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Abstract. Three-neighbourhood Cellular Automata (CA) are widely
studied and accepted as suitable cryptographic primitive. Rule 30, a
3-neighbourhood CA rule, was proposed as an ideal candidate for cryp-
tographic primitive by Wolfram. However, rule 30 was shown to be weak
against Meier-Staffelbach attack [7]. The cryptographic properties like
diffusion and randomness increase with increase in neighbourhood radius
and thus opens the avenue of exploring the cryptographic properties of 4-
neighbourhood CA. This work explores whether four-neighbourhood CA
can be a better cryptographic primitive. We construct a class of crypto-
graphically suitable 4-neighbourhood nonlinear CA rules that resembles
rule 30. One 4-neighbourhood nonlinear CA from this selected class is
shown to be resistant against Meier-Staffelbach attack on rule 30, jus-
tifying the applicability of 4-neighbourhood CA as better cryptographic
primitives.
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1 Introduction

Cellular Automata (CA) are characterised by speed in computation and can
be modelled to offer high diffusion and randomness. Thus, CA can effectively
be used as good cryptographic primitives. The simple and regular structure of
CA is very well suited both for hardware and software implementation. Parallel
transformations of CA allow high throughput as well as it provide resistance to
correlation attacks and the resistance increases with increase in neighbourhood
size. This resistance depends also on the choice of CA rules.

Three-neighbourhood CA have been extensively analysed for their suitability
as cryptographic primitives. The 3-neighbourhood CA rule 30 was considered
to produce good pseudorandom sequences [11]. Meier and Staffelbach [7] have
shown that the construction does not provide the required security. All the 256
elementary 3-neighbourhood CA rules were analysed in [6] to find out rules which
can generate pseudorandom sequences. It was found out that no 3-neighbourhood
nonlinear balanced rule is correlation immune and hence the CA using these rules
are susceptible to correlation attacks.
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Literature mostly focus on 3-neighbourhood CA. Pseudorandomness, an im-
portant criterion for a cryptographic primitive, is also governed by the size of
the neighbourhood. Correlation also reduces with increase in neighbourhood size.
Thus 4-neighbourhood CA can provide good randomness and less correlation.
However, only very few attempts [4,5,2] have been made towards the study
of CA having neighbourhood size greater than 3. In [4], Lacharme et al. anal-
ysed all the 65536 elementary CA rules with four variables to find 200 nonlinear
balanced functions which are 1-resilient. In [2] also, 1-resilient 5-neighbourhood
elementary CA rules are analysed. Nonlinear and resilient rules are selected from
5-neighbourhood bipermutive CA rules in [5]. Wolfram proposed that rule 30 can
be effectively used in the construction of stream ciphers [11]. Even though Meier
and Staffelbach [7] have shown that the construction does not provide adequate
security, still rule 30 has good cryptographic properties.

In this paper, we construct a class of 4-neighbourhood Cellular Automata
where the rule structure functionally resemble the Boolean function of rule 30.
We study the cryptographic properties of this set of CA rules like nonlinearity,
balancedness, and correlation immunity and select one rule from the set with
good cryptographic properties and show that it can resist Meier-Staffelbach at-
tack on 3-neighbourhood nonlinear rule 30.

This paper is organised as follows. In Section 2, we discuss the construction
of four neighbourhood CA rules resembling rule 30 of 3-neighbourhood CA.
Section 3 analyses the cryptographic properties of these 4-neighbourhood CA
rules. Section 4 shows the resistance by 4-neighbourhood nonlinear CA against
Meier-Staffelbach attack. Section 5 concludes the work.

2 4-neighbourhood Nonlinear Cellular Automata

Wolfram developed Cellular Automata (CA) as a mathematical model for self-
organising systems [9]. They are a group of cells each of which can be in one
of k states. Normally k is 2, where the two states are represented by 0 and 1.
The dimension of CA can also differ but single-dimensional CA are of particular
interest. In each time step, all cells update their state. If this update is a function
of itself and its immediate neighbours on either side, then the CA is known as a
3-neighbourhood CA.

qi(t+1) = f(gi-1(2), 6:(1), Gi+1(1)),
where ¢;(t) is the state of the i-th cell at time ¢, and f denotes the local transition
function realised using combinational logic.

A 3-neighbourhood CA, where each cell can be in any one of the two states
(represented as 0 and 1), can have 23 distinct neighbourhood configurations.
There are 22° distinct mappings from these neighbourhood configurations to
next states. Each mapping is called a rule and these range from rule 0 to rule
255. Some 3-neighbourhood CA rules are
Rule30: ¢;(t +1) = qi—1(t) ® (¢:(t) + qi+1(1)),

Rule 60: ¢;(t +1) = qi—1(t) & ¢ (),
Rule 90: ¢;(t +1) = qi—1(t) © gi+1 (1),
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Rule 150: ¢;(t + 1) = gi—1(t) ® ¢;(t) & giy1(2),
Rule 160: g;(t + 1) = ¢;—1(t)-qi+1(?),
Rule 250: ¢;(t + 1) = gi-1(t) + ¢i+1(2),
where +, ., and @ denote Boolean OR, AND, and XOR respectively.

If the cells in the CA depend on two left, itself, and one right cell for their
update, then the CA is called left skewed 4-neighbourhood CA. Similarly, we
can define right skewed 4-neighbourhood CA. They are shown in Fig. 1.

—clk . — clk .
D flip-flop Q| D flip-flop Q
[ : [ :
from two nearest ——| Combinational Logic from nearest from nearest Combinational Logic j¢«—— from two nearest
left neighbours — <Tgh( nei left neighbour [« right neighbours
Left Skewed Right Skewed

Fig. 1. Single Cell in Left Skewed and Right Skewed 4-neighbourhood CA

In case of 4-neighbourhood CA, there are 22" distinct mappings and rules
range from 0 to 65535. For a particular rule, all 4-neighbourhood configurations
are listed from 1111 to 0000 and the resulting state of each configuration is also
listed in the same order and is treated as the binary representation of the rule
number.

A cross-section of a CA which uses two left skewed 4-neighbourhood CA rules
is shown in Fig. 2. The enable input connected with the AND gates may be used
to select one of the two rules. Logic 0 in the enable input selects rule 21930 while
logic 1 selects rule 39270.

Rule 39270 Rule 39270 Rule 39270 Rule 39270 Rule 39270
enable enable enable enable enable
AND AND AND AND AND
—D D H D D Q D P 1
Q P R\ T C Q
ek Xi3 Dok Xia2 o X1 P o X ek Xis1 o X2
R

Rule 21930 : gi(t+1) = Gi2(t) @G (t)
Rule 39270 : gi(t+1) = gizo(t)e gi(t)® gisa(t)

Fig. 2. 4-neighbourhood Linear Hybrid CA based on rules 21930, 39270 (left skewed)
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2.1 Constructing 4-neighbourhood CA Rules Resembling Rule 30
of 3-neighbourhood CA

Rule 30 is probably the mostly studied and analysed 3-neighbourhood Cellular
Automata rule and was considered as a good pseudorandom number generator
[10, 3]. Wolfram proposed that rule 30 can be effectively used in the construction
of stream ciphers [11]. Even though Meier and Staffelbach [7] have shown that
the construction does not provide adequate security, still rule 30 has good cryp-
tographic properties. Rule 30 performs an OR operation followed by an XOR
operation. Interchanging the rule 30 operations results in rule 246.

Rule30: ¢;(t +1) = qi—1(t) © (¢:(t) + qir1(t))

Rule 246: qi(t + 1) = qifl(t) + (qi(t) S} qi+1(t))

The number of cells in the CA participating in the computation of the new
state increases with each iteration. In case of 3-neighbourhood CA, 2n + 1 cells
participate in the computation, where n is the iteration number.

Table 1. Four-neighbourhood Nonlinear Rules

sl. no.|Rule No Left Skewed Rule sl. no.|Rule No Left Skewed Rule

1 510 Qi—2® (i1 + G + qit1) | 14 | 50070 | gi—1 D ¢ D (qi—2 + git1)
2 854 |(gi—2 + Gi+1) ® (¢i—1 +qi)| 15 | 51510 | gi—2 ® ¢ D (¢i—1 + Gi+1)
3 1334 |(qi—2 + i) ® (¢i—1 + qi+1)| 16 | 57630 | qi—2 ® ¢i—1 D (qi + git1)
4 3870 |(qi—1® (¢i—2+qi +qit1)| 17 | 60350 | (gi—2 ® ¢i—1 D qi) + Git1
5 4382 |(qi—2 + qi—1) ® (¢ + qi+1)| 18 | 60894 | (gi—2 ® qi—1 D ¢it1) + ¢
6
7
8

13110 | ¢ ® (qi—2 + qi—1 + qi+1) | 19 | 61438 |(¢i + qi+1) + (qi—2 ® qi—1)
21846 | qi+1 @ (gi—2 +qi—1 +qi) | 20 63990 | (gi—2 D ¢ D qit1) + qi—1

28662 |(gi—2 ® gi—1) + (¢i © qi+1)| 21 64510 |(qi—1 + gi+1) + (¢i—2 D qi)
9 31710 |(qi—2 ® qi) + (Gi—1 ® qi+1)| 22 | 65022 |(qi—1 + ¢i) + (gi—2 D qit1)
10 | 32190 [(gi—2 ® qi+1) + (gi—1 D qi)| 23 | 65430 | (gi—1 D ¢i D qi+1) + Gi—2

11 39318 | ¢i @ qit+1 D (gi—2 +qi—1) | 24 65470 |(qi—2 + gi+1) + (¢i-1 D q3)
12 | 42390 | qi—1 ® qiy1 @ (qi—2 +qi) | 25 | 65502 [(qi—2 + qi) + (qi—1 ® qit1)
13 | 43350 | gi—2 ® qiy1 ® (qi—1+¢qi) | 26 | 65526 |(gi—2 + qi—1) + (¢i ® qit1)

Here, we consider 4-neighbourhood CA rules based on their resemblance with
3-neighbourhood CA rule 30 and the cryptographic properties are analysed to
see their suitability as cryptoprimitive. Rule 30 contains one XOR and one OR.
Similarly, the chosen 4-neighbourhood CA rules contain at least one XOR and
OR and no other operators. Twenty-six 4-neighbourhood rules which resemble
rule 30 of 3-neighbourhood CA are constructed and listed in table 1. As an
example, rule 50070 contains one OR and two XORs. In this table, ¢;_s, ¢;—1, ¢i,
and ¢;+1 represent the two left-neighbours, self, and right-neighbour respectively
of the left skewed 4-neighbourhood CA. Similar rules exist for right skewed CA.

The cryptographic properties of the 26 four-neighbourhood CA rules are
studied in detail.
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3 Cryptographic Properties of 4-neighbourhood CA

In this section, the cryptographic properties, namely nonlinearity, balancedness,
and correlation immunity of 4-neighbourhood CA rules are explored. The num-
ber of cells in the CA participating in the computation of new state increases with
each iteration. In 4-neighbourhood CA, 3n + 1 cells participate in the computa-
tion in the n-th iteration. In the fourth iteration (i.e. n = 4), the computation
depends on 13 cells and computation becomes unwieldy. So our experiment runs
for three iterations where the cells involved in computation are 4, 7, and 10
respectively. A detailed description of cryptographic properties can be found in

).

3.1 Analysis of 3-neighbourhood Nonlinear CA Rules

We analyse the 3-neighbourhood CA rules 30 and 246 for the first three itera-
tions. The results are shown in table 2. It shows that rule 30 is both balanced
and nonlinear. But it is not correlation immune. Rule 246 is neither balanced
nor correlation immune but nonlinear. In fact, no nonlinear Boolean function
of 3 variables is 1-resilient (balanced as well as first-order correlation immune)
according to Siegenthaler bound [8].

Table 2. Cryptographic Properties of 3-neighbourhood Rules 30 and 246

sl. no.|Rule No Nonlinearity Balancedness Correlation Immunity
1 2 3 1 2 3 1 2 3
1 30 |2 4 36 True |True |True 0 0 0
246 |2 6 22 False |False |False 0 0 0

3.2 Cryptographic Suitability of 4-neighbourhood Nonlinear CA

This section analyses the cryptographic properties of all the 26 synthesised 4-
neighbourhood CA rules. The nonlinearity, balancedness, and correlation immu-
nity corresponding to the chosen rules are listed in table 3.

A 4-neighbourhood CA having 32 cells with null boundary® is used for the
experiment. The nonlinearity of the rules for first three iterations is computed.
For example, in table 3, rule 510 has nonlinearity 2, 28, and 224 respectively in
the first, second, and third iterations. If a rule is balanced in a specific iteration,
then balancedness is represented with a true value. Otherwise, the value is false.
For example, rule 51510 in table 3 has true value for balancedness in all the
three iterations. The correlation immunity is measured and tabulated for each
iteration. As an example, for rule 57630 in table 3, correlation immunity is
measured as 1 for all the three iterations.

1 A null boundary CA is a CA where the extreme cells in the boundaries are connected
to the zero states
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Table 3. Cryptographic Properties of rules in table 1

sl. no.|Rule No Nonlinearity Balancedness Correlation Immunity
1 2 3 1 2 3 1 2 3
1 510 |2 28 224 True |True |True 0 0 0
2 854 |6 38 366 False |False [False 0 0 0
3 1334 |6 30 412 False |False [False 0 0 0
4 3870 |2 32 272 True |True [False 0 0 0
5 4382 |6 42 412 False |False [False 0 0 0
6 13110 |2 32 272 True |True [|False 0 0 0
7 21846 |2 28 224 True |True |True 0 0 0
8 28662 |4 40 304 False |False |False 0 0 0
9 31710 |4 40 392 False |False |True 0 0 1
10 32190 (4 48 400 False |False [False 0 0 0
11 39318 |4 32 368 True |True [|True 1 1 1
12 42390 |4 40 408 True |True |True 1 0 1
13 43350 |4 48 384 True |True [|True 1 2 1
14 50070 |4 52 428 True |False [False 1 0 0
15 51510 |4 40 408 True |True [True 1 0 1
16 57630 |4 32 368 True |True |True 1 1 1
17 60350 |4 16 60 False |False |False 0 0 0
18 60894 |4 16 92 False |False |[False 0 0 0
19 61438 (2 2 2 False |False [False 0 0 0
20 63990 |4 16 92 False |False [False 0 0 0
21 64510 (2 3 5 False |False [False 0 0 0
22 65022 (2 2 2 False |False [False 0 0 0
23 65430 |4 16 60 False |False [False 0 0 0
24 65470 |2 4 8 False |False [False 0 0 0
25 65502 |2 3 5 False |False [False 0 0 0
26 65526 |2 2 2 False |False [False 0 0 0

In table 3, eleven rules have nonlinearity greater than 350 in the third it-
eration. Seven rules qualify balancedness criterion for all the three iterations.
Taking the characteristics nonlinearity, balancedness, and correlation immunity
into consideration, rules 39318, 42390, 43350, 51510 and 57630 can be considered
as good candidate rules.

4 Resistance Against Meier-Staffelbach Attack

Three neighbourhood CA rule 30 has been identified as a good cryptographic
primitive. However, Meier and Staffelbach mounted attack against rule 30 based
CA. In this attack [7], a portion of the temporal sequence (pseudo random se-
quence) is known. From the state values of the i-th cell - temporal sequence -
for n + 1 time steps from ¢ to ¢t + n, the attack tries to find the state value of
cells at the t-th time step. Refer Fig. 3.

For a 3-neighbourhood CA, the values of the sites that can be computed
from the initial site vector ¢;_,,(t), ..., gi+n(t) form a triangle as shown in Fig. 3
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where ¢;(t) represents state of the i-th cell at time ¢. The column in bold face
represents temporal sequence. If rule 30 is employed, a bit change propagates
to the right with probability 1 and to the left roughly with a speed of i in the
triangle. Some changes in the right-hand initial sites ¢;11(t), ..., gi4n(t) of the
triangle do not change the given portion of temporal sequence in column i or
its right adjacent sequence in column i + 1, i.e. there is a many-to-one mapping
from the right-hand initial states to the temporal sequence or its right adjacent
sequence. The attack is based on the principle that a random set of values for
right-hand initial states may give correct right adjacent sequence even if the
assigned right-hand initial state values were wrong. Knowledge of right adjacent
sequence is equivalent to knowledge of the seed.

ainlt) * o *qia(t) ailt) Gua(t)  * . * Qua(t)
* oL ¥ Qia(tl) qi(t+1) Qisr(t+1) * .0 ¥
qi(t+n)

Fig. 3. Triangle determined by initial site vector g;—n(t), ..., Gitn(t)

Using the given temporal sequence in column i and the guessed values of
Qit1(t)y oors @itn (1), the rule

ai(t+1) =qi-1(t) ® (:(t) + qi+1(t))

completes the right hand side of the triangle. At this point, we know the
values in columns i and i 4+ 1. To complete the left hand side of the triangle, we
use the equation

gi—1(t) = qi(t + 1) ® (qi(t) + qit1(1))-

Finally, the values of g;_,(¢),...,q;—1(t) are known. Now the computed seed
is used to generate the temporal sequence. If the original temporal sequence
and generated temporal sequence matches, we stop with success. Otherwise, the
process is repeated by assigning another set of values to the right-hand initial
states.
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4.1 Inapplicability of Meier-Staffelbach Attack against
4-neighbourhood CA rules

In this section, we show that 4-neighbourhood CA resist the above attack. We
take the rule 57630 from the class of 4-neighbourhood rules under study. The
rule is defined as

qi(t+1) = qi—2(t) ® qi—1(t) ® (¢:(t) + qi1(t)).

Gizn(t) Giznaa(t) * o * qia(t) gia(t) ai(t) Gia(t) % o Ginnlt)
o diatHl)  gualt+l) qi(t+1) Giea(t+1) * ¥
qgi(t+n)

Fig. 4. Triangle determined by initial site vector g;—2n(t), .., Gi+n(t)

Like 3-neighbourhood CA rule 30, we have many-to-one mapping from right-
hand initial states to the temporal sequence or its right adjacent sequence when
we use 4-neighbourhood CA rule 57630. For 4-neighbourhood CA, the initial
site vector q;—2n(t), ..., qi—1(t), ¢i(t), qit1(t), ..., @itn(t) determines a triangle as
shown in Fig. 4. To find out right adjacent sequence in column ¢ 4+ 1 of the
triangle, we need left adjacent sequence represented by column i — 1 of the
triangle. Computation of left adjacent sequence needs the knowledge of left-
hand initial states ¢;—2,(t), ..., ¢;—1(¢). So computation of right adjacent sequence
requires left-hand initial states. Left-hand initial states can be computed with
the knowledge of two columns adjacent to temporal sequence like 7 + 1 and i 4 2
of the triangle by completing the left-hand side of the triangle. Arbitrary values
cannot be assigned for left-hand initial states as is done for right-hand adjacent
sequence in Meier-Staffelbach algorithm as there is no many-to-one mapping
from left-hand initial states to the temporal sequence. The reason for the absence
of many-to-one mapping is that a bit change in the triangle propagates to the
right with probability 1.

Assume that we somehow managed to find out the right adjacent sequence
(column i+ 1 of the triangle) from the given temporal sequence (column 7 of the
triangle). Rule 57630 is rewritten to find ¢;4+1(t + 1) as

Git1(t+1) = gi—1(t) ® ¢i(t) © (qi+1(t) + @iv2(1))-

Rearranging terms so that the term ¢;_1(¢) is on the LHS,

Gi—1(t) = qir1(t + 1) @ qi(t)  (qi41() + qi2(2))-
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This equation is used to complete the left-hand side of the triangle in search
of seed. The rule says that to find the values in cells at column i — 1, we require
the values in column i + 2 also in addition to the values in columns i and i + 1.

In 3-neighbourhood CA, searching for seed K is equivalent to computation
of right adjacent sequence K1 and is represented by the mapping

F:A{K} = {K}.

In the case of left-skewed 4-neighbourhood rules, sequence to the right of
right-adjacent sequence - denoted as Ko - is also required in addition to K,
and the mapping is

F: {Ks} — {Kﬂ,Krg}.

So in the case of 4-neighbourhood CA, the attack fails to compute right
adjacent sequence K, as stated earlier even if the mapping above shows that it
is not sufficient to find the seed.

5 Conclusion

In this paper, we have studied the cryptographic suitability of a class of four-
neighbourhood nonlinear CA rules. We have shown the inapplicability of Meier-
Staffelbach attack on rule 30 against four-neighbourhood CA by taking one rule
from the class of rules under study.
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