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Abstract

We show that the common proof technique of padding a circuit before
IO obfuscation is sometimes necessary. That is, assuming indistinguisha-
bility obfuscation (IO) and one-way functions exist, we define samplers
Sam0, which outputs (aux0, C0), and Sam1, which outputs (aux1, C1) such
that:

• The distributions (aux0, iO(C0)) and (aux1, iO(C1)) are perfectly dis-
tinguishable.

• For padding s = poly(λ), the distributions (aux0, iO(C0‖0s)) and
(aux1, iO(C1‖0s)) are computationally indistinguishable.

We note this refutes the recent “Superfluous Padding Assumption” of
Brzuska and Mittelbach[BM15].
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1 Introduction

Proofs of security for cryptographic constructions using indistinguishability ob-
fuscation (IO) typically show that the obfuscations of two circuits are indis-
tinguishable if those circuits are artificially padded to a larger size. This is a
consequence of the fact that IO guarantees indistinguishability of two obfus-
cated circuits only if the input circuits are of equivalent sizes. But because of
the ubiquitous hybrid argument style of proof, the two circuits must typically
be padded not only to the size of larger circuit, but rather to the size of the
largest circuit in the hybrid argument.

At this point, one may wonder whether this padding is an artifact of our
security proof, or whether it is really necessary. In this work, we show that
in the presence of arbitrary auxiliary information, there are distributions of
equally-sized pairs of circuits, whose obfuscations are indistinguishable only if
sufficiently padded.

1.1 Preliminaries

We assume familiarity with puncturable pseudorandom functions [BW13, BGI14].
In particular, we will use the fact that if one-way functions exist, then there is
a puncturable PRF family F = {Fλ}λ>0 in which each f ∈ Fλ maps {0, 1}λ to
{0, 1}.

We also assume the existence of an indistinguishability obfuscator [GGH+13].
This is a p.p.t. Turing machine iO such that:

• iO(C, 1λ) outputs a circuit which is functionally equivalent to C.

• If C and C ′ are two circuits of the same size and same functionality, then
the advantage of any p.p.t. adversary in distinguishing iO(C, 1λ) from
iO(C ′, 1λ) is negligible in λ .

We will frequently omit the security parameter 1λ as an argument of iO.
We will write C‖0s to denote a padded version of the circuit C, which is of

size |C|+ s.

1.2 Techniques

We want to show a pair of distributions (aux0, C0) and (aux1, C1) such that:

• (aux0, iO(C0)) is distinguishable from (aux1, iO(C1))

• For some padding p, (aux0, iO(C0‖0p)) is indistinguishable from (aux1, iO(C1‖0p)).

In our construction, C0 and C1 are defined simply as circuits which evaluate a
(puncturable) PRF. aux0 and aux1 are (sufficiently padded) obfuscated circuits,
each of which have this same PRF inside. auxb takes a “small” circuit as input,
and checks whether this circuit agrees with the PRF on a “large” set of test
inputs. If it does, then auxb outputs b. Otherwise, auxb outputs 0.
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“Small” and “large” are chosen so that the obfuscated C0 or C1 is small, but
not large.

The first bullet is easy; the slightly tricky part is to show that when C0 and
C1 are padded to be large (even before obfuscation is applied), then (aux0, iO(C0))
is indistinguishable from (aux1, iO(C1)). We show this in a three-step hybrid
argument, starting with (auxb, iO(Cb)) for arbitrary b.

1. The PRF in auxb and in Cb is punctured on the whole set of test inputs, and
the corresponding test values are hard-coded. This is indistinguishable by
iO.

2. These test values are replaced by truly random bits. This is indistinguish-
able by the puncturable PRF security.

3. Now there statistically does not exist any small circuit which agrees with
all the test values. So auxb is replaced by the obfuscated all zero function,
which is indistinguishable by iO.

This last hybrid distribution on (auxb, iO(Cb)) is independent of the bit b.

1.3 Related Work

We note a similarity between our work and the previous work of Goldwasser
and Kalai [GK05], which amongst other things shows the impossibility of VBB-
obfuscating pseudorandom functions given auxiliary information. They use the
fact that oracle access to a pseudo-entropic circuit C, does not reveal how to
find a small circuit that agrees with C. In particular, suppose one is given an
obfuscated circuit which tests whether a (small) input circuit agrees with C,
and if so outputs a secret bit b. Now one can compute the bit b given any
obfuscation of C, but not given black-box access to C.

Our result modifies this argument to assume only that the underlying ob-
fuscators are indistinguishability obfuscators instead of VBB obfuscators. We
show that one can compute the bit b given any sufficiently small obfuscation
of C (i.e. iO(C)), but not given an obfuscation of a functionally equivalent C ′

which has been padded to be larger (i.e. iO(C‖0s)).
In personal communication, Nir Bitansky points out that the results of

[BCC+14] may yield an alternative proof of our result, and that ordinary PRFs
(not necessarily puncturable) and witness encryption (which is implied by IO)
suffice to prove our main result.

2 Main Result

We now prove our main result more formally. Let q be a polynomial such that
q(λ) bounds the size of iO(f, 1λ), when f is sampled from the punctural PRF
family Fλ.

We now define a pair of algorithms (Sam0,Sam1). Samb will output a pair
(auxb, Cb). The algorithm Samb(1

λ) first samples a puncturable PRF f ← Fλ.
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Samb first computes auxb ← iO(Ab,f ), where Ab,f is described in Algorithm 1,
and Samb then computes Cb = Bf , where Bf is described in Algorithm 2.

Input: Circuit C of size q(λ)
Data: Bit b, PPRF f

1 if C(i) = f(i) for all i ∈ {0, . . . , q(λ) + λ} then
2 return b
3 else
4 return 0
5 end

Algorithm 1: Circuit Ab,f

Input: x ∈ {0, 1}λ
Data: PPRF f

1 return f(x).

Algorithm 2: Circuit Bf

Claim 1. The distributions (aux0, iO(C0)) and (aux1, iO(C1)) are perfectly dis-
tinguishable when (auxb, Cb)← Samb(1

λ).

Proof. auxb computes the same function as Ab,f and Cb is Bf . The claim follows
simply because Ab,f (iO(Bf )) = Ab,f (Bf ) = b.

Claim 2. For some padding pb, the distributions (aux0, iO(C0‖0pb)) and (aux1, iO(C1‖0pb))
are computationally indistinguishable when (auxb, Cb)← Samb(1

λ).

Proof. Let pb be padding so that
∣∣Bf‖0pb ∣∣ = |B1

f |, where B1
f is described in

Algorithm 4. We define three indistinguishable hybrid distributions H1
b through

H3
b such that:

• H1
b is indistinguishable from (auxb, iO(Cb‖0pb)) when (auxb, Cb)← Samb(1

λ).

• H3
b is independent of b.

Hybrid H1
b : Hybrid H1

b is sampled by first sampling a PPRF f ← Fλ, and
puncturing it on the set {0, . . . , q(λ) + λ} to obtain the punctured PRF f ′. Let
yi = f(i) for i ∈ {0, . . . , q(λ) + λ}.

H1
b then consists of (iO(A1

b,f ), iO(B1
f )). The circuit A1

b,f is described in
Algorithm 3, with the values yi hard-coded, and is padded to be as large as
Ab,f . The circuit B1

f is described in Algorithm 4, with the PPRF f ′ and the
values yi hard-coded.

Hybrid H2
b : Hybrid H2

b is sampled identically to H1
b , but each yi is sampled

uniformly at random.
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Input: Circuit C of size q(λ)
Data: Bit b, values yi

1 if C(i) = yi for all i ∈ {0, . . . , q(λ) + λ} then
2 return b
3 else
4 return 0
5 end

Algorithm 3: Circuit A1
b,f

Input: x ∈ {0, 1}λ
Data: Punctured PPRF f ′, values yi for i ∈ {0, . . . , q(λ) + λ}

1 if x ∈ {0, . . . , q(λ) + λ} then
2 return yx;
3 else
4 Return f ′(x);
5 end

Algorithm 4: Circuit B1
f

Hybrid H3
b : In hybrid H3

b , the circuit A1
b,f is replaced with the constant zero

function, appropriately padded.

Claim 3. H1
b ≈ Samb(1

λ).

Proof. This follows from the security of iO: the obfuscated circuits have the
same functionality and size in both H1

b and Samb(1
λ).

Claim 4. Hybrid H2
b ≈ H1

b .

Proof. This follows from the pseudorandomness of the punctured PRF f ′ at the
(selectively) punctured set {0, . . . , q(λ) + λ}.

Claim 5. Hybrid H3
b ≈ H2

b .

Proof. This follows from the security of iO. A simple counting argument implies
that with high probability (at least 1 − 2−λ), there is no circuit C of size q(λ)
such that C(i) = yi for all i ∈ {0, . . . , q(λ) + λ}. Thus the circuit A1

b,f with
truly random yi’s is functionally equivalent to the constant zero circuit with
high probability.

This completes the proof of Claim 2.
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3 Extensions

3.1 Variants of the Superfluous Padding Assumption

One possible restriction on Sam0 and Sam1, proposed by [BM15] as a weaker
assumption, requires the marginal distribution of aux0 to be the same as the
marginal distribution of aux1. While this does not hold for our counterexample,
it can be easily modified to have this property. Rather than having auxb output
the bit b, auxb outputs a random string r. On input r, Cb outputs b.

The proof techniques above, when applied to this modified construction,
show how to move to a hybrid where auxb is independent of r. We can then
apply a standard injective PRG trick to make Cb independent of r and of b.

3.2 Implication About Double Obfuscation

The necessity of superfluous padding implies a surprising result. If iO in-
creases the size of circuits, then there are efficiently sampleable distributions
on (aux0, C0) and (aux1, C1) such that (aux0, iOk(C0)) is indistinguishable from
(aux1, iOk(C1)) for some integer k > 1, but (aux0, iO(C0)) is perfectly dis-
tinguishable from (aux1, iO(C1)). This follows from our construction of Sam0

and Sam1 because the inner k − 1 obfuscations are functionally equivalent to
padding.
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