FURISC: FHE Encrypted URISC Design

Ayantika Chatterjee, Indranil Sengupta
cayantika@gmail.com, isg@iitkgp.ac.in

Abstract—This paper proposes design of a Fully Homomorphic
Ultimate RISC (FURISC) based processor. The FURISC archi-
tecture supports arbitrary operations on data encrypted with
Fully Homomorphic Encryption (FHE) and allows the execution
of encrypted programs stored in processors with encrypted
memory addresses. The FURISC architecture is designed based
on fully homomorphic single RISC instructions like Subtract
Branch if Negative (SBN) and MOVE. This paper explains how
the use of FHE for designing the ultimate RISC processor is
better in terms of security compared to previously proposed
somewhat homomorphic encryption (SHE) based processor. The
absence of randomization in SHE can lead to Chosen Plaintext
Attacks (CPA) which is alleviated by the use of the FHE based
Ultimate RISC instruction. Furthermore, the use of FURISC
helps to develop fully homomorphic applications by tackling
the termination problem, which is a major obstacle for FHE
processor design. The paper compares the MOVE based FHE
RISC processor with the SBN alternative, and shows that the
later is more efficient in terms of number of instructions and time
required for the execution of a program. Finally, an SBN based
FURISC processor simulator has been designed to demonstrate
that various algorithms can indeed be executed on data encrypted
with FHE, providing a solution to the termination problem for
FHE based processors and the CPA insecurity of SHE processors
simultaneously.

Index Terms—Fully Homomorphic encryption, Cloud, URISC.

I. INTRODUCTION

Cloud computing evolves a new paradigm to increase com-
puting and storage capability using external service providers.
Using the concept of ”loan of software” and hardware, cloud
mitigates the need of large resources. However, every solution
comes with more new problems. Hence, use of cloud to
store any sensitive data may lead to security hindrance. To
establish a successful and trustworthy service, it is expected
that the cloud service provider will protect the privacy of
the information stored in cloud and to achieve this, different
techniques have been acquired both in client side and server
side. In spite of this, external attackers may penetrate while
internal attackers may compromise information.

Concerns regarding privacy and security are the biggest
hurdles for the adoption of cloud computing by security-
conscious enterprises [1]. Cryptographic techniques can pro-
vide a solution to this cloud security problem. Other than
providing privacy through anonymity, classical encryption-
decryption techniques are beneficial. Users can store encrypted
form of potentially sensitive data in such public server to
maintain the confidentiality. However, this solution requires
extra overhead in case of processing the stored data. Every
time for any simple processing on stored data, decryption
is necessary. Further, costly encryption operation is required
to upload the data back to the cloud. In this way, sensitive

data need to be transferred to and from the server and it is
repeatedly exposed to adversary. Another major drawback is
that huge amount of cloud resources can only be used for
storing data only, can never be used for processing of critical
information. To avoid these issues, it is required to delegate
the ability to process the data without decrypting it. In this
scenario, homomorphic encryption scheme is the only answer
to this problem [2].

As it was discussed in [l], direct computation on en-
crypted data can be achieved by adding interaction and using
secured hardware. However, Rivest et al. first introduced
the concept of privacy homomorphism [3]. Homomorphic
encryption scheme is a public encryption scheme which allows
algebraic manipulations on ciphertexts [1]. That implies any
user who is only given two ciphertexts Encrypt(m;, pk) and
Encrypt(ma, pk) of elements of group (Gs, *), can compute as
Encrypt(ma, pk) ® Encrypt(ma, pk) without the knowledge
of secret key and plaintexts. Operations * and & depend on
the choice of encryption scheme. Hence, with the use of such
encryption scheme, cloud can process encrypted data without
knowing the actual data and result.

However, capability of processing directly on single en-
crypted data does not suffice the requirement of fully secured
computation. If the computation flow remains unencrypted
in secured processing, that may leak sensitive information.
Hence, present researchers are exploring to develop secured
encrypted processors where data as well as computations
both are encrypted. In [4], a Turing complete encrypted One
Instruction Set Computer (OISC) has been proposed based on
partially homomorphic Paillier encryption scheme. However,
this design suffers from a few limitations from the security
point of view. Firstly, to design the encrypted memory the
encryption scheme is considered to be deterministic and that
makes the design susceptible to Chosen Plaintext Attack
(CPA). However, underlying somewhat homomorphic encryp-
tion scheme is incapable of designing encrypted memory sup-
porting randomized encryption scheme. This randomization is
supported only by Fully homomorphic encryption (FHE) as
an underlying scheme.

In literature, researches on FHE are taking place in different
directions. Encrypted bitwise additions and multiplications are
defined in [5] and implemented using integers in [6] and
[7]. Further efficiency enhancement on fully homomorphic
encryption has been reported in [8], [9] and [10]. In [11]
and [12] advancements have been proposed to implement
faster encryption schemes. Further, in [13] and [14] recent
developments of FHE have been discussed. In [15]-[17],
searching and sorting on FHE data have been investigated.
To accelerate the performance of FHE, use of hardware has
been also investigated in [18].

In [19], authors have given an initial layout of designing
FHE encrypted processors. However, determination of termi-
nation point of any encrypted program or identifying the end
point of any encrypted loop are major challenges in case of
designing FHE based processor. In [20], a proposed solution
of this problem is to define a possible maximum loop length
and the loop or program terminates once the maximum value
is achieved. This solution requires large number of redundant
operations in a program as number of loops increases. In our
work, we explore how this problem can be better handled
with client intervention and message passing protocol between
client and server. Further, we combine the flexibility of pro-
cessing arbitrary operations on encrypted data by FHE scheme
with simplicity of unit reduced instruction set architecture
(URISC) and investigate the benefit of applying such design
to solve the termination problem.

Our contribution in this paper is to develop an encrypted
processor able to perform arbitrary computations on encrypted
data with encrypted instructions. However, while working in
encrypted domain, handling different machine opcode is dif-
ficult since, same opcode generates (bitwise) different ciphers
due to the randomization property of encryption scheme. This
motivates us to design FHE encrypted unit reduced instruction
set computer (FURISC) architecture which works with single
opcode rather than a multi-instruction processor. The URISC
is considered the penultimate reduction of Reduced instruction
set computer [1], which is capable of synthesizing a complete
set of operations with the help of single instruction. Here, we
provide the design of Subtract and Branch if Negative (SBN)
and Move operation based FURISC architecture and finally
explain how the encrypted CPA secured FURISC architecture
is capable of handling the encrypted loop termination problem
in a more practical way. With examples of basic sorting
and searching techniques we show the timing requirement of
actually computing different arbitrary operations on encrypted
data.

The rest of our paper is organized as follows: In section
II, we discuss the preliminaries of homomorphism, specially
the FHE scheme. Next, section III gives the justification
of designing FHE based OISC. In section IV, we explain
our proposed design of FHE based SBN processor and it
is compared with Move based FHE processor in section V.
Finally, we compare our design with existing works in section
VII and conclude in section VIII highlighting some possible
future works.

II. PRELIMINARIES

Before going to the detailed design of the proposed en-
crypted processor, we first discuss the basic principle operation
of the FHE scheme. Fully Homomorphic encryptions provide
a mechanism to perform arbitrary computations over encrypted
data. The promise shown in the work of Gentry [2] had
been followed by several improvements to develop more
efficient realizations of this technique, which has potential
applications for performing privacy preserving operations, that
is relevant to cloud computing. In this section, we first provide
a brief outline of the FHE scheme and a popular library for
performing the basic computations based on this encryption.

A. Homomorphisms and Fully Homomorphic Encryption
Scheme

Homomorphism is a structure-preserving transformation be-
tween two sets, where an operation on two members in the
first set is preserved in the second set on the corresponding
members. Let P and C be sets with members p1,ps € P, tisa
transformation between the two sets with its reverse function
t’ and an operation &. The system is a homomorphism, if
V(p1,p2) € P, (pr ® p2) = t'(t(p1) © t(p2)). If there
are two functions @ and ® , such that V(p1,p2) € P,
(p1 ®p2) =t (t(p1) ©t(p2)) and V(p1, p2) € P, (p1 ®p2) =
t'(t(p1) * t(p2)). This is called an algebraic homomorphism.
Operations & and ® on plaintext may be similar or may be
different with the operations & and * performed on ciphertext.
The obvious practical implication is the possibility to trans-
form the two members p; and po into the range of C, thus
applying some sort of encryption, and having the operations &
and ® (or equivalent operations) performed by a third party.
The result can then be decrypted back into the range of P. An
algebraically homomorphic crypto-system can be described as
a 6-tuple Hy = (P,C,t,t',®,®) where P and C denote the
plain-text space and the ciphertext space, respectively, whereas
t and ¢’ denote the encryption and decryption functions. & and
® tag the two algebraic operations. In group homomorphic en-
cryption scheme (GHE), the encryption function forms group
homomorphism and the encryption scheme allows an operation
on ciphertexts being equivalent to some binary operations on
corresponding plaintexts [1].

B. Fully Homomorphic Encryption

Fully homomorphic encryption (FHE) scheme is an ex-
tended form of group homomorphic encryption (GHE). GHE
only supports a single arbitrary operation on plaintext (as well
as on ciphertext), whereas FHE supports two arbitrary opera-
tions (+, *) on plaintexts (as well as (¢, ®) on ciphertexts).

Gentry defined FHE scheme is explained in [2]. The scheme
has the security parameter A, and sets N = \, P = A2, Q=
A®. The scheme also uses two integer parameters 0 < o < f3
and the following algorithms:

1) KeyGen(A): Generate a random P-bit odd integer, p.
Aset ¥ = {y1,y2,. ..y} is generated such that y; €
[0,2). Out of these elements, there must exist a sparse
subset S C 3/ of « elements, such that Zyj es(y;) =
% mod 2. Set sk to be a binary encoding s of the sparse
subset S, where s = (0,1)%. Set pk + (p, ¥).

2) Encrypt(pk,m): Obtain the ciphertext ¢ = m’ + pq,
where m’ is a random N-bit integer st. m = m’ mod 2.
Generate 7 : z + c.y; mod 2. Return ¢* = (¢, 7). In
the rest of the paper, we shall mention Encrypt(pk,m)
as Encrypt.

3) Decrypt(sk,c*): Output LSB(c) XOR LSB([>, Si2: 1),
where LSB() returns the least significant bit of the input,
and |.] returns the nearest integer to the input. Decryption
works since (up to small precision errors) Zt Sizy =
Zt CStyt = % mod 2.

The above encryption allows

on encrypted data by defining

arbitrary computations
operations like

Evaluate(f,c1,...,ct), where f is an arbitrary operation
on the ciphertexts, ci,...,c;. The result of the computation
is always a ciphertext, ¢ whose decryption would be same
as the function f applied on the plaintexts corresponding to,
ci,...,c.. However, the decryption can be erroneous if the
noise (measured as ¢ mod p) increases. In order to reduce
the error during the computations, there is an additional
operation, called Recrypt which takes the ciphertext, ¢ and
produces another ciphertext, say ¢ which corresponds to the
same plaintext, but with a reduced noise level. The operation
is done by allowing to compute the decryption function, as
the function f in the Evaluate function.

However, direct application of Gentry’s FHE scheme has
performance issues, hence lots of improvements and ap-
proaches from alternate assumptions have been proposed in
[6], [21]. In our work, while performing homomorphic oper-
ations, we have re-used the homomorphic modules proposed
in Scarab library [22].

C. Scarab library

Scarab library is an implementation of a FHE scheme
using large integers. This scheme is based on the proposed
work in [23] with some modifications in recrypt operation.
In [23], authors have constructed a modified FHE scheme
with relatively small key and ciphertext size from a some-
what homomorphic scheme based on Gentry’s work [2]. This
modification has smaller message expansion and key size
than Gentry’s original scheme and also allows efficient fully
homomorphic encryption over any field of characteristic two.
Hence, this work is more practical in case of applying FHE to
real applications and this is the building block of the Scarab
library.

The implementation of this library uses the GNU Multiple
Precision Arithmetic Library (GMP) for large integers and
Fast Library for Number Theory (FLINT) as helping libraries.
Detailed encryption-decryption scheme along with the modifi-
cations in recrypt operation has been vividly explained in [24].
In the following sections, we explore the design of FURISC
processor using the modules present in Scarab library.

III. IMPLEMENTING HOMOMORPHIC ENCRYPTION USING
A ULTIMATE RISC INSTRUCTION

Ultimate RISC (URISC) is the minimalistic perspective
to computer architecture design, where a single instruction
is used to perform all computations. In this section, we
first outline the rationale of using URISC for realizing FHE
algorithms.

A. Justification of Single Instruction Processor for Encrypted
Data

Fully Homomorphic Encryption (FHE) provides an avenue
for performing arbitrary computations on encrypted data.
However, capability to operate on encrypted data alone is not
sufficient for secured computation. In order to ensure that the
control flow of the program is secured it is necessary that
the address space is also encrypted. Consider, the program

snippet, if(a[i] > a[j]) i =1+ 1; It can be observed that
if the data is encrypted, the outcome of the comparison is
also encrypted which leads to the fact that, to update the
index of the array the index also needs to be encrypted.
Thus we develop a processor architecture wherein the data
and the memory content is encrypted. Using the standard
load-store paradigm of RISC processors thus the program,
which is comprised of the instructions from the Instruction Set
Architecture (ISA) is also encrypted. In this section, we study
the motivation of using a single RISC instruction, URISC, to
build such a processor. We also address several related issues
and discuss the motivation of choosing a FHE based URISC,
which we call as FURISC.

1) Why a single Instruction?: As discussed, the memory
content, which stores both the data and the instructions, have
to be in an encrypted format. It may be mentioned, that for
protections against Chosen-Plaintext Attacks (CPA) and other
stronger forms of adversaries, the encryption algorithms are
randomized. This implies that the same plaintext, m can be
encrypted to different ciphertexts, ¢ = Enc(m,), where Enc
is the encryption algorithm and 7 is the random input'. Thus
a computer which has multiple instructions in its Instruction
Set Architecture (ISA) will lead to the situation where with
varying keys the same instruction would give rise to different
encrypted instructions, and hence varying opcodes. This would
make the functioning of the computer infeasible. URISC
provides a unique opportunity in this context. A URISC is
an abstract machine, which uses only a single instruction and
other necessary instructions are composed from the single
instruction set [25]. Thus, the URISC is Turing Complete, and
one can perform all computations using a single instruction.
This resolves the confusion regarding varying opcode in case
of a standard RISC or CISC processor, which has multiple
instructions in their ISA.

2) Pitfalls of using Somewhat Homomorphic Schemes: Why
Fully Homomorphic Encryption?: For designing encrypted
processors, somewhat homomorphic schemes are the first
choice since FHE scheme suffers from performance issues. In
[4] and [26], authors have explored the design of encrypted one
instruction set processor based on the Paillier based encryp-
tion, which is an additive homomorphic encryption scheme.
The underlying instruction which is a subleq (alias SBN) is a
single instruction whose arithmetic computation is a subtrac-
tion on two operand values. In the same instruction, depending
on whether the result is positive or negative, the Program
Counter (PC) gets updated to the next address or an instruction
mentioned as another operand of the SBN instruction. Since,
Paillier encryption supports subtraction on encrypted data this
is a promising choice to develop a processor for performing
arbitrary computations on encrypted data (decompose the
program using encrypted SBN instructions, and subsequently
execute them using Paillier Encryption algorithm).

Unfortunately, the design suffers from a serious deficiency.
The PC needs to be updated based on an encrypted condition
after the subtraction. Thus while the subtraction is supported
by the underlying SHE, the update of the PC needs an

The decryption is however always deterministic algorithm.

encrypted decision making module which can be realized
by an encrypted multiplexer. To explain, consider a decision
block, where depending on an encrypted condition ¢/, output 3’
may be a’ or b’ (all the variables are encrypted). The decision
block can be realized by a multiplexer ' = a/(c¢') + V' (¢),
where the computations of the right hand side are homomor-
phic. Thus, design of a multiplexer on encrypted data and
control requires capability to perform both encrypted addition
and multiplication, which is not supported by any somewhat
homomorphic scheme.

In order to make these decisions, the design proposed in [4]
uses sign lookup memory table for storing sign for encryptions
of numbers. Moreover, it is assumed that the encryption is
deterministic and the public key of the encryption is unknown
to the adversary. In several real life scenarios such a restriction
may not be feasible and the deterministic encryption can make
the processor computations vulnerable to chosen plaintext
attack (CPA) [27].

This motivates us to look into replacing SHE with FHE,
since FHE supports both addition and multiplication, which
in turn is capable of designing an encrypted decision module,
namely the multiplexer. This provides the flexibility of making
branch decisions and PC updations even when the encryption
is randomized, without the use of any static encryption table
and making the encryption deterministic. All these issues
motivate to design an encrypted processor with FHE as the
underlying encryption scheme.

3) Issue in Fully Homomorphic Processor : Termination
problem: Effort to design FHE based processor has been
first made in [20]. However, a major open problem is to
detect and handle the termination of encrypted processes.
Since, any encrypted process is locked in the cipher-space, all
the intermediate termination conditions are encrypted. Hence,
it is impossible to identify the termination points of loop
termination or process termination from unencrypted domain.
One possible solution of encrypted loop termination problem
as proposed in [20], is by defining the maximum number
of cycles, that need to be performed to safely execute the
encrypted program. However, this incurs extra overhead of
redundant operations. Moreover, when any program consists
of numbers of loops, termination of each loop is handled in
the same way by mentioning maximum number of possible
cycles. Hence, large number of redundant FHE operations,
required to handle each loop termination further increase the
cost of overhead. When performance of FHE operations is a
major hurdle, this solution of termination handling is an added
bottleneck to performance.

Here, we propose a different approach of handling termi-
nation problem in a better way in any cloud-server setting,
more specifically when the server is a public cloud. We
consider authorized clients to encrypt FHE data and store them
in the cloud server, where homomorphic processing on the
encrypted data is supposed to take place generating encrypted
results. From the security point of view, if client (or any
other adversary) can identify the termination point of any
encrypted process without having access to the secret key, then
it is a potential threat to the underlying cryptosystem. Hence,
the determination of the event of termination should always

require the decryption key. However, server does not have
access to the secret key or decryption capability and hence it
requires client intervention to handle the termination problem.
Next, we show how message passing protocol between server
and client can be a better option to handle this termination
problem.

B. Client Intervention to Handle Termination

Homomorphic operations perform directly on encrypted
data and produce the final encrypted results in the cloud
server. However, real world works on unencrypted data, hence
authorized client may decrypt the encrypted result finally at
the client side if the unencrypted value is required for further
processing. This capacity of decryption in the client end can
be used to solve the problem of encrypted loop termination
without leaking any critical information.

In Fig. 1, we explain a generalized encrypted loop execution
and termination with client intervention. Here, we define an
unencrypted variable loopHndl at the server side such that
loop is getting executed if loopHndl = 1. FHE_Compare is
an encrypted module which compares between encrypted loop
counter variable (enc_i) and encrypted value of maximum
loop count and generates compResult, which is sent to client
in each iteration of loop. compResult value is decrypted
at the client side and if it is 1 (indicates enc_i reached
the maximum value and the loop should be terminated) an
interrupt is generated in the client side to set the value of
loop_End to 1. This unencrypted value is sent back to the
server as loopHndl and based on this value the control exits
from the loop. Since, loopHndl is not directly related to the
critical information of the instruction executed in the loop,
this unencrypted traffic from client to server does not reveal
any sensitive information. Additionally, server and client can
settle on some symmetric encryption key and the client can
sent encrypted value of loopHndl to the server and server can
then decrypt it.

However, this way of handling loop termination requires
client intervention and decryption of the loopHndl signal
for each loop. In practical scenario, any program should
consist of multiple loops and hence large number of message
passing from client to cloud server as well as decryption of
each signal need to be handled separately. This incurs extra
overhead in terms of network bandwidth, synchronization and
decryption operation. Subsequently, we shall explain how this
multiple message passing for termination can be reduced in
an efficient way if the underlying processor is an encrypted
FURISC architecture and termination can be handled with
single message passing between client and server.

C. Solving Termination Problem in Fully Homomorphic Pro-
cessor using FURISC

As explained, rather than designing an overall FHE proces-
sor we prefer a single instruction architecture, since URISC
supports Turing complete computation obviating the need of
different machine opcodes. Different types of single instruc-
tions for modeling of URISC are [25]:

o Subtract and branch if less than or equal to zero.

Encrypted Loop count variable
(enc_i) initialization
loopHndl=1

Send loopHndl

to server

loopHndl equals

No(encrypted) yes(encrypted)

‘ Loop instruction execution ‘

‘ enc_i <- FHE_Add(enc_i, 1) ‘

l

compResult <- FHE_Compare (enc_i,

I Set loopHndl=0 ‘

Generate Interrupt ‘

IL d <- Decrypt compResult

Max_LoopCount)

Exit loop

Server side

Fig. 1. Example of encrypted loop handling

o Subtract and branch if negative (SBN).
« Reverse subtract and skip if borrow
« Move.

Here, we take the example of SBN instruction based FURISC
and show how it can be advantageous to handle termination
problem of FHE processes in an efficient way with single
client-server interaction in comparison to multiple client server
interactions. In SBN instruction, the operandum is subtracted
from operandam and the execution proceeds to next-address
if the subtraction result is negative.
More formally, the instruction is represented as:

SBN A, B, C

Mem[B] = Mem[A] - Mem[B];
if (Mem[B]< 0)
goto C

else goto next instruction

In case of encrypted processes, let the loop handling condi-
tion (or termination condition) be decided based on the sub-
traction results of address A and address B contents (Mem [A]
and Mem [B]) and it is stored in Mem [B]. Depending on the
value of Mem [B], PC can jump to instruction within the loop
itself or proceed to the next instructions out of the loop, once
loop end condition has been reached. Multiple loops can be
handled in the same way and in such scenario, client-server
message passing for each loop is not necessary for multiple
loop handling. Finally, once the final termination condition
has been reached PC can jump to a dedicated predefined
End of program location. Client can get the information of
program termination by a single message passing from this
particular location. In the next section, we first explore how to
design URISC processor using FHE as an underlying encryp-
tion scheme and gradually explain this solution of encrypted
program termination with more examples.

Send compResult
to client

Client side

IV. DESIGN OF FURISC

In this section, we discuss the design basics of FURISC pro-
cessor based on two primitive URISC instructions : SBN and
MOVE. Here we consider 4-tuple format of SBN instruction
and explain how to design an SBN based FURISC.

Let A7, B’ and C’ be FHE encrypted memory addresses
and Mem’ [A’] and Mem’ [B’] be the encrypted contents of
the respective addresses. With these parameters, fully homo-
morphic SBN instruction can be represented as:

SBN A’, B’, resultant’, C’
resultant’ = Mem’ [A’] - Mem’ [B'];
if (resultant’ < enc (0))

goto C’
else goto next instruction

Implementation of this FHE based SBN instruction requires
the following steps:

e Encryption Phase: Memory addresses A, B, C should be
encrypted by FHE to A’, B/, C’ and contents of the
addresses are stored in encrypted format.

e Memory read-write: Contents of memory address A’
and memory address B’ need to be fetched. Encrypted
memory module handles memory read and write operation
which will be explained in a subsequent section.

e FHE Subtraction: The subtraction of Mem’ [A’] and
Mem’[B’] is performed by FHE_Sub module of FURISC
processor and stored in register resultant’.

e Branching or program counter (PC) Updation: 1f
(resultant’ < enc(0)), the execution control pro-
ceeds to C’ or to next instruction pointed by encrypted
PC i.e (PC” + 1). This branch updation is handled by
FHE_Branch module, which is again part of Encrypted
ALU of FURISC.

e Value of the register resultant’ is finally updated to

Input
addresses

FHE Addition = Mem’[A’]

Enciypted
Merory

Encrypted o
addresses

FHE_SUB

]
¥

Bit-OR

Fig. 2. Encrypted memory read module for FURISC

certain memory or register address location according to
URISC instructions.

In the following subsection, we shall explain how to imple-
ment the mentioned modules using the Fully Homomorphic
primitive circuits mentioned in HElib [22] like FHE_Add
(Add ciphertext bits (XOR)), FHE_Mul (Multiply ciphertext
bits (AND)), FHE_Fulladd (Add with carry in and carry out)
and FHE_Halfadd (Add with carry out).

A. Encrypted memory module

Encrypted memory in FURISC design requires manipula-
tion of encrypted data as well as encrypted addressing. The
main design challenge of designing such memory is that
the underlying encryption algorithm is randomized. Hence,
initially encrypted data may be stored in a certain encrypted
address. During memory-fetch encryption of same address
gives a different result (bitwise values are different). That
makes the content fetching more difficult from a particular
address of memory. Hence, an encrypted decision making
module is required for encrypted memory read-write as pro-
posed in [20].

Fig. 2 and Fig. 3 describe how encrypted memory works.
In our design, the base address of the memory is encrypted
and the next locations are determined incrementing (homo-
morphically) the base address consecutively. Encrypted data
are stored in these encrypted addresses. To fetch data from
any of these locations, the input encrypted memory address
need to be matched with the encrypted locations of the
memory. Since every time the encryption algorithm generates
different encrypted values for same address, homomorphic
address matching technique is required. Hence, to search a
particular memory, input encrypted address is subtracted from
each location address of encrypted memory by FHE_SUB
module (will be explained in section IV-B) and bitwise OR of
the subtraction result is computed using FHE_OR module (Bit-
OR module in the diagram). Output of the FHE_OR module
is fed as the selection lines of FHE multiplexers (FHE_MUX)
attached to each location of memory. In case of memory read,
if any match is found (Output of FHE_OR module is enc(0)),
data from the matched location is fetched to a temporary reg-
ister (otherwise (enc(0)) value is added to the register value).
In case of memory write, input encrypted data is written in

Input
addresses

Enciypted

Encrypted
address

FHE_SUB

Fig. 3. Encrypted memory write module for FURISC

SubResult

Mem[A] Mem(B]

FHE Subtraction Module SubResult[MSB]

Mem([B’

Branch

Module NextPC

Fig. 4. Encrypted ALU module for FURISC

the matched location based on selection of FHE multiplexers
(FHE_MUX). Thus, FHE multiplexer (FHE_MUX) modules
are used to check encrypted matching. Once match is found
memory read-write operation is performed from or to the
matched memory.

However, directly following this approach of encrypted
memory design incurs large overhead. Main drawback of
this design is that for every instruction, memory read or
write operation requires search through the whole memory
to find the exact matched location. In our design, we separate
instruction memory and data memory to reduce the search
space. Further, we dedicate a separate unencrypted bit to mark
the active memory space. Each time, instructions of a specific
program are loaded to the memory, those recently loaded
locations are marked as active. Once the program terminates,
the attached memory locations are marked as inactive. Thus,
for every program counter (PC) updation search is restricted in
active instruction memory locations only. Again, for data read
or write from or to memory, search is restricted only within
active data memory.

B. Encrypted ALU module

The main arithmetic operations of this ALU for FURISC
processor is FHE subtraction and PC updation as shown in
Fig. 4. The ALU module mainly consists of a fully homomor-
phic subtraction module (FHE_Sub) and FHE branch module
(FHE_branch).

FHE_Sub module: FHE Subtraction is implemented by
adding one number with the 2’s complement of another. The
subtraction module is designed by performing homomorphic

addition of one ciphertext with 2’s complement of another
ciphertext.

FHE_branch module: According to the principle of SBN
instruction, branching operation decides whether the program
control will next proceed to address C’ or to the next address
of program counter (PC’ + enc (1)). Since all the opera-
tions will take place in encrypted domain in FURISC, the next
proceeding address should also be encrypted. For this reason,
FHE_MUX is used with two inputs, C’ and the incremented
PC’ + enc(1l). The branching depends on the decision if
the subtraction result of Mem’ [A’] and Mem’ [B’] is nega-
tive. Hence, the most significant bit (MSB) of the subtraction
result is treated as the selection line (M .SB = enc(1) indicates
the value as negative).

C. Overall architecture

Fig. 5 shows the overall architecture with encrypted memory
module and encrypted ALU. SBN functionality is realized with
the following steps with this architecture:

o Register A’, B’ and C’ hold the address values as men-
tioned in the SBN instruction parameter.

o Initially, address of A’ is taken into PC’ and the memory
content is fetched from the Encrypted Memory by mem-
ory read operation. Memory Read/Write Module works as
mentioned in section IV-A. The fetched value is stored
in register Mem’[A’].

o Similarly, contents of memory address B’ is stored in
Mem’[B’]. Selection of A” or B’ is controlled by sel, the
selection line of associated FHE_MUX.

o Subtraction operation is performed using the FHE ALU
module and the result is stored in Resultant register.

o Further, MSB of Resultant register value is fed as se-
lection to a FHE_mux for PC updation and the next PC
address is determined from the two inputs (PC + 1)’
and C’ of the multiplexer depending the selection value.
It may be noted that (PC + 1)’ can be obtained by
homomorphically adding the cipher corresponding to 1
with that corresponding to PC.

o Depending on the third parameter of the SBN instruction,
value stored in the Resultant register is updated in the
respective memory or register location.

So far we have discussed how to design SBN based
FURISC. Another approach of FURISC design is based on
MOVE instruction, which basically works on copy operation.
Intuitively, MOVE based architecture should be better in
terms of performance in comparison to subtraction based
SBN architecture since copy operation does not require any
recrypt operation. Recrypt is the costlier operation during FHE
based computations and the main reason for slow performance
for any FHE operation. In the next section, we outline a
comparison between MOVE and SBN based FURISC and
explore which design is actually advantageous in terms of
performance.

V. CoMPARISON WITH MOVE BASED URISC

The format of the basic instruction for MOVE based FU-
RISC is:

MOVE operandam’ operandum’

The implication of this instruction is to copy the contents of
the operandam’ to operandum’, where these are two encrypted
addresses. The copy can be performed from any location to
other (to any memory or register from any memory or regis-
ter). Hence, the design of a MOVE based architecture only
requires memory fetch-write operations and register fetch-
write operations. Memory read-write and register operations
are performed using encrypted multiplexer as explained in
section IV-A.

A. Performance evaluation: SBN vs Move FURISC

In this section, we evaluate which FURISC architecture
between SBN and MOVE is worthy to consider in terms
of performance. Here, SBN and MOVE based implementa-
tions are compared in terms of number of instructions and
investigate which one is really faster. Let a program P be
implemented by n; SBN instructions. Let same program P
be implemented by no MOVE instructions. Now, let a single
SBN instruction be implemented by m; MOVE instructions.
Hence, intuitively converting all SBN instructions of program
P to MOVE instruction is equivalent to implementing P
only with MOVE instructions. That implies, Thus, the code
length of the program P using only MOVE instructions is
proportional to nym; MOVE instructions. Similarly, let single
MOVE instruction be implemented by ma SBN instructions,
hence code length of program P is proportional to no.mo
instructions. That again implies, 71" = 2 or (Z—;)Q =2,
Following code snippets show how single SBN and MOVE
instructions can be mapped to their respective MOVE and SBN
equivalents.

A single MOVE instruction MOVE operandam
operandum can be realized by a single SBN instruction:

#00, #00

SBN operandam, operandum,

However, a single SBN instruction: SBN operandam
operandum resultant next-address can be real-
ized by the following instructions:

INVERT operandum

ADD operandam operandum resultant
COMPARE resultant CONSTANT
BRANCH next-address

In this instruction sequences, operandum is inverted
and (-operandum) is added to operandam and ad-
dition result is stored in resultant. resultant is
compared with CONSTANT to check if it is negative and
branch to next-address depending on the value of
the resultant. All the instructions like INVERT, ADD,
COMPARE, BRANCH need to be realized by multiple MOVE
instructions. Hence, number of MOVE instructions required to
implement a single SBN instruction (m;) is greater than num-
ber of SBN instructions equivalent to one MOVE operation
(mo) [25]. That again implies, m1 > mo and hence n; < no.
Hence, it indicates SBN based URISC architecture requires
lesser number of instructions compared to MOVE instruction
based URISC to implement any program. In practical scenario,
large number of instructions indicate large number of PC

Encrypted
Memory

Memory
Read/Write
Module

Temporary
Register

{1

Regsel

FHE ALU

Resultant[MSB]

FHE Addition

PCsel

Resultant

Fig. 5. Overall FURISC Architecture

TABLE 1
TIMING REQUIREMENT OF ENCRYPTED OPERATIONS ON FURISC
[Operations | CPU cycles |
[SBN processor implementation |
Fibonacci 3918*108
Binary Search 96*103
Quick sort 12012%108
[Move processor implementation |
Fibonacci 4836%108
Binary Search 251%108
Quick sort 156026%108

updation and memory, register handling. In both SBN and
MOVE based FURISC architecture, PC updation and memory
and register read-write operations require large number of FHE
operations, hence that incurs extra timing requirement in terms
of CPU cycles. Due to this reason, MOVE based FURISC is
not advantageous in terms of performance.

Table I shows the number of required CPU cycles to
implement different encrypted functions on encrypted SBN
and Move based FURISC. The results are obtained designing
C-based simulators of SBN and MOVE based FURISC archi-
tectures. The simulators are designed using modules defined
in Scarab library and evaluated for correctness on a Linux
Ubuntu 64-bit machine with 686 architecture 1.6GHZ pro-
cessor. Among the implemented functions, Fibonacci requires
single loop handling, binary search and sort algorithms require
multiple loop handling. Here, we show the required CPU
cycles for computing Fibonacci value of 100, for performing
binary search within 100 data and performing quick sort on
a collection of 100 data. The experimental results also con-
form the theoretical observation that MOVE based processors
require higher number of CPU cycles and perform inferior
compared to the SBN based counterpart.

VI. FURISC APPLIED TO SOLVE TERMINATION

In this section, we explain with examples how FURISC ar-
chitecture helps to tackle encrypted loop termination problem.
Initially, we start with an example of a simple loop:

NextPCsel

while(x > vy)
{
X==;

}

Since, x and y are both encrypted, the termination condition
of the loop while (x > y) is impossible to comprehend
when the code is executed in any general purpose processor.
In FURISC architecture, SBN instructions realize the loop in
the following way:

while’ SBN $1000’, $1001’, temp’, &wend’
SBN $1000’, enc(l), $1000’, null
SBN PC’, &while’, PC’, &while’

wend’ SBN $1000’, enc(0), $1000’, null

Let encrypted x and y be stored in encrypted addresses
$1000’" and $1001’, while’ indicates encrypted starting
addresses of while loop execution and wend’ is the encrypted
address where program counter (PC) should jump once the
while loop gets terminated. The advantage of designing this
FURISC is that PC updation can be controlled by encrypted
subtraction operation since PC and all the address locations are
encrypted. Thus, when encrypted x is less than encrypted vy,
subtraction result between contents of $1000’ and $1001’
becomes negative. That indicates the encrypted termination
condition has been reached and PC now should jump to
wend’ . If this is the only loop present in program then the
wend’ is a no operation (NOP) and PC next jumps to End
of program location. Otherwise, PC jumps to next instruction
of the program. NOP is implemented by subtracting enc (0)
from the value of $1000’ location and storing the result back
to the $1000” location.

In the next example, we shall show how multiple encrypted
loop termination is handled using FURISC. We take the
example of quick sort which consists of multiple nested loop.
Following is the representation of this code realized with SBN
instruction architecture.

/*%*x**xx+ FURISC implementation of

Quick sort in Appendix
/*x*xxx Starting of if: lines 1-4 *xx*x%/
QS’ SBN last’, first’, temp’, &EOP

Kk ok ok ok ok ok koK /

SBN first’, enc(0), pivot’, null
SBN first’, enc(0), i’, null
SBN last’, enc(0), j’, null

/% ok xok ok ok ko x while(i<j): line 5 x*xxxkkxkxx/
whilel’: SBN j’, 1i’, temp’, &wendl’

SBN enc(0), pivot’, jtemp’, null
SBN $2000’, jtemp’, templ’, null

[%ok ok ok ok ok ok ok ok while loop : line 6-7 *%xx*x*x/
while2’: SBN enc(0), i’, itemp’, null

SBN $2000’, itemp’, temp’, null

SBN templ’, temp’, accumulator’,

&while3’

SBN last’, 1’, product, &while3’

SBN product, enc(0),temp’, &while3’

SBN enc(0), enc(l), temp’
SBN i’, temp’, i’

/xx*xxxxxx End of while of line 6 **xx%x%/
wend2’ SBN PC’, &while2’, PC’, &while2’

SBN enc(0), pivot’, jtemp’, null
SBN $2000’, jtemp’, templ’, null

/**xx%*%x%x while loop : line 8-9 ##xx**x/
while3’: SBN enc(0), j’, jtemp’, null
SBN $2000’, Jjtemp’, temp’, null

SBN templ’, temp’, accumulator’,
&wend3’

SBN j’, enc(l), 3’

SBN PC’, &while3’, PC’, &while3’

/**x*xx*x End of while of line 8 #x*x*x*/
wend3’: SBN j’, i’, temp’, &endif’

SBN enc(0), i’, itemp’, null

SBN $2000’, itemp’, temp’, null

SBN $2000’, itemp’, (mem_tempi)’,
null

SBN enc(0), j’, jtemp’, null

SBN $2000’, jtemp’, templ’, null

SBN $2000’, jtemp’, (mem_tempj)’,
null

SBN temp’, enc(0), (mem_tempj)’,
null
SBN templ’, enc(0), (mem_tempi)’,
null

endif : SBN PC’, &whilel’, PC’, &whilel’

/**xxxxx End of while of line 5 *xxxx*x*/
wendl’: SBN enc(0), pivot’, itemp’, null
SBN $2000’, itemp’, temp’, null
SBN $2000’, itemp’, (mem_tempi)’,
null
SBN enc(0), 3j’, jtemp’, null
SBN $2000’, jtemp’, templ’, null
SBN $2000’, Jjtemp’, mem_tempj’,
null

SBN temp’, enc(0), mem_tempi’,
null

SBN templ’, enc(0), mem_tempi’,
null

SBN j’, enc(
SBN QS’, enc

SBN enc(0), enc(l), temp’
SBN j’, temp’, I’
SBN QS’, enc(0), PC’, PC’

/********* End of Program Kok ok ok ok ok k ok ok /
EOP: SBN $2000’, enc(0), $2000’, null

This code snippet shows how easily the nested loop can
be handled using this architecture. Here, we consider array
x [] is resided at starting address $2000’. At whilel’,
the condition (1< 3’) (1’ and j’ are the encryption of
i and j) has been checked using (SBN i’, j’, temp’,
wendl’), where i’ and j’ are stored in intermediate regis-
ters. With the SBN functionality, j’ is subtracted from i’
and the loop condition is checked. When j’ is less than
i’, subtraction result is negative and PC’ proceeds to end
of while (wend”). For while2’, loop condition is checked
by subtracting 1’ from last’ and if the subtraction result is
negative the program flow is branched to while3’. Thus,
multiple loop is handled without the requirement of any
redundant operation.

Once, the termination condition is reached PC should jump
to the End of program location. Hence, the termination prob-
lem reduces to determine whether the PC has reached to End of
program location. In our design, we have dedicated a particular
address location as End of program address (EOP). Since, all
the address locations as well as the PC are encrypted, client
can not directly know when PC has been reached to EOP.
Ideally, client should not know this information without the
access to secret key since it will hamper the security of the
crypto system. To solve this issue, we consider an encrypted
termination-bit, which is set high once PC has reached the
EOP address. This termination-bit is send to the client through
an encrypted message. Client is capable of decrypting the bit
having access to secret key. Once the termination point is
reached decryption of the termination-bit generates an inter-
rupt in the client side, so that client can get the information that
the program has been terminated. This method is advantageous
over the method of using maximum number of cycles, since
no redundant operation is required in this process. Further,
it is also better in comparison to the proposed method in
section III-B, which requires client intervention and message
passing for every loop iteration in a single program. Since,
each program consist of numerous loops, large number of
message passing, network bandwidth, synchronization and
decryptions are necessary for loop handling. On the other
hand, our proposed method shows only a single client-server
message passing is capable of handling termination problem
while using FURISC architecture no matter what is the size
of the program or how many loops are present.

TABLE II
COMPARISON OF FURISC PERFORMANCE WITH HEROIC

Operations | HEROIC Timing | FURISC Timing
(Clock cycles) (Clock cycles)
Factorial 8.45%107 402.5%10®
Fibonacci 2.74%108 396*%108
Bubble Sort 1.54%108 3509%108
TABLE 111
COMPARISON WITH MAXIMUM LOOP COUNT ON UNENCRYPTED
PROCESSOR

Fibonacci data | Timing with maximum | FURISC Timing
loop count (clock cycle) | (Clock cycle)
30 2400*10% 1188*10%
60 2400%108 2358+%108
90 2400*10% 3528*10%
100 2400*10% 3918*10%

VII. COMPARISON WITH EXISTING WORKS

Table II shows a comparison of FURISC performance with
SHE based HEROIC proposed in [4], [26]. According to
the experimental results, FHE based FURISC requires more
clock cycles compared to HEROIC for implementing same
operation, but it is advantageous in terms of security improve-
ment and providing CPA resistance to the encrypted processor.
Unlike [4], access to public key need not be restricted and the
encryption can be randomized for CPA resistance.

We compare the performance of FURISC with the proposed
work in [20], where termination condition of FHE process is
handled by predefined value of maximum loop count. The
disadvantage of this proposed method is that every algorithm
is bound to give the worst case performance. For example,
in case of binary search algorithm on n FHE data, maximum
loop execution count should be prefixed at O(logn) (since
from the knowledge of unencrypted binary search O(logn) is
the worst case performance timing requirement). In this case,
program cannot terminate before and best case performance of
O(1) can never be achieved. Hence, this incurs large amount
of redundant operations. Similarly, sorting algorithms need to
always iterate for O(n?) times. The main advantage of our
proposed technique is that the encrypted program terminates
as and when the processing is complete, hence it is possible
to achieve the best or average performance of respective
algorithms.

Further, table III shows a performance comparison of FU-
RISC with encrypted algorithms executed on unencrypted
processors. We choose Fibonacci computation as an example
with a fixed maximum loop count. All the implementations
are evaluated for correctness on a Linux Ubuntu 64-bit ma-
chine with 7686 architecture 1.6GHZ processor. Result shows
whatever be the actual data for Fibonacci computation, always
it takes computation time for maximum loop count. Hence,
it requires large number of redundant operations for smaller
data and number of redundant operation decreases as the data
is closer to maximum loop count.

VIII. CONCLUSION

In this work, we present an encrypted URISC architecture
with FHE as underlying encryption scheme, which combines
the flexibility of performing arbitrary operations on encrypted
data due to the property of FHE with design simplicity of
URISC architecture. Due to the use of FHE, randomization in
memory handling and PC branching solves the CPA Vulner-
ability issues of previous SHE based design [4]. Further, we
also show how this design is advantageous to handle encrypted
loop termination problem. As a future work, performance
improvement of FURISC can be investigated to make this
design more practical for implementing in context of cloud
computing.

REFERENCES

[1]1 S. Rass and D. Slamanig, Cryptography for Security and Privacy in
Cloud Computing. Norwood, MA, USA: Artech House, Inc., 2013.

[2] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. disserta-
tion, Stanford University, 2009, crypto.stanford.edu/craig.

[3] R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data banks
and privacy homomorphisms,” Foundations of Secure Computation,
Academia Press, pp. 169-179, 1978.

[4] N. G. Tsoutsos and M. Maniatakos, ‘“Heroic: Homomorphically
encrypted one instruction computer,” in Proceedings of the
Conference on Design, Automation & Test in Europe, ser. DATE
’14. 3001 Leuven, Belgium, Belgium: European Design and
Automation Association, 2014, pp. 246:1-246:6. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2616606.2616907

[5] C. Gentry, “Computing arbitrary functions of encrypted data,” Commun.
ACM, vol. 53, no. 3, pp. 97-105, Mar. 2010.
[6] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully

homomorphic encryption over the integers,” IACR Cryptology ePrint
Archive, p. 616, 2009.

[7]1 J.-S. Coron, A. Mandal, D. Naccache, and M. Tibouchi, “Fully ho-
momorphic encryption over the integers with shorter public keys,” in
Proceedings of the 31st annual conference on Advances in cryptology,
ser. CRYPTO’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 487—
504.

[8] M. Naehrig, K. Lauter, and V. Vaikuntanathan, “Can homomorphic
encryption be practical?” in Proceedings of the 3rd ACM workshop on
Cloud computing security workshop, ser. CCSW "11. New York, NY,
USA: ACM, 2011, pp. 113-124.

[9] Y. Ramaiah and G. Kumari, “Towards practical homomorphic encryption

with efficient public key generation,” ACEEE International Journal on

Network Security, vol. 3, no. 4, p. 8, October 2012.

A. Silverberg, “Fully homomorphic encryption for mathematicians,”

IACR Cryptology ePrint Archive, vol. 2013, p. 250, 2013. [Online].

Available: http://eprint.iacr.org/2013/250

M. Akinwande, “Advances in homomorphic cryptosystems.” J. UCS,

vol. 15, no. 3, pp. 506-522, 2009.

D. Stehle and R. Steinfeld,

cryption,” Cryptology ePrint

http://eprint.iacr.org/.

V. Vaikuntanathan, “Computing blindfolded: New developments in

fully homomorphic encryption,” in IEEE 52nd Annual Symposium

on Foundations of Computer Science, FOCS 2011, Palm Springs,

CA, USA, October 22-25, 2011, 2011, pp. 5-16. [Online]. Available:

http://dx.doi.org/10.1109/FOCS.2011.98

Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic

encryption from (standard) LWE,” SIAM J. Comput.,

vol. 43, no. 2, pp. 831-871, 2014. [Online]. Available:
http://dx.doi.org/10.1137/120868669

H. Perl, Y. Mohammed, M. Brenner, and M. Smith, “Fast confidential

search for bio-medical data using bloom filters and homomorphic

cryptography.” in eScience. IEEE Computer Society, 2012, pp. 1-8.

, “Privacy/performance trade-off in private search on bio-medical

data,” Future Generation Computer Systems, 2014.

A. Chatterjee, M. Kaushal, and I. Sengupta, “Accelerating sorting

of fully homomorphic encrypted data,” in Progress in Cryptology -

INDOCRYPT 2013 - 14th International Conference on Cryptology in

India, Mumbai, India, December 7-10, 2013. Proceedings, 2013, pp.

262-273.

(10]

(1]

[12] “Faster

Archive,

fully homomorphic en-
Report 2010/299, 2010,

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]
(23]

[24]

[25]

[26]

[27]

Y. Doroz, E. Ozturk, and B. Sunar, “Accelerating fully homomorphic
encryption in hardware,” IEEE Transactions on Computers, vol. 99, no.
PrePrints, p. 1, 2014.

M. Brenner, H. Perl, and M. Smith, “Practical applications of homomor-
phic encryption,” in SECRYPT 2012 - Proceedings of the International
Conference on Security and Cryptography, Rome, Italy, 24-27 July, 2012,
SECRYPT is part of ICETE - The International Joint Conference on e-
Business and Telecommunications, 2012, pp. 5-14.

——, “How practical is homomorphically encrypted program execution?
an implementation and performance evaluation,” in //th IEEE Inter-
national Conference on Trust, Security and Privacy in Computing and
Communications, TrustCom 2012, Liverpool, United Kingdom, June 25-
27, 2012, 2012, pp. 375-382

D. Stehle and R. Steinfeld, “Faster fully homomorphic en-
cryption,” Cryptology ePrint Archive, Report 2010/299, 2010,
http://eprint.iacr.org/.

https://hcrypt.com//scarab library.

N. P. Smart and F. Vercauteren, “Fully homomorphic encryption with
relatively small key and ciphertext sizes,” in Proceedings of the 13th
International Conference on Practice and Theory in Public Key Cryp-
tography, ser. PKC’10, Berlin, Heidelberg, 2010, pp. 420-443.

H. Perl, M. Brenner, and M. Smith, “Poster: an implementation of the
fully homomorphic smart-vercauteren crypto-system.” in ACM Confer-
ence on Computer and Communications Security, Y. Chen, G. Danezis,
and V. Shmatikov, Eds. ACM, 2011, pp. 837-840.

W. F. Gilreath and P. A. Laplante, Computer Architecture: A Minimalist
Perspective. Springer Publishing Company, Incorporated, 2012.

N. G. Tsoutsos and M. Maniatakos, “Investigating the application of one
instruction set computing for encrypted data computation,” in SPACE,
2013, pp. 21-37.

J. Katz and Y. Lindell, Introduction to Modern Cryptography (Chapman
& Hall/Crc Cryptography and Network Security Series). Chapman &
Hall/CRC, 2007.

APPENDIX

CODE FOR QUICK SORT ALGORITHM WITH MULTIPLE LOOP

1.

SN

0 J oy U

11.
12.
13.
14.
15.

16.
17.
18.
19.
20.
21.
22.

if (first<last) {
pivot=first;

i=first;

j=last;

while (1i<73) {
while(x[i]<=x[pivot]&&i<last)
i++;
while(x[j]>x[pivot])
J=—=7
if(i<g){
temp=x[1i];
x[11=x[3]1;
x[j]l=temp;

}

temp=x[pivot];
x[pivot]=x[J];
x[j]l=temp;

quicksort (x, first, j-1);
quicksort (x, j+1, last) ;

