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Abstract. Side-channel cryptanalysis is a very efficient class of attacks
that recovers secret information by exploiting the physical leakage of a
device executing a cryptographic computation. To adress this type of
attack, many countermeasures have been proposed, and some papers
adressed the question of constructing an efficient masking scheme for
existing ciphers. In their work, G. Piret, T. Roche and C. Carlet took
the problem the other way around and specifically designed a cipher
that would be easy to mask. Their careful analysis, that started with
the design of an adapted Sbox, leads to the construction of a 12-round
Feistel cipher named PICARO. In this paper, we present the first full-
round cryptanalysis of this cipher and show how to recover the key in
the related-key model. Our analysis takes advantage of the low diffusion
of the key schedule together with the non-bijectivity of PICARO Sbox.
Our best trade-off has a time complexity equivalent to 2107.4 encryptions,
a data complexity of 299 plaintexts and requires to store 217 (plaintext,
ciphertext) pairs.
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1 Introduction

While performance and side-channel attacks resistance are most of the time
considered separately and as distinct problems — new design papers focus on
performance figures while countermeasure papers focus on how to implement
specific protection in order to reduce performance overheads —, some new ci-
pher proposals tackle the two problems together by designing new primitives that
fit given protections. Examples of such constructions are PICARO [8], Zorro [6],
and the family of LS-design [7] (including Robin and Fantomas as concrete in-
stantiations).

The countermeasure studied in these three designs is the masking scheme [10]
for which the heavier parts to protect are the operations which are not linear with
respect to the group operation used to share the sensitive variables. For these
three ciphers as for most ciphers, these non-linear operations are concentrated
in the Sboxes, and then the straightforward way to limit the masking cost is to
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reduce the number of Sbox applications1 as well as to choose Sboxes that are
masking-friendly, for instance by reducing the number of field multiplications
processed2. This later direction is the one followed by Piret, Roche and Carlet
while devising PICARO [8,9]: their design relies on a non-bijective Sbox defined
by two bivariate polynomials over GF (24), reducing the number of non-linear
multiplications to four. This Sbox is integrated to the round function of a Feistel
scheme, composed of four operations which are an expansion, a key addition, an
Sbox-layer and a compression.

In this paper we show that despite the fact that the authors of PICARO
aim at resisting to related-key attacks, as pointed out in [9]3, we have been
able to mount related-key attacks on the full cipher. Our attacks exploit some
weaknesses in the key-schedule, the non-bijective properties of the Sbox and
some properties of the linear layer. They provide different trade-offs between
time and data complexities.

The paper is organized as follows. In Section 2, we give a brief description of
the PICARO block cipher and of its design choices, in Section 3 we give some
definitions and in Section 4, we present an analysis of PICARO key-schedule
that leads to the related-key attack described in Section 5. The paper ends with
a conclusion.

2 Description of PICARO

2.1 Round Function

One of the main objectives of G. Piret, T. Roche and C. Carlet when designing
PICARO was to propose a 128-bit block cipher that would get an advantage
over other ciphers regarding the ease to protect against side-channel attacks.
To achieve this, they started from Rivain and Prouff’s masking scheme [10] and
determined which operations are difficult to mask to derive some new design
criteria. Their analysis brought to light that efforts have to focus on the Sboxes
since the masking scheme implies heavy overheads for the non-linear operations.

This condition must be added to the usual criteria coming from the (non-
physical) usual attacks (including the prominent linear, differential, algebraic
cryptanalyses and their variants) that require the Sbox be highly non-linear,
have a high algebraic degree and a low differential-uniformity.

Their deep analysis resulted in the selection of an Sbox defined as the con-
catenation of two polynomials:

S : GF (24)×GF (24)→ GF (24)×GF (24)

(x, y) 7→ (xy, (x3 + 0x02)(y3 + 0x04))

1This direction has been followed in the design of Zorro.
2When considering binary masking, this criterion is equivalent to limiting the num-

ber of AND processed (see for instance the LS-design [7]).
3Section 7.2 of [9]: ”We want our scheme to resist known attacks on a key schedule

algorithm, in particular related-key attacks...”



where 0x02 and 0x04 represent elements of GF (24) defined as GF (2)[x]/(X4 +
X3 + 1). Its full look-up table is given in Appendix A.

This non-bijective Sbox has already been studied in [5] and possesses the
following desirable characteristics: a non-linearity equal to 94, an algebraic degree
equal to 4, a maximal differential probability equal to 4/256. Furthermore, to
fit well the masking protection, it can be implemented with only 4 non-linear
operations; moreover all these non-linear operations are defined in the small field
GF (24).

An obvious but quite important remark that has to be made is that since
the Sbox is not bijective, there exist sets of values that all have the same image
through the Sbox. In other words, it is possible to cancel a difference entering
the Sbox: a byte that is active before applying the Sbox can lead to an inac-
tive output. Since the cube function is 3-to-1 over GF (24)∗, we deduce from
the definition of the Sbox that it is a 3-to-1 function over GF (24)2 \ {(0, 0)}.
Moreover, it is very easy to prove that, for any non-zero input difference ∆,
the transition ∆ → 0 holds with probability 2−7. In other words, the equation
S(x+∆) + S(x) = 0 has exactly two solutions x.

The choice of a non-bijective Sbox was motivated by the fact that finding a
good Sbox is easier in this case. However, it requires to find a way to include it
in a construction that makes the cipher invertible, and also to take the resulting
differential properties into account. Therefore, this non-bijective Sbox is used
within the Feistel construction. But, as noticed by the designers, the use of
a basic Sbox layer as an inner function would make the cipher vulnerable to a
quite simple but very efficient differential attack with only one active Sbox every
2 rounds.

To thwart this sort of attacks, PICARO designers choose to use an expansion
and a compression function that have good diffusion, more precisely that ensure
that a minimum of 7 Sboxes are active in each active round. This is achieved
by using linear operations deduced from linear codes with minimum distance 7.
The expansion G takes as input a 64-bit word and outputs an extended word of
112 bits. The corresponding matrix is depicted below (its entries are elements in
GF (28) defined as GF (2)[X]/(1 +X2 +X3 +X4 +X8)). Then, the inner state
must be compressed back at the end of the round function. To this end, another
linear operation is used, defined by the matrix H = GT , which converts 112-bit
words into 64-bit ones.

G =



01 00 00 00 00 00 00 00 01 01 0A 01 09 0C

00 01 00 00 00 00 00 00 05 01 01 0A 01 09

00 00 01 00 00 00 00 00 06 05 01 01 0A 01

00 00 00 01 00 00 00 00 0C 06 05 01 01 0A

00 00 00 00 01 00 00 00 09 0C 06 05 01 01

00 00 00 00 00 01 00 00 01 09 0C 06 05 01

00 00 00 00 00 00 01 00 0A 01 09 0C 06 05

00 00 00 00 00 00 00 01 01 0A 01 09 0C 06





To sum up, the round function is made of four operations, as depicted on
Figure 1: first, the 64-bit left part is extended by the expansion function defined
by G, then the round-key is added. This is followed by the Sbox application (14
parallel applications of S) and finally the state is compressed back to 64 bits,
and is XORed to the right part of the internal state.

PICARO encryption routine is made of 12 iterations of this round function.

expansion SB compressionARK

Fig. 1. One round of PICARO block cipher.

2.2 Key-Schedule

The previous algorithm requires twelve 112-bit subkeys that are derived from the
128-bit master key K. The designers wanted a simple and efficient key-schedule,
together with resistance to the two main attacks exploiting the key-schedule,
namely related-key attacks [1] and slide attacks [3]. In addition to that, Piret et
al. looked for round-keys that could be computed on the fly, i.e. for which the
computation of the subkey of round i can be done from the knowledge of the
subkey at round (i− 1) (or from the knowledge of the subkey at round (i+ 1),
in decryption mode).

Their analysis has resulted in a linear key-schedule composed of rotations,
bitwise additions and truncations. Namely, K denotes the 128-bit master key
and K(1),K(2),K(3)and K(4) are the four 32-bit chunks composing K: K =

(K(1),K(2),K(3),K(4)). Let T : (GF (2)32)
4 → (GF (2)32)

4
be the linear trans-

formation defined as follows:
T (K)(1)

T (K)(2)

T (K)(3)

T (K)(4)

=


0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

 ×

K(1)

K(2)

K(3)

K(4)





Then, to compute the subkeys from the master key K, we first compute the
extended key (κ1, κ2, · · ·κ12) (where each κi is 128-bit long) with the following
formulas: 

κ1 = K

κi = T (K) ≫ Θ(i) for i = 2, 4, 6, 8, 10, 12

κi = K ≫ Θ(i) for i = 3, 5, 7, 9, 11

where Θ(i) is:

i 2 3 4 5 6 7 8 9 10 11 12

Θ(i) 1 16 17 32 33 85 86 101 102 117 118

and then we obtain the round keys ki by extracting the first 112 bits from κi.
We denote by skw = (k1||k2||...k12) the ’subkey word’ made of the concatenation
of the ki.

The fact that T is an involution allows to easily deduce the ’on-the-fly’ ex-
pressions, which are:{

κ1 = K

κi = T (κi−1) ≫ θ(i) for i = 2, · · · , 12

where θ is defined by:

i 2 3 4 5 6 7 8 9 10 11 12

θ(i) 1 15 1 15 1 52 1 15 1 15 1

Since we do not need it here, we refer to the design document [8] for the
formulas of the round-key derivation in decryption mode.

3 Definitions and Notation

In most block cipher constructions, the Sboxes are bijective, implying that in
a differential attack a non-zero difference at the input of an Sbox is equivalent
to a non-zero difference at its output. Here, the situation is different since the
Sboxes are not bijective. Therefore, in order to avoid any ambiguity, we give a
more precise definition of the notion of active Sbox :

Definition 1 (Active Sbox). An active Sbox is an Sbox with a nonzero input
difference (and a possibly zero output difference).

Definition 2 (Data, Time and Memory Complexities).

– The data complexity is defined as the number of plaintext/ciphertext pairs
necessary to conduct the attack;

– The time complexity, which is expressed as a number of full 12-round encryp-
tions, incorporates all the operations performed by the attacker to recover the
key, and includes the encryptions needed to compute the necessary data;



– The memory complexity, which is expressed as a number of 128-bit blocks,
measures the memory needed during the attack.

Definition 3 (nR-attack [2]). A nR-attack is a differential attack that covers
R rounds with a differential characteristic and attacks R+n rounds in total. We
extend this definition to the related-key setting and call the additional rounds the
key-recovery rounds.

4 Key-Schedule Analysis

In this section we focus on PICARO key-schedule. We first focus on keys under
which a given plaintext leads to the same ciphertext and then extend our analysis
to a related-key attack.

4.1 Keys Leading to Colliding Ciphertexts

In this section we are interested in sets of keys that with high probability encrypt
a given plaintext into the same ciphertext after the 12 rounds of PICARO. Note
that in the ideal case, if one plaintext is fixed and encrypted under different
keys, assuming that the resulting function is random, a ciphertext collision is
expected to occur with probability 2−128.

In the case of PICARO, we can remark that the round structure enables us to
cancel a key difference quite easily: indeed, since the key addition is immediately
followed by the Sbox layer, composed of non-bijective Sboxes, a key difference
can be immediately canceled by going through the Sbox, resulting in an internal-
state collision at the input of the compression function.

Obtaining colliding ciphertexts becomes then possible if we can construct
keys differing in as few positions as possible, in order to make the probability
of the event ”all the subkey differences are canceled by the Sboxes” higher than
2−128. This means that we can cancel a maximum of s Sboxes, with s satisfying
2−7×s > 2−128, so we have to find keys such that the corresponding subkey words
differ in at most 18 bytes.

To find such keys, we first remark that the key-schedule algorithm is linear
over GF (2). This implies that the words made by the concatenation of the
subkeys (skw) belong to a linear code C of dimension k = 128 and length
n = 112 × 12 = 1344. Our search then boils down to the search for codewords
with a low Hamming weight. We first focus on the Hamming weights of the
codewords over GF (2) and we will then move to the Hamming weight over
GF (28), i.e., the number of non-zero bytes, which is the relevant parameter in
our attack.

To determine if it is possible to obtain keys differing in less than 18 bytes, i.e,
at the inputs of less than 18 Sboxes, a first idea is to compute the minimum dis-
tance of the binary code, hereafter denoted by d. A straightforward computation
of d would be too complicated due to the large size of the code. Some algorithms
for finding low-weight codewords, e.g [4], could be used to determine d. But we



now show that it can be easily deduced from the structure of the code with very
simple arguments. We first make some observations coming from the structure
of the generator matrix depicted on Figure 2.

 0

 128

 0  112  224  336  448  560  672  784  896  1008  1120  1232  1344

Fig. 2. Graphical representation of the generator matrix of linear code corresponding
to the key-schedule.

– If we consider all possible master keys of weight 1, the minimum weight
among all corresponding codewords is 20, implying that d ≤ 20

– According to the key-schedule description, 6 subkeys, namely k1, k3, k5, k7,
k9 and k11 consist of a selection of bits from the master key K. Following
this, if we consider a master key of weight 1, then the word made by the
concatenation of the subkeys skw contains at least 4 ones. Indeed, we have
a 1 for sure in κ1, κ3, κ5, κ7, κ9 and κ11 but after the truncation, a maximum
of two of these ones may disappear. Accordingly, every time we add a one in
the master key, the weights of the odd subkey words increase by at least 4.

All in one, those remarks show that, if they exist, the codewords of weight
strictly less than 20 are obtained from master keys of weight at most 4. An
exhaustive search over all these master keys shows that the minimum distance
of the code is d = 18. The active positions of all master keys that reach this
minimum are given in Table 1.

Table 1. Positions of the active bits in the round-keys that correspond to a minimum-
weight subkey word (the bits entering the first Sbox are indexed from 0 to 7).

set K k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12

1 27, 123 27 28 11, 43 12, 44 27, 59 28, 60 80 81 0, 96 1, 97 16 17

2 28, 124 28 29 12, 44 13, 45 28, 60 29, 61 81 82 1, 97 2, 98 17 18

3 29, 125 29 30 13, 45 14, 46 29, 61 30, 62 82 83 2, 98 3, 99 18 19

4 30, 126 30 31 14, 46 15, 47 30, 62 31, 63 83 84 3, 99 4, 100 19 20

5 91, 123 91 92 11, 107 12, 108 27 28 48, 80 49, 81 64, 96 65, 97 80 81

6 92, 124 92 93 12, 108 13, 109 28 29 49, 81 50, 82 65, 97 66, 98 81 82

7 93, 125 93 94 13, 109 14, 110 29 30 50, 82 51, 83 66, 98 67, 99 82 83

8 94, 126 94 95 14, 110 15, 111 30 31 51, 83 52, 84 67, 99 68, 100 83 84



Note that these configurations might have been expected: the best scenarios
are the ones for which the differences do not propagate a lot, so for keys differing
in more than 2 bits we are looking for differences that cancel each other by the
T map, i.e. that are at the same relative position in the 32-bit chunks of the
master key. Moreover, the best configurations correspond to differences that end
up as often as possible in the truncated part of the subkeys.

We note that the previous analysis determines the subkey words having a low
Hamming weight counted in bits, while the relevant quantity is the number of
nonzero bytes since it corresponds to the number of active Sboxes. However, the
structure of the previous result indicates that the words with minimal weight
over GF (28) are derived from master keys having at most two nonzero bytes. An
exhaustive search over this set enables us to determine a set W of 30 minimum-
weight codewords over GF (28), corresponding to the (24 − 1) non-zero linear
combinations of the first four rows in Table 1 and to the (24− 1) non-zero linear
combinations of the last four rows. This analysis exhibits the following bias in
PICARO:

The probability that any given plaintext is encrypted to the same ciphertext

under two keys whose difference belongs to the set W is (2−7)
18

= 2−126.

5 Related-Key Attack on the Full-Round PICARO

We have shown in the previous section that we can ensure that the differences
introduced by the two keys are integrally canceled with probability greater than
2−128. In this section, we show how to use this property in order to build a
distinguisher and recover the encryption key with a related-key attack. We con-
sider a scenario in which the attacker is given the right to ask for the encryption
of plaintexts under the secret encryption key and under a second key which is
related to the first one by a fixed difference.

In the following, we denote by ai, i = 1 · · · 12 the number of active Sboxes in
each round (including the rounds not covered by the characteristic) and by ai→j

the number of active Sboxes in rounds i to j. We provide in Figure 3 a concrete
example providing the best trade-off.

5.1 A First 2R-attack

We describe here a simple related-key attack on the full cipher and give some
optimizations in the following sections. Our attack is based on a differential
characteristic (in which all the differences are canceled by the Sboxes) that covers
the first 10 rounds and ends with a 2-round key-recovery.

The two points that make the 2-round key-recovery holds are the following:
first, the characteristic - that cancels all the differences - allows us to obtain a
good filter on the ciphertexts. Second, a property of the compression function
allows us to invert the compression step with a limited complexity.
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Fig. 3. Related-Key Attack on Full Round PICARO. This figure represents the variant
providing the best data complexity: 299, with a time complexity of 2107.4. The master
key differences are positioned in bit 16 and 80.

Ciphertext Filter. For a plaintext and a pair of keys following the character-
istic, the state entering round 11 is free of differences, and we know the value
of the round-key differences entering the Sboxes at round 11, so we can deter-
mine a set of possible differences at the output of round 11. In the worst case
scenario, there are 27 possible output differences for each active Sbox, so 27×a11

differences are possible out of 264 for the corresponding half of the ciphertext.



This remark implies that we can filter out some pairs that for sure do not follow
the characteristic.

Property of the Compression Function. The following proposition will be
extensively used in the attack. It shows that the knowledge of the output of the
compression function and of any 6 bytes of the input uniquely determines all
input bytes.

Proposition 1. Two distinct 14-byte words having the same image under the
compression function coincide on at most five bytes.

Proof. The compression function is defined by

Compr : GF (28)14 → GF (28)8

x 7→ xH

where H is a 14 × 8 matrix over GF (28) defined in Section 2.1. Then, the set
of all inputs which have the same image under Compr is an affine subspace of
GF (28)14 of dimension 6, which is a coset of the kernel

C = ker(Compr) = {x : xH = 0}.
Therefore, any two elements x and x′ having the same output under Comp are
such that (x+ x′) belongs to C. Moreover, C can also be seen as the linear code
of length 14 and dimension 6 over GF (28) with parity-check matrix HT . Since
HT has been chosen by the designers of PICARO as the generator matrix of
an MDS code, it also corresponds to the parity-check matrix of an MDS code,
implying that the minimum distance of C is 14 − 6 + 1 = 9. Now, assume that
there exist two distinct inputs x and x′ which have the same output under Compr
and which coincide on 6 input bytes. Then, (x + x′) is a non-zero element of C
and it has at most 14− 6 = 8 nonzero bytes, which contradicts the fact that the
minimum distance of C equals 9. ut

Moreover, for any fixed output y of Compr and any set I ⊂ {1, . . . , 14} of
6 input positions, the unique 14-byte word equal to a given α on I can be
determined by elementary algebra. We first observe that the matrix H defining
the compression function is equal to(

Id8

ZT

)
where Z denotes the 8× 6-right part of matrix G defined in Section 2.1. Then,
the set of all words whose image equals y is equal to C + ỹ where ỹ is the 14-
byte word equal to y on the first 8 bytes and which vanishes on the 6 other
bytes, and C = ker(Compr) is the linear space spanned by the rows of matrix
M = (Z, Id6). Let MI (resp. MI) denote the columns of M corresponding to I
(resp. to I = {1, . . . , 14} \ I). The previous proposition shows that MI is non-
singular. Therefore, the unique element x in Compr−1(y) which is equal to α on I
corresponds to the sum of ỹ and of the element in C which is equal to α + ỹ|I
on I. This implies that the value of x on I is equal to ỹ|I + (α+ ỹ|I)M−1I MI .



Obtaining suggestions for the values of the subkey at round 12.

1. Choose a master-key difference ∆ with a minimum number of active Sboxes
in the first 10 rounds and ask for 27×a1→10 triples (Pi, Ci, C

′
i) generated from

different plaintexts Pi, where Ci and C ′i are respectively the corresponding
ciphertext under the secret master key K and the corresponding ciphertext
under the key K ′ = K ⊕∆.

2. Filter out the triples by looking at the ciphertext differences: 27×a1→10−(64−7×a11)

triples remain.
3. Since the internal state entering round 11 is free of difference, the left part

of the ciphertext difference is equal to the difference at the output of the
compression function at round 12. Given that, guess 6 bytes of the differ-
ence entering the compression function and deduce the value of the full 112-
bit difference entering the compression function at round 12 (this value is
uniquely determined as shown by Proposition 1). There are 248 possibilities
for each triple.

4. Starting from the right half of the ciphertext difference, compute the ex-
pansion function and add the difference coming from the key difference to
deduce the value of the difference entering the Sboxes at round 12.

5. With the help of the difference distribution table, check the difference tran-
sitions of the 14 Sboxes at round 12. If all the transitions are valid, compute
the possible intermediate state values that permit these transitions. In order
to estimate the average number of states returned by this procedure, we use
that, for any Sbox, the product between the probability that a transition is
valid and the number of values following this transition is equal to 1. For
PICARO Sbox S (note that the reasoning would be similar for any Sbox),
we consider the number δ(a, b) of inputs x such that S(x + a) + S(x) = b,
and the number τ of valid transitions, i.e., τ is the number of pairs (a, b)
such that δ(a, b) > 0. The sum of all (non-zero) entries in the difference table
of S equals 22×8, i.e., the sum over all valid (a, b) of δ(a, b) equals 22×8. It
then follows that 1

τ

∑
valid (a,b)

δ(a, b)

× ( τ

22×8

)
= 1.

Therefore, for each Sbox transition considered in the attack, we obtain in
average one intermediate state which satisfies this transition. So, we get a
total of

27×a1→10−(64−7×a11) × 248 = 27×a1→11−16 candidates.

6. From the ciphertext value, deduce the intermediate state value before the
key addition in round 12. From that, we obtain 27×a1→11−16 candidate values
for the subkey of round 12.

This algorithm requires 27×a1→10+1 full encryptions for obtaining the initial
triples, then 27×a1→11−16+1 × 1

12 encryptions (since only round 12 is computed)



to obtain candidates for k12, which leads to an overall time complexity corre-
sponding to the cost of

27×a1→10+1 + 27×a1→11−18.58 encryptions.

5.2 Optimizations

Reducing the Initial Number of Encryptions. A potential bottleneck in
the previous algorithm comes from the data complexity and then from the cost
of the generation of the initial data. In this section, we detail a technique (close
to the notion of structures which is commonly used in differential attacks) that
reduces it by a factor of 27×a1 . The idea here is to let the first round-key difference
spread freely and to cancel this difference by introducing a difference in another
plaintext.

For each plaintext Pi encrypted under the master key K, we ask for the
encryption of a set of plaintexts P set

i encrypted under the second key. These
plaintexts are made by adding to Pi all the possible differences coming from
the subkey difference. To compute these differences, we exhaust all the (28×a1)
possibilities for the difference at the output of the active Sboxes at round 1 and
apply the (linear) compression function.

Since this set contains all the possible differences, one of them corresponds to
the actual difference and will cancel the first round difference. Now, we extend
that remark by asking the oracle for the encryption of the same set P set

i under
the master key. We then possesses 28×a1+1 plaintexts and each plaintext in the
first set is such that the difference introduced by the first round-key is canceled
by exactly one plaintext in the second set. To sum up, we have exactly 28×a1

pairs that lead to a zero difference at the end of round 1 from 28×a1+1 encryptions
only. The other parts in the algorithm remain the same. So to obtain one pair
that leads to a zero difference at round 10 we need

27×a2→10−8×a1+8×a1+1 = 27×a2→10+1 encryptions.

If we apply this technique to the previous algorithm, the number of initial
encryptions is reduced from 27×a1→10+1 to 27×a2→10+1.

Speeding Up the Master-Key Recovery. The previous algorithm returns
candidates for the 112 bits of the subkey at round 12. From that point, we can
naively perform an exhaustive search for the remaining 16 bits of the master key,
which would lead to an attack with data complexity 27×a2→10+1, time complexity
27×a2→10+1 +27×a1→11−16×216 and with memory complexity 28×a1+1 (necessary
to store the initial ’structures’).

We can further reduce the second term in the time complexity by using the
previous rounds to filter out wrong candidates faster than with a trial encryption.
Indeed, we can check if the candidate key gives the right Sbox transitions round
after round, and discard a candidate as soon as the Sbox transition is wrong.



The optimal configuration would be the one for which we can deduce from
the candidate value for k12 the key bits of k1 and k11 that enter the active Sboxes
at rounds 1 and 11. In such a case, the attacker can directly (i.e. without any
additional key guess) check if the candidate value for k12 leads to the right Sbox
transitions at rounds 1 and 11. This corresponds to a filter of about 2−7a1 and
2−7a11 . The remaining operations (checking the Sbox transitions at the other
rounds and guessing the remaining bits) are comparatively of negligible time
complexity.

In case only a few key bits are known, the attacker can also reduce the time
complexity by doing this gradual check. For the 27a1→11−16 pairs and candidate
values for k12, she can compute the expansion function at the round in which the
largest number of information bits is known. At this round, she needs to guess
the unknown bits in order to check the active Sbox transitions and then, for
the right guesses, she can compute the entire round function in order to access
another round. The full round function is then computed only for the guesses
leading to the valid Sbox transitions. This occurs with probability 2−7 while
at most 8 bits must be guessed. Therefore, we can consider that this step has
negligible time complexity compared to 27×a1→11−18.58.

Hence, the total data complexity is 27×a2→10+1, the time complexity is re-
duced to 27×a2→10+1 + 27×a1→11−18.58, and the memory is unchanged (28×a1+1).

Choosing a2→10 and a1→11. According to the previous analysis the bottle-
neck in the time complexity is:

27×a2→10+1 + 27×a1→11−18.58.

It is then parameterized by a2→10 (the amount of active Sboxes from round 2
to 10) and by a1→11 (the amount of active Sboxes from round 1 to 11).

A simple search returns that the minimum for a2→10 is 14 and that the
minimum for a1→11 is 17. Unfortunately, the two minima cannot be reached
simultaneously, which gives raise to the following two possible options.

Variant 1: minimizing a2→10. We consider here situations for which a2→10 =
14, the minimum for a1→11 in these cases is 18 (see Table 2 for the difference
positions that reach these minima and Figure 3 for an example of related-key
attack using this variant).

One of the advantages of this variant is that some of the options we can
choose for the master-key difference allow us to speed up the search for the
master-key. Indeed, two active Sbox transitions at round 1 and two other ones
at round 11 can be checked without any additional key guess, as previously
explained. However, this speed-up is imperceptible since it does not decrease the
time complexity bottleneck. The final time complexity is

27×a2→10+1 + 27×a1→11−18.58 = 27×14+1 + 27×18−18.58 = 299 + 2107.4 = 2107.4.

The total data complexity is 27×a2→10+1 = 299, and the memory complexity is
28×a1+1 = 217.



Table 2. List of all master-key differences (of weight less than 4) minimizing a2→10

(a2→10 = 14) with the smallest value for a1→11 (a1→11 = 18). The last 2 columns
indicate the number of key bytes (and bits) deduced from k12 at the positions corre-
sponding to the active Sboxes at rounds 1 and 11.

diff. positions a1 a2→10 a11 a1→11 known bytes (bits) in k1 known bytes (bits) in k11

11 107 2 14 2 18 1 (14) 2 (16)

12 108 2 14 2 18 1 (14) 2 (16)

13 109 2 14 2 18 1 (14) 2 (16)

14 110 2 14 2 18 1 (14) 2 (16)

15 111 2 14 2 18 1 (14) 2 (16)

16 80 2 14 2 18 2 (16) 2 (16)

17 81 2 14 2 18 2 (16) 2 (16)

18 82 2 14 2 18 2 (16) 2 (16)

19 83 2 14 2 18 2 (16) 0 (14)

20 84 2 14 2 18 2 (16) 0 (14)

21 85 2 14 2 18 2 (16) 0 (14)

22 86 2 14 2 18 2 (16) 0 (14)

23 87 2 14 2 18 2 (16) 0 (14)

24 88 2 14 2 18 0 (4) 0 (14)

25 89 2 14 2 18 0 (4) 0 (14)

26 90 2 14 2 18 0 (4) 0 (14)

27 91 2 14 2 18 0 (4) 0 (0)

28 92 2 14 2 18 0 (4) 0 (0)

29 93 2 14 2 18 0 (4) 0 (0)

30 94 2 14 2 18 0 (4) 0 (0)

31 95 2 14 2 18 0 (4) 0 (0)

32 96 2 14 2 18 0 (0) 0 (0)

33 97 2 14 2 18 0 (0) 0 (0)

34 98 2 14 2 18 0 (0) 0 (0)

35 99 2 14 2 18 0 (0) 0 (2)

36 100 2 14 2 18 0 (0) 0 (2)

37 101 2 14 2 18 0 (0) 0 (2)

38 102 2 14 2 18 0 (0) 0 (2)

39 103 2 14 2 18 0 (0) 0 (2)

40 104 2 14 2 18 0 (12) 0 (2)

41 105 2 14 2 18 0 (12) 0 (2)



Variant 2: minimizing a1→11. If we choose to minimize a1→11, the minimum
value of a2→10 is 15, and the time necessary to generate the data becomes
27×a2→10+1 = 2106.

An exhaustive search among these configurations, as presented in Table 3,
shows that none of them allow to do the direct sieving with k1 and k11 that
was possible in the previous variant. The attack obtained when the master-key
difference is chosen at positions 27 and 123 is depicted in Figure 4. The final data
complexity (which is also the time complexity bottleneck) is 27×15+1 = 2106, the
time complexity is 27×a2→10+1 + 27×a1→11−18.58 = 2106 + 2100.4 = 2106 and the
memory complexity is 28×a1+1 = 29.

Table 3. List of all master-key differences (of weight less than 4) minimizing a1→11

(a1→11=17) with the smallest value for a2→10 (a2→10 = 15). The last 2 columns indicate
the number of key bytes (and bits) deduced from k12 at the positions corresponding
to the active Sboxes at rounds 1 and 11.

diff. positions a1 a2→10 a11 a1→11 known bytes (bits) in k1 known bytes (bits) in k11

27 123 1 15 1 17 0(2) 0(0)

28 124 1 15 1 17 0(2) 0(0)

29 125 1 15 1 17 0(2) 0(0)

30 126 1 15 1 17 0(2) 0(0)

91 123 1 15 1 17 0(2) 0(0)

92 124 1 15 1 17 0(2) 0(0)

93 125 1 15 1 17 0(2) 0(0)

94 126 1 15 1 17 0(2) 0(0)

6 Conclusion

In this paper we exhibit related-key attacks on the full-round block cipher PI-
CARO. Our attacks exploit a weakness in the key-schedule as well as the non-
bijectivity of the Sbox. We think that a stronger key-schedule with a better
diffusion would help thwarting this type of attack.

Despite the fact that our related-key attacks do not represent a threat to the
cipher in other more realistic scenarios, the authors aimed at providing related-
key resistance, and we believe that such claim should be revised.
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Fig. 4. Related-Key attack on full-round PICARO . This figure represents the attack
with the best time complexity: 2106, with a data complexity of 2106. The master-key
differences are located at bits 27 and 123.
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