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Abstract. In this paper, we present novel randomized techniques to enhance Montgomery powering ladder. The
proposed techniques increase the resistance against side-channel attacks and especially recently published corre-
lation collision attacks in the horizontal setting. The first of these operates by randomly changing state such that
the difference between registers varies, unpredictably, between two states. The second algorithm takes a random
walk, albeit tightly bounded, along the possible addition chains required to compute an exponentiation. We also
generalize the Montgomery powering ladder and present randomized (both left-to-right and right-to-left) m-ary
exponentiation algorithms.
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1 Introduction

Side-channel analysis is one of the most serious threats to the security of a given implementation of a
cryptographic algorithm. In the traditional model, a given cryptographic algorithm is typically proven secure
against various attacks under assumptions regarding the computational complexity of an attack. However,
in a more practical scenario, Kocher noted that the time required to compute a cryptographic algorithm
could reveal information on the keys used [1]. This was then extended to analyze differences in the power
consumption of a microprocessor [2] and the variations in the surrounding electromagnetic field [3, 4]. The
simplest such attack is based on the inspection of an acquired power consumption (resp. electromagnetic
emanation) trace to derive information. This is referred to as Simple Power Analysis (SPA) (resp. Simple
ElectroMagnetic Analysis (SEMA)). The exploitation of statistical differences in the instantaneous power
consumption proposed by Kocher et al. [2] is termed Differential Power Analysis (DPA) (resp. Differential
ElectroMagnetic Analysis (DEMA)), and alternatives have been proposed using, for example, a model and
Pearson’s correlation coefficient [5] or mutual information [6].

In choosing an exponentiation algorithm for a secure implementation, one needs to consider the possible
attacks that could be applied. One can often discount attacks where input values need to be known, such as
the doubling attack [7], template attacks [8] or DPA [2]. Such attacks can typically be prevented by blinding
input values [9] or by using a suitable padding scheme. That is, these attacks are not typically prevented by
choosing a specific exponentiation algorithm. However, one also needs to consider attacks based on inspect-
ing a limited number of traces, such as SPA [2], or power attacks in the horizontal setting [10, 11]. The later
was first introduced by Walter [10]. His attack, the so-called Big Mac attack, applied to m-ary exponentia-
tion, although only simulated attacks are described. Clavier et al. [12] then exploited the collision correlation
between selected points from two subtraces to derive information. Recent work by Bauer et al. [13] has also
detailed how one could apply such collision attacks to implementations of scalar multiplications over elliptic



curves. Witteman et al. [14] demonstrated that this attack works on an ASIC implementation. Kim et al. [15]
also determined how one could apply such an attack to the Montgomery ladder [16, 17]. The attack model
was extended by Hanley et al. [18] to include an attacker that computes the correlation between carefully
chosen points in a trace to detect where the output of one operation is used as the input to another operation.

In this paper, we present randomized variants of the Montgomery powering ladder that are resistant
to SPA and power collision correlation attacks in the horizontal setting. The first algorithm is based on
an amalgamation of two simple variants of the Montgomery powering ladder, where the content of the
registers becomes unpredicable. The second algorithm is based on blinding addition chains, i.e. it takes
tightly bounded random walks to compute an exponentiation. We also generalize the Montgomery powering
ladder and present randomized m-ary exponentiation algorithms. This algorithm is not entirely resistant, but
presents a significant increase in attack complexity compared to a naive implementation of the Montgomery
powering ladder, and therefore an adversary requires a significantly lower error rate to succeed. Furthermore,
this variant will prevent lattice-based attacks [19] when used, for example, in implementations of ECDSA,
as an adversary cannot derive information on individual bits.

The organization of the paper is as follows. Section 2 presents a strong attack model such that we can
present a pessimistic security analysis of our algorithms. We also recall the Montgomery powering ladder
and define the properties of variants of this algorithm in this section. In Section 3, we first describe a few
simple variants, and then show how these can be combined to produce a secure algorithm. We introduce
a randomized Montgomery powering ladder, that randomly changes state such that the difference between
registers varies, unpredictably, between two states. In Section 4, we show how the Montgomery powering
ladder can be modified to conduct a random walk through the addition chains that can be used to compute
an exponentiation. Section 5 generalize the Montgomery powering ladder and present randomized m-ary
exponentiation algorithms. We conclude in Section 6.

2 Preliminaries

2.1 Attack Model

In this paper we shall predominantly be considering an adversary that is able to take power consumption
traces (or something equivalent) while a microprocessor is computing a group exponentiation algorithm. The
adversary is then able to make deductions on what the microprocessor is computing. We shall consider three
different attacks that require a limited number of traces when discussing the effects of our modifications to
the Montgomery powering ladder.

1. The first attack is Simple Power Analysis (SPA) where one observes differences in the power consump-
tion caused by different operations taking place. This was first demonstrated by Kocher et al. [2] who
showed that one could, given a naive implementation, observe the difference between operations during
the computation of an exponentiation in (Z/N 7Z)*. Regular algorithms [9, 17, 20] can be used to thwart
SPA attacks.

2. Another attack is the use of Pearson’s correlation coefficient to detect collisions in variables to de-
duce key values [11]. For example, during the computation of an exponentiation in (Z/N Z)* using
Coron’s square-and-multiply-always exponentiation algorithm, one could seek to determine the loca-
tions of multiplications with the same input. That is, operations that both take the same input should
show a significant cross-correlation.

3. An extension to the collision correlation attack given above is where an adversary is able to detect
collisions between the output of one operation and the input of another operation. This provides an attack



where a complete defense is not possible. However, limiting the information available to an adversary
can make the attack impractical since it has been shown that the error rate for this attack is significantly
higher than a straightforward comparison of operations [18].

We do not consider attacks that require chosen inputs, such as the doubling attack [7] or statistical differences
in the power consumption over time [2, 5]. This is because these attacks are typically prevented by padding or
blinding the input by using a redundant representation where the details depend on the group being used [9,
21]. For example, in many instances the input will also be padded such that an attacker cannot control, or
predict, the input to a group exponentiation algorithm.

Typically, a blinded exponent is used, which is equivalent to the actual exponent, meaning that each trace
must be attacked independently. The discussion of the security of the proposed algorithms will be largely
informal, except where we wish to make specific claims about the amount of information available to an
adversary.

2.2 The Montgomery Powering Ladder

The Montgomery powering ladder was originally proposed as a means of speeding up scalar multiplica-
tion over elliptic curves [16], and was later shown to be applicable to all multiplicatively written abelian
groups [17]. The Montgomery powering ladder is an instance of an addition chain-based exponentiation
algorithm that is often cited as an alternative to the binary exponentiation algorithm for resource constrained
device such as smart cards. We recall the definition of an addition chain and define some notation.

Definition 1. An addition chain of length ¢ in group G for a group element x € G is a sequence of group
elements (ag, a1, as,...,ap) such that ag = 1g, a1 = x and a, = a; - a;, 0 << j<k</land-is the
group operation. The values of i and j are chosen such that ay, is a chosen power of a;.

For ease of expression we will denote the n-th power of x as z™. Similarly, much of the discussion will
implicitly assume that the computation is taking place in Z without loss of generality.

We recall the description of the Montgomery powering ladder given by Joye and Yen [17]. We consider
the problem of computing y = x* in G for inputs z and k. Let E?:_Ol k; 2! be the binary expansion of x with
bit length n. For ease of expression we shall also denote this as (k,—1, . . ., kg),. The Montgomery powering
ladder relies on the following observation. Defining L; = S/ ! k; 2/~ and H; = L; + 1, we have

Lj:2Lj+1—|—]€j:Lj+1+Hj+1—|-k)j—1:2Hj+1—‘rkj—2 (1)
and so we obtain
(2Lj41, Ljyr + Hjya)  ifk; =0,

. 2
(Lj+1+Hj+1,2Hj+1) lfk‘j =1.

(Lj, Hj) = {
If we consider one register containing 2%/ and another containing /7 then (2) implies that

N2 . . .
(;CLJ+1) , Lt .$H3+1) ifk; =0,

($Lj y L Hj) = L H 2

AR A A (a:Hj+1) ) ifk; =1.

Given that Ly = k one can build an exponentiation algorithm that requires two group operations per bit of
the exponent. Joye and Yen give several different versions of such an algorithm [17]. Algorithm 1 describes
the most resistant to side-channel analysis version in their paper (as noted by Kim et al. [15] who describe
implementations of cross correlation attacks on other versions).



Algorithm 1: Montgomery Powering Ladder

Input: z € G, an n-bit integer K = (kn—1, kn—2,...,ko)2
Output: "
1 Ro+1g ;R + x;
for i =n — 1 down to 0 do
Rk, < Ry, - R, ;
Rki <~ (Rki)Q 5
end

[7 I NI )

6 return Ry

The Montgomery powering ladder, as described in Algorithm 1, has several properties that make it useful
when defining a side-channel resistant implementation of an exponentiation. However, the Montgomery
Powering ladder also has been shown to be vulnerable to recent collision correlation attacks in the horizontal
setting [12, 18]. The attack in [18] functions by detecting where the outputs of lines 3 and 4 are used in
the next iteration of the main loop. In the reminder of this paper we propose alternative versions of the
Montgomery powering ladder to enhance its security against horizontal collision correlation attacks.

Definition 2. We define a variant of the Montgomery powering ladder as an exponentiation algorithm that
has the following properties.

1. The algorithm uses two registers in the main loop containing group elements, both of which are updated
in each iteration.

2. Each iteration of the main loop treats one bit of the exponent and contains no more than two group
operations.

3. The operands in the first group operation will only involve one or both of the registers used in the main
loop.

4. The operands in the second group operation can involve one or both of the registers used in the main
loop and/or some precomputed value.

The 3rd and 4th properties allow for variants of the Montgomery ladder to be defined. That is, the Mont-
gomery ladder is in the set of possible algorithms that satisfy these criteria.

For brevity in defining algorithms, we shall concentrate on the main loop of the algorithm. The com-
putation before and after the main loop may contain if-statements. We shall not give fully secure versions
where solutions are widely known, e.g. dummy operations or redundant representations [9, 21, 22].

3 Randomizing the Montgomery Powering Ladder

We note that when computing =" using the Montgomery powering ladder, as defined in Algorithm 1, then at
the end of each iteration we will have the condition where R;/Ry = x, or equivalently Ry - x = R;. Thus,
using the notation given above, and we allow some precomputed values to be used in the algorithm, then (2)
can be rewritten as

2L;1,L; +1 ifk; =0,
(L, 1) = { Gl bt D) L 3)
(Lj+1+Hj+1,Lj+1) lfk‘jzl.
Implying that
L. 2 L. . o
(ij,xHj)={<($ ) ]':E) itk =0,

(:L’Lj“ i gl x) ifk; =1.
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From which we can define Algorithm 2.

Algorithm 2: A Straightforward Variant | Algorithm 3: A Straightforward Variant I1

Input: x € G, an n-bit integer Input: z € G, an n-bit integer
K = (knfl, knfg, ey ko)g R = (knfh knfg, ey ko)g, and knfl =1

Output: =" Output: ="

1 Ro+ 1g; Ri+ x; 1 Ro+ 1g; R1 + 1g;

2 fori =n — 1down to O do 2 for: =n — 1 down to 0 do

3 | Ro< Ro-Ry,: 3| Bi< Ro- Rk

4 R1<—R0~x; 4 Ro(—R1~J};

s end 5 end

6 return Ry 6 return Ry

Following the reasoning used to define (1), we can instead define L; = Z:L:_JI k; 20=3 and H j=L;—1,
giving
Lj:2Lj+1+k5j:Lj+1—|—Hj+1+ij—|—l:2Hj+1+k§j—|—2 4

and so, as with (3), we obtain

(Hj+1,Lj+1—|—Hj+1) 1fk3:0,

5
(Hj+172Lj+1) lfk‘jzl ( )

(L, Hy) = {
If we consider one register containing 2%/ and another containing 2/ then (5) implies that

H; L; H; e
(ij,xH')— (;U iz, x J“-xz J“) itk; =0,
(:L‘Hj - T, (xLJ'+1) ) ifk; =1.

From which we can define Algorithm 3. We note that at the end of each iteration we will have the condition
where Ry/ R = x, or equivalently Ry - x = Ry.

Suppose that an adversary can distinguish multiplications from squaring operations, then the two above
variants of Montgomery powering ladder are not immune to SPA. In line 3 of both algorithms, a squaring
operation will occur for certain bit values. That is, a squaring operation will be computed if the bit value k; =
0 in Algorithm 2 and in Algorithm 3 a squaring operation occurs when k; = 1. The following randomized
algorithm will deal with this problem.

We observe that Algorithms 2-3 can be blended together. That is, in loop ¢, for some ¢ € {1,...,n—1},
of Algorithm 2 if k, = 1 one could compute R; <+ (Ro)2 followed by Ry < R; - . Before this step
R1/Ry = x, and afterwards one bit of the exponent is treated and Ry/R; = x . Hence, one could continue
to compute an exponentiation using Algorithm 3.

Likewise, in loop /¢, for some ¢ € {1,...,n — 1}, of Algorithm 3, if k; = 0, one could compute
Ry + (R0)2 followed by Ry < Ry - «. Afterwards one bit of the exponent is treated and Ry /Ry = =.
Hence, one could continue to compute an exponentiation using Algorithm 2. We define Algorithm 4 as
an example of how Algorithms 2 and 3 could be randomly blended together. We use a random generator
producing a random bit b to determine when to change from one algorithm to the other, and to determine
which algorithm is used to start the exponentiation algorithm. If b = 0, the exponentiation is computed by
using Algorithm 2, that is Ry /Ry = x. Otherwise, the exponentiation is computed by using Algorithm 3,
that is, Ro/R1 = x.



Algorithm 4: Randomized Montgomery Pow-
ering Ladder

Input: x € G, an n-bit integer
R = (kn—ly kn—Q» ) kD)Q, and k,—1 =1

Output: z° Algorithm 5: A Straightforward Variant III
1 b & {0,1}; Ro + 1g ; Input: x € G, an n-bit integer
2 if b = 0 then l{:(k’n_l,kn_g,...,k‘o)g
3 Ry ¢z Output: ="
4 else 1 Ro+ 1g; R+ 1g;
5 ‘ Ry« 1g;
¢ end 2f0ri:n71d0v2vnt00d0
Ry, < (Ro)”;
7 for i = n — 1 down to 0 do z Rkl <—(R0.).x-
8 if b ® k; = 1 then ks ki "
R 5 end
9 ‘ b+« {0,1};
" end 6 return Ry
1 Ry < Ro - Ryar; 3
12 Ry <+ Rp-x ;
13 end

14 return Ry

When b ® k; = 1 (i.e., b # k;) in Algorithm 4, there will be two multiplications involved the bit k; if
one continues to compute an exponentiation using the current algorithm (i.e., Algorithm 2 or Algorithm 3).
Algorithm 4 will generate a random bit b to decide whether two Algorithms 2-3 are blended together or not.
In the case of blending, two multiplications will be replaced by one squaring, and then one multiplication.

Suppose that an adversary is able to distinguish a multiplication from a squaring operation. Then, she
would be able to determine individual bits of the exponent if she could determine if Ry/Ry = x or Ry /Ry =
z . However, the following lemma shows that this information is not available.

Lemma 1. An adversary analyzing an instance of Algorithm 4 is able to reduce the hypotheses for the
11
exponent from k to k12 by distinguishing a multiplication from a squaring operation.

Proof. 1f an adversary observes a squaring operation followed by a multiplication in the loop using index 1,
then the adversary knows one of the following operations has occurred:

1. Where R;/Ry = z and k; = 0.
2. Where Ry/Ry = z and k; = 1.
3. Where R; /Ry = x changes to Ry/R; = x and k; = 1.
4. Where Ry/R; = x changes to Ry /Ry = x and k; = 0.

At an arbitrary point, each of these occur with probability i. Likewise, if an adversary observes two multi-
plications in the loop using index %, hence the adversary knows one of the following operations has occurred:

1. Where R;/Ryp = z and k; = 1.
2. Where Ry/R; = z and k; = 0.

Each of these occur with probability % Hence, there is no information available to an adversary since for
any observed sequence of operations Pr(k; = 0) = Pr(k; = 1) = 1.

However, if an adversary observes y consecutive pairs of multiplications then the adversary will know
that y consecutive bits have the same value. If an attacker observes a pair of multiplications then the distri-
bution of the number of subsequent pairs W of multiplications is geometric. That is, W ~ Geometric(%) ,

6



since the following bit has to be the same and the randomly generated bit has to be a specific value. The,
by definition, the expected length of a run of multiplication is % operations, where each observation would
therefore provide an expected % -1 = % of a bit of the exponent. A pair of multiplications will occur

with probability %, giving an expected /4 bits for an n-bit exponent. For an n-bit exponent an expected

. . 11
% X % = {5 bits can expected to be derived. Hence, x hypotheses can be expected to be reduced to x 12

hypotheses. O

As with the Montgomery powering ladder shown in Algorithm 1, an attack using collisions based on
the reuse of variables is not possible, but a collision attack based in the use of the output of operations is
possible. One can attempt to observe whether the second operand in line 11 of Algorithm 4 is created from
line 11 or line 12 in the previous iteration of the exponentiation loop. However, an analysis based on this
will return the wrong key hypothesis when the algorithm changes from using (3) to (5).

Lemma 2. An adversary analyzing an instance of Algorithm 4 using a collision attack an adversary would
be able to reduce the hypotheses for the exponent from k to ki,

Proof. If we, arbitrarily, consider the ¢-th loop of the exponentiation loop, we have Pr(b @ k; = 1) = %
and the probability that b changes, and hence the algorithm being used, is also % An adversary making a
deductions using a collision attack will have to guess the value of b in two consecutive loops of the algorithm.
Given a correct guess for b it will remain the same with probability %. On the assumption that an attack will
validate b in the first loop the value of b in the second loop will remain the same with probability %. If it
changes an incorrect result will be given. Hence, the probability that a collision would detect an incorrect
key bit is %, and an adversary would be able to determine a given bit with a probability % leading to a

. 3
reduction in the number of hypotheses from k to k4. g

Given that an adversary could potentially obtain bits of an exponent if they analyze Algorithm 4, and are
able to distinguish a multiplication from a squaring operation, it would be tempting to ensure that no pairs of
multiplications occur. That is, make the algorithm change rather than compute two multiplications resulting
in Algorithm 5. This is equivalent to the square-and-multiply-always exponentiation algorithm proposed by
Coron [9]. This is a widely studied algorithm with numerous analyses in the literature, which will not be
repeated here.

4 Random Walk Method

In this section, we generalize the difference between the two registers used in the Montgomery powering lad-
der to be some arbitrary power of the input. This leads to an algorithm that computes a group exponentiation
taking a random, albeit tightly bounded, walk through the possible addition chains.

If one is working in a group where computing the inverses of an element can be readily computed, then
other options for a variant of the Montgomery powering ladder are possible. We note that (2) can be rewritten
as
(Hj —1,Lj41+ Hjy1) ifk;j =0,

. (6)
(Lj+1+Hj+1,Lj—|-1) lfk‘jzl.

(Lj, Hj) = {
Implying that
(;]jHi st gl .93Hj+1) ifk; =0,

(mLJ'+1 i gl x) ifk; =1.

(‘TLj7xHj) = {



(6) can be rewritten as follows:

(Lj+1+Hj+1,Lj—1) lfk]:07

. (7
(Lj+1+Hj+1,Lj+1) lfkj =1.

(Lj, Hj) = {
Implying that
Lit1 . o.H; Lj . .1 T
(2, 2) = (37LJ+1 wHJHWLJ ) %fkj =0,
(x il J'“,a:j-:v) ifk; =1.
From which we can define Algorithm 6. In previous examples of Montgomery powering ladders presented
in this paper Ry has acted as an accumulator and returned the result. In Algorithm 6 the accumulator, i.e. the

register containing the correct power of z at the end of each loop, shifts depending on the value of the bit of
the exponent being treated. Hence, R, is returned at the end of the algorithm.

Algorithm 6: Variant with Inverses

Input: x € G, an n-bit integer K = (kp—1,kn—2,...,ko)2
Output: =~

o

R0<—1((;;R1<—1‘;
Up—z 1 U+ z;

[

for i = n — 1 down to 0 do
Ro(—Ro'Rl;
R1<—R0-Uki;

end

S U AW

7 return R,

In analyzing an instance of Algorithm 6, an adversary would not be able to determine any information
on bits of the exponent based on distinguishing a multiplication from a squaring operation, since no squaring
operations take place. However, a collision attack is possible by observing where the multiplication with Uj,
for i € {0, 1}, collides with the multiplications used to generate these values in line 2. If an adversary is
able to determine whether Uy, = z~ 1 or Uk, = = was used, for some i € {0,...,n — 1}, then individual
bits of the exponent can be determined.

We can modify (7) by choosing L = L1 +aand H},y = Hj+1 + 3, giving

(Lypy + Hlpy L — 1) ifky =0,

L HY) = 8
(L5, H;) {(L;+1+H;+1,L;+1) ifk;=1. ®

where L. = L; ++, H; = Hj + p1, and ¥ = a + (3. If we choose y as a random element from {—h, ... h}
for some small integer h, then o and (3 can be chosen such that v = o+ 3. If we assume that « is fixed then
B=~v—a,ie, Hi 4 = Hji1 +v— a. Given that ], is computed from L’ , this can be done by

r_ Lj+1+(’y—a—1):L9+1+(7—2a—1) ifk; =0,
J+1 Lip+(y—a+) =L, +(y—2a+1) ifk=1.

This also removes the need to have the accumulating register change as described for Algorithm 6. If we
define a value L, = L; + v; then (8) can be rewritten as (L; + v;, Hj + (vj—1 — ;) =

{(Lj+1 + 1+ Hipr + (5 = v41), Ly + (-1 — 275 = 1)) ifk; =0, ©)

(Lj+r +i41 + Hjzr + (35 = vi+1), L + (-1 — 295 + 1)) ifk; = 1.

8



. . - ’ . ’ L
If we consider one register containing 2%i and another containing 25 then (9) implies that
’ U / !/ /
(ijijj) = (;L'Lj+1 ) xHjH’ij -xA>

where
7]-_1—27]-—1 lfk’]:O,

vi—1—2v;+1 ifk;=1.

A:

Given that Ly = « one can build an exponentiation algorithm as shown in Algorithm 7 where we set yg = 0
to produce the correct result. Assume that  can be arbitrarily chosen from the set {—h,...,h} in each
iteration of computation, then A € {—3h —1,...,3 h+ 1}. Hence, our algorithm makes use of an array of
6 h + 3 elements that stores the required values of 2.

Algorithm 7: Blinded Montgomery Powering Ladder
Input: z € G, an n-bit integer kK = (kn—1, .. ., ko)2, small integer h € Z
Output: 2"
Uses: U a 6 h + 3 element array.

Ushy1 < 1g s
fori =1to3h+ 1do
Ushy1yi < Ushyi -7
Usht1—i + Uspga—i -x7 '
end

(7 T N S S

6 Ro+—1g;Ri < 1lg;a=0;
7 for: =n — 1down to 1 do

8 Ro(—Ro-Rl;

9 vﬁ{fh,...,h};

10 by —2a+k ——ki;

1 Ry < Ro-Ushy1yes
12 a7
13 end

14 Ry Ro-R1;
15 Ry < Ro-Us h+1—a——kg »

16 return Ry

An adversary who is able to distinguish a multiplication from a squaring operation would not be able to
determine any information on bits of the exponent used since no squaring operations take place. However, a
cross correlation attack is possible by observing where the multiplication with Uy, for d € {0,...,6 h + 2},
collides with the multiplications used to generate these values in line 11. From these values, an adversary
can derive the addition chain that was used to compute the exponentiation. This will not give an adversary
the exponent, since there is no means to map the digits used to bits of the exponent, but would give an
adversary an equivalent addition chain.

In determining whether an attack is practical Hanley et al. [18] determine that when analyzing an im-
plementation 192-bit exponentiation, the error rate need to be less than 22 bits. This is determined to be
less than 2% operations, based on the boundary set for block ciphers by Biryukov et al. [23]. That is, a
DES secret key has been found but larger exhaustive searches have, to date, been unsuccessful. While public



key operations are typically more time consuming to compute, one can increase the speed of exhaustive
searches by using the multiplicative group structure [24], hence justifying the use of the same threshold.
The expected number of operations can be determined using Stinson’s algorithm [25], where an ¢-bit error
in a n-bit hypothesis leads to the exponent in time complexity O (n th:/g W ("{ 2)) [25]. Once a hypothesis
for the exponent used in an implementation of the Montgomery ladder is deduced one cannot directly apply
Stinson’s algorithm. This is because each time one wishes to flip a bit all the bits that are less significant also
need to be flipped. However, adapting the algorithm is straightforward and the expected time complexity
of an attack will be the same. If an attacker were to target Algorithm 7 then the error rate would need to
be much lower to fall below time complexity 2°4. In applying the baby-step giant-step algorithm to correct
errors in hypotheses for digits used in Algorithm 7 one would divide the digits into two sets and attempt to
find two divisions where the number of incorrect digits is the same. Given Lemma 3 (see Appendix A), we
have the following corollary.

Corollary 1. We consider set of u digits representing the multiplications in an addition chain where t digits
are incorrect. There will exist a set of j1/2 contiguous digits where |t/2| digits are incorrect.

Then one can apply a version of Stinson’s algorithm where one has to treat all the values that digits can take.
Given a small integer h, as defined in Algorithm 7, a ¢-digit error in an u-bit hypothesis leads to the exponent

in time complexity O <u (’Z//g) (2h+1) %) . That is, there are y possible divisions of the digits, each of which

will have (ff //22 ) ways of selecting ¢/2 digits and each digit can take (2 + 1) values. In practice, ¢ will not

be known so the analysis will have time complexity O (,u E[tz/oz 1 (“Z/ 2Y(2h+ 1)1> further reducing the
required error rate for a successful attack.

Hanley et al. [18] define a practical attack to have time complexity less than 25 operations, based on
the boundary set for block ciphers by Biryukov et al. [23], and a trivial attack to have time complexity less
than 2°. For a 192-bit exponent, this means that for single bit errors we can define ¢ < 21 to be a practical
attack and ¢ < 13 to be a trivial attack. In Table 1 we show how these thresholds change as h is increased
in Algorithm 7. Far fewer errors can be tolerated by an adversary before an attack becomes unfeasible even
for very small values of h, although there are diminishing returns as h increases.

Table 1. Time complexity of Stinson’s algorithm for small k.

h Max Error for Max Error for h Max Error for Max Error for
Trivial Case (bits) | Practical Case (bits) Trivial Case (bits) | Practical Case (bits)

1 8 14 6 6 10

2 8 12 7 6 10

3 8 12 8 6 10

4 6 10 9 6 8

5 6 10 10 6 8

We note that an adversary is required to derive the entire exponent as information on part of the exponent
is not useful. Moreover, an adversary will not know the exponent but an equivalent addition-chain. If we con-
sider the group exponentiation algorithm used in ECDSA (Elliptic Curve Digital Signature Algorithm) [26]
this provides a significant increase in security. Howgrave-Graham and Smart [19] noted that if a few bits of
the ephemeral exponent are known for sufficiently many signatures, then the scheme can be broken, based
on the so-called hidden number problem introduced by Boneh and Venkatesan [27]. Recently, De Mulder et

10



al. [28] demonstrated that, in practice, the lattice attack required as few as four bits of the ephemeral expo-
nent assuming that some hundreds of such signatures could be obtained. However, this information would
not be available to an adversary.

A more memory-efficient version of Algorithm 7 is described in Algorithm 8. This is a security-memory
trade off where the value of +; is still chosen at random, but the value range depend on the previous value
7j+1- Although the available choices for v; decreases, Algorithm 8 requires only 2 h + 2 registers to store
pre-computed values instead of 6 h + 3 registers in Algorithm 7.

Algorithm 8: Blinded Montgomery Powering Ladder 11

Input: = € G, an n-bit integer kK = (kn—1,kn—2, ..., ko)2, small integer h € Z, U a look-up table of 2h + 2 precomputed

values z =", ... "t

Output: ="
1 Uh<—1@;
2 for: =1to hdo
3 Unti <~ Unti-1-7;
4 Un—i < Upgp1—i -z~ 53
5 end
6U2h+1<—U2h~CE;Ro(—l«;;R1%1@;a<—0;
7 fori: =n — 1down to 1 do
8 Ro(—Ro'Rl;
9 if o > 0 then
10 ‘ 7&{2a—h,...7h+1—ki};
11 end
12 else
13 ‘ 7&{—h—ki,...,2a+h—l};
14 end
15 Ri1 < Ro - Uth'erki;
16 a+—2a—7v;
17 end

18 Rg < Ro- R1 5
19 Ry < Ro - Uh+a+k0 5

20 return Ry

5 Generalizing the Montgomery Powering Ladder

The square-and-multiply (left-to-right and right-to-left)) exponentiation algorithms are the most efficient
implementations for raising x to the power x when the exponent is treated bit-by-bit. Furthermore, these
exponentiation algorithms extend easily to any radix m for the purpose of speeding the computation. In
this section, by using the random walk technique, we generalize the (both left-to-right and right-to-left)
exponentiation algorithms and present new blinded m-ary exponentiation algorithms.

5.1 Left-to-right algorithms

We first consider the left-to-right exponentiation. Let k = (wy_1, wy—2, . .., wo)2 be the m-ary representa-
tion of k, where 0 # w; < m, wy_1 # 0, and £ is the length of « in radix m. As in Section 2.2, by defining
L= Zf;} w; m*~7, we have

11



Lj = ijJrl + wj (10)

From then, the exponentiation algorithm will perform 2% = (xl+1)™ . % Noting that 0 = 2. Using
the random walk technique as in Section 4, we modify L;- = L; + v where v; can be chosen from a
pre-defined set {—h, ..., h} for some small integer h. Then (10) can be rewritten as

Lj+’Yj:ij+1+’Yj+w]‘:mL9+1—m7j+1+’Yj+Wj (11)
This leads to a randomized algorithm (Algorithm 9) that computes a group exponentiation taking a
random, albeit tightly bounded, walk through the possible addition chains. As with Algorithm 8, Algorithm 9

also requires a look-up table of 2(m + 1) h +m — 1 values to stores precomputated values. Algorithm 9 can
be used in the cases where the computation of inversions is cheap, otherwise Algorithm 10 is more suitable.

Algorithm 9: Randomized Left-to-Right m-

s Algorithm 10: Randomized Left-to-Right m-
ary Exponentiation

ary Exponentiation without Inversions

Input: z € G, an integer kK = (wWe—1,We—2, ..., W0 )m,
where 0 < w; < m and wy—1 # 0, small integer
h € Z,T alook-up table of 2(m + 1) h +m — 1

precomputed values
o (mADh—m+1 pmADRtm—1 values , . . .
e .

Output: ="~

Input: = € G, an integer K = (Wn—1, Wn—2, - - ., W0 )m,
where w; is m-bit words, small integer h € Z, T'

a look-up table of m (h + 1) — 1 precomputed
7mm(h+1)—1.

Output: "
1 R+~ 1g,a+0
2 fori=/¢—2to1do
3 R+ R™;

1 R+ 1lg,a+0
2 fori =¢—2to1do
3 R+ R™;

s | oy B h Ry 4 vﬁ{opmrgiri(wh,.ma+wi)};
5 R+ R-gmo—7twi, 5 R+ R-x Trwi,

6 a7, 6 @ <

7 end 7 end

8 R+~ R™; 8 R+ R™;

9 R<_R.a;ma+w0; 9 R<_R.xma+w0;

10 return R 10 return R

We note that Algorithm 10 works in a similar way to the Overlapping Windows method [29] for a fixed
base m = 2F~fows and m(h + 1) = 2*3. The main difference is that our algorithm generates on-the-fly
a randomized recoding of the binary representation of the secret exponent . This allows our algorithm to
avoid side-channel attacks in the recoding phase.

5.2 Right-to-left algorithm

Likewise, we can devise a randomized right-to-left m-ary algorithm. Let k = (wp_1,Wp—2,...,W0)m,
where wy_1 # 0, the principle of the right-to-left m-ary exponentiation algorithm, as shown by Yao [30],
makes use of the is relied on the following equality:

m—1 i

7 ot 1) ® i

o= IL o I e 1 om0 =TI ( IT =)
0<i<e—1 0<i<e—1 J=1 o0<i<e-1

0<i<t—1
di=1 di=2 di=m—1 di=j

3 We use the notation how s instead of h as in [29] to distinguish it from the notation A in our algorithms.

12



The right-to-left m-ary exponentiation algorithm uses (m — 1) accumulators, R[1],..., R[m — 1]. At each

iteration, it applies w successive squarings to compute A = 2™ from :Um(jfl), then multiplies the result to
some accumulators R[k]. Let R[k]") (resp. A1) denote the value of the accumulator R[k] (resp. A) before
entering step j. We have:

R[]V = RK]Y) - 4D for k = w;,
R[k](ﬁrl) — R[k}(j) for k # wj ,

and AG+D) = (AU))ym_ At the end of the loop each accumulator R[k] contains the product [Jo<;<,—s 2™ .

wi=k
The different accumulators are finally aggregated as [ [o< ;<44 R[]k = z*. By defining L; = >"7_, w;-m?,
we have o

Ljyr =m/* wj + Lj (12)

Noting that L,_; = x. Similar, we use the random walk technique and modify L;- = Lj —m/T! . ~;, then
equation (12) can be rewritten as:

+2 +1 +2
Ljvr —m? ™2y = m? T wjin + Ly —m? 2y

_ / j+1 42
=m-wjy1 + L +m! Ty —mI Ty

= (j —m -1 +wjp)m T+ L

This leads to a randomized right-to-left m-ary exponentiation algorithm (Algorithm 11). In this algorithm,
we make use of 2(m+1) h+m—1 accumulators R[j], where —(m + 1)h —m +1<j < (m+1)h+m — 1.
Each R[j] is initialized to 1g, and then updated if & — m~y + w; = j. The different accumulators are finally

aggregated as [T'_, (R[j] - (RI—j])~")’ = a*.

Algorithm 11: Randomized Right-to-Left m-ary Exponentiation

Input: z € G, an n-bit integer K = (we—1, we—2,. .., Wo)m, small integer h € Z.
Output: "
for j=0to (m+1)h+m —1do
| R[j] + le; R[—j] « lc;
end
A+—z; a+0;
fori =0to/ — 1do
v & =k, hY
Rla — my + ki] < Rlao—my+ k] - A
a7y, A A%,
end

w A« [T, (RU)- (RI-3)~)

11 return A

[ T N N S

e ® 9 &
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6 Conclusion

In this paper we presented variants of the Montgomery powering ladder which have properties that increase
the side-channel resistance of the exponentiation algorithm. The first of these operates by randomly changing
states such that the difference between the two registers varies, unpredictably, between two states. The
second variant of the Montgomery powering ladder that we presented takes a random walk, albeit tightly
bounded, among the possible addition chains required to compute an exponentiation. While this variant
is not resistant to all side-channel analysis, it will prevent lattice-based attacks when used, for example,
in implementations of ECDSA. In other cases, significantly more computation is required to derive any
exploitable information and, therefore, an adversary requires a lower error rate to succeed. By applying the
random walk method, we also generalized the Montgomery powering ladder and present randomized (both
left-to-right and right-to-left) m-ary exponentiation algorithms.
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A The Discrete Logarithm Problem

In this section, we describe how the errors in the attacks given in this paper can be corrected so that an
adversary could derive an unknown exponent. To start, we recall the discrete logarithm problem:

Definition 3. Ler o € G, for some Abelian group G, and suppose o € (). The discrete logarithm log,, 3
is the unique integer x such that 0 < x < ord(a) — 1 and o* = (. The Discrete Logarithm Problem (DLP)
is to compute log,, B, given o and .

In a side-channel analysis of a given instance of an exponentiation algorithm, the results can only give
the best guess of the exponent. Stinson describes a variant of the Baby-Step/Giant-Step algorithm, where it
is assumed that the exponent has a small Hamming weight [25]. Stinson’s algorithm requires the existence
of a means of splitting a string of bits into two sets of equal Hamming weight.

Lemma 3. We consider an integer of bit length n, as a string of bits of length n € 2 7, and Hamming weight
0 < t < n. There will exist a set of contiguous bits with Hamming weight t/2].

We present a somewhat simplified version of Stinson’s proof:

Proof. We begin with the case where ¢ is even. Let X be an string of bits of length n with Hamming weight
t € 27Z.LeteachY; fori € {1,...,n/2} represent one of the n/2 sets of contiguous bits starting from
the i-th bit of the string. Let H be a function that returns the Hamming weight, then H(Y1) =t — H(Y},2).
Given that H(Y;) — H(Yiy1) will be in {—1,0, 1}, there will exist be some set of contiguous bits with
Hamming weight n/2. If ¢ is odd, then the first bit of the bit string can be set to zero putting us the case
described above. The bit can be returned to one once two sets of equal Hamming weight are found. Giving
one set of Hamming weight |n/2] and the other of [n/2]. O
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This is sufficient for our requirements. We refer the reader to Stinson for versions of this proof where n is
odd [25].

Given an estimate for the exponent 2’ where = 2’ @ e, for some unknown e of Hamming weight ¢, we
can attempt to determine = by guessing e. We let z; denote the ith bit of z for an n-bit number z. Given an
n-bit number z, we define the vector z as follows

0 Ifzi:O,
éi: 1 Ifzizlanda:;:O,
—1Ifz;=1andz, =1.

For a vector z, we define
n

g =[Is"""

i=1

If we set = a”, then given a proposed value of e, such that z = z/ & e, we can test whether it is correct
by checking whether we have 5 = /3’ - af . The error e can be divided into two sets e; and e, where e; and
e2 have a Hamming weight of ¢/2 given by a splitting algorithm. We also define a and b as two integers such
that 2’ = a + b and the only bits that can be set to one for a and b are at the indexes defined by the splitting
algorithm for e; and ey, respectively. Then, o = (a® a®')(a’ af?).

We produce a list of error vectors of Hamming weight ¢ /2, where we define the i-th error from the set of
possible errors eq as e; 1. We define the Giant-Steps to be the table that consists of all pairs (aaa%’ a+ éi,l) ,

for all e; 1. We define the Baby-Steps as pairs (ab a2 b+ éjg) , for all e; 2. As in the Baby-Step/Giant-

Step method, we can terminate the method when a collision is found between ( - 5 T3 ) and (o/’ aéjﬂ) for
a®a b
a given 7, j. We can then derive the exponent as z = (a + €;1) + (b + €;2).
For an n-bit exponent, one would be required to compute ( t72) Giant-Steps and ( t72) Baby-Steps for an
error of Hamming weight ¢. The above assumes that ¢ is even. If ¢ is odd, then the extra bit can be assigned,

arbitrarily, to the computation of baby steps. The required computation then becomes (Lt72 J) Giant-Steps

and (Lt/gﬁl) Baby-Steps for an error of Hamming weight ¢.

Other than the inclusion of an initial guess, this algorithm is the same as that defined by Stinson [25],
n/2
t/2
adversary has to start with £ = 1 and increase the Hamming weight until ¢ is found. One would expect the

and has time complexity of O (n ( )) However, this assumes that ¢ is known. If £ is not known, then an

resulting time complexity to be O (n Zfzo (7//22)> . However, by Lemma 3, we can ignore the cases where
1 1s odd since the required baby and giant steps will be computed for the cases ¢ — 1 and ¢ + 1. The resulting

time complexity is therefore O (n 2?2/02 1 (" 2)) when ¢ is unknown.
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