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Abstract. We present new frameworks for constructing public-key encryption schemes satisfying key-dependent
message (KDM) security and that yield efficient, universally composable oblivious transfer (OT) protocols via
the dual-mode cryptosystem framework of Peikert, Waters and Vaikuntanathan (Crypto 2008).

– Our first framework yields a conceptually simple and unified treatment of the KDM-secure schemes of
Boneh et al. (Crypto 2008), Brakerski and Goldwasser (Crypto 2010) and Brakerski, Goldwasser and Kalai
(TCC 2011) in the single-key setting.

– Using our second framework, we obtain new dual-mode cryptosystems based on the d-linear, quadratic
residuocity and decisional composite residuocity assumptions.

Both of these frameworks build on the notion of smooth projective hashing introduced by Cramer and Shoup
(Eurocrypt 2002), with the additional requirement that the hash function is homomorphic, as is the case for all
known instantiations.

⋆ CNRS, INRIA and Columbia University. Partially supported by ANR Project EnBiD (ANR-14-CE28-0003), NSF Award CNS-
1445424 and the Alexander von Humboldt Foundation.



1 Introduction

The most basic security guarantee we require of a public key encryption scheme is that of semantic
security against chosen-plaintext attacks (CPA) [21]: it is infeasible to learn anything about the plaintext
from the ciphertext. However, a series of increasingly sophisticated use of encryption —both directly in
the case of practical applications, and indirectly as a cryptographic building block in more theoretical
work — call for encryption schemes with much stronger security guarantees. In this work, we consider
two such security notions.

Key-dependent message (KDM) security. The standard CPA security definition does not provide any
guarantee where the plaintext depends on the secret key (as pointed out in [21]), as may be the case
in disk encryption. It was later observed that this situation is not so unlikely and may sometimes even
be desirable [12, 1]. Black, Rogaway and Shrimpton [7] formally defined key-dependent message (KDM)
security: roughly speaking, we want to guarantee semantic security even against an adversary that can
obtain encryptions of (efficient) functions of its choosing, taken from some specified class of functions
F, applied to the secret key.

Several years ago, Boneh et al. (BHHO) [9] presented a public-key encryption scheme that is KDM-
secure w.r.t. the class of affine functions under the decisional Diffie-Hellman (DDH) assumption. Since
then, Applebaum et al. [4] presented a scheme under the LWE assumption (which is itself a variant of
Regev’s cryptosystem [33]) and Brakerski and Goldwasser [10] presented a BHHO-like scheme based on
the quadratic residuocity (QR) and decisional composite residuocity (DCR) assumptions. All of these
schemes achieve KDM-security w.r.t. the class of affine functions, which can in turn be “boosted” to the
class of circuits of a-priori bounded size [5, 3]. In spite of the fact that many of these schemes inherit
the BHHO algebraic structure, there does not seem to be a general principle that explains the design
or analysis of these schemes: the BHHO analysis uses an intermediate notion of an “expanded system”,
whereas that of Brakerski and Goldwasser rely on an incomparable “interactive vector” game.

Dual-mode cryptosystems. Dual-mode cryptosystems were put forth by Peikert, Vaikuntanathan and
Waters [32] as a tool for constructing efficient and universally composable oblivious transfer (OT)
protocols. Oblivious transfer is a fundamental two-party cryptographic primitive for secure two-party
and multi-party computation [35, 20, 28]: it allows one party, called the receiver, to obtain exactly one of
two values from another party, called the sender. The receiver remains oblivious to the other value, and
the sender is oblivious to which value was received.

A natural approach towards realizing OT is to have the receiver generate a pair of public keys, and
have the sender encrypt both of its input values under the respective public keys [17, 19]. In order to
provide security against a malicious sender, we can simply generate a pair of “normal” public keys along
with the corresponding secret keys and we can then decrypt the ciphertexts sent by the sender to extract
both its inputs. On the other hand, if the receiver is malicious, we need to ensure that (at least) one of the
two public keys be “messy”, namely it carries no information about the ciphertext encrypted under the
key.

A dual-mode cryptosystem provides exactly both of these guarantees in the common reference string
(CRS) model. The cryptosystem admits two types of public keys, “normal” keys that enable correct
decryption, and “messy” keys that carries no information statistically about the ciphertext. Moreover,
a simulator can generate the CRS in one of two indistinguishable modes: a “messy” mode which ensures
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that amongst any pair of possibly adversarially chosen public keys, at least one must be “messy”; and a
“decryption” mode which allows a simulator to generate a pair of “normal” keys.

Peikert et al. also presented three instantiations of dual-mode cryptosystems based on DDH, QR
and LWE. However, there seems to be no overarching theme to the three constructions – the DDH-
based scheme relies on a “re-randomization trick” from the earlier OT protocols of Naor and Pinkas [30]
whereas the QR-based scheme relies on algebraic properties of Cocks’ IBE scheme [14].

Our results. We present new frameworks for constructing KDM-secure encryption schemes and dual-
mode cryptosystems that admit a very simple and modular analysis. Both of these frameworks build on
the notion of smooth projective hashing, introduced by Cramer and Shoup in the context of CCA-secure
encryption [16, 15], with the additional requirement that the hash function is homomorphic, as is the
case for all known instantiations. Using our frameworks, we obtain:

– a unified treatment of the KDM-secure encryption schemes based on DDH, QR, and DCR given in
[9, 10] for affine functions of the secret key, as well as those for low-degree functions of the secret
key in [11] (we focus here on the single-key setting, which already captures much of the difficulty in
realizing KDM-security in prior works; see Section 2.1 for a discussion on multiple keys),

– new constructions of dual-mode cryptosystems: (i) a construction based on the d-linear assumption,
generalizing the previous construction based on DDH; (ii) a simple construction based on QR, which
does not rely on the Cocks IBE; (iii) a new construction based on DCR.

We regard our first construction for KDM security as our primary technical contribution. The second
for dual-mode cryptosystems builds heavily upon existing constructions of OT from smooth project
hashing in [23], although highlighting the role of the group structure and homomorphism for dual-mode
cryptosystems appears to be novel to this work (c.f. comparison in Section 2.2).

Our high-level approach for KDM security is quite simple. Via the projective property, we will define
ciphertexts via decryption with the secret key instead of encryption with the public key. Now, by feeding
the decryption algorithm some “malformed” ciphertext, decryption leaks a function f of the secret key
SK. In fact, we can design the malformed ciphertexts carefully so that they decrypt to f (SK); moreover,
these malformed ciphertexts are indistinguishable from random encryptions of f (SK). It is important
here that the distribution of the malformed ciphertext depends only on f and the public key PK. For
this to work out, we require some algebraic structure for the decryption algorithm and the space of
ciphertexts, as is captured by precisely by homomorphic projective hashing.

2 Overview of Our Constructions

Smooth projective hashing. We begin with an informal overview of smooth projective hashing [16, 15],
since our constructions build on this framework. We consider a family of hash functions ΛHK(·) indexed
by a hashing key HK, whose input comes from a group G. Let GYES be a subgroup of G and let µ(·) denote
a projection map defined on the hashing key HK. We are interested in hash functions that satisfy the
following properties:

– (projective) for C ∈GYES, the value ΛHK(C ) is uniquely determined by µ(HK) and C . Moreover, there is
an algorithm Pub that given µ(HK) along with the randomness r used to sample C , outputs ΛHK(C ).

– (smoothness) for C ∉GYES, the value ΛHK(C ) is statistically close to random even given µ(HK) and C .

– (homomorphic) for all C0,C1 ∈G, we have ΛSK(C0 ·C1) =ΛSK(C0) ·ΛSK(C1).
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In addition, we require that the uniform distributions over GYES and G be computationally indistin-
guishable, and that the uniform distributions over GYES and GNO := G \GYES are also computationally
indistinguishable. (If GYES has negligible density, then the former implies the latter.)

2.1 KDM-security

Starting with a smooth projective hash function ΛHK(·) defined on G, we can build a CPA-secure
encryption scheme —which we will refer to as the “Cramer-Shoup scheme”— as follows:

– Gen(1k ): Sample a uniform hashing key HK and output the key pair

PK :=µ(HK) and SK := HK

Henceforth, we will use SK and HK interchangeably for this scheme.

– Enc(PK,m): To encrypt a message m, sample C ←R GYES with randomness r , output the ciphertext

(C ,ΛSK(C ) ·m)

where ΛSK(C ) is computed via the projective property using Pub(PK,C ,r ).

– Dec(SK, (C ,ψ)): On input a ciphertext (C ,ψ), output the plaintext

(ΛSK(C )−1 ·ψ)

A standard argument shows that this scheme is CPA-secure: we switch the distribution of C in the
ciphertext to C ←R GNO and then by smoothness, the ciphertext statistically hides m. Moreover:

Theorem (informal). Suppose in addition that ΛSK(·) is homomorphic. Then this encryp-
tion scheme is KDM-secure1 w.r.t. the class of functions {SK 7→ΛSK(e)} for any e ∈G.

Once we have KDM-security for affine functions, we can “boost” to the class of circuits of a-priori
bounded size [5, 3].

Simulating KDM queries. The core difficulty lies in simulating encryptions of ΛSK(e) given only the
public key, which turns out to be really simple in our framework.

Enc(PK,ΛSK(e)) ≡ 〈C ,Pub(PK,C ,r ) ·ΛSK(e)〉 : C ←R GYES, randomness r

≡ 〈C ,ΛSK(C ) ·ΛSK(e)〉 : C ←R GYES,via projective property

≈c 〈C ,ΛSK(C ) ·ΛSK(e)〉 : C ←R G,via subgroup membership

≡ 〈C ,ΛSK(C ·e)〉 : C ←R G, since ΛSK(·) is homomorphic

≡ 〈C ·e−1,ΛSK(C )〉 : C ←R G, since e ∈G
≈c 〈C ·e−1,ΛSK(C )〉 : C ←R GYES

≡ 〈C ·e−1,Pub(PK,C ,r )〉 : C ←R GYES, randomness r , via projective

Note that:

– we can sample from the final distribution given only PK;

– the above transition does not rely on smoothness, and therefore everything goes through even if we
append SK to the view, namely (SK,Enc(ΛSK(e))) ≈c (SK,〈C · e−1,Pub(PK,C ,r )〉), which allows us to
carry out a hybrid argument over the KDM queries;

1 as noted earlier in the introduction, we only address KDM-security in this paper with a single public/secret key; we address
multiple keys later in this section.
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– the treatment of KDM queries relies on the projective and homomorphic properties of ΛSK(·) but not
smoothness; instead, we will use smoothness for the normal encryption queries.

Again, we stress that the proof crucially exploits the projective property; the role of the projective
property is not captured by any of the prior “expanded system”, “interactive vector” or the “triple proofs”
frameworks for KDM-security in [9, 10, 29].

An instantiation. In the BHHO DDH-based KDM-secure encryption scheme, the underlying projective
hash function is defined on a group G := Gℓ where G is the DDH group with some generator g , and ℓ is
a parameter. The hashing key (also the secret key) SK = (s1, . . . , sℓ) lies in {0,1}ℓ, and given an instance
C = (c1, . . . ,cℓ) ∈Gℓ,

ΛBHHO
SK (C ) = c s1

1 · c s2
2 · · ·c sℓ

ℓ

This means that given any (a1, . . . , aℓ) ∈Zℓ
q ,

ΛBHHO
SK ((g a1 , . . . , g aℓ)) = g a1s1+···+aℓsℓ

Average-case smoothness follows readily from the left-over hash lemma. Now, if we modify the underly-
ing Cramer-Shoup scheme to encrypt the message in the exponent, this function corresponds precisely
to linear functions of the bits of the secret key. To handle affine functions, we need to handle an additional
offset as described in Section 4.

Moreover, we can further extend the hash proof system to handle KDM-security with respect to some
fixed functions f1, . . . , ft for any polynomial t (for instance, constant-degree polynomials in the bits of the
secret keys or uniform Turing machine computation of description at most c logk bits) as is the setting
considered in Brakerski, Goldwasser and Kalai [11]. We now consider instances C = (c1, . . . ,cℓ+t ) ∈Gℓ+t ,

ΛBHHO
SK (C ) = c s1

1 · c s2
2 · · ·c sℓ

ℓ
· c f1(SK)

ℓ+1 · · ·c ft (SK)
ℓ+t

Average-case smoothness follows as before from the left-over hash lemma. Then, ΛBHHO
SK (g eℓ+i ) = g fi (SK)

corresponds to an encryption of fi (SK). This provides a more direct construction of KDM-security with
respect to f1, . . . , ft as opposed to the entropic-KDM framework in [11].

On KDM-security with multiple keys. We clarify that we only address KDM-security in this paper with
a single public/secret key, whereas the previous constructions in [9, 10] address KDM-security with
multiple public/secret key pairs. We note that simplifying KDM-security for a single public/secret key
is still important in and of itself: (1) it suffices for some applications, e.g. disk encryption, (2) it already
captures much of the technical difficulty in realizing KDM-security, (3) previous schemes in [9, 4, 10]
first establish KDM-security for a single public/secret key, and then bootstrap to multiple keys, (4)
more recent schemes for RKA-KDM-security in [8] also reduces security to KDM-security for a single
public/secret key. In particular, our framework clarifies the first step of the analysis for multiple key pairs;
our framework is also the first to point out the role of the projective property for KDM-security (which is
not covered in prior “expanded system”, “interactive vector” or the “triple proofs” frameworks for KDM-
security in [9, 10, 29]) and that captures the algebraic structure needed for the decryption algorithm and
the space of ciphertexts via homomorphic projective hashing.

Connection to leakage resilience. Let us informally refer to a Cramer-Shoup scheme as “linear” if ΛSK(·)
computes a linear function of SK (possibly in the exponent), where the coefficients of the linear function
are specified by the instance. From the preceding discussion, we see that (1) linear Cramer-Shoup
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schemes are KDM-secure w.r.t. linear functions, and (2) the BHHO scheme [9] along with the BHHO-
like schemes given by Brakerski and Goldwasser [10] are examples of such schemes. Naor and Segev [31]
also showed that linear Cramer-Shoup schemes are resilient to bounded key leakage; this follows from
the fact that random linear functions are good strong extractors. This yields a simple explanation as to
why the BHHO scheme and variants there-of are both KDM-secure and resilient to bounded key leakage.

2.2 Dual-mode encryption

Starting with a smooth projective hash function ΛHK(·) defined on G, we can build a different CPA-secure
encryption scheme —which we will refer to as the “dual Cramer-Shoup scheme”— as follows:

– Gen(1k ): Sample C ←R GYES with randomness r and output the key pair

PK :=C and SK := r

– Enc(PK,m): To encrypt a message m, sample a random HK and output the ciphertext

(µ(HK),ΛHK(C ) ·m)

– Dec(SK, (p,ψ)): On input a ciphertext (p,ψ), compute K :=ΛHK(C ) using Pub on input p,C and r (via
the projective property) and output

(K −1 ·ψ)

As observed in by Halevi and Kalai [23, 24], if we sample the public key C ←R GNO, smoothness tells us
that we obtain a “messy” public key where the ciphertext carries no information about the message. This
suggests the following natural construction of a dual-mode cryptosystem / OT protocol:

– the receiver generates a pair of public keys C0,C1 ∈G subject to the constraint that C0 ·C1 is the CRS.

– in the normal mode, we pick C0,C1 ←R GYES, and the CRS is chosen uniformly from GYES.

– in the messy mode, the CRS is chosen uniformly from GNO. Now, whenever a possibly malicious
receiver sends a pair of public keys (C0,C1) such that C0 ·C1 ∈ GNO, then we know that one of C0,C1

lies in GNO and is therefore messy. (Otherwise, if C0,C1 ∈GYES, then C0 ·C1 ∈GYES by closure properties
of the subgroup.)

We note that exploiting subgroup structure of GYES appears to be novel to this work, and we use subgroup
structure in two ways: first, to argue that if C0 ·C1 ∈ GNO, then one of C0,C1 lies in GNO; and second,
randomizing GYES in the CRS (which is necessary for reusability in the context of UC security) by adding
another random GYES instance. In contrast, the prior work [23] uses the fact that if two pairs of group
elements agree on the first component and disagree on the second, then one of them is a non-DDH
tuple, and there is no need for randomizing GYES as it addresses stand-alone security.

2.3 Discussion

On lattice-based instantiations. A natural question is whether our frameworks extend to LWE-based
instantiations of KDM-secure encryption and dual-mode cryptosystems given in [4, 2, 32], while relying
on an approximate notions of smooth projective hashing as given in [27]. In the LWE setting, the “yes”
instances as given by valid LWE instances do not form a subgroup. We note that for KDM security, our
proof does not rely on the fact thatGYES forms a subgroup. For dual-mode cryptosystems, we only require
that the “product” of two instances in GYES is “far” from GNO, which is indeed satisfied by LWE instances.
However, in order to obtain an OT protocol where the same CRS can be reused for an a-priori unbounded

5



number executions, it is crucial that we can statistically rerandomize instances in GYES. We do not know
how to achieve the latter for LWE; indeed, the LWE-based OT in [32] only achieves security for an a-priori
bounded number of OT executions. In particular, we do not know any LWE instantiations for the “full-
fledged” notion of dual-mode cryptosystems.

Additional related work. Smooth projective hashing is an extremely versatile tool that has found many
other applications beyond CCA-security – two-message oblivious transfer [23], password-authenticated
key exchange [18, 6], bounded leakage resilience [31], and encryption schemes secure against selective
opening attacks [24]. The works of Barak et al. and Applebaum [5, 3], Brakerski, Goldwasser and Kalai
[11], and Malkin, Teranishi and Yung [29] each presented general and different techniques to extend
KDM-security to richer classes of functions with incomparable trade-offs. Haitner and Holenstein [22]
presented black-box impossibility results for (single-key) KDM-security based on general assumptions.
In subsequent work, Hofheinz [25] presented a KDM-CCA-secure scheme with compact ciphertexts,
inspired in part by the connection between smooth projective hashing and KDM-security established
in this work.

Organization. We present definition and results on KDM-secure public-key encryption in Section 4, and
those for dual-mode encryption in Section 5. We present the instantiations in Sections 6 and 7.

3 Preliminaries

Notation. We denote by s ←R S the fact that s is picked uniformly at random from a finite set S and by
x, y, z ←R S that all x, y, z are picked independently and uniformly at random from S. By PPT, we denote
a probabilistic polynomial-time algorithm. Throughout, we use 1k as the security parameter. We use · to
denote multiplication (or group operation) as well as component-wise multiplication. We use lower case
boldface to denote (column) vectors and upper case boldface to denote matrices.

3.1 Smooth Projective Hashing

We present the notion of smooth projective hashing as introduced by Cramer and Shoup [16], in the
context of group-theoretic languages.

Setup. Fix a family of groups GPP indexed by a public parameter PP. We require that PP be efficiently
samplable along with a secret parameter SP given a security parameter 1k , and assume that all algorithms
are given PP as part of its input. We omit PP henceforth whenever the context is clear. We consider
subgroups GYES of G and we use GNO to denote G \ GYES. We will require that each of these groups
G,GYES,GNO be efficiently samplable given PP. Observe that if GYES has negligible density (as is the case
for most instantiations), we may use the same sampling algorithm for both G and GNO since both
distributions are statistically indistinguishable.

Subgroup membership assumption. We will consider two related computational assumptions pertain-
ing to the group G, which we refer to collectively as the subgroup membership assumption. The first
assumption states that the uniform distributions over GYES and G are computationally indistinguishable,
even given PP. The second assumption states that the uniform distributions over GYES and GNO are
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computationally indistinguishable, even given PP. Again, observe that if GYES has negligible density,
these two assumptions are equivalent, since the distributions over G and GNO are then statistically
indistinguishable. Finally, we require that given the secret parameter SP, we can efficiently verify
membership in GYES.

Homomorphic projective hashing. Fix a public parameter PP. We consider a family of hash functions
{ΛHK :G→K} indexed by a hashing key HK. We require that ΛHK(·) be efficiently computable (by a ‘private
evaluation’ algorithm), and HK be efficiently samplable. In addition, we require that both G and K are
groups, and that ΛHK(·) is a group homomorphism, that is, for all HK and all C0,C1 ∈G, we have ΛHK(C0) ·
ΛHK(C1) = Λ(C0 ·C1). We say that ΛHK(·) is projective if there exists a projection map µ(·) defined on HK

such that µ(HK) defines the action of ΛHK on inputs from GYES. Specifically, we require that there exists an
efficient public evaluation algorithm Pub that on input µ(HK) and C ∈GYES along with the randomness r
used to sample C , outputs the value ΛHK(C ).

Smoothness. We say that ΛHK(·) is smooth if the action of ΛHK on GNO is completely undetermined. That
is, for all C ∈GNO, the following distributions are statistically close:

〈PK,ΛHK(C )〉 and 〈PK,K 〉
where HK is random, PK = µ(HK) and K ←R K. (Looking ahead, we will also consider a relaxed notion in
some of our instantiations where we choose K from the uniform distribution over some subset of K; see
Section 7.) We also say that ΛHK(·) is average-case smooth where we relax the requirement for smoothness
to hold for a random C ∈G [31]. That is, the following distributions are statistically close:

〈C , PK,ΛHK(C )〉 and 〈C , PK,K 〉
where HK is random, PK =µ(HK), C ←R G and K ←R K.

4 KDM-Secure Encryption

Key-Dependent Message Security. We adopt a simulation-based variant of key-dependent message
(KDM) security from [7, 9], in the setting where there is only one public/secret key pair. Fix a public-
key encryption scheme (Gen,Enc,Dec). For a stateful adversary A, we define the advantage function

AdvKDMA,F(k) := Pr

[
(PK, SK) ←Gen(1k );

AkdmEnc(·),Enc(PK,·)(PK) = 1

]
−Pr

[
(PK, SK) ←Gen(1k );

AkdmEnc∗(·),Enc∗(PK,·)(PK) = 1

]
where

– kdmEnc(·) is an oracle that on input f ∈F returns a random encryption Enc(PK, f (SK));

– kdmEnc∗(PK, ·) corresponds to a simulator that gets as input f ∈F;

– Enc∗(PK, ·) is an oracle that on input m, returns Enc(PK,0|m|).

An encryption scheme is said to be F-KDM secure if there exists an efficient kdmEnc∗() such that for all
PPT A, the advantage |AdvKDMA,F(k)| is a negligible function in k.

Construction. Starting with a projective hash function ΛHK :G→K, we may derive a semantically secure
public-key encryption scheme (Gen,Enc,Dec). The message space is M, and we require an injective map
ϕ :M→K which is efficiently computable and invertible.
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– Gen(1k ): Sample public parameters PP, a uniform hashing key HK and compute PK := (PP,µ(HK)).
Output the key pair

PK := (PP,µ(HK)) and SK := HK

– Enc(PK,m): Sample C ←R GYES with randomness r , output the ciphertext

(C ,Pub(PK,C ,r ) ·ϕ(m))

– Dec(SK, (C ,ψ)): Output the plaintext

ϕ−1(ΛSK(C )−1 ·ψ)

Theorem 1. Suppose ΛHK(·) is a projective hash function that is average-case smooth and homomor-
phic, and the subgroup membership problem is hard (w.r.t. G vs GYES). Then, the encryption scheme
(Gen,Enc,Dec) described above is F-KDM secure where F= { fe,k : SK 7→ϕ−1(ΛSK(e) ·k) | e ∈G,k ∈K}.

We do require that given a description of the function fe,k , we can efficiently compute the corresponding
e ∈ G,k ∈ K. Later on in the instantiations, the term e allows us to specify the coefficients in a linear
function, whereas k corresponds to the constant off-set in an affine function. On the first reading, we
suggest that the reader assume ϕ is the identity map.

Proof. Observe that correctness of the encryption scheme follows readily from the projective property.
We proceed to establish KDM security. First, we describe kdmEnc∗: on input PK, fe,k and randomness r ,
use r to sample C ←R GYES and output

〈C ·e−1,Pub(PK,C ,r ) ·k〉
We proceed via a sequence of games. Fix a PPT adversary A that makes at most Q0 queries to kdmEnc
and Q1 queries to Enc. We show that

|AdvKDMA,F(k)| ≤ (2Q0 +2Q1) ·ϵ
where ϵ is the advantage for the subgroup membership assumption. We start with Game 0, where
the challenger proceeds like in the security game with kdmEnc,Enc oracles in the left experiment and
kdmEnc∗,Enc∗ oracles in the right experiment.

Game 1. For i = 1, . . . ,Q0, replace the i ’th query fe,k to kdmEnc on the left with kdmEnc∗. We will run a
hybrid argument over the Q0 queries, and thus it suffices to show that for each i ,

(PK, SK,Enc(PK, fe,k (SK)))
2ϵ≈c (PK, SK,〈C ·e−1,Pub(PK,C ,r ) ·k〉),

where we would use SK to simulate the remaining kdmEnc queries and PK for the Enc queries. For
notational simplicity, we omit (PK, SK) in the hybrid transitions below:

Enc(PK, fe,k (SK);r )

≡ 〈C ,Pub(PK,C ,r ) ·ΛSK(e) ·k〉 : C ←R GYES, randomness r

≡ 〈C ,ΛSK(C ) ·ΛSK(e) ·k〉 : C ←R GYES,via projective property

≈c 〈C ,ΛSK(C ) ·ΛSK(e) ·k〉 : C ←R G,via subgroup membership

≡ 〈C ,ΛSK(C ·e) ·k〉 : C ←R G, since ΛSK(·) is homomorphic

≡ 〈C ·e−1,ΛSK(C ) ·k〉 : C ←R G, since e ∈G
≈c 〈C ·e−1,ΛSK(C ) ·k〉 : C ←R GYES

≡ 〈C ·e−1,Pub(PK,C ,r ) ·k〉 : C ←R GYES, randomness r , via projective
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Note that the above transition does not rely on smoothness, and therefore everything goes through
even if we append (PK, SK) to the view.

Game 2. For i = 1, . . . ,Q1, replace the i ’th query m to Enc on the left with Enc∗. We will run a hybrid
argument over the Q1 queries, and thus it suffices to show that for each i ,

(PK,Enc(PK,m))
2ϵ≈c (PK,Enc(PK,0|m|)).

This is standard CPA-security of the Cramer-Shoup encryption. Observe that the view includes PK,
which is sufficient to run kdmEnc∗.

Enc(PK,m) ≡ 〈C ,Pub(PK,C ,r ) ·ϕ(m)〉 : C ←R GYES, randomness r

≡ 〈C ,ΛSK(C ) ·ϕ(m) : C ←R GYES,via projective property

≈c 〈C ,ΛSK(C ) ·ϕ(m) : C ←R G,via subgroup membership

≡ 〈C ,K ·ϕ(m)〉 : C ←R G,K ←R K,via smoothness

≡ 〈C ,K ·ϕ(0|m|)〉 : C ←R G,K ←R K,via uniformity of K

≈c Enc(PK,0|m|)) by reversing the hybrids

We conclude by observing that in Game 2, the left and right experiments are identical (both use the
kdmEnc∗,Enc∗ oracles), and therefore the advantage is 0. ⊓⊔

5 Dual-Mode Encryption

In this section, we present the definition of a dual-mode cryptosystem from [32], and show a generic
construction from smooth projective hashing. By [32, Theorem 4.1], once we have a dual-mode cryp-
tosystem, we immediately obtain UC-secure two-message oblivious transfer in the CRS model.

Preliminaries. Most of this is copied verbatim from [32, Section 3].

– Setup(1k ,µ): given security parameter 1k and mode µ ∈ {0,1}, outputs (CRS,τ). The CRS is a common
string for the remaining algorithms, and τ is a trapdoor value that enables either the FindMessy
or TrapKeyGen algorithm, depending on the selected algorithm. We will also denote the messy
setup algorithm using SetupMessy(·) := Setup(·,0) and the decryption mode setup algorithm using
SetupDec(·) := Setup(·,1). All the remaining algorithms take CRS as their first input, but for notational
clarity, we usually omit it from the list of arguments.

– KeyGen(σ): given a desired decryptable branch value σ ∈ {0,1}, outputs (PK, SK) where PK is a public
encryption key and SK is a corresponding secret key for messages encrypted on branch σ.

– Enc(PK,b,m): given a public key PK, a branch value b ∈ {0,1}, and a message m ∈ {0,1}ℓ, outputs a
ciphertext c encrypted on branch b.

– Dec(SK,ψ): given a secret key SK and a ciphertext ψ, outputs a message m ∈ {0,1}ℓ.

– FindMessy(τ, PK): given a trapdoor τ for CRS generated in messy mode and some (possibly mal-
formed) public key PK, outputs a branch value b ∈ {0,1} corresponding to a messy branch of PK.

– TrapKeyGen(τ): given a trapdoor τ for CRS generated in decryption mode, outputs (PK, SK0, SK1)
where PK is a public encryption key and SK0, SK1 are corresponding secret decryption keys for
branches 0 and 1 respectively.
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Definition 1 (Dual-Mode Encryption). A dual-mode cryptosystem is a tuple of algorithms described
above that satisfy the following properties:

1. Completeness for decryptable branch: For every µ ∈ {0,1}, every (CRS,τ) ← Setup(1k ,µ), every σ ∈
{0,1}, every (PK, SK) ← KeyGen(σ) and every m ∈ {0,1}ℓ, decryption is correct on branch σ, i.e.
Dec(SK,Enc(PK,σ,m)) = m.

2. Indistinguishability of modes: the first outputs of SetupMessy and SetupDec are computationally
indistinguishable, i.e. SetupMessy1(1k ) ≈c SetupDec1(1k ).

3. (Messy Mode) Trapdoor identification of messy branch: For every (CRS,τ) ← SetupMessy(1k ) and every
(possibly malformed) PK, FindMessy(τ, PK) outputs a branch value b ∈ {0,1} such that Enc(PK,b, ·) is
messy. Namely, for every m0,m1 ∈ {0,1}ℓ, Enc(PK,b,m0) ≈s Enc(PK,b,m1).

4. (Decryption Mode) Trapdoor generation of keys decryptable on both branches: For every (CRS,τ) ←
SetupDec(1k ), TrapKeyGen(τ) outputs (PK, SK0, SK1) such that for every σ ∈ {0,1}: (PK) ≈s KeyGen(σ)1

and (PK, SKσ) ∈ Supp(KeyGen(σ)).

Remark 1. Our requirement for decryption mode is actually weaker than that in [32], which stipulates
that for every σ ∈ {0,1}, (PK, SKσ) ≈s KeyGen(σ). That is, we allow TrapKeyGen output any valid secret key
SKσ for branch σ, whereas the original requirement is that the distribution of SKσ be close to that output
by KeyGen(σ). This weaker guarantee is nonetheless sufficient for UC-secure OT, since the decryption
mode is used in the case of a corrupted sender. A corrupted sender sees only PK and not SK0 or SK1;
moreover, as long as both SK0 and SK1 are valid, we will be able to extract both of its inputs.

Dual-mode encryption from projective hashing. We begin with the set-up algorithms:

– SetupMessy(1k ): Run Param(1k ) ← (PP, SP) and sample C ←R GNO. Output

CRS := (PP,C ) and τ := SP

– SetupDec(1k ): Run Param(1k ) ← (PP, SP) and sample C ←R GYES with randomness r . Output

CRS := (PP,C ) and τ := r

All the remaining algorithms take CRS = (PP,C ) where C ∈G as their first input.

– KeyGen(σ): On input a branch value σ ∈ {0,1}, sample Cσ ←R GYES with randomness rσ. Set C1−σ :=
C ·C−1

σ . Output

PK := (C0,C1) and SK := (σ,rσ)

– Enc(PK,b,m): On input PK = (C0,C1), sample a uniform hashing key HK and output

ψ := (µ(HK),ΛHK(Cb) ·m)

– Dec(SK,ψ): On input SK = (σ,r ) and ψ= (PK∗,ψ∗), output

m :=Pub(PK∗,Cσ,r )−1 ·ψ∗

– FindMessy(τ, PK): On input τ= SP and PK = (C0,C1), check that C0 ·C1 =C . Output

b :=
{

1 if C0 ∈GYES

0 otherwise

– TrapKeyGen(τ): On input τ= r , sample C0 ←R GYES with randomness r0 and compute C1 ∈ GYES with
randomness r1 := r − r0 (so that C0 ·C1 =C ). Output

PK := (C0,C1) and (SK0, SK1) := (r0,r1)

10



Theorem 2. Suppose ΛHK(·) is a smooth projective hash function, and the subgroup membership problem
is hard (w.r.t. GYES vs GNO). Then, the above construction yields a dual-mode cryptosystem.

We note here that our construction requires an additional property from underlying group, namely that
given the respective randomness r0,r1 for sampling C0,C1 ∈ GYES, the value r0 + r1 is the randomness
for sampling C0 ·C1 (that is, the sampling algorithm is also homomorphic). This requirement may be
eliminated if we are willing to settle for the weaker guarantee where each CRS may only be used for a
single (or a-priori bounded) instance of OT, as with the LWE-based instantiation in [32].

Proof. We verify that our construction satisfies all of the four properties in Definition 1:

1. Completeness for decryptable branch: This follows readily from the projective property.

2. Indistinguishability of modes: This follows readily from our subset membership assumption.

3. (Messy Mode) Trapdoor identification of messy branch: In the messy mode, we require that C0 ·C1 =
C ∈ GNO. Therefore, (at least) one of C0,C1 ∈ GNO (a subgroup is closed under multiplication, so if
C0,C1 ∈ GYES, then C0 ·C1 ∈ GYES). Moreover, using the membership trapdoor, we can identify which
of C0 or C1 is in GNO. The corresponding ciphertext must be messy by smoothness.

4. (Decryption Mode) Trapdoor generation of keys decryptable on both branches: It is clear that the
distribution of each of C0 and C1 is the uniform distribution over GYES. Moreover, r0 and r1 are
randomness used for sampling C0 and C1 respectively. Therefore, by the projective property, we can
decrypt ciphertexts on both branches. ⊓⊔

6 Instantiations from DLIN

Let G be a group of prime order q specified using a generator g . The DDH assumption asserts that g ab is
pseudorandom given g , g a , g b where g ←R G; a,b ←R Zq . The d-LIN assumption asserts that g r1+···+rd

d+1 is
pseudorandom given g1, . . . , gd+1, g r1

1 , . . . , g rd

d where g1, . . . , gd+1 ←R G;r1, . . . ,rd ←R Zq . DDH is equivalent
to 1-LIN.

6.1 Dual-mode encryption

For dual-mode encryption, we use the original Cramer-Shoup DDH-based hash proof system in [16, 15]
and its generalization to d-LIN [26, 34].

Setup. Sample P ←R Z
d×(d+1)
q along with a check vector v ̸= 0 so that Pv = 0. Output

PP := (G, q, g , g P) and SP := (v)

The subgroup indistinguishability problem is given by:

GYES :=
{

g r⊤P : r ∈Zd
q

}
and G :=

{
g a⊤ : a ∈Zd+1

q

}
where SampR(r) = g r⊤P and the group operation is the natural one given by entry-wise product.
The uniform distributions over GYES and G are computationally distinguishable under the d-LIN
assumption as shown in [31, 9]. Observe that we can efficiently verify membership in GYES using v
since:

g a⊤ ∈GYES ⇐⇒ g a⊤v = 1

11



Hashing. The hashing key is given by a column vector s ←R Z
d+1
q , with

µ(g P,s) := g Ps ∈Gd×1

Private and public evaluation are given by:

Λs(g a⊤) := g a⊤s ∈G and Pub(g Ps,C,r) := g r⊤(Ps)

Clearly, Λs(·) is a group homomorphism. For the projective property, observe that for C = g r⊤P ∈GYES,
we have

Λs(C) = g r⊤Ps =Pub(g Ps,C,r)

Smoothness. Observe that for any g a⊤ ∈ GNO (and a ̸= 0), we have that a⊤ is not in the row span of P.
This means that for a random s ←R Zd+1

q , a⊤s is uniformly distributed over Zq given Ps. Smoothness
follows readily.

6.2 KDM-security

We extend the d-LIN based hash proof system in [9, 31], which are the vectorial analogues of the
preceding constructions, augmented with t functions following [11]. This in turn captures the DDH-
based KDM-secure encryption in [9] and the DLIN-based scheme in [13]. Fix ℓ ≥ (d + 2)log q and
suppose we have t additional (efficiently computable) functions f1, . . . , ft : {0,1}ℓ → {0,1}, where t ≥ 0.
For instance, these functions may be low-degree polynomials of the bits of the input, as considered in
[11].

Setup. Sample P ←R Z
d×(ℓ+t )
q . Output

PP := (G, q, g , g P)

The subgroup indistinguishability problem is given by:

GYES :=
{

g r⊤P : r ∈Zd
q

}
and G :=

{
g a⊤ : a ∈Zℓ+t

q

}
where the group operation is the natural one given by entry-wise product. The uniform distributions
over GYES and G are computationally distinguishable under the d-LIN assumption as shown in [31, 9].

Hashing. The hashing key is given by a column vector s ←R {0,1}ℓ. We then set ŝ ∈ {0,1}ℓ+t to be the
concatenation of s and f1(s), . . . , ft (s).

µ(g P,s) := g Pŝ ∈Gd×1

Private and public evaluation are given by:

Λs(g a) := g a⊤ŝ ∈G and Pub(g Pŝ,C,r) := g r⊤(Pŝ)

Clearly, Λs(·) is a group homomorphism and the projective property simply follows from the fact that
g (r⊤P)ŝ = g r⊤(Pŝ).

Smoothness. For average-case smoothness, the left-over hash lemma implies that for ℓ > (d +2)log q ,
the following distributions:

〈P,Pŝ,a,a⊤ŝ〉 and 〈P,Pŝ,a, a′〉
are 1/q-statistically close, where s ←R {0,1}ℓ,a ←R Z

ℓ
q , a′ ←R Zq . Note that ŝ has ℓ bits of min-entropy,

so ŝ conditioned on Pŝ ∈Zd×1
q has roughly ℓ−d log q ≥ 2log q bits of min-entropy.
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Class F. The message space M= {0,1} and ϕ(m) = g m .

– Observe that for all a ∈Zℓ
q ,c ∈Zq (such that a⊤s+ c ∈ {0,1} for all s ∈ {0,1}ℓ):

Λs(g (a||0)⊤) · g c = g (a||0)⊤ŝ · g c =ϕ(a⊤s+c)

– Moreover, for all i ∈ [t ],

Λs(g eℓ+i ) = g fi (s) =ϕ( fi (s))

where eℓ+i ∈ {0,1}ℓ+t is the unit vector with a 1 in the (ℓ+ t )’th index.

That is, the resulting scheme is F-KDM secure for F = {s 7→ a⊤s+ c | a ∈ Zℓ
q ,c ∈ Zq }∪ { f1, . . . , ft }, i.e.

affine functions of the bits of the secret key (which includes flipping the i ’th bit of the key s 7→ 1− si )
plus the functions f1, . . . , ft .

7 Instantiations from QR and DCR

We will rely on the subgroup indistinguishability framework of Brakerski and Goldwasser [10] (also [16,
Section 7.4.2]). We consider a family of finite commutative groups G that is generated by two elements
g ,h of co-prime order (thus |G| = ord(g ) ·ord(h)); we use G0 to denote 〈g 〉. We will require the following
additional properties:

– given the public description of G, we may compute ord(h) and a good approximation a for ord(g ) (so
that the uniform distributions over [a] and over [ord(g )] are statistcally close).

– computing discrete log with respect to h is easy.
– the uniform distributions over G0 and over G are computationally indistinguishable, given g ,h.
– given some trapdoor, deciding membership in 〈g 〉 is easy.

For our instantiations here, the output of ΛHK(·) lies in G. We will work with a relaxed notion of
smoothness here in this section, where instead of requiring that ΛHK(·) be random over G, we only
require that ΛHK(·) mod G0 be random over 〈h〉. More formally, smoothness states that for all C ∈ GNO:
ΛHK(C ) mod G0 is statistically close to uniform over the subgroup 〈h〉 even given µ(HK). Similarly,
average-case smoothness states that the following distributions are statistically close:

(µ(HK),C ,ΛHK(C ) mod G0) and (µ(HK),C ,h′)

where C ←R G and h′ ←R 〈h〉. The relaxed notion of smoothness is sufficient for all of our applications as
long as we will embed the message into the subgroup 〈h〉.

Instantiation from QR. Fix a Blum integer N = PQ for k-bit safe primes P,Q ≡ 3 (mod 4) (such that
P = 2p + 1 and Q = 2q + 1 for primes p, q). Let JN denote the subgroup of Z∗

N with Jacobi symbol +1,
and let QRN denote the subgroup of quadratic residues. The QR assumption states that the uniform
distributions over QRN and JN \QRN are computationally indistinguishable. That is, we may take G and
G0 to be JN and QRN respectively. Observe that JN is isomorphic to QRN × (±1) and that |JN | = 2pq =
2|QRN |. We can then sample g by squaring a random element in Z∗

N and fix h to be −1. Note that |QRN | =
pq = N /4−O(

p
N ), which we may approximate by N /4.

Instantiation from DCR. (See [16, Section 8.2]). Again, fix a Blum integer N = PQ for k-bit safe primes
P,Q ≡ 3 (mod 4) (such that P = 2p+1 and Q = 2q+1 for primes p, q). Let JN 2 denote the subgroup of Z∗

N 2
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with Jacobi symbol +1, so |JN 2 | = Nϕ(N )/2 = 2N pq . Consider the cyclic subgroup G0 of JN 2 consisting
of all N ’th powers of elements of JN 2 . Then, JN 2 = G0 ×〈1+N〉. Roughly speaking, the DCR assumption
states that the uniform distributions over G0 and JN 2 are computationally indistinguishable. We can
sample a random generator g of G0 as follows: pick x ←R Z∗

N 2 and set g := −xN . In addition, we can fix

h := 1+N . Note that |G0| = N pq = N 2/4−O(
p

N ), which we may approximate by N 2/4.

7.1 Dual-mode encryption

For dual-mode encryption, we use the Cramer-Shoup QR/DCR-based hash proof system in [16].

Setup. Sample a random group G along with generators g and h.

PP := (G, g ,h)

The subgroup indistinguishability problem is given by:

GYES :=
{

g r : r ∈Zord(g )

}
=G0 and G :=

{
hd · g r : d ∈Zord(h),r ∈Zord(g )

}
=G

where SampR(r ) = g r . We also denote by SP the trapdoor that allows us to verify membership in GYES;
for the instantiations from QR and DCR, this would be the factorization of N .

Hashing. The hashing key is given by s ←R Zord(G).

µ(PP, s) := g s ∈G

Private and public evaluation are given by:

Λs(C ) :=C s ∈G and Pub(g s , g r ,r ) := (g s)r = g r s

Clearly, Λs(·) is a group homomorphism. The projective property follows from the fact that (g r )s =
(g s)r . For smoothness, first observe that by the Chinese Remainder Theorem, s mod ord(h) is
random even given g s . Hence, Λs(hd g r ) mod G0 = hd s is random over 〈h〉 if d ̸= 0.

7.2 KDM-security

The next construction is implicit in [10], and is the vectorial analogue of the preceding construction,
augmented with t functions following [11]. Let ℓ > 3log |G|. Suppose we have t additional (efficiently
computable) functions f1, . . . , ft : {0,1}ℓ →Zord(h), where t ≥ 0.

Setup. Sample a random group G along with generators g and h. In addition, sample p ←R Zℓ+t
ord(g ).

Output

PP := (G, g p,h)

The subgroup indistinguishability problem is given by:

GYES :=
{

g r p : r ∈Zord(g )

}
⊆Gℓ+t

0 and G :=
{

hd · g r p : d ∈Zℓ
ord(h),r ∈Zord(g )

}
⊆Gℓ+t

where the group operation over Gℓ+t is the natural one given by coordinate-wise product. The
uniform distributions over GYES and G are computationally distinguishable under subgroup indis-
tinguishability as shown in [10]. (The reduction is fairly straight-forward: it essentially takes the
challenge (x, g ,h) where either x ←R G0 or x ←R G and computes (g p′

, xp′
) where p′ ←R Z

ℓ+t
|G| .)
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Hashing. The hashing key is given by a column vector s ←R Zℓ
ord(h). We then set ŝ ∈ Zℓ+t

ord(h) to be the
concatenation of s and f1(s), . . . , ft (s).

µ(g p,s) := g p⊤ŝ ∈G

Private and public evaluation are given by:

Λs(c) := cŝ ∈G and Pub(g p⊤ŝ,c,r ) := (g p⊤ŝ)r

where cŝ :=∑ℓ+t
i=1 cŝi

i . Clearly, Λs(·) is a group homomorphism. The projective property simply follows

from the fact that g (r p)⊤ŝ = g r p⊤ŝ = (g p⊤ŝ)r .

Smoothness. To establish average-case smoothness, first observe that:

Λŝ(hd · g r p) mod G0 = hd⊤ŝ

The left-over hash lemma tells us that d⊤ŝ is statistically close to uniform over Zord(h). More precisely,
for ℓ> 3log |G|, the following distributions:

〈p,p⊤ŝ mod |G0|,d,d⊤ŝ mod ord(h)〉 and 〈p,p⊤ŝ mod |G0|,d,d ′〉
are statistically close, where s ←R Zℓ

ord(h),d ←R Zℓ
ord(h),d ′ ←R Zord(h). Average-case smoothness

follows readily, since g p⊤ŝ is completely determined by p⊤ŝ mod |G0|.

Class F. The message space M=Zord(h) and ϕ(m) = hm .

– Observe that for all a ∈Zℓ,c ∈Z (such that a⊤s+c ∈Zord(h) for all s ∈Zℓ
ord(h)):

Λs(ha||0) ·hc = ha⊤s+c =ϕ(a⊤s+c)

– Moreover, for all i ∈ [t ],

Λs(heℓ+i ) = h fi (s) =ϕ( fi (s))

where eℓ+i ∈ {0,1}ℓ+t is the unit vector with a 1 in the (ℓ+ t )’th index.

That is, the resulting scheme is F-KDM secure for F= {s 7→ a⊤s+c | a ∈Zℓ,c ∈Z}∪{ f1, . . . , ft }, i.e. affine
functions of the bits of the secret key, plus the functions f1, . . . , ft .
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