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Abstract. An important attack on multi-power RSA (N = p"q) was
introduced by Sarkar in 2014, by extending the small private exponent
attack of Boneh and Durfee on classical RSA. In particular, he showed
that N can be factored efficiently for » = 2 with private exponent d sat-
isfying d < N%3%_ In this paper, we generalize this work by introducing
a new partial key exposure attack for finding small roots of polynomi-
als using Coppersmith’s algorithm and Grébner basis computation. Our
attack works for all multi-power RSA exponents e (resp. d) when the
exponent d (resp. e) has full size bit length. The attack requires prior
knowledge of least significant bits (LSBs), and has the property that the
required known part of LSB becomes smaller in the size of e. For prac-
tical validation of our attack, we demonstrate several computer algebra
experiments.

Keywords: Multi-power RSA, Integer factorization, Partial key exposure, Cop-
persmith’s method, Small roots of polynomials.

1 Introduction

A natural way of speeding up the decryption/signing procedure of RSA based
cryptographic schemes is to use a small private exponent d. However, Wiener
[22] showed that classical RSA construction becomes insecure when d < N i,
Later, this bound was further improved by Boneh and Durfee [2] to N%292 by
using results of Coppersmith [6].

Kocher [15] initiated a new type of attack that obtains information about
the bits of d using side-channel techniques in 1996. The idea is to exploit certain
weaknesses of the actual implementation (e.g., execution time, power consump-
tion, noise), which in turn reveals some bits of d. In general, the attacker gains
information about either consecutive least significant bits (LSBs) or most signif-
icant bits (MSBs). Therefore, partial key exposure attacks mostly focus on these
two rather specific cases.

* An earlier version of this paper appeared in Conference on Algebraic Informatics
(CAI) 2015.



Boneh, Durfee and Frankel [3] introduced the first algebraic partial key ex-
posure attack using partial information of d. The attack finds the whole secret
exponent d when sufficient partial knowledge of d is known. Coppersmith’s al-
gorithm for finding small roots of polynomials is used in such algebraic attacks
[6/54]. This algorithm uses lattice reduction techniques to obtain efficient small
roots of certain polynomials (in particular, the LLL algorithm [I6]). Later, new
partial key exposure attacks on classical RSA were described by Blémer and May
in [I]. We refer to [9I14] for further partial key exposure attacks on standard RSA.

Notation: Let log denote the logarithm base 2 unless the base is given con-
cretely. We use the following notation throughout this manuscript.

N |Multi-power RSA modulus
n |bitsize of N
p, q|prime factors of N
integer satisfying the relation N = p"q
RSA public exponent
RSA private exponent
do |known part of d
logy e (i.e., e = N¥)
logy d (i.e., d =~ NP)
logy do (i-e., do & N‘s)
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In this work, we focus on multi-power RSA (also referred as Takagi’s RSA or
prime power RSA) introduced by Takagi in [2I]. One of the motivation of this
variant is to speed up the RSA decryption/signing process. More concretely,
N = p"q is chosen for two (distinct) primes of same bit length such that » >
2. Then, there are two different ways of generating public/private exponents.
The first one imposes the condition ed = 1 mod (p — 1)(¢ — 1) while the other
ed =1mod ¢(N), where ¢(N) = p"~!(p —1)(¢ — 1). Decryption of a ciphertext
¢ is computed more efficiently using simply a combination of Hensel lifting and
Chinese Remainder Theorem modulo p” and ¢ (see [21] for details).

For the multi-power RSA variant when exponents are generated modulo
(N, Takagi proved in [21] that if d < N7 then N can be factored. This was

. (7.71)2
later improved by May in [I8] to d < max{N (~+D? N -+1? } Recently, Sarkar
[20] improved this bound even further for » < 5 and showed in particular that if
d < N939% and r = 2, then N can be factored efficiently. Thereafter, Lu et al.

[I7] improved Sarkar’s result for » > 4. Their attack works when the unknown
r(r—1)

part d of d (it may be all of d or an MSB/LSB part of it) satisfies d < N +D? .

In [13], a small private exponent attack is shown for the case when exponents

are generated modulo (p—1)(¢—1). This attack shows that N can be factored if
-va

d < N=T, Later, the idea of this work is used in [I2] for partial key exposure

attacks. For instance, for r =2 and e & N %, it is shown that N can be factored



in any of the following conditions:

y< & -1y % — 39 if MSBs or middle bits are known,
or y<2-2 # -3 if LSBs are known,

where d ~ N? and the unknown part of d is approximately N7. Note that their
attacks do not work when d is of full size modulo (p —1)(q — 1) (i.e., d ~ N3).

Our Contribution. In this paper, we provide a new partial key exposure attack
on multi-power RSA when the exponents are generated modulo ¢(N). The attack
basically uses partial knowledge of LSBs and works for all e (resp. d) when the
exponent d (resp. e) has full size bit lengthﬂ More concretely, we prove the
following theorem which generalizes Sarkar’s result [20].

Theorem 1. Let r > 2 be an integer and N = p"q be a multi-power RSA
modulus, where p and q are distinct primes with the same bit size (i.e., p,q =
Nﬁ) Suppose that ed = 1 mod ¢(N) with e ~ N* and d ~ NP®. Suppose
further that an attacker obtains an LSB part dy of d, where dg > N° for some
§ € R2Y. Then under Assumption |1}, there exists an algorithm which finds the
prime factors of N in polynomial time in log N provided that

p(lr’/B’Oé75) < 0?
where p is a function of v, B, a and 6.

We show the improvement of our attack over Sarkar’s result in Figure [1] for the
case r = 2. Light grey area (indicated by “Sarkar’14”) shows the attack region
by [20] and darker grey areas are the applicable regions of our attack.

Organization of the paper. In Section[2] we give preliminaries about lattices.
In Section [3] we prove our main result, Theorem |1} extending the result of [20].
Section {4] demonstrates several experiments justifying our claims for the multi-
power RSA moduli of length 1024 or 2048 bits. We conclude the paper in Section
and argue the improbability of using our attack for known MSBs by addressing
an issue in [12].

2 Preliminaries

In this section, we give basic definitions and theorems about lattices. Let v =
(ag, -+ ,as) be a vector in R¥*! for some s > 0. We use the Euclidean norm |||
of v

3 This rule is induced by the condition that ed = 1 mod ¢(N).
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Fig. 1. The relation between the sizes of e (resp. d) and the fraction of the part of d
required to be known.

For a multivariate polynomial f, the norm ||f|| of f is the Euclidean norm
of its coefficient vector. Let vy, , v, € R™ be a set of R-linearly independent
vectors with w,m € N>% and w < m. Then, the lattice L generated by these
vectors is

L:={bjvi 4+ +byvy : b €Zforl <i<w}.

We always work on lattice having full rank, i.e. w = m. We denote dim(L) := w
for the dimension of L. Each lattice L can be represented by the following matrix
M € GL(w,R):

(%1

UV

We denote det(L) for the determinant of L. We have det(L) = det(M) for a
full rank lattice L.

In this work, the main goal is to find small vectors in such full lattices.
Computational complexity of finding the smallest vector in a lattice increases
exponentially in dim(L). The reduction algorithm LLL introduced by Lenstra,
Lenstra and Lovész [16] is generally used in practice to have an efficient lattice
reduction technique for obtaining small enough basis vectors. The following the-
orem gives an upper bound on the norm of the reduced basis vectors output by
the LLL algorithm.



Theorem 2. Let L be a lattice with dim(L) = w as above. The LLL algorithm
produces a set of reduced basis vectors {Ry,- -+ , Ry} such that

w(w—1)
||R1H§2W1—1»)det([1)ﬁ

The computational complexity of the LLL algorithm is polynomial in dim(L)
and in the maximal bitsize of an entry [19].

Coppersmith described methods for finding small roots of univariate and
bivariate polynomials [4J56]. The methods can be extended to the polynomials
having more variables, but the results become heuristic. Howgrave-Graham [11]
reformulated these results and proved the following theorem:

Theorem 3 (Howgrave-Graham’s Theorem, [11]).

Let f(x1, -+ ,xs) € Zlxy, - ,x4] be a polynomial for s > 1. Assume that the
number of monomials is less than or equal to w. If the following two conditions
hold:

1. M eZ*t and f(29,-- ,2%) =0 mod M for some |29 < X1,---,|2%] < X,
2' ||f(.T1X1, 7$SXS)|| < Mw)

0

2) is a root of f over Z.

then (29, |

After finding multivariate polynomials carrying a common root over integers,
we need to extract this root using Grébner basis computationﬁ Our main result
Theorem [1} is valid under the following assumption:

Assumption 1 Let fy,---, fr be the polynomials having the desired root over Z,
for k > 3 computed using LLL reduction. Furthermore, let I be the ideal gener-
ated by these polynomials. Then, the algebraic variety of I is zero-dimensional.
In particular, the common root can be extracted by computing a Grobner basis
on I.

Since our result in Theorem [T relies on this assumption, it is heuristic. However,
our experiments show that this assumption holds in general (see Section. The
computational complexity of a Grébner basis computation can be bounded by a
polynomial in log N assuming the number of variables and the maximal degree
of input polynomials is fixed [10].

3 An Attack with Known LSBs

In this section, we prove our main Theorem

Proof (Theorem . Multi-power RSA parameters satisfy the congruence ed =
1 mod ¢(N) with ¢(N) = (p" — p"~!)(q — 1). This implies the equation that
ed—1=k(p" —p"~1)(qg—1) for some k € Z. Since we know an LSB part of d,

4 Resultant computation could be another option as well, but it was less efficient for
our experiments.



we can write this as eMd 4+ edy — 1 = k(p" — p" 1) (g — 1) where d = dM + dy
and M is a power of 2. Hence, we have the following polynomial

fem(z,y,2) =edg —1—aN — 2y ' +ay" 'z +ay”

carrying the root (zo, yo, 20) = (k, p, ¢) modulo eM. It is easy to see that |xg| <
X = NotB=1 jy| < Y := N1 and |z0| < Z := N1 neglecting small
constants.

Let m,t1,t2 > 0 and define the following shift polynomials:

ik (@, 2) = yP TN (2,y, 2),

where i =0,---,m,j=1,--- m—iand k=j,---,j+2r —2,
giaoyk(aj’ Y, Z) = ykztlféM(xvyv Z)7

where 1 =0,--- ,mand k=0,--- 5.

Recall that yjzo = N. Hence, we replace every occurrence of y"z with N in
the shift polynomials. Denote new polynomials by ggﬁjk(az,y,z). Observe that
choosing zy" as the leading monomial of f.)s, the leading monomials in gi kS

are of the form z' T yrFri=riyitti=l where | = min { | &£, j + ¢, }.

Algorithm 1 Generating the Lattice L
Input: r > 2; m,t1,t2 > 0 and fem (z,vy, 2)

G,H,Ord + 0
forie€ {0,1,--- ,m} do
for j € {1,2,--- ,m — i} do
forke {j,j+1,---,j+2r—2} do

Append (a:jykzj'*'tlfeiM}i) to G
I+ min{[ktMLj-i-tl}
Append zitiyktri=riitti—l ¢4 Ord

end for
end for
end for
for i € {0,1,--- ,m} do
for k € {0,1,--- ,t2} do

Append (y* 27T f1, i) to G
lemin{Lk+Tij,j+t1}

-
Append avi+-7‘yk+”"_”’zj+t1_l to Ord
end for
end for
for each element (g,4) in G do
Replace each occurrence of y"z with N in g
apy + a[l mod eM, where ay is the leading coefficient of g
Append (aj - g - (eM)™ ") to H
end for
i1
for each polynomial h(z,y, z) in H do
Set i-th row of L to the coefficient vector of h(zX,yY, 2Z) ordered w.r.t. Ord
Increment ¢
end for




Let ay denote the leading coefficient. Assuming ged(ag,eM) = 1, we can
multiply g ;& 'S with the inverse aj, of their corresponding leading coeﬂi(nent in
Z/(eM )mZ Flnally, the shift polynomials become

hi,j,k(xay7 Z) = a‘% ' gz{,j,k(x7y7 Z) ' (eM)m_l

which carry the root (zo, yo, 20) modulo (eM)™

We let the coefficient vectors of h; j i (2X,yY, 2Z) represent the basis vectors
of a lattice L. Generation of L is summarized in Algorithm

Note that each polynomial in H generated by Algorithm [I]introduces exactly
one new monomial, which is appended to Ord that defines the monomial order-
ing. Hence, the matrix representing the lattice is lower triangular when each row
is ordered with respect to Ord. As a result, the determinant of L is the product
of the diagonal entries of the representation matrix.

m m—ij+2r—2

det(L HH H Xitiyktrizrh gitti=h (o ym=

1=0 j=1 k=j

m  ta
« (H H Xiyk—i—ri—rlgztl—lg (eM)m—i> ,

i=0 k=0

where [; = min { [ktriJ,j + a} and [3 = min { L@J,a}. Letting s, sy, . and
Sem be the powers of X, Y, Z and eM in det(L), respectively, and denoting the
dimension of the lattice by w, we obtain

J+§:21+221

=0 j=1 1=0 k=0
m m—i m  ta 9% — 1 ¢
=YY )+ )Y i = T G o)
i=0 j=1 i=0 k=0
m m-—1t m iz 2% 1
seM:Z (2r—1)(m—i)+z (m—1i)= 3 +gm+ (m”)
=0 j=1 1=0 k=0
Assuming %2 <t1 <m, we get as an asymptotic result
m m—ij+2r—2 m  ta
syzzz (k+ri—rl) ZZ k+ri—rl)
i=0 j=1 k=j i=0 k=0

%

j=
1 /r2m3 ) 2t3
B frmt +rmt77+rmt2

w

t3
—2rmityty + rtity +mts — tita + ;) + o(m?)



m m—ij+2r—2 m  ta
%

Sz:Z (]'Jrfl*ll)JrZZ(tl*lQ)

=0 j=1 k=j i=0 k=0
1/ (r—1)2m?
5 <(T 32 mo (r —1)*m?ty 4+ rmt3
. 0 ,
_? tltg_T—i_ﬁ —|—0(m)

which are approximated as in [20].

Neglecting the low order terms as similarly done in related works, the conditions
in Theorem [2] and Theorem [3| can be simplified to det(L) < (eM)™™. In our
case, we need

sx(a+ﬁ—l)+(sy+sz)< )—l—(seM—wm)(a+5)<0.

r+1

to be satisfied. Plugging in the values for s;, sy, 5, and seas, we obtain a polyno-
mial p/(r, a, 8, ) with parameters ¢y, t5 and m. Let t; = 7ym and t5 = 7om, and
terms of o(m?3) contribute to an error term e. Next, we take the partial derivative

of p’ with respect to 71 and 75, and find the values making the derivatives zero to
. 201
obtain the maximum value of p’. Finally, for v := 8 —§, when 7| = 1—7#7«(1@

and

. L4+l =) —=r2(1+2y) +r(1L =) +2ry/r2(1 =) +r(1—29) + 1 — v
=
2r+2

both derivatives become zero. Plugging in these values in p’, we get a func-
tion p(r, o, 8,9). When the tuple (r, «, 8,0) satisfy p(r,a, 8,9) < 0, Howgrave-
Graham’s theorem is satisfied. We can extract the root (k,p,q) under Assump-
tion [I} and thus factor N in time polynomial in log V. ad

Remark 1. We note that our definition of shift polynomials is similar to the one
n [20]. The difference is that we work modulo eM instead of modulo e. Hence,
the constant coefficient of feps changes. Equating M = 1 (i.e., § = 0), we obtain
the result of Sarkar [20] as a corollary of Theorem

Unfortunately, the exact expression of p is too complicated to be stated here.
Thus, in Table [I| we provide some numerical values for § which yields p < 0
when S is fixed to 1. We remind that for » = 2 new attack regions are given in
Table [[] when either d or e is full-sized.

4 Experimental Results

In this section, we provide various experimental results. In all of our experi-
ments, we fix d to be full-sized (i.e., 8 = 1) which is mostly the case in real-life
applications. The values for p, ¢ and d are chosen randomly (or d is the inverse



smallest § value satisfying
p(ry<O0fora=1

smallest § value satisfying

p(r) <0fora=0

2 0.828 0.362
3 0.798 0.344
4 0.750 0.314
5 0.703 0.285
6 0.662 0.259
7 0.625 0.237

Table 1. Numerical values satisfying p < 0 for different  and « values where g = 1.

of 2'¢ +1 modulo ¢(IN)). The experiments are performed on Sage 6.5 running on
Ubuntu 14.04 LTS with Intel Core i7-3770 CPU at 3.40GHz and 16GB RAM.
Our results are given in Tables [2| and [3] In all of our experiments, Grobner
basis computation yields to a polynomial of the form y—p giving the factorization
of N. For the case when ov = = 1 (which is illustrated in Table , we would
like to highlight that our result in a case is better than the theoretical bound
§ > 0.828. However, when e is chosen small (e.g., e = 2'¢ 4+ 1), the modulus eM
becomes very small when compared to the case o = 8 = 1. Therefore, the low
order terms ignored to simplify the condition to det(L) < (eM)"™ have much
higher effect in this case. Thus, the results are a little bit worse than the best
possible bound of Theorem

LLL time | Grobner Basis
r m t1 t2 w ] .
(secs) time (secs)

2 6 4 7 119 0.870 1930.21 3.00

2 7 4 8 156 0.860 6517.26 67.99

2 8 4 7 180 0.850 19619.96 1227.18
2 8 5 9 198 0.835 28684.34 358.80

2 9 5 9 235 0.830 63748.97 635.33

2 9 5 10 | 245 0.823 67480.18 149.56

3 7 4 9 220 0.952 26671.68 7358.66
2 [ 8 [ 5 | 9 [ 198 ] 0840 90981.76 |  2246.77

Table 2. Experimental results for &« = f = 1. n = 2048 bits for the last row and

n = 1024 bits for the rest.

5 Conclusion and Discussion

In this paper, we show a new partial key exposure attack on multi-power RSA,
where N = p"q. The attack takes advantage of known LSBs. Our result in The-
orem [I| generalizes the work of Sarkar [20]. Moreover, we provide experimental



LLL time | Grobner Basis

r m t1 to w 1) .

(secs) time (secs)
2 8 3 2 135 0.520 21234.57 4114.00
2 8 3 2 135 0.510 19082.57 4280.77
2 9 3 3 175 0.500 48950.79 9134.06
2 10 3 2 198 0.485 84090.70 15927.35
3 9 3 3 265 0.510 148030.34 56230.82
2 10 3 2 198 0.500 203293.58 45573.57
2 10 3 2 198 0.490 185964.22 40817.77

Table 3. Experimental results for e = 2'® + 1, 8 = 1. n = 2048 bits for the last two
rows and n = 1024 bits for the rest.

results justifying our claims. Our attack even works in the case when e,d ~ N.
In fact, our experimental result is better than the theoretical bound for this case.
This paves the way for a further study: investigating sublattices of the original
lattice to improve the theoretical bound. However, this is a hard task because
in this case the lattice will not be of full rank and calculating the determinant
gets complicated.

One may wonder why our attack is not directly applicable to known MSBs
case. Suppose that we know an MSB part dy of d. Then, we obtain the equation

edgy + ed—1= k(p" — p’”*l)(q -1,

where d represents the unknown part of d. Considering this equation as a poly-
nomial, we get

F(w,z,y,2) =1 —edy —ew+x(N —y" —y" Lz 4+5y"1).

Now e, N or edy are possible choices of moduli. The case e is studied in [20]
where one cannot benefit from partial knowledge of d as it vanishes. If N is
chosen as the modulus, then the trick of replacing each term y"z with N and
finding its inverse cannot be applied. That leaves us with the option to choose
edy as the modulus. This case actually corresponds to finding a small root of
integer equations [4], not modular equations [5].

Observe that reducing F' modulo edy does not eliminate any variable. In
particular, Feq, and F' have the same monomials. Hence, the polynomials derived
from LLL may just be those of the form F - g; for nonzero polynomials g; not
carrying the desired root. More concretely, the attacker does not obtain any
additional information at all although LLL-reduced polynomials carry the root
since they have the factor F.

For a recent work, one may see Coron’s works [7I8] about methods to ensure
independence between the initial polynomial F' and the polynomials derived after
LLL reductimﬂ Unfortunately, the tricks used in this work cannot be directly
applied with Coron’s method. This issue raises questions about the validity of

® This independence is also ensured in Coppersmith’s method [4].



known MSBs attack shown in [I2]. The authors do not specify any methodology
guaranteeing the independence aforementioned. Their experiments for this case
are very far away from the new attack region described by Theorem 1 in their
paper. Moreover, the authors also state that in some experiments, they just veri-
fied that the LLL-reduced polynomials contain the root. As we explained earlier,
this does not have any implication for an attacker to be able to find the root.
Acknowledgments: Uzunkol’s research is supported by the project (114C027)
funded by EU FP7-The Marie Curie Action and TUBITAK (2236-CO-FUNDED
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