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Abstract. Gaussian sampling over lattices is a cornerstone of lattice-
based cryptography as it allows to build numerous cryptographic primi-
tives. There are two main algorithms performing this task. The �rst one
is due to Klein (SODA 2000) and Gentry, Peikert and Vaikuntanathan
(STOC 2008), and outputs vectors of good quality but runs rather slowly,
in quadratic time. The second one is due to Peikert (CRYPTO 2010)
and outputs vectors of slightly worse quality, but can be made to run in
quasilinear time in the ring setting.
We present a Gaussian Sampler optimized for lattices over the ring of
integer of a cyclotomic number �eld. At a high-level it works as Klein's
sampler but uses an e�cient variant of Peikert's sampler as a subroutine.
The result is a new sampler that samples vectors with a quality close to
Klein's sampler and achieves the same quasilinear complexity as Peikert's
sampler. In practice, we get close to the best of both worlds.

Key words: Lattice-based Cryptography, Gaussian Sampling, Klein's
sampler, Peikert's Sampler.

1 Introduction

Sampling lattice points is an essential primitive in lattice-based cryptography,
as several constructions are based on it. It is used in hash-and-sign signatures
[GPV08], standard-model signatures [ABB10,Boy10], (hierarchical) identity-based
encryption schemes [GPV08,CHKP10,ABB10], attribute-based encryption [BGG+14],
and many other constructions. It can also be used to solve variants of the closest
(or shortest) vector problem [Kle00,ADRS14] .

In a nutshell, the shorter the vectors that one can sample given a good basis,
the more secure schemes we may build. This holds as long as the distribution
of the sampled vectors is a discrete Gaussian (even though other simulatable
distributions also yield secure schemes , [LW15]).

Currently, two main algorithms allow to do Gaussian Sampling over arbitrary
lattices. The �rst one is a randomized version of Babai's nearest-plane algorithm
[Bab86] due to Klein [Kle00] and Gentry, Peikert, Vaikuntanathan [GPV08].
Currently, it is also the one that produces the shortest vectors but it has a
sequential structure and runs in time Õ(n2), even on ideal lattices.
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The second one is due to Peikert [Pei10] and can be seen as a randomized ver-
sion of Babai's rounding algorithm [Bab86]. In essence, Peikert's sampler is very
di�erent from Klein's as its underlying idea essentially is that the convolution of
two Gaussians is also a Gaussian. In practice, it performs very di�erently from
Klein's sampler as it is parallelizable. If the underlying lattice is endowed with
a ring structure, Peikert's sampler can take advantage of it and run in quasi-
linear time Õ(n), where n is the dimension of the lattice. However, its quality
is worse than Klein's sampler�that is, the size of the outputted vector is sig-
ni�cantly longer�which undermines the security of underlying cryptographic
constructions.

1.1 Our Contribution

The main contribution of our paper is a new discrete Gaussian sampler over ideal
lattices. Our algorithm is constructed in two steps. First, we give ring variants
for Klein's and Peikert's samplers. Given a ring R, the ring variant of Klein's
sampler is a generalization from sampling in lattices in Zm to lattices in Rm,
whereas the ring variant of Peikert's sampler is simply an instanciation over R.

The ring variant of Klein's sampler may run faster over ring bases than the
original algorithm. However, in order to do so it needs to invoke a fast sampler
over R as an internal oracle. So we use the ring variant of Peikert's sampler to
be this internal oracle. The resulting algorithm is a hybrid sampler: at high-level
it operates as Klein's sampler, but at low level it uses Peikert's algorithm. Our
hybrid sampler allows a trade-o� between the slow but high-quality sampler of
Klein, and the fast but lower-quality sampler of Peikert. As a by-product, we
also obtain a hybrid between Babai's nearest plane and rounding algorithms.

We test the practical value of our hybrid sampler by comparing it to Klein's
and Peikert's sampler. This is done by evaluating the security of a Full-Domain
Hash signature scheme over NTRU lattices using either of these samplers as the
core part of the signing procedure. For lattices of �xed dimension and modulus,
using the hybrid sampler allows to get a signature scheme a bit less secure than
using Klein's sampler (160 bits of security for our sampler versus 192 for Klein's
and 120 for Peikert's), while having the same quasilinear complexity as Peikert's
algorithm.

1.2 Choice and Implementation of the Ring

In essence, our techniques are independent of the choice of the number �eld and
its ring of integers, and they are relevant as long as the chosen �eld admits a
fast multiplication algorithm.

Our results are tested with typical rings used in lattice-based cryptography
so far, that is the ring of integers of the m-th cyclotomic �eld for m a power of
2. Other choices are of course possible, but choosing a ring comes with the task
of studying its geometry (that is essentially �nding a good Z-basis of that ring).
The cyclotomic cases have been treated extensively [LPR10,DD12,LPR13].
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In the light of recent cryptanalytic developments [Ber14a,CDPR15], it is
worth noting that our result also applies to the so-called NTRU-prime ring
R = Z[x]/(xp − x − 1) as proposed by Bernstein [Ber14a], yet the geometric
aspect of such rings remains to be studied.

NP

H

R

O(n2)

O(n log n) Peikert’s Sampler

Hybrid Sampler

GPV/Klein’s Sampler

η′ε(Zn)s1(B)η′ε(Zn)‖B̃‖
σ

Running time

Fig. 1. Our contributions and their performances compared to existing algo-
rithms. On the left are Babai's algorithms: nearest plane (NP), hybrid (H) and
rounding (R). On the right are the Gaussian Samplers. For samplers, the lower
σ can be set, the better.

1.3 Related Work

The seminal work of [GPV08] spawned a lot of papers trying to improve it. The
most notable may be [Pei10], which created a completely di�erent sampler.

An important contribution is the work of [MP12], which introduces the use
of a public matrix G to generate a random matrix A along with some trapdoor
information allowing to do very e�cient Gaussian sampling on Λ⊥(A). However,
to the best of our knowledge these techniques do not apply to speci�c families of
lattices such as NTRU lattices. More importantly, these techniques imply a huge
blowup in the parameters of the lattice: the public key is a matrix A ∈ Zn×m,
where n is rank of the lattice and m > n ln q. In comparison, NTRU lattice only
have m = 2n.

Floating point arithmetic issues were addressed in [DN12], which speeds up
both Klein's and Peikert's samplers to Õ(n2). For lattices over rings, [DN12] also
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uses the ring structure of the lattice to get Peikert's o�ne phase to reach time
and space complexity Õ(n).

The work of [DLP14] uses a measure called KL Divergence as an alternative
to statistical distance in order to assess the security of cryptographic construc-
tions based on Klein's sampler. In addition, they evaluate (experimentally and
heuristically) which NTRU bases are the most suitable for these constructions.
Rejection sampling techniques are used in [BLP+13] in order to use Klein's sam-
pler with an even shorter standard deviation. The geometric properties of lattices
over rings are used in [LP15] to reduce the space requirement of Klein's sampler
to Õ(n).

1.4 Roadmap

In Section 2, we set up the de�nitions and notations that we will use throughout
the paper. In Section 3, we de�ne the ring variants of Klein's and Peikert's
samplers. In Section 4, we introduce our hybrid sampler and prove its correctness.
In section 5, we assess the practical interest of our new sampler by comparing
its e�ciency and time complexity to those of Klein's and Peikert's algorithms.

2 Preliminaries

2.1 Notations

Vectors will be written with non-capital bold letters, matrices and bases in cap-
ital bold letters, and scalars (which includes ring and �eld elements) in non-
bold letters. A matrix B ∈ Km×n may be viewed as the set of its row vectors
B = {b1, ...,bn}. If B is non-singular, then its set of row vectors form a basis.

2.2 Algebraic Background

Let K be a number �eld, i.e. an algebraic extension of Q of �nite degree, and
let d be its degree over Q. Let ·̄ denote the complex conjugation over K, it
is an involution and an automorphism of K, which collapses to the identity if
and only if K is a real number �eld. We let R be the ring of integers of K (its
maximal order), K+ be the maximal real sub�eld of K and R+ ⊂ R be the
ring of integers of K+ (we denote d+ the degree of K+). We also de�ne the
completions K = R⊗Q K and K+ = R⊗Q K+. We note that those completions
are not necessarily �elds.

The number �eld K comes with d complex embeddings K 7→ C (forming a
set S) , indexed by i ∈ {1, . . . , d}. Similarly K+ comes with d+ real embeddings
K+ 7→ R (forming a set S+). Each σ in S (resp. S+) can be extended to the
completion K (resp. K+). An element e ∈ K (or K+) is invertible if and only if
all its embeddings are non-zero. Otherwise, e is said to be singular.

An element e of K+ is said totally positive (and we write e > 0) if for all the
real embeddings σ ∈ S+ we have σ(e) > 0. Note that if e is totally positive, then



A Hybrid Gaussian Sampler for Lattices over Rings 5

it is invertible. If e is totally positive, it admits 2d
+

square roots in K+, and we
de�ne its canonical square root

√
e ∈ K+ as its unique square root that is totally

positive :
√
e > 0. Note that this implies σ(

√
e) =

√
σ(e) for all real embeddings

σ ∈ S+. This extends naturally to a de�nition of totally non-negative elements,
noted e > 0. This also equips the �eld K+ (and its completion K+) with a partial
order: e > e′ ⇔ e− e′ > 0.

Hermitian structure of K. Seen as a Q-vector space, K can be equipped with
the sesquilinear map 〈·, ·〉 : K × K → C, (a, b) = Tr(ab̄) =

∑
σ σ(a)σ(b̄). This

sesquilinear map extends to K. The associated norm x 7→
√
〈x, x〉 ∈ R is noted

‖ · ‖.

Hermitian vector space over K. For vector spaces H = Kn, we can also de�ne
an sesquilinear product 〈·, ·〉K : H ×H → K,

〈a, b〉K =
∑

aib̄i.

One indeed veri�es that 〈a,a〉K > 0 for any vector a ∈ K, and that 〈a,a〉K 6= 0
for any non-zero vector a ∈ K \ {0} (we carefully note that it does not imply
that 〈a,a〉K > 0). The associated norm is given by ‖ · ‖K : a 7→

√
〈a,a〉. This

map can be completed to H ×H → K where H = R⊗Q V .

The two sesquilinear maps compose nicely: denoting 〈·, ·〉⊕n (resp. ‖ · ‖⊕n)
the component-wise application of 〈·, ·〉 (resp. ‖ · ‖), for all a ∈ Kn we have the
following commutative diagrams

H Cn

K C

〈a, ·〉⊕n

〈a, ·〉K 〈‖a‖⊕n, ·〉

〈‖a‖K, ·〉

〈a, ·〉
H Rn

K+ R

‖ · ‖⊕n

‖ · ‖K ‖ · ‖

‖ · ‖

‖ · ‖

that naturally de�nes a sesquilinear map H × H → C together with a norm
‖ · ‖ : H → R.

2.3 Lattice over a Ring

A lattice over the ring R is a discrete R-module of H = Kn equipped with the
Euclidean norm described above.

2.4 Gram-Schmidt Orthogonalization over Number Fields

Equipped with this algebraic background, we may now generalize to number
�elds notions related to the Gram-Schmidt orthogonalization of a basis. For a
matrix B ∈ Kn×m, the conjugate transpose of B is, as the name suggests, the
m× n matrix B∗ whose coe�cients verify (B∗)ji = Bji.
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De�nition 1. Let B = {b1, ...,bk} ∈ Hn and X ⊆ K. We note SpanX(b1, ...,bk)
(or SpanX(B)) the set {∑16i6k xibi, xi ∈ X}. In particular, SpanR(B) is an
R-module and and SpanK(B) is a K-vector space. If the vectors of B are linearly
independent as elements of a K-vector space, we say that B is a (K-)basis (of
SpanK(B)).

De�nition 2. Let n 6 m, V be a n-dimensional subspace of H and B ∈ Kn×m
be a basis of V . For any x ∈ H, the projection of x over V is:

Proj(x, SpanK(B)) = xB∗(BB∗)−1B

In particular, if y ∈ Km, then the projection of x over SpanK(y) is:

Proj(x, SpanK(y)) =
〈x,y〉K
〈y,y〉K

y

With the convention 〈x,0〉K〈0,0〉K 0 = 0.

Noting p = Proj(·, SpanK(y)), one can check that p is the usual orthogonal
projection over V : in particular p(H) = V, ker p = V ⊥, p◦p = p and p |V = id |V .

We now have all the tools to easily de�ne and analyze the (generalized)
Gram-Schmidt orthogonalization (or GSO). Unlike most de�nitions of the GSO,
this one doesn't consider vectors of Rm, but of Km. We �rst state in Lemma 1
the equivalent properties veri�ed by the GSO of a set, and then formally de�ne
the GSO in De�nition 3.

Lemma 1. Let B = {b1, ...,bn} ∈ Hn be a basis. For any k ∈ J1, nK, we note

Vk
∆
= SpanK(b1, ...,bk). There is a unique basis B̃ = {b̃1, ..., b̃n} ∈ Hn verifying

any of these equivalent properties:

1. ∀k ∈ J1, nK, b̃k = bk −Proj(bk, Vk−1)

2. ∀k ∈ J1, nK, b̃k = bk −
k−1∑
j=1

〈bk,b̃j〉K
〈b̃j ,b̃j〉K

b̃j

3. ∀k ∈ J1, nK, b̃k ⊥ Vk−1 and (bk − b̃k) ∈ Vk−1

Noting Ṽk
∆
= SpanK(b̃1, ..., b̃k), we also have: ∀k ∈ J1, nK, Ṽk = Vk.

Proof. We �rst prove the equivalence of the conditions. They are equivalent at
step 1. We suppose it is the case up to step k − 1 and prove the equivalence at
step k:

• 1⇔ 2 First let us notice that Vk−1 = Ṽk−1 (see condition 2). Observing

that for any j < k, the b̃j 's are pairwise orthogonals (see condition 3), we
get for any v ∈ H:

Proj(v, Vk−1) = Proj(v, Ṽk−1) =

k−1∑
j=1

〈v, b̃j〉K
〈b̃j , b̃j〉K

b̃j

Where the second equality comes from the �rst equality of De�nition 2.
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• 2⇒ 3 b̃k ⊥ Ṽk−1 is a simple computation, and (bk−b̃k) ∈ Vk−1 is straight-
forward.

• 3⇒ 1 We proved that (1⇒ 3), so bk = Proj(bk, Vk−1)+(bk−Proj(bk, Vk−1))
yields a decomposition of bk over Vk−1 and V ⊥k−1. Since Vk−1 and V ⊥k−1 are
in direct sum, such a decomposition is unique.

The uniqueness of B̃ comes from the deterministic formula in condition 2, as
does the fact that Vk = Ṽk. ut

As the matrix B̃ in the previous lemma is uniquely de�ned, this allows us to
generalize the notion commonly known as Gram-Schmidt orthogonalization.

De�nition 3. Let B = {b1, ...,bn} ∈ Hn. We call Gram-Schmidt orthogonal-
ization (or GSO) of B and note B̃ the unique set {b̃1, ..., b̃n} ∈ Hn verifying
one of the equivalent properties of Lemma 1.

We now de�ne the generalized Gram-Schmidt norm of a basis. Just as the
usual Gram-Schmidt norm is very useful for Klein's sampler, ours will be useful
for the ring version of Klein's sampler.

De�nition 4 (Generalized Gram-Schmidt norm). Let B = {b1, ...,bn} ∈
Hn be a basis, and B̃ = {b̃1, ..., b̃n} its Gram-Schmidt orthogonalization. We
call (K-)Gram-Schmidt norm, and note |B̃|K, the smallest value in R+ such that

∀i ∈ J1, nK, |B̃|K > ‖b̃i‖K

This de�nition allows us to subsume and encompass notions used in distinct
Gaussian samplers.

For K = R, it matches the usual de�nition of the Gram-Schmidt norm as
in e.g. [ABB10], [DLP14]. And for n = m = 1, the Gram-Schmidt norm coin-
cides with the de�nition of the largest singular value s1(B), used in [Pei10] to
quantify the standard deviation of the output of Peikert's sampler. We brie�y
recall that the largest singular value s1(B) of a real matrix Rn×m is de�ned by

s1(B) = maxx6=0
‖xB‖
‖x‖ .

2.5 Gaussians

The norm de�ned at the end of Subsection 2.2 allows us to de�ne Gaussians
directly over Kn (as opposed to Rn usually).

The Gaussian function ρ : Kn → (0, 1] is de�ned as follows:

ρ(x)
∆
= exp

(
−‖x‖2/2

)
If B ∈ Kn×n is a nonsingular matrix, and c ∈ Kn, then we extend this de�nition:

ρB,c(x)
∆
= ρ

(
(x− c)B−1

)
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Let Σ = B∗B. Then for any orthogonal matrix Q, B∗B = (QB)∗(QB) =
Σ. We therefore also use the notation ρ√Σ,c for ρB,c, where

√
Σ is an ar-

bitrary matrix verifying
√
Σ
∗√
Σ = Σ. For a �nite set S ⊆ Kn, we note

ρB,c(S)
∆
=
∑

x∈S ρB,c(x). For a lattice Λ, normalizing ρ√Σ,c by ρ√Σ,c(Λ) yields

the discrete Gaussian distributionDΛ,
√
Σ,c over Λ. We also noteDΛ,σ,c

∆
= DΛ,σ·In,c,

DΛ,
√
Σ

∆
= DΛ,

√
Σ,0 and DΛ

∆
= DΛ,1. Note that these de�nitions also hold if

Λ = K, except that the Gaussian distribution is then no longer discrete but
continuous.

We also recall the de�nition of the smoothing parameter (and of a scaled
version better suited to our purposes), as well as two lemmas that will be very
useful through this paper.

De�nition 5 (Smoothing parameter [MR07]). Let Λ be any n-dimensional
lattice and ε > 0, the smoothing parameter ηε(Λ) is the smallest s > 0 such that

ρ1/s
√
2π,0(Λ∗ \ 0) 6 ε. We also de�ne a scaled version η′ε(Λ)

∆
= 1√

2π
ηε(Λ).

Lemma 2 (Corollary of [MR07], Lemma 4.4). Let Λ be any n-dimensional
lattice. Then for any ε ∈ (0, 1), σ > η′ε(Λ) and c ∈ Rn, we have

ρσ,c(Λ) ∈
[

1− ε
1 + ε

, 1

]
· ρσ(Λ)

Lemma 3 (Special case of [MR07], Lemma 4.4). For any ε ∈ (0, 1):

η′ε(Zn) 6
1

π

√
1

2
log

(
2n

(
1 +

1

ε

))

2.6 The Kullback-Leibler Divergence

We now present the notion of Kullback-Leibler divergence (or KL Divergence)
that works as a replacement of the more familiar notion of statistical distance.
For Gaussian distributions ot oftens provides tighter proofs, therefore allowing
sampling with a smaller variance, as already done in several works [DLP14,PDG14].

De�nition 6 (Kullback-Leibler Divergence). Let P and Q be two distribu-
tions over a common countable set Ω, and let S ⊂ Ω be the strict support of P
(P(i) > 0 i� i ∈ S). The Kullback-Leibler divergence, noted ∆KL of Q from P
is de�ned as:

∆KL(P‖Q) =
∑
i∈S

ln

(P(i)

Q(i)

)
P(i)

with the convention that ln(x/0) = +∞ for any x > 0.

To conclude a security argument using KL Divergence one can rely on the fol-
lowing lemma.



A Hybrid Gaussian Sampler for Lattices over Rings 9

Lemma 4 (Bounding Success Probability Variations [DLP14,PDG14]).
Let EP be an algorithm making at most q queries to an oracle sampling from a
distribution P and returning a bit. Let ε > 0, and Q be a distribution such that
∆KL(P‖Q) ≤ ε. Let x (resp. y) denote the probability that EP (resp. EQ) outputs
1. Then, |x− y| ≤

√
qε/2.

Finally, to bound the KL Divergence, one can apply the following Lemma.

Lemma 5 (KL Divergence for bounded relative error [DLP14,PDG14]).
Let P and Q be two distributions of same countable support. Assume that for
any i ∈ S, there exists some δ(i) ∈ (0, 1/4) such that we have the relative error
bound |P(i)−Q(i)| ≤ δ(i)P(i). Then

∆KL(P‖Q) ≤ 2
∑
i∈S

δ(i)2P(i).

3 Ring Variants of Klein's and Peikert's Samplers

In this section, we present ring variants of Klein's and Peikert's samplers.

3.1 A Ring Variant of Klein's Sampler

Here we present a ring generalization of Klein's algorithm, where Z (resp. R) is
replaced by R (resp. K). To get an intuition of why this could be faster than
Klein's sampler, see that each output is of the form v =

∑
i zibi ∈ Rm, where

the zi ∈ R. Then this algorithm samples an entire zi at each step, whereas the
original algorithm from Klein can only sample one coordinate of one zi at each
step.

Algorithm 1 Ring_Klein(R,B, B̃, σ, c)

Require: Basis B = {b1, ...,bn} ∈ Rn×m, its GSO B̃ = {b̃1, ..., b̃n} ∈ Kn×m, σ ∈
K+, target c ∈ Km

Ensure: v sampled in a distribution close to DSpanR(B),σ,c

1: cn ← c ∈ Km
2: vn ← 0 ∈ Rm
3: for i← n, ..., 1 do

4: di ← 〈ci, b̃i〉K/‖b̃i‖2K ∈ K
5: Σi ← σ2/‖b̃i‖2K ∈ K
6: zi ← SampleR(R, Σi, di) ∈ R
7: ci−1 ← ci − zibi ∈ Km
8: vi−1 ← vi + zibi ∈ Rm
9: end for

10: return v0

In Algorithm 1, SampleR is assumed to be a perfect discrete Gaussian sam-
pler over R: given a ring R, a covariance Σ ∈ K+ and a center d ∈ K, we assume
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SampleR(R, Σ, d) = DR,
√
Σ,d. This mirrors the sampler in [GPV08], which uses

a discrete Gaussian sampler over Z as an oracle. Here Z is replaced by R, which
of course raises practicality issues, but these questions will be addressed in Sec-
tion 4.

The rest of this subsection is devoted to analyzing the correctness of Al-
gorithm 1. Since the lemmas and their proofs are mostly identical to similar
counterparts in [GPV08,DLP14], readers interested only in the practical appli-
cations may wish to acknowledge Theorem 1 and then skip to the next section.

Lemma 6. For any input (R,B, B̃, σ, c) and output v =
∑
i ẑibi ∈ SpanR(B)

of Ring_Klein,

v − c =
∑
i

(ẑi − di)b̃i

where the values ci, ẑi are as in Ring_Klein(R,B, B̃, σ, c)→ v.

Proof. The proof is identical to the proof of Lemma 4.4 in [GPV08]. The only dif-
ference is that Z (resp. R) is replaced withR (resp. K), and therefore Λ(B) (resp.
SpanR(b1, ...,bk)) has to be replaced with SpanR(B) (resp. SpanK(b1, ...,bk)).

ut

Lemma 7. For any input (R,B, B̃, σ, c) and output v =
∑
i ẑibi ∈ SpanR(B)

of Ring_Klein, the probability that v is output is exactly

ρσ,c(v) ·
∏

16i6n

1

ρ√Σi,di(R)

Proof. For each i, the probability that zi = ẑi (conditioned on zj = ẑj for all
j > i) is exactly DR,

√
Σi,di

(ẑi). Therefore the probability that v is output is

∏
16i6n

DR,
√
Σi,di

(ẑi) =

∏
16i6n ρ

√
Σi,di

(ẑi)∏
16i6n ρ

√
Σi,di

(R)

In the expression above, the numerator is∏
16i6n

ρ√Σi,di(ẑi) =
∏

16i6n

ρσ

(
(ẑi − di)‖b̃i‖K

)
= ρσ

(
Σi(ẑi − di)b̃i

)
= ρσ,c(v)

The �rst equality comes from the fact that Σi = σ2/‖b̃i‖2K, the second one

from the pairwise orthogonality of the b̃i's, and the last one from Lemma 6. ut

Theorem 1. Let B = {b1, ...,bn} ∈ Rn×m be a R-basis, B̃ = {b̃1, ..., b̃n} ∈
Kn×m its GSO, c ∈ Rm. Let ε ∈ (0, 1

2n ) and σ ∈ K+ such that σ > η′ε(R) · ‖B̃‖.
The statistical distance (resp. KL Divergence) between DSpanR(B),σ,c and the

output distribution of Ring_Klein(R,B, B̃, σ, c) is upper bounded by 2nε (resp.

2
(

1−
(

1+ε
1−ε

)n)2
≈ 8n2ε2).
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Proof. The proof is almost to identical to the proof of Theorem 2 in [DLP14].
Let P = DSpanR(B),σ,c, andQ be the output distribution of Ring_Klein(R,B, B̃, σ, c).

By assumption,
√
Σi > η′ε(R), so from Lemma 2 we can infer that ρ√Σi,di(R) ∈[

1−ε
1+ε , 1

]
· ρ√Σi(R). Applying Lemma 7 then gives us a relative error between P

and Q:

∀v ∈ SpanR(B), |P(v)−Q(v)| 6
(

1−
(

1 + ε

1− ε

)n)
P(v)

At this point we get the statistical distance (resp. KL Divergence) using a
straightforward computation (resp. 5). ut

3.2 A Ring Variant of Peikert's Sampler

In this subsection, we present and analyze a ring variant of Algorithm 1 from
[Pei10]. Although we do not introduce new techniques to allow such a transfor-
mation (which was started in [Pei10] and completed in [DN12]), we provide a
complete description of a ring variant and give an analysis of its divergence from
a perfect sampler.

For this step, we require a Z-basis of the ringR, that we denote by (e1, . . . , ed).
For example, if R = Z[x]/(f(x)) one may take a power-basis 1, x, . . . , xdeg(f)−1,
but other choices may lead to better results (see [?]). One note that for the vari-
ance Σe =

∑
eiēi ∈ K+, it is essentially trivial to sample a distribution close to

DR,η·
√
Σe,ci

(where η = ηε(Z) ∈ R), by computing
∑

16i6d aiei where each ai is
drawn from DZ,η,ci and c =

∑
16i6d ciei.

Algorithm 2 Ring_Peikert(R, Σ, c)
Require: A variance Σ ∈ K+, a target c ∈ K, a precomputed value b ∈ K such that

Σe(bb̄+ η2) = Σ
Ensure: z sampled according to DR,σ,c
1: p← b ·DK,

√
Σe

∈ K
2: z ← DR,η

√
Σe,c+p

∈ R
3: Return z

Just like before, the rest of this subsection is dedicated to proving the cor-
rectness of Algorithm 2. Once again, readers interested in practical applications
may wish to acknowledge Theorem 3 and skip to Section 4.

We �rst recall a theorem (in a simpli�ed version) from [Pei10] which will help
us analyze Algorithm 2. Our version of this theorem also adds a bound on the
KL Divergence between the output of Algorithm 2 and the desired distribution.

Theorem 2 (Theorem 3.1 of [Pei10], continuous case, simpli�ed). Let
R = Zm, Σ1, Σ2 > 0 be positive de�nite matrices, with Σ = Σ1 + Σ2 > 0. Let
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Λ1 be a lattice such that
√
Σ1 > η′ε(Λ1) for some positive ε 6 1/2, and let c be

arbitrary. Consider the following probabilistic experiment:

Choose x2 ∼ D√Σ2
, then choose x1 ∼ DΛ1+c1,

√
Σ1,x2

.

The statistical distance (resp. KL Divergence) between the distribution of x1 and

DΛ1+c1,
√
Σ is upper bounded by ε

1−ε ≈ ε (resp. 2
(

2ε
1−ε

)2
≈ 8ε2).

Proof. We only improve a speci�c point of the original theorem: namely, adding
a bound on the KL Divergence and very slightly enhancing the bound on the
statistical distance. Therefore, we focus on the part we improve and invite the
reader interested in more details to read the complete proof in [Pei10].

Let x̄1 ∈ Λ1 + c1. From the proof of theorem 3.1 of [Pei10], we have Pr[x̄1 =

x1] ∝ ρ√Σ(x̄1)·
[
1, 1+ε1−ε

]
(and not

[
1−ε
1+ε ,

1+ε
1−ε

]
like in the original proof, since in the

continuous case we need only in invoke Lemma 2.4 of [Pei10] once). It follows that

Pr[x̄1 = x1] ∈
[
1−ε
1+ε ,

1+ε
1−ε

]
·DΛ1+c1,

√
Σ(x̄1). A straightforward computation (resp.

Lemma 5) yields the bound on the statistical distance (resp. the KL Divergence).
ut

We now use Theorem 2 to prove that Algorithm 2 is indeed correct by being
a ring instanciation of Algorithm 1 from [Pei10].

Theorem 3. Let ε ∈ (0, 12 ), b ∈ K such that Σe(bb̄ + η2) = Σ and η > η′ε(R).
The statistical distance (resp. KL Divergence) between the output of Ring_Peikert(R, Σ, c)
and DR,

√
Σ,c is upper bounded by ≈ 2ε (resp. ≈ 8ε2).

Proof. Our goal is to prove that we ful�ll the conditions necessary to apply
theorem 2.

Let us take Λ1 := R, Σ1 := η2Σe, Σ2 := bbΣe, c1 := c, x2 := −p and
x1 := z − c. One can check that all the conditions are veri�ed, in particular
x2 ∼ D√Σ2

and x1 ∼ DΛ1+c1,
√
Σ1,x2

, so this allows us to apply theorem 2 and
assert that the distribution of x1 is close toDR+c,

√
Σ as speci�ed by the theorem:

the bijective transformation z := c+ x1 then allows us to conclude. ut

4 Hybrid Algorithms for Sampling and Reduction

4.1 A Hybrid Sampler

In this section, we show that the two algorithms presented in Section 3 can
be e�ciently combined: more precisely, using Ring_Peikert as a subroutine of
Ring_Klein will give us a new discrete Gaussian sampler.

De�nition 7. Using the notations from Section 3, we note Hybrid_Sampler(R,B, B̃, σ, c)
the algorithm Ring_Klein(R,B, B̃, σ, c) where instead of calling a perfect sam-
pler SampleR(R, Σi, di) in step 6, we call Ring_Peikert(R, Σi, di).
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We now show that for carefully chosen parameters, the output distribution
of Hybrid_Sampler is close (in the sense of either the statistical distance or the
KL Divergence) to a perfect discrete Gaussian. Given the nature of this sampler
(it combines Ring_Klein and Ring_Peikert), we have to take into account the
divergence of both Ring_Klein and Ring_Peikert from a �perfect behavior�.

It is tempting to �rst quantify the divergence between Hybrid_Sampler and
Ring_Klein, and then use the triangle inequality along with Theorem 1 to get
the divergence between Hybrid_Sampler and a perfect discrete Gaussian. This
approach works in the case of statistical distance but is useless for KL Divergence
since the latter does not verify the triangle inequality. Instead, we directly com-
pute the statistical distance (resp. KL Divergence) between both distributions.

Theorem 4. Let B = {b1, ...,bn} ∈ Rm×n be a R-basis, B̃ = {b̃1, ..., b̃n} ∈
Km×n its GSO and c ∈ Rm. Let ε ∈ (0, 1

6n ) and σ ∈ K+ such that σ > η′ε(R)· ‖B̃‖.
The statistical distance (resp. KL Divergence) between DSpanR(B),σ,c and

the output distribution of Hybrid_Sampler(R,B, B̃, σ, c) is upper bounded by
1
2 (( 1+ε

1−ε )
3n − 1) ≈ 3nε (resp. 2(( 1+ε

1−ε )
3n − 1)2 ≈ 72n2ε2).

Proof. This proof reprises elements from the proofs of Theorems 1 and 2.
Let Q be the output distribution of Hybrid_Sampler(R,B, B̃, σ, c) and

P = DSpanR(B),σ,c. Divergence between P and Q come from both the use of
Ring_Klein and Ring_Peikert. Theorem 1 (resp. 3) quanti�es the di�erence
between the output of Ring_Klein (resp. Ring_Peikert) and a perfect Gaus-
sian, upon the condition σ > η′ε(R) · ‖B̃‖ (resp. √Σ1 > η′ε(Λ1)). Coincidentally,
in this case, the two conditions end up being exactly the same: the ε mentioned
in Theorems 1 and 3 are actually the same here.

Let v =
∑
i ẑibi ∈ SpanR(B). For any i, let Qi be the output distribution

of Ring_Peikert(R, Σi, di), where the Σi, di are as in v ← Q. For each i,

Qi(ẑi) ∈
[
1−ε
1+ε ,

1+ε
1−ε

]
DR,

√
Σi,di

, as detailed in the proof of Theorem 2. Therefore

Q(v) =
∏

16i6nQi(ẑi)
∈
[
( 1−ε
1+ε )

n, ( 1+ε
1−ε )

n
]∏

iDR,
√
Σi,di

(ẑi)

∈
[
( 1−ε
1+ε )

n, ( 1+ε
1−ε )

n
]

ρσ,c(v)∏
i ρ
√
Σi,di

(R)

∈
[
( 1−ε
1+ε )

n, ( 1+ε
1−ε )

n
] [

1, ( 1+ε
1−ε )

n
]

ρσ,c(v)∏
i ρ
√
Σi

(R)

Where the second equality comes from the fact that for each i, Qi(ẑi) ∈[
1−ε
1+ε ,

1+ε
1−ε

]
DR,

√
Σi,di

, the third one from Lemma 7 and the fourth from Lemma 2.

Let α =
ρσ,c(SpanR(B))∏

i ρ
√
Σi

(R) . We can then write Q(v) ∈ α
[
( 1−ε
1+ε )

n, ( 1+ε
1−ε )

2n
]
P(v).

Summing Q(v) over SpanR(B) yields

1 ∈ α
[(

1− ε
1 + ε

)n
,

(
1 + ε

1− ε

)2n
] =1︷ ︸︸ ︷∑

v∈SpanR(B)

P(v)
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This implies that α ∈
[
( 1−ε
1+ε )

2n, ( 1+ε
1−ε )

n
]
, so we get a relative error bound between

P and Q:

|Q(v)− P(v)| 6
((

1 + ε

1− ε

)3n

− 1

)
P(v)

We can then conclude using a straightforward computation (resp. Lemma 5).
ut

The bound on the statistical distance (resp. KL Divergence) can then be
used to assert the security of the scheme following a standard argument (resp.
Lemma 4).

4.2 A Hybrid Babai's Algorithm

One could see Babai's rounding (resp. nearest plane) algorithm as a speci�c in-
stanciation of Klein's (resp. Peikert's) sampler for a standard deviation σ = 0.
While Babai's algorithms [Bab86] were invented long before the aforementioned
samplers and do not serve the same purpose, it is nevertheless correct to view
them like this, under the convention that a gaussian with standard deviation
0 behaves like an exact rounding. Therefore, the method used to create a hy-
brid sampler from Klein's and Peikert's sampler can be used to create a hybrid
approximation algorithm for the closest vector problem from Babai's approxi-
mation algorithms.

De�nition 8. Let B ∈ Rm×n be a R-basis, B̃ = its GSO and c ∈ Rm. We
de�ne

Hybrid_Babai(R,B, B̃, ·) ∆= Hybrid_Sampler(R,B, B̃, 0, ·)

We now give a bound on the output of the algorithm. The proof can be
done either by generalizing the proof of Babai's nearest plane algorithm (see e.g.
[Gal12, chapter 18]) or by reprising the proof of Theorem 4.

Lemma 8. For any c ∈ Km, Hybrid_Babai(R,B, B̃, c) outputs a point v ver-
ifying:

v − c =
∑

16i6n

εib̃i

where εi ∈ K are such that, for all i ≤ n, − 1
2 6 εi 6 1

2 (as inequalities of K).

5 A Practical Viewpoint: Gaussian Sampling over

NTRU-like Lattices

While proper use of lattice trapdoors [GPV08] is quite recent, the design of com-
pact lattices with quite a good trapdoor comes from the NTRU-cryptosystems
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[HPS98,HHGP+03]. Unlike more recent constructions [MP12], those lattices are
not necessarly uniformly random (unless one makes impractical choices of pa-
rameters [SS11]), in which case they may not bene�t from theoretical worst-case
hardness [Ajt96,MR07]. Nevertheless, when it comes to practical instantiation
and concrete security, this type of construction remains to date the most e�cient
one.

In this section, we assess the practical interest of our hybrid sampler by
comparing it with Klein's and Peikert's samplers. To do this, we instantiate the
Full-Domain Hash signature scheme proposed in [GPV08] over NTRU lattices.
For Klein's sampler, an analysis of this scheme has already been done in [DLP14].

This last section is organized as follows: �rst we recall what NTRU lattices
are, then we explain how we will compare our Hybrid sampler with Klein's and
Peikert's and then we will summarize our results in Table 1. Subsections 5.1,
5.2 and 5.3 detail brie�y how the results for each sampler were obtained, and
Subsection 5.4 heuristically explains the quality gap between the Hybrid and
Peikert's samplers.

De�nition 9. Let Φm be the m-th cyclotomic polynomial, let ωm be an arbitrary
root of Φm, and Ωm = {ωkm, k ∈ Z×m} be the set of complex roots of Φm. We
also note ϕ(m) Euler's totient function evaluated on m, and Φm the diagonal
ϕ(m)× ϕ(m) matrix whose diagonal coe�cients are the elements of Ωm.

Note that we sligthly deviate from the originally chosen ring of NTRU cryp-
tosystems, and prefer the now standard choice of cyclotomic rings.

In the rest of the section, m ∈ N∗ will be a power of two, q ∈ N∗, N = ϕ(m),
Z = Z[x]/(φm(x)) = Z[x]/(xN + 1) and K = Q[x]/(φm(x)).

De�nition 10 (NTRU lattice). Let f, g, F,G ∈ ZN [x] such that

fG− gF = q mod (xN + 1) (1)

The NTRU lattice generated by f, g, F,G is the lattice generated by the rows
of the block matrix

Bf,g,F,G =

[
A(f) A(g)
A(F ) A(G)

]
Where A(p) is the N ×N matrix which i-th row is the coe�cients of xi−1 · p(x)
mod (xN + 1).

For any �xed (f, g) and distinct (F1, G1), (F2, G2) verifying equation 1,
Λ(Bf,g,F1,G1

) = Λ(Bf,g,F2,G2
) so in the rest of the paper we simply assume

that (F,G) is reduced with respect to SpanR((f, g)) using Babai's rounding

algorithm and note Bf,g
∆
= Bf,g,F,G.

Depending if we take Z, Z or Z2×2 as our base ring R, we can do Gaussian
sampling in three di�erent ways:

1. Taking R = Z, our hybrid algorithm is simply the original Klein's sampler.
This approach is developed in Subsection 5.1.
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2. Taking R = Z, we get a sampler that is strictly di�erent from Klein's and
Peikert's sampler. Indeed, Λ(Bf,g,F,G) can then be seen as a R-module of
rank 2. This approach is developed in Subsection 5.2.

3. Taking R = Z2×2, one uses Peikert's original algorithm1. This approach is
developed in Subsection 5.3.

b1

1

b2

2

b3

3

b4

4

b5

5

b6

6

b7

7

b8
8b9

9

b10
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b11

11

b12

12

b13

13

b14

14

b15

15

b16

16

Original basis Klein

2

1

Hybrid

1

Peikert

Fig. 2. Each sampler outputs a vector v =
∑
i zibi. The zi's are computed one by

one for Klein's sampler (the �gure gives the order in which they are computed),
all at the same time for Peikert's, and N at a time for our instantiation of the
Hybrid sampler over NTRU lattices.

To compare the three approaches, we �x the parametersN = 512, q = 220 and
try to �nd the NTRU bases yielding the most secure Full-Domain Hash signature
scheme for each sampler. We already know that Klein's will sample with the
smallest standard deviation and Peikert's with the largest, due to equation 2.

√
q = det(Bf,g)

1
2N 6 |B̃f,g|R 6 |B̃f,g|K 6 s1(Bf,g) (2)

What we want is to quantify these standard variations, which is equivalent to
computing |B̃f,g|R for Klein's sampler, |B̃f,g|K for the Hybrid and s1(Bf,g) for
Peikert's.

Once it is done, we evaluate the security of the signatures schemes by de-
termining the hardness of the underlying lattice problem. This hardness can be
quanti�ed using the root Hermite factor introduced in [GN08]. Let v ∈ Λ be
a vector that one is looking for in a n-dimensional lattice. If ‖v‖ > det(Λ)1/n,
then the associated root Hermite factor γ veri�es:

γn ≤ ‖v‖
det(Λ)1/n

(3)

If v is an unusually short vector planted in an NTRU lattice, then according
to experiments in [DDLL13], γ veri�es:√

n/(2πe) · det(Λ)1/n

‖v‖ = .4γn. (4)

1 To formally subsume that case with our algorithm, we would need to generalize our
description to non-commutative rings.
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Using the works of [GN08,CN11], one can get a very rough estimate of the
hardness of the lattice problem based on the value of γ (unfortunately, lattice
cryptanalysis literature on this subject is sparse so we cannot get much more
than just a rough estimate).

The results of our experiments are summarized in the Table 1.

Table 1. Comparison of the three approaches for NTRU lattices of �xed dimen-
sion 2N = 1024 and modulus q = 220

Sampler Klein Hybrid Peikert

Security level 192 160 120

Root Hermite factor γ 1.0042 1.0049 1.0060

Ring R Z Z Z2×2

rankR(Λ) 2N 2 1
Form of B R2N×2N R2×2 R1×1

Running time Õ(N2) Õ(N) Õ(N)

Smallest |B̃|K attained 1.17
√
q 2.5

√
q 8

√
q

5.1 Klein's Sampler (R = Z,K = Q)

Klein's Sampler has been extensively studied in [GPV08,DN12,DLP14], We re-
call its behavior in the case of NTRU lattices as stated in [DLP14].

Lemma 9 ([DLP14], Lemmas 2 and 3). Let Bf,g be as de�ned in De�ni-
tion 10. The classical Gram-Schmidt norm of Bf,g is:

|B̃f,g|R = max

(
‖(f, g)‖,

∥∥∥∥( qḡ

f f̄ + gḡ
,
−qf̄

f f̄ + gḡ

)∥∥∥∥)
In addition, [DLP14, full version] provides experiments and a heuristic which

both con�rm that one can sample NTRU bases with a Gram-Schmidt norm as
small as 1.17

√
q.

5.2 Hybrid Sampler (R = Z,K = K)

In the case where R = Z, the vectors f = (f, g),F = (F,G) ∈ R2 then generate
Λ(Bf,g) as a R-module of rank 2: Λ(Bf,g) = SpanR(f ,F).2 We then get

Lemma 10. Let Bf,g be as de�ned in De�nition 10. The K-Gram-Schmidt
norm of Bf,g is:

|B̃f,g|K = max
ω∈Ωm

max

(
D(ω),

q

D(ω)

)
2 Note that in this setting, the equation 1 becomes det[f ,F] = q ∈ R.
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Where D(x)
∆
= ‖(f, g)‖K(x)(=

√
|f(x)|2 + |g(x)|2 when x ∈ Ωm).

Proof. B = {f = (f, g),F = (F,G)} is the R-basis used for this sampler. |B̃f,g|K
is by de�nition the smallest value in R+ verifying |B̃f,g|K > f and |B̃f,g|K > F̃.
A straightforward computation using De�nition 2 gives us

F̃ =

( −qḡ
f f̄ + gḡ

,
qf̄

f f̄ + gḡ

)
Therefore

〈F̃, F̃〉K =
q2

ff̄ + gḡ
=

q2

〈f , f〉K
Evaluating 〈f , f〉K and 〈F̃, F̃〉K on all the ω ∈ Ωm then yields the result. ut

We then generate random NTRU bases to give an estimate on the max-
imum Gram-Schmidt norm given by Lemma 10. When ‖(f, g)‖ increases, so
do the values (D(ω))ω∈Ωm , but the values ( q

D(ω) )ω∈Ωm decrease. The goal is

to sample (f, g) with a standard deviation chosen so that maxω∈Ωm(D(ω)) ≈
maxω∈Ωm( q

D(ω) ), which should yield a reasonable small value for |B̃f,g|K. Fig-
ure 3 summarize these experiments for NTRU bases of size 2N = 1024.

2
√
q

4
√
q

6
√
q

8
√
q

.6
√
q 1.4

√
q

‖(f, g)‖

max
ω∈Ω2N

D(ω)

2
√
q

4
√
q

6
√
q

8
√
q

.6
√
q 1.4

√
q

‖(f, g)‖

max
ω∈Ω2N

q
D(ω)

Fig. 3. The potential values of |B̃f,g|K, where Bf,g is a NTRU basis of dimension
2N = 1024, for a modulus q = 220. On the left, max

ω∈Ω2N

D(ω) and on the right,

max
ω∈Ω2N

q
D(ω) , where D(ω) is de�ned as in Lemma 10.

In our experiments, we managed to get |B̃f,g|K ≈ 2.5
√
q. This is just 2.5

times the theoretical smallest value that |B̃f,g|K can take.
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5.3 Peikert's Sampler (informally R = Z2×2,K = K2×2)

The standard deviation of the discrete Gaussian output by Peikert's sampler is
η′ε(Z2N ) · s1(Bf,g). The following lemma gives the value of s1(Bf,g) for a NTRU
basis.

Lemma 11. Let Bf,g be as in De�nition 10. The maximal singular value of
Bf,g (which is also its Gram-Schmidt norm with respect to Z2×2) is

s1(Bf,g) =
√

max
ω∈Ωm

(λω)

where C(x)
∆
= (ff̄+gḡ+FF̄+GḠ)(x) and λω

∆
= 1

2

(
C(ω) + (−1)i

√
C2(ω)− 4q2

)
.

Proof. First, notice that the matricesA(f),A(g),A(F ),A(G) are co-diagonalizable
in an orthonormal eigenbasis: there exists a matrix P ∈ CN×N such that A(f) =
P× f(Φm)×P∗. We can therefore write

Bf,g =

[
P 0
0 P

]
×
[
f(Φm) g(Φm)
F (Φm) G(Φm)

]
×
[

P∗ 0
0 P∗

]
Then, see that the singular values of Bf,g are the positive square roots of the

eigenvalues of Bf,gB
t
f,g. Since similar matrices share the same eigenvalues, we

are therefore looking for the square roots of the eigenvalues of

M =

[
(ff̄ + gḡ)(Φm) (fF̄ + gḠ)(Φm)
(f̄F + ḡG)(Φm) (FF̄ +GḠ)(Φm)

]
We compute the characteristic polynomial of M:

χM(λ) = det[M− λI2N ]
= det

[
q2IN − λ(ff̄ + gḡ + FF̄ +GḠ)(Φm) + λ2IN

]
=

∏
ω∈Ωm

(
q2 − λ(ff̄ + gḡ + FF̄ +GḠ)(ω) + λ2

)
The second equality �rst uses the fact that det

[
A B
C D

]
= det[AD−BC] when

B and C commute, then the equation 1, at at last the fact that for any ω ∈ Ωm,
(ff̄)(ω) = |f(ω)|2.

Noting C(ω)
∆
= (ff̄ + gḡ + FF̄ + GḠ)(ω), the eigenvalues are, for (ω, i) ∈

(Ωm, {0, 1}), the values

λω,i =
1

2

(
C(ω) + (−1)i

√
C2(ω)− 4q2

)
Noticing that the maximal λω,i must have i = 0, this concludes the proof. ut

Just like in Subsection 5.2, we ran experiments on random NTRU bases to
evaluate how small we could get the singular value s1(Bf,g) to be. The results
are summarized in Figure 4.



20 Léo Ducas and Thomas Prest

0

4
√
q

8
√
q

12
√
q

16
√
q

20
√
q

24
√
q

0
√
q

‖(f, g)‖

Fig. 4. Values of s1(Bf,g), where Bf,g is a NTRU basis of dimension 2N = 1024,
for a modulus q = 220.

The best values we managed to get in our experiments were s1(Bf,g) ≈ 8
√
q.

Although this could seem to be �not too big� compared to |B̃f,g|R and |B̃f,g|K
(which condition the quality of the vectors output by Klein's and our Hybrid
sampler), in practice it undermines the security parameter of the Full-Domain
Hash signature scheme using Peikert's sampler.

5.4 Explaining the Gap between the Hybrid and Peikert's Samplers

The goal of this section is to explain why our Hybrid sampler performs better
than Peikert's sampler over NTRU lattices.

We �rst recall properties of the singular norm. For two matrices X and Y ,
and their vertical concatenation {X,Y }, we have:

max(s1(X)2, s1(Y )2) 6 s1({X,Y })2 6 s1(X)2 + s1(Y )2. (5)

The �rst inequality is an equality if and only if X and Y span orthogonal
spaces. We also have euclidean sub-additivity: s1(X + Y )2 ≤ s1(X)2 + s1(Y )2.

We also recall that we write the NTRU basis as B = {f ,F}, where

f = (f, g) and F = (F,G) = rf + F̃

for some r ∈ K and F̃ orthogonal to f . The key generation process of NTRU guar-
antees that r has coe�cients in [−1/2, 1/2], and we modelize them as uniformly
random in this range. Using our Hybrid sampler gives a quality of s1({f , F̃}) =
max(s1(f), s1(F̃)), against a quality of s1({f ,F}) for Peikert's.
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We now give three heuristics (one new and two already tested) that we will
use to estimate the qualities of the samplers:

1. For x ∈ {f ,F, F̃}, s1(x) ≈ α
√

lnN‖f‖ for some constant α. To justify this,
we observe that if y ∈ K's coe�cients are gaussian (as in our experiments),
then its embeddings σi(y) are gaussians as well. The singular s1(y) is the
maximum absolute value of these embeddings s1(y) = maxσ |σi(y)|, which is
expected, according to order statistics to be ≈ α

√
lnN‖y‖ for some constant

α. Assuming F, f and F̃ behave like y, this gives the heuristic.
2. ‖F̃‖ ≈ qe

2‖f‖ . This is implicit in the heuristic of [DLP14, full version, Sec-

tion 3.3], which also provides experimental con�rmation.

3. ‖rf‖ ≈
√

N
12‖f‖. The heuristic can be found in [HHGP+03].

The quality of the Hybrid sampler is now discussed in points 1 and 2, and
the one of Peikert's sampler in points 3 and 4.

1. Using heuristic 2, max(‖f‖, ‖F̃‖) is minimized when ‖f‖ ≈ ‖F̃‖ ≈
√

qe
2 .

2. For the Hybrid sampler, the quality veri�es:

s1({f , F̃}) = max(s1(f), s1(F̃)) ≈ α
√

lnN max(‖f‖, ‖F̃‖)

where the equality is coming from the orthogonality of f and F. How small
we can expect s1({f , F̃}) to be then comes from point 1.

3. We can assume that max(‖f‖2, ‖F‖2) = ‖F‖2 ≈ ‖f‖2 + ‖F‖2 since

‖F‖2 = ‖F̃‖2 + ‖rf‖2 ≈ q2e2

4‖f‖2 +
N

12
‖f‖2

where the approximation comes from heuristics 2 and 3. ‖F‖ is expected to

be minimal for ‖f‖2 ≈ qe
√

3
N , which yields ‖F‖ ≈

√
qe
√
N

2
√
3
.

4. Using equation 5 in conjunction with heuristic 1 and point 3, we approximate
the quality of Peikert's sampler:

s1({f ,F}) ≈ α
√

lnN‖F‖

We can now estimate the ratio between the best qualities obtained for a given
dimension using the Hybrid and Peikert's samplers:

σPeikert
σHybrid

=
s1({f ,F})
s1({f , F̃})

≈ minf ‖F‖
minf max(‖f‖, ‖F̃‖)

≈
(
N

3

)1/4

For N = 512, this ratio is about 3.6, which is close to the ratio of 3.2 that
we observed in our experiments when optimizing both samplers.

However, if the samplers are ran on the same lattice, the di�erence can be
much higher; in particular, if ‖f‖ � ‖F̃‖ then from the heuristic we can expect
Peikert's sampler to have a quality worse than the Hybrid by a factor

√
N/12,

but in practice this factor is even bigger, around
√
N/4 (see Figure 5).
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Fig. 5. Comparing the qualities of Klein's/Hybrid/Peikert's samplers for a
NTRU basis of dimension 2N = 1024 and modulus q = 220, with ‖(f, g)‖ (in
abscissa) ranging in (0, 3

√
q).

6 Trade-o�s Using Sub�elds

Let us assume that we are working in a number �eld K of degree n that admits
a sub�eld J of degree b|n, and let d = n/b be the relative degree of K over J.
The �eld K may then be seen as a sub-algebra of the algebra of matrices Jd×d.
That way, a basis B ∈ K may be seen as a matrix of Jdk×dk, and one may run
our algorithm over J rather than K to improve the quality of our sampler, at the
price of slowing it down. At the extreme case, we may choose J = Q in which
case we are simply back to running the original algorithm of Klein.

Such a trade-o� exists for all cyclotomic number �elds of non-prime conduc-
tor. Indeed, if Kn denotes the n-th cyclotomic number �eld, then Kd is a sub�eld
of Kn if and only if d divide n.

Because such an algebraic description is not exactly straightforward to trans-
late into an implementation, in the next section we show explicitly how to realize
this trade-o� when n is a power of 2 and d = n/2.
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6.1 Explicit Trade-o� for power-of-two Cyclotomic Fields

In this subsection, m will be a power of two, N = ϕ(m) = m/2, Km =
Q[x]/(φm) = Q[x]/(xN + 1) and Zm = Z[x]/(φm). The reader will notice, that,
in this case, the decomposition as a matrix over a sub�eld is extremely similar
to the steps of a Fast Fourier Transform.

Let f ∈ Km and suppose we want to sample a spherical Gaussian over the
lattice SpanZm(f). This lattice is either generated by the N -dimensional Z-basis
B

∆
= AN (f) or by the 1-dimensional Zm-basis f .
Using the Hybrid sampler here seems pointless at �rst sight, since we end up

with Peikert's sampler if we use Zm as base ring (i.e. Km as base �eld).

FortunatelyKm is a �eld extension ofKm/2:Km ∼= (Km/2)2. More practically,
if one notes f(x) = f1(x2) +xf2(x2), a simple permutation of rows and columns
transforms B into another matrix B′ with a structure over Km/2:

P tπ ×B× Pπ =

[
AN/2(f1) AN/2(f2)
AN/2(xf2) AN/2(f1)

]
∆
= B′

Where Pπ is the permutation matrix associated to π, de�ned as:

{
π(2k + 1) = k + 1
π(2k) = N

2 + k + 1

Now we can use the Hybrid Sampler with the basis B′ using Zm/2 as a base
ring instead of Zm. This process can of course be recursively iterated: one then
obtains a basis with a ring structure over Zm/4, then Zm/8, and so on, down to
Z, which corresponds to Klein's sampler.

This is of course a trade-o�: while breaking down Zm in smaller rings allows
to sample with a smaller standard deviation, the running time of the new sampler
can be up to twice longer, as Zm/2 is twice as small as Zm/2 but the basis now
contains four times more ring elements. In practice, one would want to use this
technique when Peikert's sampler doesn't give enough security, Klein's is too
slow, and there are heavy constraints over the dimension of the lattice used
(which per example might be �xed).

Figure 6 illustrates this trade-o�: f is split between its even and odd coe�-
cients, and commuting the basis elements separates them.
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P tπ×

0 1 2 3 4 5 6 7

-7 0 1 2 3 4 5 6

-6 -7 0 1 2 3 4 5

-5 -6 -7 0 1 2 3 4

-4 -5 -6 -7 0 1 2 3

-3 -4 -5 -6 -7 0 1 2

-2 -3 -4 -5 -6 -7 0 1

-1 -2 -3 -4 -5 -6 -7 0

×Pπ =

0 2 4 6 1 3 5 7

-6 0 2 4 -7 1 3 5

-4 -6 0 2 -5 -7 1 3

-2 -4 -6 0 -3 -5 -7 1

-7 1 3 5 0 2 4 6

-5 -7 1 3 -6 0 2 4

-3 -5 -7 1 -4 -6 0 2

-1 -3 -5 -7 -2 -4 -6 0

Fig. 6. An example of trade-o�: using Pπ as a change-of-basis matrix, with
π = ( 1 2 3 4 5 6 7 8

1 5 2 6 3 7 4 8 ), allows us to turn a Z[x]/(x8 + 1)-basis into a Z[x]/(x4 + 1)-
basis with twice as many elements.
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