
DAA-TZ: An Efficient DAA Scheme for Mobile
Devices using ARM TrustZone

(Full Version)?

Bo Yang1, Kang Yang1, Yu Qin1, Zhenfeng Zhang1, and Dengguo Feng1,2

1 Trusted Computing and Information Assurance Laboratory
Institute of Software, Chinese Academy of Sciences, Beijing, China
2 State Key Laboratory of Computer Science, Institute of Software

Chinese Academy of Sciences, Beijing, China
{yangbo,yangkang,qin_yu,zfzhang,feng}@tca.iscas.ac.cn

Abstract. Direct Anonymous Attestation (DAA) has been studied for
applying to mobile devices based on ARM TrustZone. However, current
solutions bring in extra performance overheads and security risks when
adapting existing DAA schemes originally designed for PC platform. In
this paper, we propose a complete and efficient DAA scheme (DAA-TZ)
specifically designed for mobile devices using TrustZone. By considering
the application scenarios, DAA-TZ extends the interactive model of orig-
inal DAA and provides anonymity for a device and its user against remote
service providers. The proposed scheme requires only one-time switch of
TrustZone for signing phase and elaborately takes pre-computation into
account. Consequently, the frequent on-line signing just needs at most
three exponentiations on elliptic curve. Moreover, we present the archi-
tecture for trusted mobile devices. The issues about key derivation and
sensitive data management relying on a root of trust from SRAM Physi-
cal Unclonable Function (PUF) are discussed. We implement a prototype
system and execute DAA-TZ using MNT and BN curves with different
security levels. The comparison result and performance evaluation indi-
cate that our scheme meets the demanding requirement of mobile users
in respects of both security and efficiency.

Keywords: DAA, Privacy, Mobile Devices, ARM TrustZone, PUF.

1 Introduction

With the development of wireless communication network as well as modern
mobile devices, a variety of mobile applications have been realized to provide
users convenient and comprehensive services. Depending on these achievements,
online interactive applications such as mobile payment, mobile ticketing, mobile
shopping and mobile voting, are benefiting people’s daily lives. However, with
the widespread use of mobile services, users are faced with the risk of privacy

? An extended abstract of this paper appears in TRUST 2015.

2 B. Yang et al.

disclosure. Generally, authenticating the users’ legitimate identity is regarded as
one prerequisite for access to those remote application services. This authenti-
cation is associated with an individual mobile device, a SIM card or a service
account. As a result, when a user logins to enjoy services, his personal informa-
tion, perhaps involving his real identity, locations, bank accounts or records of
network behaviors etc., is potentially linked to each other and leaked to service
providers [33]. And what is worse, the personal information could be further
shared with some third parties, for example, to send consumers behaviorally
targeted advertisements [12]. Thus, the issue of information leakage is seriously
threatening mobile users’ personal privacy and information security.

On PC platform, the analogous problem can be effectively solved by DAA [3],
which is standardized by the Trusted Computing Group (TCG). DAA allows an
embedded processor on a motherboard, called Trusted Platform Module (TPM),
to anonymously attest the certain statements about the configuration of the
host machine as well as its legitimate status to remote third parties [2]. The
key requirement behind DAA is that this attestation is done in a way that
maintains the privacy of the machine (i.e., the user). On the other hand, DAA
is an anonymous credential system designed specifically to encapsulate security-
critical operations within TPM, and the sensitive data including secret signing
key and parameters are well protected by TPM. An adversary hardly shares
a legitimate user’s credential by just stealing related data on the host to gain
unauthorized access to remote services. The DAA [3] is originally proposed based
on strong RSA assumption. For better computing efficiency and shorter signature
length, researches constructs several DAA schemes based on elliptic curves and
bilinear maps [4,11,5,10], which we call ECC-DAA. Moreover, Chen [8] designs a
DAA scheme requiring less TPM resources. Bernhard et al. [2] give a new security
model and a generic construction of DAA protocol on it. Xi et al. [32] first add
the property of forward anonymity. To date, DAA has gained lots of favor with
industry and standard bodies [9,27,28], which renders it better prospects for
practical applications than other anonymous credential systems [34].

For mobile platform, DAA is still attractive as an alternative anonymous
authentication solution. Unfortunately, previous DAA schemes are exclusively
designed for the model of TPM inside a host. The prevalent mobile devices are
rarely equipped with special-purpose chip like TPM, so that the direct use of
DAA on mobile platform would cause trouble. Opaak [17] is a simplified DAA
scheme for mobile devices, but its executable codes and sensitive data are easily
compromised or stolen by malwares.

The technique of Trusted Execution Environment (TEE) on mobile devices
could lend us a helping hand. Isolated from a Rich Execution Environment
(REE) where the Guest OS runs, TEE aims to protect sensitive code execu-
tion and assets. As an example of providing TEE for embedded devices, ARM
TrustZone [31] has been used to execute security-critical services [26,25]. By
TrustZone, TEE’s resources are physically isolated from REE, such that adver-
saries in REE hardly access them directly [15]. As a hardware-based security
extension of ARM architecture, TrustZone is widely supported and applied by

DAA-TZ for Mobile Devices using TrustZone 3

many mobile manufacturers. Leveraging TrustZone, some solutions are proposed
to construct software-based ECC-DAA with security-critical codes running with-
in TEE, and treat REE as the role of “host”. Wachsmann et al. [30] put forward
an authentication scheme based on DAA and TLS but without user-controlled
linkability. Yang et al. [33] present LAMS for anonymous mobile shopping, which
is compatible with four unmodified ECC-DAA schemes. Given by Zhang et al.
[34], Mdaak provides a general and flexible DAA framework for mobile devices.
Nevertheless, these solutions neither implement pre-computation for anonymous
signing nor consider comprehensive protection for DAA sensitive data. Further-
more, in these solutions, implementing unmodified or simply modified DAA in
TrustZone brings much extra meaningless overhead and security issues. First,
DAA does not concern the number of interactions between TPM chip and the
host, while it is a problem for mobile devices using TrustZone. Each switching
the context between TEE and REE carries both performance overhead and pow-
er consumption. In practice, these cannot be neglected, especially if the system
or software is complicated, or the switch action needs to be triggered frequent-
ly [21]. When many switch actions occur, data transmission and protection for
DAA procedure are also cumbersome, memory-consuming and time-consuming.
Second, extra operations are demanded in original DAA for the sake of the lim-
ited bandwidth of TPM, which seems superfluous for TrustZone. Last but not
least, TPM itself is hardware-based root of trust with inside root key for sensi-
tive data management, while TrustZone does not definitely provide this root. To
the best of our knowledge, there is no DAA scheme specially designed to adapt
for mobile devices using TrustZone.

Our Contributions. In this paper, based on elliptic curves and bilinear map-
s, we propose an efficient DAA scheme (DAA-TZ) for mobile devices who are
resource-constrained as compared with PC platform. DAA-TZ enables remote
service providers to authenticate mobile users’ trusted status or legitimate in-
formation without disclosing users’ identity. DAA-TZ makes full use of ARM
TrustZone and modifies the traditional interactive model as well as procedure
of original DAA. The main signing efficiency for users is improved without the
expense of security. Our work is summarized as follows.

– This is the first complete work that designs an efficient DAA scheme deeply
integrated with TrustZone and expressly for mobile devices. In order to re-
duce the time delay and space overhead, the scheme minimizes the switch
times of TrustZone for the frequent signing phase.

– According to the ecosystem of mobile devices, DAA-TZ supports manufac-
turers to acquire a batch of credentials through cooperative and trusted
channels, and then embed them into devices before they leave factory. Users
could immediately execute anonymous signing after getting devices.

– The pre-computation is carefully added into DAA-TZ, so that the on-line
anonymous signing at most needs only three exponentiations on elliptic curve
which is thought of as quite expensive computation.

4 B. Yang et al.

– DAA-TZ utilizes the on-chip SRAM PUF to reproduce a root key seed and
further create keys serving different purposes. The mechanism for sensitive
data management using related keys is presented in detail.

– We implement a prototype system with full functions of DAA-TZ. The e-
valuation on it with two types of curves is performed. Both theoretical com-
parison and testing results show the high efficiency of our scheme.

Paper Outline. We provide the preliminary information in Section 2. Section
3 describes the system model and assumptions. Section 4 details the design for
DAA-TZ, which is comprised of the architecture using TrustZone, the sensi-
tive data management and the scheme procedure. Section 5 analyses the secu-
rity properties that DAA-TZ satisfies. Our implementation and evaluation are
showed in Section 6. Finally, Section 7 concludes the whole paper.

2 Preliminaries

2.1 Notation

Throughout this paper, λ denotes the security parameter. We use a← S to de-
note sampling a from a set S uniformly at random. We also use 1G to denote the
identity element of a group G. For any group G, G∗ denotes G\{1G}. MACk(m)
denotes the message authentication code for a message m computed with the
secret key k, and Enck(m) denotes a ciphertext of a message m produced with
the symmetric key k.

2.2 Bilinear Groups

Bilinear groups consist of three (multiplicatively written) groups G1, G2 and GT
of prime order p equipped with a bilinear map e : G1×G2 → GT . Let g1 and g2
be generators of G1 and G2 respectively. We define Λ = (p,G1,G2,GT , e, g1, g2)
to be a description of bilinear groups parameters.
The map e : G1 ×G2 → GT must satisfy the following properties:

1. Bilinear. for any u ∈ G1, v ∈ G2 and any a, b ∈ Z, e(ua, vb) = e(u, v)
ab

.
2. Non-degenerate. e(g1, g2) 6= 1GT

.
3. Computable. the map e is efficiently computable.

In this paper, we only consider the Type-3 pairings [13], thus G1 6= G2 and
there is no known efficiently computable isomorphism between G1 and G2.

2.3 Cryptographic Assumptions

The security of DAA-TZ is based on the Decisional Diffie-Hellman assumption
in G1 (DDHG1

) and the blind 4-LRSW (B-4-LRSW) assumption [2] which is a
variant of the original LRSW assumption [16]. The DDHG1 assumption and the
B-4-LRSW assumption are stated as follows:

DAA-TZ for Mobile Devices using TrustZone 5

Assumption 1 (DDHG1). Given (g1, g
a
1 , g

b
1) for a, b← Zp, it is hard to distin-

guish gab1 from a random element of G1.

Assumption 2 (B-4-LRSW). Given the bilinear group parameters Λ, (gx2 , g
y
2)

for x, y ← Zp and an oracle that on input of gm1 ∈ G1 outputs (A,Ay, Ax+mxy, Amy)
for A ← G∗1, it is hard to output (m∗, A∗, B∗, C∗, D∗) such that m∗ ∈ Z∗p,
A∗ ∈ G∗1, B∗ = (A∗)y, C∗ = (A∗)x+m

∗xy and D∗ = (A∗)m
∗y where gm

∗

1 was
never queried to the oracle.

2.4 ARM TrustZone

ARM TrustZone [20] is a hardware-based security extension technology incor-
porated into ARM processors. It enables a single physical processor to execute
codes in one of two possible operating worlds: the normal world and the secure
world. Accordingly, the system is separated into two domains and each domain
has banked registers and memory to run the domain-dedicated OS and software.
The isolation mechanisms of TrustZone are well defined. Access permissions are
strictly under the control of the secure world that normal world components can-
not access the secure world resources. As the processor only runs in one world
at a time, to run in the other world requires context switch. A secure monitor
mode exists in the secure world to control the switch and migration between
the two worlds. To date, TrustZone has been popularized and applied by many
mainstream mobile manufacturers to achieving secure applications [33].

2.5 Physical Unclonable Functions

Physical Unclonable Functions (PUFs) [23] are functions where the relationship
between input (or challenge) and output (or response) is decided by a physical
system. Randomness and unclonability are two significant properties of PUFs.
The unclonability originates from random variations in a device’s manufacturing
process. With the help of a fuzzy extractor that eliminates the noise from the
response, PUFs are able to implicitly “store” a piece of secret data. PUFs pro-
vide much higher physical security by extracting the secret data from complex
physical systems rather than directly reading them from non-volatile memory.
Additionally, PUFs are cost-effective, since they take the advantage of the results
from a preexisting manufacturing process[34].

Strictly speaking, TrustZone just provides an isolated environment. Only
equipped with a root of trust, it becomes a real “trusted” execution environment
(TEE) [35]. Because TrustZone almost does not internally install an available
root key, it loses the capability to offer a root of trust. To cover this shortage, a
PUF can be employed to properly act as the root of trust. In this paper, DAA-
TZ takes the secret data extracted from the PUF as a root key seed to generate
other keys. We adopt SRAM PUF [14] that leverages the relationship between
an SRAM cell’s address for the challenge and its power up value for the response.

6 B. Yang et al.

3 System Model and Assumptions

3.1 System Model

The system model of DAA-TZ is composed of four kinds of entities: mobile de-
vice D, manufacturer M, issuer I and verifier V. In practice, there could be a
number of D and V, thus we use Di and Vj to represent an individual unite
respectively. Di is directly accessed by a user and equipped with ARM pro-
cessor having TrustZone extension technology. M, who produces Di, performs
embedding some credentials to each Di in advance before it leaves factory. I
is responsible for issuing credentials to legitimate (or trusted) Di. I could be
an independent trusted authority or a part of mobile network provider. The
procedure of issuing could be executed with either M or Di respectively. Ser-
vice providers play the role of V in this interactive model. Vj outsources some
verification strategies to I for confirming the legitimacy of Di. The verification
strategies may involves Di’s configuration, user’s membership status or the ac-
counting and billing (e.g., Vj ’s subscription fees accounted with user’s mobile
phone bill). With these strategies, Vj authorizes I to distribute service-related
credentials to Di. When requesting Vj for a service, the user generates an anony-
mous signature based on the corresponding credential to attests his legitimacy
with other necessary information, such as the integrity measurement values of
executing applications on Di, the amounts of e-cash or the content of e-ticket.
The specific information structure and content are particularly defined by the
service protocol. Vj authenticates the user’s request by verifying his signature
without revealing his identity. In some scenarios, I and V could be one entity.
Fig.1 illustrates the system model for our proposed scheme.

TrustZoneMobile Device

Embed
Credential

Manufacturer Issuer 

i jVerifier (Service Provider)

Fig. 1. System Model of DAA-TZ.

DAA-TZ for Mobile Devices using TrustZone 7

3.2 Assumptions and Threat Model

In the system model, there is a dedicated channel between M and I, which
could be either physical connection or other forms of out-of-band communica-
tion, for I issuing credentials via M. To simplify our design, we assume that
data communications betweenM and I, and between Di and Vj build on secure
transport protocols, like TLS/SSL, which can provide confidentiality, authentic-
ity and integrity protection. Note that the secure channel between Di and Vj is
only verifier-authentication (i.e., unilateral authentication) in case Di’s identity
is revealed. Additionally, Public Key Infrastructure (PKI) is also assumed to
realize authenticating I. As a consequence, M, Vj and Di can accurately ob-
tain public keys, public parameters and revocation list from I who displays the
public information with certificate for being downloaded.

Actually, the establishment of the whole system requires some premised trust
relationships. First, the cooperation is assumed to be credible between I and
each M who ensures not to embed credentials to illegal Di or the Di without
available TrustZone. Second, Vj trusts that, before issuing credentials, I always
checks Di’s legitimacy by using verification strategies provided by Vj . As a result,
Vj would believe that the right credentials are in the right users’ hands. Another
accepted fact is that the user trusts M not to deliberately damage his Di’s
security. Constrained by the market supervision and the force of law, the above-
mentioned trust relationships are easily established and maintained.

Based on the assumptions, DAA-TZ protects against the following adversary:

– The adversary can attack the scheme itself by attempting to pretend entities,
manipulate data transmission between entities and forge data.

– The adversary can perform any software-based attacks which compromise
the mobile Rich OS or existing applications running in REE. DAA-TZ in-
terfaces in REE are also available for the adversary.

– The adversary can physically access the mobile device. He can reboot the
device and gain access to data residing on persistent storage.

However, we ignore the malicious behaviors of tampering with the TrustZone
hardware or mounting side-channel attacks on PUF [19]. Moreover, pointed out
by [30], since in general it is not possible to prevent simple relay attacks, we do
not consider that an adversary just forwards a DAA signature from Di to Vj .

4 DAA-TZ Scheme for Mobile Device

In this section, we give the specific design for the architecture of trusted mobile
device, and then present the key derivation and sensitive data management.
Depending on these, DAA-TZ scheme are detailed afterwards.

4.1 The Architecture of Trusted Mobile Device

Leveraging TrustZone and PUF technology, we design the architecture of trusted
mobile device specifically for DAA-TZ. The software-based implementation of

8 B. Yang et al.

Secure World (SW)

T
ru

st
Z

on
e

Is
ol

at
io

n
 B

ou
n

da
ry

U
se

r
M

od
e

K
er

n
el

 M
od

e

Hardwares with ARM TrustZone Extension

SW-Driver Monitor NW-Driver

DAA-TZ Service

Crypto Library

API Functions

Logic Engine

Data Handler

Key Manager

SRAM PUF

DAA-TZ Proxy

Software Stack Crypto Library

Command Caller

Preprocessing Engine

Mobile OS KernelTEE OS Kernel

App1 App2 Appn

Normal World (NW)

. . .App1 Service Appn Service. . .

Fig. 2. Architecture of Trusted Mobile Device for DAA-TZ.

DAA-TZ functionality on existing hardwares targets at economy, flexibility and
extensibility. Meanwhile, our architecture is designed to be compatible with the
conventional running model of secure applications using TrustZone. Fig. 2 shows
the detailed architecture with the way components interact with each other.

DAA-TZ functionality in the architecture contains two components: untrust-
ed DAA-TZ Proxy in normal world (NW) and security-sensitive DAA-TZ Service
in secure world (SW). In reality, SW instantiates TEE, while NW implements
REE. DAA-TZ Service is isolated via TrustZone from all other codes running in
NW. The components are formally described as follows.

DAA-TZ Proxy. It is the component visible for mobile applications in NW.
Waiting for their DAA-TZ service requests, the proxy handles the parameters
and preprocesses them. According to the request type, the proxy would call
DAA-TZ Service for substantive computations of the scheme and finally return
the results. DAA-TZ Proxy consists of the following four subcomponents:

– Software Stack: provides top DAA-TZ interfaces for mobile applications.
It parses the service requests and gives back service response results.

– Crypto Library: offers cryptographic algorithm support for Preprocessing
Engine. In NW, this library only supports exponentiations on elliptic curves.

– Preprocessing Engine: executes pre-computation for DAA-TZ when one
of two conditions is satisfied: a new credential is generated successfully, or a
pre-computed result is consumed correctly.

– Command Caller: formats calling command and interacts with DAA-TZ
Service. It sends the command through the GP TEE Client API [22], requests
to switch NW to SW via NW-Driver and waits for the returned values.

DAA-TZ Service. It is the core component to perform DAA-TZ critical com-
putations and operations. The execution of the component codes is under the

DAA-TZ for Mobile Devices using TrustZone 9

well protection of TrustZone isolation mechanism. Five following subcomponents
constitute DAA-TZ Service component:

– API Functions: receives a service request from DAA-TZ Proxy and parses
the command. The functions transmit instructions to Logic Engine and waits
for results that would be forwarded back to DAA-TZ Proxy.

– Key Manager: creates cryptographic keys using the unique root key seed
extracted from SRAM PUF and provides keys to Data Handler.

– Data Handler: receives message to be signed from application service and
seals or unseals sensitive data. To prevent adversary from forging message,
Data Handler only receives message produced by application service in SW.
Besides, using keys from Key Manager, Data Handler seals sensitive data to
store them in the insecure persistent storage space of mobile device.

– Crypto Library: offers cryptographic algorithm support for Logic Engine
and Data Handler. In SW, it supports bilinear maps, computations on elliptic
curves, and other cryptographic operations.

– Logic Engine: executes the computations of security-sensitive parts of
DAA-TZ scheme. Logic Engine reads necessary parameters and data to run
operations relying on scheme specification.

Application and Application Service. The corresponding application should
be launched if the user wants to enjoy a remote service from Vj . The secure
application released by Vj consists of two parts: App for NW and App Service
for SW. App provides the GUI and basic functions. When App has the need to
execute DAA-TZ procedures for remote service authenticating user’s legitimacy
with the message as service input, it calls DAA-TZ Proxy using its Software
Stack. App could notify App Service in SW to prepare message to be signed
through inter-domain communication mechanism supported by TrustZone [15].
App Service is trusted for processing security-sensitive data. It is sometimes
non-existent if the remote service does not require secure computation or signed
message as input.

Components in Kernels. SW-Driver in TEE OS Kernel and NW-Driver in
Mobile OS Kernel handle the communication requests and responses with respect
to switching the worlds. Implemented as Secure Monitor defined by TrustZone,
the Monitor controls hardwares to fulfill the switching action.

Components in Hardwares. The hardware of mobile device support ARM
TrustZone extension technology. Protected by TrustZone mechanism, SRAM
PUF component is only accessible for SW.

4.2 Key Derivation and Sensitive Data Management

Prior to describing the concrete construction of our DAA scheme, we show how
to derive various keys for different purposes using the root key seed extracted
from SRAM PUF and how to utilize the derived keys to protect sensitive data.

Root Key Seed Extraction. We use the technique of SRAM PUF in [35] to
extract the secret root key seed s, which is a unique bit string picked randomly

10 B. Yang et al.

by M who “stores” it in Di through the physical features of one SRAM inside
Di. From SRAM PUF component, s is only reproduced and securely cached by
Key Manager when Di starts up every time in normal use. The confidentiality
of s is rigidly guaranteed by TrustZone.

Key Derivation. Key Manager has the deterministic key derivation function
KDF : S̃ × D̃ → K̃, where S̃ is the key seed space, D̃ is a set of strings for
statement of purposes with possible variables, and K̃ is the derived key space.
Using the KDF, the device key pair which is analogous to the endorsement key
pair in [27,28] and the storage root key for generating specific storage keys can be
derived as (dsk, dpk)← KDFs(‘identity’) and srk ← KDFs(‘storage root’)
respectively, where s is the root key seed. Whereafter, we also use the storage
keys derived from KDF with the storage root key srk to preserve sensitive data.
The hierarchical structure of storage keys enhances the security for key usage.
Note that all the derived keys are never stored permanently. Instead, they are
regained via KDF with s at the same way when needed.

Sensitive Data Management. We can utilize the storage keys derived from
the storage root key srk to seal the DAA-TZ’s public parameters params, some
mobile device Di’s credential cred and a pair (f, T), where f is Di’s secret key

and T = gf1 for some fixed basis g1. The sealed results of these data can be
stored in the insecure positions of NW.

– Protect integrity for params: mkparams ← KDFsrk(‘storage key’, ‘MAC’,
params, 0) and blobparams ← Data Seal(‘MAC’,mkparams, params), where

blobparams := params||MACmkparams(params).

– Protect integrity for cred:mkcred ← KDFsrk(‘storage key’, ‘MAC’, T, cred, 1)
and blobcred ← Data Seal(‘MAC’,mkcred, cred), where

blobcred := cred||MACmkcred(cred).

– Protect confidentiality and integrity for (f, T): generate two kinds of keys
by (skf ,mkf)← KDFsrk(‘storage key’, ‘Enc+MAC’, T, 2), and then blobf ←
Data Seal(‘Enc+MAC’, skf ,mkf , f, T), where

blobf := Encskf (f)||T ||MACmkf (Encskf (f)||T).

Data Handler can use Data Unseal() to recover and verify the sensitive data from
blobs with the related keys regained by Key Manager.

4.3 The Details of DAA-TZ Scheme

Some preliminary work needs to be done as premise to start the normal proce-
dures of the scheme. Specifically, whenM initializes Di in the factory,M guides
Di in SW to use its root key seed to generate the unique device key (dsk, dpk)
which could uniquely identity Di. Then,M issues a certificate cert for the pub-
lic key dpk to indicate M’s recognition for Di. The certificate cert contains the
configuration information (e.g., whether TrustZone is available) of Di.

DAA-TZ for Mobile Devices using TrustZone 11

For Di-centered design, DAA-TZ scheme consists of seven phases: Setup,
KeyGen, Embed, Sign, Verify, Revoke and Rejoin. First of all, Setup is executed
to create the public parameters. After that, the issuer I can execute KeyGen
to generate its public/private key pair according to the public parameters. In
addition, KeyGen and Embed are compelled to execute sequentially before Di
leaves the factory. Then, other phases are able to execute correctly according to
application requirements. We adopt the techniques in [2,10,32] to build DAA-TZ
scheme. The phases of DAA-TZ scheme are presented in detail as follows.

Setup. Given a security parameter λ, picks the suitable bilinear groups pa-
rameters Λ = (p,G1,G2,GT , e, g1, g2) described in Section 2.2 such that the
bit-length of p is 2λ. In addition, chooses three independent collision-resistant
hash functions:

H1 : {0, 1}∗ → Zp, H2 : {0, 1}∗ → G1, H3 : {0, 1}∗ → Zp.

Finally, publish (p,G1,G2,GT , e, g1, g2,H1,H2,H3) as the public parameter-
s params. For each mobile device Di, M imports params to Di and calls
Data Seal() to seal the params. The resulting blob blobparams is stored in Di.

KeyGen. This phase initializes the public/private key pair for the issuer I and
generates a mobile device Di’s key.

– Key Generation for Issuer. Given params as input, I picks x, y ← Z∗p,
and computes X := gx2 and Y := gy2 . I sets (x, y) as the private key skI
and publishes (X,Y) as the public key pkI . We assume that some mobile
device Di and verifier Vj could get the correct pkI from I via verifying the
certificate3 for pkI . Besides, I initializes a revocation list RL as empty.

– Key Generation for Mobile Device. In SW of a mobile device Di, Logic
Engine calls DAATZ SW Create() to generate key blob blobf that seals the
Di’s secret key f and public information T . It runs as:

blobf ← DAATZ SW Create(blobparams),

where the API mainly has the following four operations:

1) Unseal the blob blobparams to get params by calling Data Unseal().

2) Pick f ← Z∗p and compute T := gf1 .
3) Call Data Seal() to seal the pair (f, T) to obtain the key blob blobf .
4) Output blobf .

Di switches back to NW and stores blobf in its non-volatile memory.

Embed. In this phase, a credential cred for each mobile device Di is produced
and embedded into the device before Di leaves the factory as follows.

1. M obtains T from the key blob blobf and sends T to I through the dedicat-
ed channel. Because of the cooperative relationship, I trusts M is asking
for producing credential to embed into a Di with legitimate configurations.

3 Utilizing PKI solution, a Certificate Authority (CA) issues a public key certificate
for pkI to the issuer I.

12 B. Yang et al.

Thus, I does not check the validity of Di any more. But in this phase, only
the credentials that do not require other more strict verification strategies
from Vj are permitted to issue.

2. On input of a group element T , I runs the following signature algorithm
to generate a credential cred for T .

(A,B,C,D, cI , sI)← SIG Cred(params, skI , T)

The signature algorithm has the following four steps:

1) Choose a ← Z∗p and compute A := ga1 , B := ga·y1 , C := ga·x1 · T a·x·y,
D := T a·y and t := a · y.

2) Choose rI ← Zp and compute RI1 := grI1 , RI2 := T rI .
3) Compute cI := H1(B||D||g1||T ||RI1||RI2).
4) Compute sI := rI + cI · t (mod p).

Then, I sends (A,B,C,D, cI , sI) to M.
3. M imports the tuple (A,B,C,D, cI , sI) into SW of Di. Logic Engine calls

the API DAATZ SW Join() to check the elements from I and generate a
credential blob blobcred to store:

blobcred ← DAATZ SW Join(blobparams, pkI , T, A,B,C,D, cI , sI),

where the API executes the following operations:

1) Call Data Unseal() to unseal the blob blobparams to obtain params.
2) Compute R′I1 := gsI1 ·B−cI and R′I2 := T sI ·D−cI .
3) Compute c′I := H1(B||D||g1||T ||R′I1||R′I2).
4) Check whether the relations A 6= 1G1 , e(A, Y) = e(B, g2), e(C, g2) =

e(A ·D,X) and cI = c′I hold.
5) If all the relations hold, set cred := (A,B,C,D).
6) Call Data Seal() to seal cred, and output the resulting blob blobcred.

Note that M could send simultaneously a set of {Ti}ni=1 to I by a single
interaction, and obtain the corresponding credential set {credi}ni=1.

4. After a credential cred is successfully obtained by Di, TrustZone switches
to NW and DAA-TZ Proxy executes pre-computation in the background
to prepare for user’s fast anonymous signing operation in the following
Sign phase. Preprocessing Engine calls DAATZ NW PreCmpt() to generate
a blinded credential:

(l, S, U, V,W)← DAATZ NW PreCmpt(blobparams, blobcred),

where the algorithm consists of the following steps.
1) Get the prime p and credential cred by directly reading the plaintext

part of blobparams and blobcred respectively.
2) Parse cred as (A,B,C,D).
3) Choose l← Z∗p and compute (S,U, V,W) := (Al, Bl, Cl, Dl).
4) Output (l, S, U, V,W).

Preprocessing Engine stores the output (l, S, U, V,W). Now that all DAA-
TZ related operations inM have been done, Di is going to be delivered to
the hand of a user.

DAA-TZ for Mobile Devices using TrustZone 13

Sign. This phase enables a user to anonymously attest the legitimacy of both
his status and his mobile device.

1. App of a mobile device Di connects a remote verifier Vj . Then, Vj negotiates
with Di to decide a basename bsn ∈ {0, 1}∗. If bsn is empty (i.e., bsn =
⊥), it means that the signatures created by Di are unlinkable. If bsn is a
non-empty basename (i.e., bsn 6= ⊥), the signatures produced by Di are
pseudonymous, i.e., signatures under the same basename could be linked
and signatures under different basenames are unlinkable. In addition, Vj
chooses a nonce nVj ← {0, 1}

2λ
and sends it to Di.

2. In NW, it is optional for App to notify App Service to prepare authentica-
tion information as message m to be signed. The notification is combined
with the command for DAA-TZ Proxy to request generating signature.

3. On account of the request, the environment is switched into SW. App Ser-
vice may need its user to securely input some information, such as password,
to generate m. Then, Logic Engine calls DAATZ SW Sign() to create a DAA
signature σ using the related pre-computation result as:

σ ← DAATZ SW Sign(blobparams, blobf , blobcred, bsn, nVj ,m, l, S, U, V,W),

where the detailed process is presented as follows:

1) Unseal the blobs to get params, f , T and cred by calling Data Unseal().
2) If bsn 6= ⊥, compute J := H2(bsn) and K := Jf , else set J,K := 1G1

.
3) Choose rDi

← Zp and compute RDi1 := JrDi and RDi2 := Bl·rDi .
4) Compute cDi

:= H3(J ||K||S||U ||V ||W ||RDi1||RDi2||bsn||nVj ||m).
5) Compute sDi := rDi + cDi · f (mod p).
6) Output a signature σ := (K,S,U, V,W, cDi , sDi).

After σ is generated successfully, the environment is switched back to NW
with the returned outputs m and σ that are eventually sent to Vj .

4. Through the above step, a pre-computation result (l, S, U, V,W) is con-
sumed. Preprocessing Engine deletes the previous pre-computation result,
then calls DAATZ NW PreCmpt() again to get a new pre-computation tuple
(l′, S′, U ′, V ′,W ′) for the next use. This pre-computation process is execut-
ed parallelly in the background of NW without causing obvious time delays
felt by the user.

Verify. In this phase, a verifier Vj checks whether or not a signature σ on a
message m is valid.

1. Vj verifies (m,σ) by the means of calling verification algorithm Verify() as:

res← Verify(params, pkI , bsn, nVj ,m, σ),

where the algorithm runs in detail as follows:

1) Parse σ as (K,S,U, V,W, cDi
, sDi

).
2) For each frvk ∈ RL, if W = Ufrvk , then set res := false and abort.
3) If bsn 6= ⊥, compute J ′ := H2(bsn), else set J ′ := 1G1 .
4) Compute R′Di1

:= J ′
sDi ·K−cDi and R′Di2

:= UsDi ·W−cDi .
5) Compute c′Di

:= H3(J ′||K||S||U ||V ||W ||R′Di1
||R′Di2

||bsn||nVj ||m).

14 B. Yang et al.

6) Check whether the relations S 6= 1G1 , e(S, Y) = e(U, g2), e(V, g2) =
e(S ·W,X) and cDi

= c′Di
hold.

7) If all the relations hold, then res := true, else res := false.

According to the verification result res, Vj decides whether to accept the
message/signature pair (m,σ) and provide service for the owner of Di.

Revoke. In this phase, if a secrete key f has been revealed, it could be revoked.

1. I has the duty to censor the Internet. By collecting and analyzing daily
logs, I tries to find the clue indicating the leakage of f and its declared
valid credential cred. If the pair (f, cred) is found, I checks whether cred
is a valid credential on the f with params and pkI . For valid one, I adds
f into RL, i.e., RL := RL ∪ {f}.

2. Vj maintains locally a revocation list RL which is regularly updated from
the revocation list published by I.

Rejoin. This phase enables Di to recreate a new secret key f ′ and obtain a relat-
ed new credential cred′, when an old key f of Di has already been revoked, or
Di intends to apply for a membership credential under a new public key created
by either a new or an existing issuer4. We choose an IND-CCA secure public
key encryption scheme (ENC,DEC) for the following usage with the device key
pair (dpk, dsk). In particular, C ← ENCdpk(M) and M ← DECdsk(C) denote
that encrypting the message M with the public key dpk to obtain a ciphertext
C, and decrypting the ciphertext C with the secret key dsk to recover a message
M respectively. This phase is executed as follows.

1. DAA-TZ Proxy sends Di’s dpk and its certificate cert to I.

2. I checks whether dpk is valid with cert for confirming Di’s configurations.
Utilizing the verification policy from Vj , I checks other properties of Di
and its owner. If all the checks are passed, I randomly chooses a key k
for MAC operation, and a nonce nI ← {0, 1}2λ. I then adds nI into a
nonce list NL which is initially empty, i.e., NL := NL ∪ {nI}. Next, I
generates a commitment request by encrypting k and nI with dpk, i.e.,
commreq ← ENCdpk(k||nI). Finally, I sends commreq to Di.

3. DAA-TZ Proxy invokes DAA-TZ Service with inputting commreq. In SW,
DAATZ SW Commit() is called to generate a commitment response:

commres ← DAATZ SW Commit(commreq),

where the process is executed as follows:

1) Recover the device private key dsk using the root key seed s, i.e.,
(dsk, dpk)← KDFs(‘identity’).

2) Use the secret key dsk to decrypt commreq: k||nI ← DECdsk(commreq).
3) Call DAATZ SW Create() to generate a blob blobf ′ associated with a

new secret key f ′ and the corresponding T ′ = gf
′

1 .
4) Compute τ ← MACk(T ′||nI) and commres := (τ, nI , T

′).

4 If the public key of an existing issuer has expired, it should refresh its public key by
creating a new one and obtaining the corresponding certificate.

DAA-TZ for Mobile Devices using TrustZone 15

Finally, Di switches back to NW and sends commres to I.
4. I first verifies whether commres is valid by computing τ ′ ← MACk(T ′||nI)

and checking if the relations nI ∈ NL and τ = τ ′ hold. If hold, as in the
Embed phase, I runs the SIG Cred() algorithm with the public parameters
params, its secret key sk′I and the T ′ contained in commres as the input
to obtain a tuple commcred := (A′, B′, C ′, D′, c′I , s

′
I), i.e.,

(A′, B′, C ′, D′, c′I , s
′
I)← SIG Cred(params, sk′I , T

′).

Finally, I sends the above tuple commcred to Di.
5. As in the Embed phase, DAA-TZ Service in SW calls DAATZ SW Join()

with the tuple commcred to generate a credential blob blob′cred, i.e.,

blob′cred ← DAATZ SW Join(blobparams, pk
′
I , T

′, A′, B′, C ′, D′, c′I , s
′
I),

where pk′I is the public key of I.
6. Back to NW, Preprocessing Engine invokes DAATZ NW PreCmpt() to ob-

tain a pre-computation tuple, i.e.,

(l′, S′, U ′, V ′,W ′)← DAATZ NW PreCmpt(blobparams, blob
′
cred).

5 Security Analysis

In this section, we first review the desired security properties of DAA schemes
for mobile devices, then analyze DAA-TZ satisfying these properties.

Security Properties. Informally, a DAA scheme for mobile devices should

satisfy the following properties:

Anonymity. The anonymity property requires that anyone including the issuer
cannot identify the signer of a DAA signature. In particular, we consider two
types of anonymity as follows.

• Forward Anonymity: Given a DAA signature for bsn = ⊥, anyone cannot
decide whether the signature was produced previously by some mobile device
even though it compromises the NW of the device later.

• Pseudonymity: Given two DAA signatures for different non-empty base-
names, anyone cannot determine whether they are created by the same mo-
bile device. Note that in this case, if the SW of a mobile device remains
honest, its NW could not be corrupted by an adversary.

Traceability. No adversary can create a DAA signature which cannot be traced
to a secret key originated from an execution of the Embed or Rejoin phase.

Non-frameability. For a target mobile device (picked adaptively by an adversary),
the adversary cannot forge a DAA signature which could be traced to the secret
key of the target device even though it compromises the NW of the target device.

Security Analysis. In the following security analysis, we assume that the un-
derlying primitives (symmetric encryption, MAC and public key encryption) are
secure in the DAA-TZ scheme. Moreover, for the sake of simplifying analysis, we

16 B. Yang et al.

assume that the authenticated channel between the SW of a mobile device and
an issuer, which is established by the “Encrypt-then-MAC” method with the
device key pair (dpk, dsk), is secure. Actually, the method was adopted in the
DAA schemes [3,10]. Besides, for simplicity, the nonce nVj from the verifier Vj
is considered as a part of the message m. Because it is beyond the scope of this
paper to provide a formal security proof, we here only give an informal security
analysis to demonstrate that the proposed DAA-TZ scheme satisfies the above
security properties. Nevertheless, according to the security proof of the forward
anonymity property in [32], one can analogously prove that the DAA-TZ scheme
is forward anonymous under the DDHG1

assumption. Furthermore, according to
the security proof in [2], one can analogously prove the DAA-TZ scheme to be
pseudonymous under the DDHG1 assumption, traceable under the B-4-LRSW
assumption, and non-frameable under the discrete logarithm (DL) assumption.
Now, we argue why the DAA-TZ scheme satisfies the above security properties.

Forward Anonymity. Given a DAA signature σ = (K,S,U, V,W, c, s) for a
pair (bsn = ⊥,m) and a target mobile device Di, an adversary A attempt-
s to determine whether σ was signed previously by Di. First of all, recall-
ing K = 1G1

, (c, s) is perfectly zero-knowledge in the random oracle model
[1]. Thus, the tuple (S,U, V,W) is the only information that could be used
by A to decide if Di is the signer of σ. When A corrupts the NW of Di,
it could have access to the API DAATZ SW Sign() and obtain the group ele-
ment T , the Di’s credential cred = (A,B,C,D) and the pre-computation re-
sult (l′, S′, U ′, V ′,W ′) for next signing operation. Note that the group elemen-
t B being input to DAATZ SW Sign() is fixed as the integrity of the creden-
tial (A,B,C,D) is protected by the MAC scheme. Since the pre-computation
result being input to DAATZ SW Sign() is controlled by A, the pseudonyms
{Ki = H2(bsni)

f}ni=1 included in the outputting signatures are only useful in-
formation for A, where n is the number of the DAATZ SW Sign() requested by
A, bsni is picked by A for each i ∈ {1, . . . , n}, and f is the secret key of Di. Fur-
thermore, A could also obtain some previous signatures from Di and signatures
from other mobile devices. Under the DDHG1

assumption, A cannot link the
tuple (S,U, V,W) to any information obtained via the above manners. Thereby,
the forward anonymity property of DAA-TZ is guaranteed.

Pseudonymity. Given two DAA signatures σ0 = (K0, S0, U0, V0,W0, c0, s0) for
(bsn0 6= ⊥,m0) and σ1 = (K1, S1, U1, V1,W1, c1, s1) for (bsn1 6= ⊥,m1) such
that bsn0 6= bsn1, an adversary A attempts to decide whether the two signatures
were created by the same mobile device. According to the above security analysis,
under the DDHG1 assumption, (S0, U0, V0,W0, c0, s0) and (S1, U1, V1,W1, c1, s1)
do not reveal any information that may be used by A to link σ0 and σ1. Thus, K0

and K1 are the only data that might help A link the above two signatures. For
its purpose, A could obtain some DAA signatures from some mobile devices, and
some group elements {Ti}ni=1 as well as the corresponding credentials {credi}ni=1

from the Rejoin phase, where n is the number of the executions of the Rejoin
phase. Under the DDHG1

assumption, all the information obtained by A could

DAA-TZ for Mobile Devices using TrustZone 17

not help it to link K0 and K1. Thus, the pseudonymity property of DAA-TZ
scheme is guaranteed.

Traceability. An adversary A against the traceability property attempts to forge
a DAA signature σ = (K,S,U, V,W, c, s) on a basename/message pair (bsn,m),
where the secret key f associated with σ cannot generate any group element
T from an execution of the Embed phase or the Rejoin phase. Since the non-
interactive zero-knowledge proof (c, s) is sound, it implies that A holds a valid
credential cred = (A,B,C,D) under the issuer I’s public key pkI and its secret
key f which is different from all the secret keys from the Embed phase or the
Rejoin phase. In addition, since the non-interactive proof (c′I , s

′
I) created by I in

an execution of the Rejoin phase is perfectly zero-knowledge, the proof (c′I , s
′
I)

does not reveal any information about I’s secret key skI . Thus, if the B-4-LRSW
assumption holds, it is impossible for A to hold the valid credential cred of the
new secret key f . Hence, the traceability property of DAA-TZ is guaranteed.

Non-frameability. An adversary A against the non-frameability property at-
tempts to forge a DAA signature σ = (K,S,U, V,W, c, s) on a basename/message
pair (bsn,m), which is associated with an honest mobile device Di’s secret key
f . If A corrupts the NW of Di, it is able to have access to the DAATZ SW Sign()

API and obtain T = gf1 , the credential cred = (A,B,C,D) on the f and the
pre-computation result (l′, S′, U ′, V ′,W ′). For the i-th DAATZ SW Sign() re-
quest issued by A, it could get a signature (Ki, Si, Ui, Vi,Wi, ci, si) on a message
mi where (Si, Ui, Vi,Wi) is picked by A and Ki = H2(bsni)

f if bsni 6= ⊥ cho-
sen by A or Ki = 1G1

otherwise. Under the DL assumption, A cannot obtain
the secret key f from T , cred and H2(bsni)

f . Besides, (ci, si) is a signature of
knowledge [7]

SPK{(f) : Wi = Ufi ∧Ki = H2(bsni)
f
if bsni 6=⊥}(bsni,mi)

5

Thus, providing the DL assumption is true, it is infeasible to forge a signature of
knowledge (c, s) on a new (bsn,m) under the secret key f . Therefore, A cannot
forge a DAA signature σ = (K,S,U, V,W, c, s) on (bsn,m). Consequently, the
non-frameability property of DAA-TZ scheme is guaranteed.

Remark. For any pair (bsn,m) and its signature σ = (K,S,U, V,W, c, s) on which
the Verify() algorithm outputs true, the discrete logarithm f = logWU is the same
as the secret key involved in V (i.e., V = Sx+fxy) as the bilinear property of the
pairing e. Thus, no adversary could utilize a secret key in the revocation list RL
to produce a DAA signature which is accepted by a verifier Vj .

5 Following the notation [6], SPK{(f) : Wi = Uf
i ∧Ki = H2(bsni)

f
if bsni 6=⊥}(bsni,mi)

denotes the signature of knowledge on the message (bsni,mi) that proves knowledge
of f such that Wi = Uf

i and Ki = H2(bsni)
f .

18 B. Yang et al.

6 Implementation and Evaluation

In this section, we first present the prototype system of DAA-TZ from both
aspects of hardware and software. Afterwards, we show the comparison of the
proposed scheme to other four solutions. Finally, we give the performance eval-
uation and analysis based on our prototype system.

6.1 Implementation

Hardware Platform. To simulate real environment, we implement the role of
manufacturer on one PC platform. Issuer and verifier are together implemented
on another PC platform. For simulating mobile device, we leverage a develop-
ment board Zynq-7000 AP Soc Evaluation Kit [29] to implement functions of
DAA-TZ. It is TrustZone-enabled and equipped with ARM Cortex-A9 MPCore,
1GB DDR3 memory and On-Chip Memory (OCM) module including 256 K-
B SRAM. However, this SRAM is initialized by BootROM once the board is
powered on, which prevents us from reading its initial data. Then we utilize an
SRAM chip that is the type IS61LV6416-10TL [23] to act as our SRAM PUF.
SRAM initial data is transferred to the Zynq development board by an FP-
GA implementation of Universal Asynchronous Receiver/Transmitter (UART)
in Verilog hardware description language. A UART receiver in the Zynq board
receives and stores the SRAM data in a RAM cache. Then the processor can
fetch the SRAM data in the RAM cache via the bus.

Software Implementation. The software implementation on the development
board for mobile device is divided into two parts. In secure world, we use Open
Virtualization SierraTEE as the basic TEE OS which is compliant with GP’s
TEE Specifications [22]. For Key Manager of DAA-TZ Service, the fuzzy extrac-
tor of PUF is constructed on an open source BCH code [18]. For Crypto Library,
we use OpenSSL-0.9.8y for general cryptographic algorithms, and Pairing-Based
Cryptography (PBC) 0.5.14 library for computations of elliptic curves and pair-
ings. We choose SHA256 for H2(), 1280-bit RSA key pair for the device key and
128-bit AES encryption with HMAC-SHA256 for sealing and unsealing opera-
tions. 2315 lines of code (LOC) in C language totally make up our components
and auxiliary functions in secure world. In normal world, we run a Linux as REE
OS with kernel 3.8.6. The SieraTEE project provides the Linux with NW-Driver
and GP TEE Client API. , DAA-TZ Proxy totally comprises 1651 LOC. Besides
we program one test application that could request executing DAA-TZ scheme.
It contains 1068 LOC running in NW. In addition, there are several tens of
thousands of LOC for implementing manufacturer, issuer and verifier.

6.2 Comparison

Dedicated for TrustZone security extension, DAA-TZ achieves some valuable and
meaningful properties. In Table 1 we show how our scheme compares to existing
solutions from the latest literature. These are ISC10 [30], BCL08 in LAMS [33],

DAA-TZ for Mobile Devices using TrustZone 19

Table 1. Comparison of DAA-TZ to other related solutions

Computation Amount
of On-line Signing Switch Times

of Signing
Pre-

Compute
Controllable
Pseudonym

Forward
Anonymity

Data
Management

bsn = ⊥ bsn 6= ⊥

ISC10 4EG1
/ > 1 8 8 8 8

BCL08
(LAMS)

3EG1
+4EGT

+3P
/ 2 8 8 8 8

BL10
(Mdaak)

4EG1
+E2

G1
+EGT

+P 2 8 4 8 4

CPS10
(Mdaak)

7EG1
1 8 4 8 4

DAA-TZ EG1
3EG1

1 4 4 4 4

BL10 and CPS10 in Mdaak [34]. Likewise building on ECC-DAA and TrustZone
technology, these solutions are all designed for mobile platform. The comparison
focuses on the items related to mobile device, involving the most time-consuming
computation amount of on-line anonymous signing (that leads user to wait for
its instant result) depending on whether bsn is null, the switch times between
SW and NW when executing signing, and other properties including realized
pre-computation, user-controlled pseudonym, forward anonymity and sensitive
data management using a root of trust. The notations used in the table are as
follows: when we write EG1 or EGT

, we mean the exponentiation is in group
G1 or GT ; E2

G1
denotes 2 simultaneous exponentiations on G1, i.e. computing

ab11 · a
b2
2 ; P is short for pairing computation; the check mark (4) denotes the

solution considers or has this property while the X mark (8) denotes not; the
slash (/) indicates it does not support pseudonym.

From the table, it is clear that the proposed scheme not only has the least on-
line computation amount and switch times for mobile devices in signing phase,
but also provides all other listed properties. The signing phase is the most fre-
quent execution and deeply influences the whole scheme’s efficiency. Overall, the
combination of these advantages endows DAA-TZ with a good user experience
as well as high security.

6.3 Performance Evaluation

We measure the performance of DAA-TZ on the prototype system revolving
around mobile device through a series of experiments with different parameters.
Referring to ISO/IEC 15946-5 standard [24], we select two kinds of elliptic curves
that are suitable for realizing Type-3 pairings. These curves are MNT curve with
embedding degree 6 and BN curve with embedding degree 12. For testing various
security levels of curves, we totally conduct 6 experiments respectively using
MNT160, MNT224, BN160, BN192, BN224 and BN256, where each number
denotes the approximate number of bits to optimally represent an element of
the group G1. More precisely, MNT160 and BN160 provide 80-bit security level;
MNT224 and BN192 provide 96-bit; BN224 and BN256 respectively provide 112-
bit and 128-bit. Our experiments simulate the whole DAA-TZ running process

20 B. Yang et al.

MNT160 BN160
Pre-Compute 328 272
Sign 433 507
Rejion 1186 1534
Verify (PC) 157 182

MNT160 MNT224 BN160 BN192 BN224 BN256
Sign 433 765 507 633 733 815

0

200

400

600

800

1000

1200

1400

1600

Pre-Compute Sign Rejion Verify (PC)

T
im

e
O

ve
rh

ea
d

(m
s)

MNT160 BN160

0
100
200
300
400
500
600
700
800
900

MNT160 MNT224 BN160 BN192 BN224 BN256

T
im

e
O

ve
rh

ea
d

(m
s)

MNT160 BN160

Fig. 3. Time overheads of the critical
processes with 80-bit security level.

MNT160 BN160
Pre-Compute 328 272
Sign 433 507
Rejion 1186 1534
Verify (PC) 157 182

MNT160 MNT224 BN160 BN192 BN224 BN256
Sign 433 765 507 633 733 815

0

200

400

600

800

1000

1200

1400

1600

Pre-Compute Sign Rejion Verify (PC)

T
im

e
O

ve
rh

ea
d

(m
s)

MNT160 BN160

0
100
200
300
400
500
600
700
800
900

MNT160 MNT224 BN160 BN192 BN224 BN256

T
im

e
O

ve
rh

ea
d

(m
s)

MNT160 BN160

Fig. 4. On-line time overheads of Sign
phase with different security levels.

covering instantiated protocol, TrustZone switch and sensitive data management.
Each average experimental result is taken over 20 test-runs.

On MNT and BN curves with 80-bit security level, Fig.3 illustrates the av-
erage time overheads of critical processes including the computations of pre-
compute, Sign (excluding pre-computation) and Rejoin on mobile device and
Verify on PC for verifier. The results indicate that using both curves the fre-
quent computations about either pre-compute or Sign only take less than 500
milliseconds (ms), while infrequent and time-consuming Rejoin spends less than
1550 ms. Even if the computation amount of Verify is quite large, the time
overhead is indeed low on PC platform.

Fig.4 shows the average on-line time overheads of single Sign phase (excluding
pre-computation) on mobile device using two curves with different security levels.
From the figure, we can see that as the security levels increase, the time overheads
of Sign phase have evident growth. The growth rate of overhead using MNT is
higher than that using BN. Encouragingly, all the resulting overheads spend less
than 820ms, which is completely acceptable for a mobile user.

Actually, a direct performance comparison of our competitive scheme to oth-
ers is difficult because of four inevitable differences: the hardware platforms, the
algorithm libraries, the selections of elliptic curves, and the completeness degrees
of programming. Anyhow, according to our comparison and experimental result-
s, DAA-TZ can be considered as a reasonably efficient scheme for mobile device.
In regard to adopting modern mobile devices that are much more powerful than
our development board and a more optimal library to implement elliptic curves
and parings, the time overhead of our scheme could be further decreased.

7 Conclusion

In this paper, we propose DAA-TZ, a complete and efficient DAA scheme using
TrustZone, to deal with the security and privacy issues specially for mobile users.
DAA-TZ enables manufacture to embed credentials into devices and guarantees
the minimal switch times of TrustZone during signing phase. Pre-computation
is also carefully taken into consideration to raise scheme’s efficiency. The root of

DAA-TZ for Mobile Devices using TrustZone 21

trust provided by SRAM PUF, key derivation and sensitive data management
collectively enhance the security of our scheme. The implementation and evalu-
ation convince that DAA-TZ is quite practical for mobile users. Our next step
is to design the concrete secure applications based on DAA-TZ.

Acknowledgment. We thank Shijun Zhao and the anonymous reviewers for
their valuable comments. This work was supported in part by grants from the
National Natural Science Foundation of China (No.91118006, No.61202414 and
No.61402455) and the National 973 Program of China (No.2013CB338003).

References

1. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and
Communications Security – CCS’93. pp. 62–73. ACM Press (1993)

2. Bernhard, D., Fuchsbauer, G., Ghadafi, E., Smart, N.P., Warinschi, B.: Anonymous
attestation with user-controlled linkability. International Journal of Information
Security 12(3), 219–249 (2013)

3. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Proceed-
ings of the 11th ACM conference on Computer and communications security. pp.
132–145. ACM (2004)

4. Brickell, E., Chen, L., Li, J.: A new direct anonymous attestation scheme from
bilinear maps. In: Trusted Computing-Challenges and Applications, pp. 166–178.
Springer (2008)

5. Brickell, E., Li, J.: A pairing-based daa scheme further reducing tpm resources. In:
Trust and Trustworthy Computing, pp. 181–195. Springer (2010)

6. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups.
In: Kaliski, B. (ed.) Advances in Cryptology – CRYPTO’97. LNCS, vol. 1296, p.
410C424. Springer-Verlag (1997)

7. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.) Ad-
vances in Cryptology – CRYPTO’06. LNCS, vol. 4117, p. 78C96. Springer-Verlag
(2006)

8. Chen, L.: A daa scheme requiring less tpm resources. In: Information Security and
Cryptology. pp. 350–365. Springer (2010)

9. Chen, L., Li, J.: Flexible and scalable digital signatures in tpm 2.0. In: Proceedings
of the 2013 ACM SIGSAC conference on Computer & communications security.
pp. 37–48. ACM (2013)

10. Chen, L., Page, D., Smart, N.P.: On the design and implementation of an efficient
daa scheme. In: Smart Card Research and Advanced Application, pp. 223–237.
Springer (2010)

11. Chen, X., Feng, D.: Direct anonymous attestation for next generation tpm. Journal
of Computers 3(12), 43–50 (2008)

12. Commission, F.T., et al.: Mobile privacy disclosures: Building trust through trans-
parency. Federal Trade Commission Staff Report (2013)

13. Galbraith, S., Paterson, K., Smart, N.: Pairings for cryptographers. Discrete Ap-
plied Mathematics 156(16), 3113–3121 (2008)

14. Guajardo, J., Kumar, S.S., Schrijen, G.J., Tuyls, P.: FPGA intrinsic PUFs and
their use for IP protection. Springer (2007)

22 B. Yang et al.

15. Jang, J., Kong, S., Kim, M., Kim, D., Kang, B.B.: Secret: Secure channel between
rich execution environment and trusted execution environment. NDSS 2015 (2015)

16. Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems. In: Selected
Areas in Cryptography. pp. 184–199. Springer (2000)

17. Maganis, G., Shi, E., Chen, H., Song, D.: Opaak: using mobile phones to limit
anonymous identities online. In: Proceedings of the 10th international conference
on Mobile systems, applications, and services. pp. 295–308. ACM (2012)

18. Morelos-Zaragoza, R.: Encoder/decoder for binary bch codes in c (version 3.1)
19. Oren, Y., Sadeghi, A.R., Wachsmann, C.: On the effectiveness of the remanence

decay side-channel to clone memory-based pufs. In: Cryptographic Hardware and
Embedded Systems-CHES 2013, pp. 107–125. Springer (2013)

20. ARM: Trustzone. http://www.arm.com/products/processors/technologies/

trustzone, (last accessed May 5, 2015)
21. GENODE: An exploration of arm trustzone technology. http://genode.org/

documentation/articles/trustzone, (last accessed May 1, 2015)
22. GlobalPlatform: Tee client api specification version 1.0 (2010)
23. Integrated Silicon Solution Inc: IS61LV6416-10TL. http://www.alldatasheet.

com/datasheet-pdf/pdf/505020/ISSI/IS61LV6416-10TL.html

24. ISO/IEC: 15946-5: 2009 information technology-security techniques: Cryptograph-
ic techniques based on elliptic curves: Part 5: Elliptic curve generation (2009)

25. Proxama: http://www.proxama.com/platform/ (2015)
26. Sansa Security: Discretix. https://www.sansasecurity.com/blog/

discretix-becomes-sansa-security/ (2014), (last accessed June 22, 2014)
27. Trusted Computing Group: TPM main specification version1.2, revision 116. http:

//www.trustedcomputinggroup.org (2011), (last accessed October 25, 2014)
28. Trusted Computing Group: Trusted platform module library, family 2.0. http:

//www.trustedcomputinggroup.org (2013), (last accessed March 10, 2015)
29. Xilinx: Zynq-7000 all programmable soc zc702 evaluation kit. http://www.xilinx.

com/products/boards-and-kits/EK-Z7-ZC702-G.htm

30. Wachsmann, C., Chen, L., Dietrich, K., Löhr, H., Sadeghi, A.R., Winter, J.:
Lightweight anonymous authentication with tls and daa for embedded mobile de-
vices. In: Information Security, pp. 84–98. Springer (2011)

31. Wilson, P., Frey, A., Mihm, T., Kershaw, D., Alves, T.: Implementing embedded
security on dual-virtual-cpu systems. IEEE Design & Test 24(6), 582–591 (2007)

32. Xi, L., Yang, K., Zhang, Z., Feng, D.: Daa-related apis in tpm 2.0 revisited. In:
Trust and Trustworthy Computing, pp. 1–18. Springer (2014)

33. Yang, B., Feng, D., Qin, Y.: A lightweight anonymous mobile shopping scheme
based on daa for trusted mobile platform. In: TrustCom, 2014 IEEE 13th Interna-
tional Conference on. pp. 9–17. IEEE (2014)

34. Zhang, Q., Zhao, S., Xi, L., Feng, W., Feng, D.: Mdaak: A flexible and efficient
framework for direct anonymous attestation on mobile devices. In: Information and
Communications Security. Springer (2014)

35. Zhao, S., Zhang, Q., Hu, G., Qin, Y., Feng, D.: Providing root of trust for arm
trustzone using on-chip sram. In: Proceedings of the 4th International Workshop
on Trustworthy Embedded Devices. pp. 25–36. ACM (2014)

http://www.arm.com/products/processors/technologies/trustzone
http://www.arm.com/products/processors/technologies/trustzone
http://genode.org/documentation/articles/trustzone
http://genode.org/documentation/articles/trustzone
http://www.alldatasheet.com/datasheet-pdf/pdf/505020/ISSI/IS61LV6416-10TL.html
http://www.alldatasheet.com/datasheet-pdf/pdf/505020/ISSI/IS61LV6416-10TL.html
http://www.proxama.com/platform/
https://www.sansasecurity.com/blog/discretix-becomes-sansa-security/
https://www.sansasecurity.com/blog/discretix-becomes-sansa-security/
http://www.trustedcomputinggroup.org
http://www.trustedcomputinggroup.org
http://www.trustedcomputinggroup.org
http://www.trustedcomputinggroup.org
http://www.xilinx.com/products/boards-and-kits/EK-Z7-ZC702-G.htm
http://www.xilinx.com/products/boards-and-kits/EK-Z7-ZC702-G.htm

	DAA-TZ: An Efficient DAA Scheme for Mobile Devices using ARM TrustZone
	Introduction
	Preliminaries
	Notation
	Bilinear Groups
	Cryptographic Assumptions
	ARM TrustZone
	Physical Unclonable Functions

	System Model and Assumptions
	System Model
	Assumptions and Threat Model

	DAA-TZ Scheme for Mobile Device
	The Architecture of Trusted Mobile Device
	Key Derivation and Sensitive Data Management
	The Details of DAA-TZ Scheme

	Security Analysis
	Implementation and Evaluation
	Implementation
	Comparison
	Performance Evaluation

	Conclusion

