu and H. Jia. Cryptanalysis of GGH map. IACR Cryptology ePrint Archive, 2015:269, 2015.
11. A. Langlois, D. Stehlé, and R. Steinfeld. GGHLite: More efficient multilinear maps from ideal lattices. In
EUROCRYPT, LNCS, pages 239-256. Springer, 2014.

