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Abstract. Garbled circuits is a cryptographic technique, which has been used among other things for the con-

struction of two and three-party secure computation, private function evaluation and secure outsourcing. Garbling

schemes is a primitive which formalizes the syntax and security properties of garbled circuits. We de�ne a gener-

alization of garbling schemes called reactive garbling schemes. We consider functions and garbled functions taking

multiple inputs and giving multiple outputs. Two garbled functions can be linked together: an encoded output of

one garbled function can be transformed into an encoded input of the other garbled function without commu-

nication between the parties. Reactive garbling schemes also allow partial evaluation of garbled functions even

when only some of the encoded inputs are provided. It is possible to further evaluate the linked garbled functions

when more garbled inputs become available. It is also possible to later garble more functions and link them to

the ongoing garbled evaluation. We provide rigorous de�nitions for reactive garbling schemes. We de�ne a new

notion of security for reactive garbling schemes called con�dentiality. We provide both simulation based and in-

distinguishability based notions of security. We also show that the simulation based notion of security implies

the indistinguishability based notion of security. We present an instantiation of reactive garbling schemes. We

present an application of reactive garbling schemes to reactive two-party computation secure against a malicious

adversary. We demonstrate how garbling schemes can be used to give abstract black-box descriptions and proof of

several advanced applications of garbled circuits in the literature, including Minilego and Lindell’s forge-and-loose

technique.



1 Introduction

Garbled circuits is a technique originating in the work of Yao and later formalised by Bellare, Hoang and

Rogaway[3], who introduce the notion of a garbling scheme along with an instantiation. Garbled circuits

have found a wide range of applications. However, many of these applications are using speci�c construc-

tions of garbled circuits instead of the abstract notion of a garbling scheme. One possible explanation is

that the notion of a garbling scheme falls short of capturing many of the current uses. In the notion of a

garbling scheme, the constructed garbled function can only be used for a single evaluation and the gar-

bled function has no further use. In contrast, many of the most interesting current applications of garbled

circuits have a more granular look at garbling, where several components are garbled, dynamically glued

together and possibly evaluated at di�erent points in time. We now give a few examples of this.

In [20] Lindell presents a very e�cient protocol for achieving active secure two-party computation

from garbled circuits. In the scheme of Lindell, �rst s circuits are sent. �en a random subset of them

are opened up to test that they were correctly constructed and the rest, the so-called evaluation circuits,

are then evaluated in parallel. If they don’t all give the same output, then the evaluator can construct a

certi�cate of cheating which can be fed into a small corrective garbled circuit. Another example is a tech-

nique introduced simultaneously by Krater, shelat and Shen[18] and Frederiksen, Jakobsen and Nielsen [7],

where a part of the circuit which checks the so-called input consistency of one of the parties is constructed

a�er the main garbled circuit has been constructed and a�er Alice has given her input. We use a similar

technique in our example application, showing that this trick can be applied to (reactive) garbling schemes

in general. Another example is the work of Huang, Katz, Kolesnikov, Kumaresan and Malozemo�[16] on

amortising garbled circuits, where one of the analytic challenges is a se�ing where many circuits are

garbled prior to inputs being given. Our security notion allows this behaviour and this part of the their

protocol could therefore be cast as using a general (reactive) garbling scheme. Another example is the work

of Huang, Evans, Katz and Malka[15] on fast secure two-party computation using garbled circuits, where

they use pipelining: the circuit is garbled and evaluated in blocks for e�ciency. Finally, we remark that

sometimes the issue of garbling many circuits and gluing them together and having them interact with

other security components can also lead to subtle insecurity problems, as demonstrated by the notion of

a garbled RAM as introduced by Lu and Ostrovsky in [22], where the construction was later proven to be

insecure by Gentry, Halevi, Lu, Ostrovsky, Raykova and Wichs[12]. We believe that having well founded

abstract notions of partial garbling and gluing will make it harder to overlook security problems.

Our goal is to introduce a notion of reactive garbling scheme, which is general enough to capture the

use of garbled circuits in most of the existing applications and which will hopefully form a foundation for

many future applications of garbling schemes. Reactive garbling schemes generalize garbling schemes in

several ways. First of all, we allow that a garbled evaluation can save a state and use it in further operations.

Speci�cally, when garbling a function f one can link it to a previous garbling of some function д and as a

result get a garbling of f ◦д. Even more, given two independent garblings of f and д, it is possible to do a

linking which will produce a garbling of f ◦д orд◦ f . �e linking depends only on the output encoding and

input encoding of the linked garblings. We also allow garbling of a single function which allows partial

evaluation and which allows dynamic input selection based on partial outputs. �is can be mixed with

linking, so that the choice of which functions to garble and link can be based on partial outputs. �is can

be important in reactive secure computation which allow inputs to arrive gradually and allow branching

based on public partial outputs. We introduce the syntax and security de�nitions for this notion. We give an

instantiation of reactive garbling schemes in the random oracle model. We also demonstrate the usefulness

of reactive garbling schemes by giving various applications. We construct a reactive, maliciously UC secure

two-party computation protocol. We also describe Lindell’s reduced circuit optimization by using reactive
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garbling schemes. �ese two constructions use reactive garbling schemes in a black-box manner. We also

describe the minilego garbling procedure as a reactive garbling scheme.

1.1 Discussion and Motivation

In this section, we describe why certain design choices were made for this framework in this paper. In

particular, why did we include notions such as linking multiple output wires to a single input wire, partial

evaluation and output encoding.

�e reason that we allow multiple output wires to link to a single input wire is that otherwise we would

exclude important constructions such as Minilego [8] and Lindell’s reduced circuit optimization [20].

Output encodings are important for many reasons. First, it provides a method for de�ning linking.

Roughly because of this notion, it is easy to de�ne a linking as information which allows an encoded

output to be converted into an encoded input. Secondly, in certain cases, constructions based on garbling

schemes require special property of the encoded output which otherwise cannot be described. �is is the

case of [13] where the encoded input has to be the same size as the encoded output. It is also useful for

output reuse. It also covers pipelining and also has applications to protocols where the receiver can use a

proof of cheating to extract the sender’s input.

We included partial evaluation for two main reasons, �rst we consider that it can be an important fea-

ture for reactive computation, secure outsourcing and secure computation where a partial output would be

valuable, to for instance determine the what future computation to garble based on a conditional state with

public outcome. In addition, many schemes in the literature inherently allow partial evaluation and not

allowing partial evaluation imposes arti�cial restrictions on the constructions. For example, �ne-grained

privacy in [2] cannot be realized by standard schemes precisely because those schemes give out partial

outputs.

1.2 Recasting Previous Constructions

�e concept of using output encoding and linking has been implicitly used in many previous works. In

particular, it has been used to enforce sender input consistency and prevent selective failure a�acks. �ese

concepts have also been used for di�erent optimization. Pipelining and output reuse are an example of

direct optimizations. Linking has also been employed to reduce the number of circuits to be communicated

in protocols that apply cut-and-choose at the circuit level. �is is done by adding a phase where a receiver

can extract the input of a cheating sender. Another example is gate soldering. �is technique works by

employing cut-and-choose at the gate level. �e gates are then randomly split among di�erent buckets

and soldered together. �is optimization allows to reduce the replication factor from a security parameter

	(s ) to 	( s
log(n) ) where n is the number of non-xor gates. �ere are many applications that bene�t from

output encoding and linkings in garbling schemes. In addition, if we allow sequences where the input to

be chosen as a function of the garbling. Reactive garbling schemes are also adaptive.

1.3 Structure of the paper

In section 2, we give the preliminaries. In section 3, we de�ne the syntax and security of reactive garbling

schemes. In section 4, we describe an instantiation of a reactive garbling scheme. In section 5, we give an

intuitive description of the reactive two-party computation protocol based on reactive garbling schemes.

In Appendix A, we provide a full description of the reactive two-party computation protocol. In Ap-

pendix B, we give a visual description of the reactive garbling scheme. In Appendix C, we demonstrate
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the security of our reactive computation protocol. In Appendix D, we give a full description of the re-

active garbling scheme. In Appendix E, we prove security of our reactive garbling scheme using the in-

distinguishability based notion of security. In Appendix F, we recast Lindell’s construction using reactive

garbling schemes. In Appendix G, we describe Minilego’s garbling and soldering as a reactive garbling

scheme. In Appendix H, we prove security of our garbling scheme using the simulation based de�ntion

of con�dentiality. We also show that simulation based de�nition implies the indistinguishability based

de�ntion of security.

2 Preliminaries

Let N be the set of natural numbers. For n ∈ N, let {0,1}n be the set of n-bit strings. Let {0,1}∗ = ∪
n∈N
{0,1}n .

We use > and ⊥ as the syntax for true and false and we assume that >,⊥ < {0,1}∗. We use () to denote

the empty sequence. For a sequence σ we use x ∈ σ to denote that x is in the sequence. When we iterate

over x ∈ σ in a for-loop we do it le� to right. For a sequence σ and an element x we use σ ‖ x to denote

that we append x to σ . We use ‖ to denote concatenation of sequences. When unambiguous, we also use

juxtaposition for concatenating and appending. We use x � X to denote sampling a uniformly random x
from a �nite set X . We use [A] to denote the possible legal outputs of an algorithm A. �is is just the set

of possible outputs, with ⊥ removed.

rule Example
on (7,x1) from A
on x2 from B
x ← ()
x ← x ‖ x1 ‖ x2

z ← 0

for y ∈ (1,2,4) do
if z ≥ y then abort
z ← z + y

send x to A

Fig. 1. A rule

We prove security of protocols in the UC framework and we assume

that the reader is familiar with the framework. When we specify entities

for the UC framework, ideal functionalities, parties in protocol, adversaries

and simulators we give them by a set of rules of the form Example (which

sends (x1,x2) to the adversary in its last line). A line of the form “sendm
to F .R”, where F is another entity and R the name of a rule, the entity

will send (R,id,m) to F , where id is a unique identi�er of the rule that

is sending, including the session and sub-session identi�er, in case many

copies of the same rule is currently execution. We then given (R,id,?) to the

adversary and let the adversary decide when to deliver the message. When

a message of the form (R,id,m) arrives from an entity A, the receiver stores

(R,A,id,m) in a pool of pending messages and turns the activation over to

the adversary. A line of the form “on P from A” executed in a rule named R

running with identi�er id and where P is a pa�ern, is executed as follows.

�e entity executing the rule stores (R,A,id,P ) in a pool of pending receives

and turns over the activation to the adversary. We say that a pending message (R,A,id,m) matches pending

receive (R,A,id,P ) if m can be parsed on the form P . Whenever an entity turns over the activation to the

adversary it sends along (R,A,id,?) for all matched (R,A,id,P ). �ere is a special procedure Initialize
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which is executed once, when the entity is created. All other rules begin with an on-command. �e rule

is considered ready for id if the �rst line is of the form “on P from A” and (R,A,id,P ) is matched and the

rule was never executed with identi�er id . In that case (R,A,id,P ) is consider to be in the set of pending

receives. If the adversary sends (R,A,id,?) to an entity that has some pending receive (R,A,id,P ) matched

by some pending message (R,A,id,m), then the entity parsesm using P and starts executing right a�er the

line “on P from A” which added (R,A,id,P ) to the list of pending receives. A line of the form “await P”

where P is a predicate on the state of the entity works like the on-command. �e line turns activation over

to the adversary along with an identi�er, and the entity will report to the adversary which predicates have

become true. �e adversary can instruct the entity to resume execution right a�er any “await P” where P
is true on the state of the entity. If an entity executes a rule which terminates, it turns the activation over

to the adversary. �e keyword abort makes an entity terminate and ignore all future inputs. A line of the

form “verify P” makes the entity abort if P is not true on the state of the entity. We use A to denote the

adversary and Z to denote the environment. A line of the form “on P” is equivalent to “on P from Z”.

When specifying ideal functionalities we use Corrupt to denote the set of corrupted parties.

We de�ne security of cryptographic schemes via code-based games [4]. �e game is given by a set of

procedures. �ere is a special procedure Initialize which is called once, as the �rst thing in the game.

�ere is another special procedure Finalize which may be called by the adversary. �e output is true or

false, > or ⊥, where > indicates that the adversary won the game. In between Initialize and Finalize,

the adversary might call the other procedures at will. �e other procedures might also output ⊥ or > at

which point the game ends with that output. Oher outputs go back to the adversary.

3 Syntax and Security of Reactive Garbling Schemes

Gradual Functions We �rst de�ne the notion of a gradual function. A gradual function is an extension of

the usual notion of a function f : A1 × · · · ×An → B1 × · · · × Bm , where we allow to partially evaluate the

function on a subset of the input components. Some output components might become available before

all input components have arrived. We require that when an output component has become available, it

cannot become unavailable or change as more input components arrive. We also require that the set of

available outputs depends only on which inputs are ready, not the exact value of the inputs. �e access

function will be the function describing which outputs are available when a given set of inputs are ready.

We will use ⊥ to denote that an input is not yet speci�ed and that an output is not yet available. We

therefore require that ⊥ is not a usual input or output of the function. We now formalise these notions.

For a function f : A1 × · · · × An → B1 × · · · × Bm we use the following notation. f .n := n and f .m := m,

f .A := A1 × · · · ×An , f .B := B1 × · · · × Bm , and f .Ai := Ai and f .Bi := Bi .

De�nition 1. We use component to denote a set C = {0,1}` ∪ {⊥} for some ` ∈ N, where ⊥ < {0,1}∗. We
call ` the length of C and we write len(C ) = `. Let C1, . . . ,Cn be components and let x ′,x ∈ C1 × · · · ×Cn .

– We say that x ′ is an extension of x , wri�en x @ x ′ if xi , ⊥ implies that xi = x ′i for i = 1, . . . ,n.
– We say that x and x ′ are equivalently unde�ned, wri�en x ./ x ′, if for all i = 1, . . . ,n it holds that xi = ⊥

i� x ′i = ⊥.

De�nition 2 (Gradual Function). Let A1, . . . ,An ,B1, . . . ,Bm be components and let f : A1 × · · · ×An →

B1 × · · · × Bm . We say that f is a gradual function if it is monotone and variable de�ned..

– It is monotone if for all x ,x ′ ∈ A1 × · · · ×Am it holds that x @ x ′ implies that f (x ) @ f (x ′).
– It is variable de�ned if x ./ x ′ then f (x ) ./ f (x ′).
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We say that an algorithm computes a gradual function if it computes f : A1 × · · · ×An → B1 × · · · × Bm in

the usual sense, i.e., on all inputs x ∈ A1 × · · · × Am it accepts with output f (x ) and on all other inputs it

rejects.

De�nition 3 (Access Function).�e access function of a gradual function f : A1×· · ·×An → B1×· · ·×Bm
is a function access( f ) : {⊥,>}n → {⊥,>}m de�ned as follows. For j = 1, . . . ,m, let qj : Bj → {⊥,>} be
the function where qj (⊥) = ⊥ and qj (y) = > otherwise. Let q : B1 × · · · × Bm → {⊥,>}

m be the function
(y1, . . . ,ym ) 7→ (q1 (y1), . . . ,qm (ym )). For i = 1, . . . ,n, let pi : {⊥,>} → Ai be the function with pi (⊥) = ⊥
and pi (>) = 0

len(Ai ) . Let p : {⊥,>}n → A1 × · · · × An be the function (x1, . . . ,xn ) 7→ (p1 (x1), . . . ,pn (xn )).
�en access( f ) = q ◦ f ◦ p.

De�nition 4 (Gradual functional similarity). Let f ,д be gradual functions. We say that f is similar to
д (f ∼ д) if f .n = д.n, f .m = д.m, f .A = д.A, f .B = д.B and access( f ) = access(д).

In the following, if we use a function at a place where a gradual function is expected and nothing else is

explicitly mentioned, we extend it to be a gradual function by adding⊥ to all input and output components

and le�ing all outputs be unde�ned until all inputs are de�ned.

Syntax of Algorithms A reactive garbling scheme consists of seven algorithms G = (St,Gb,En, li,Ev,ev,De).
�e algorithms St, Gb and Li are randomised and the other algorithms are deterministic. Gradual functions

are described by strings f . We call f the original gradual function. For each such description, we require

that ev( f , ·) computes some gradual function ev( f , ·) : A1 × · · · ×An → B1 × · · · × Bm . �is is the function

that f describes. We o�en use f also to denote the gradual function ev( f , ·).

– On input a security parameter k ∈ N the setup algorithm outputs a pair of parameters (sps,pps) ←
St(1k ), where sps ∈ {0,1}∗ is the secret parameters and pps ∈ {0,1}∗ is the public parameters. All other

algorithms will also receive 1
k

as their �rst input, but we will stop writing that explicitly.

– On input f , a tag
1 t ∈ {0,1}∗ and the secret parameters sps the garbling algorithm Gb produces as

output a quadruple of strings (F ,e,o,d ), where F is the garbled function, e is the input encoding function,

d is the output decoding function, which is of the form d = (d1, . . . ,dm ), and o is the output encoding
function. When (F ,e,o,d ) ← Gb(sps, f ,t ) we use Ft to denote F , we use dt,i to denote the ith entry of

d , and similarly for the other components. �is naming is unique by the function-tag uniqueness and

garble-tag uniqueness conditions described later.

– �e encoding algorithm En takes input (e,t ,i,x ) and produces encoded input Xt,i .

– �e linking algorithm li takes input of the form (t1,i1,t2,i2,o,e ) and produces an output Lt1,i1,t2,i2 called

the encoded linking information. �ink of this as information which allows to take an encoded output

Yt1,i1 for Ft1
and turn it into an encoded input Xt2,i2 for Ft2

.

– �e garbled evaluation algorithm Ev takes as input a set F of pairs (t ,Ft ) where t is a tag and Ft a

garbled function (let T be the set of tags t occurring in F ), a set X of triples (t ,i,Xt,i ) where t ∈ T ,

i ∈ [Ft .n] and Xi,j , ⊥ is an encoded input, and a set L of tuples (t1,i1,t2,i2,Lt1,i1,t2,i2 ) with t1,t2 ∈ T
and i1 ∈ [Ft1

.m] and i2 ∈ [Ft2
.n] and Lt1,i1,t2,i2 , ⊥ an encoded linking information. It outputs a

set Y = {(t ,i,Yt,i )}t ∈T ,i ∈[Ft .m], where each Yt,i is an encoded output. It might be that Yt,i = ⊥ if the

corresponding output is not ready.

– �e decoding algorithm takes input (t ,i,dt,i ,Yt,i ), and produces a �nal output yt,i . We require that

De(·, ·, ·,⊥) = ⊥. �e reason for this is that Yt,i = ⊥ is used to signal that the encoded output cannot be

1
Some of the algorithms will take as input values output by other algorithms. To identify where these inputs originate from we

use tags.
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computed yet, and we want this to decode to yt,i = ⊥. We extend the decoding algorithm to work on

sets of decoding functions and sets of encoded outputs, by simply decoding each encoded output for

which the corresponding output decoding function is given, as follows. For a set δ , called the overall
decoding function, consisting of triples of the form (t ,i,dt,i ), and a setY of triples of the form (t ,i,Yt,i ).
We let De(δ ,Y ) output the set of (t ,i,De(t ,i,dt,i ,Yt,i )) for which (t ,i,dt,i ) ∈ δ and (t ,i,Yt,i ) ∈ Y .

Basic requirements We require that f .n and f .m can be computed in linear time from a function description

f . We require that len( f .Ai ) and len( f .Bj ) can be computed in linear time for i = 1, . . . ,n and j = 1, . . . ,m.

We require that the same numbers can be computed in linear time from any garbling F of f . We �nally

require that one can compute access( f ) in polynomial time given a garbling F of f . We do not impose the

length condition and the nondegeneracy condition from [3], i.e., e and d might depend on f . Our security

de�nitions ensures that the dependency does not leak unwarranted information.

Projective Schemes Following [3] we call a scheme projective (on input component i) if allX ∈ [En(e,t ,i,x )]
are of the form (X1,0,X1,1, . . . ,Xc,0,Xc,1), where c = len( f .Xi ), and En(e,t ,i,x ) = (X1,x1

. . . ,Xc,xc ). �is

should hold for all k , f , t , `, x ∈ {0,1}c and (sps,pps) ∈ [St(1k )] and (F ,e,o,d ) ∈ [Gb(sps, f ,t , `)]. As in [3]

being projective is de�ned only relative to the input encodings. One can de�ne a similar notion for output

decodings. Having projective output decodings is needed for capturing some applications using reactive

garbling scheme, for instance [20].

Correctness To de�ne correctness, we need a notion of calling the algorithms of a garbling scheme in a

meaningful order. For this purpose, we de�ne a notion of garbling sequence σ . A garbling sequence is a se-

quence of garbling commands, each command has one of the following forms: (Func, f ,t ), (Link,t1,i1,t2,i2),
(Input,t ,i,x ), (Output,t ,i ), (Garble,t ). In the rest of the paper, we will use σ to refer to a garbling sequence.

A garbling sequence is called legal if the following conditions hold.

Function uniqueness σ does not contain distinct commands (Func, f1,t ) and (Func, f2,t ).
Garble uniqueness Each command (Garble,t ) occurs at most once in σ .

Garble legality If (Garble,t ) occurs in σ , it is preceded by (Func, ·,t ).
Linkage legality If the command (Link,t1,i1,t2,i2) occurs in σ , then the command is preceded by com-

mands of the forms (Func, f1,t1), (Garble,t1), (Func, f2,t2) and (Garble,t2), and 1 ≤ i1 ≤ f1.m, 1 ≤ i2 ≤
f2.n and f1.Bi1 = f2.Ai2 .

Input legality If (Input,t ,i,x ) occurs in σ it is preceded by (Func, f ,t ) and (Garble, f ) and x ∈ f .Ai \{⊥}.

Output legality If (Output,t ,i ) occurs in a sequence it is preceded by (Func, f ,t ) and (Garble,t ) and

1 ≤ i ≤ f .m.

Note that if a sequence is legal, then so is any pre�x of the sequence. We call a garbling sequence illegal
if it is not legal. Since we allow to link several output components onto the same input component we have

to deal with the case where they carry di�erent values. We consider this an error, and to catch it we use

the following safe assignment operator.

(u ←↩ v ) :=




u ← Error if v = Error

u ← u if v = ⊥

u ← v if u = ⊥ ∨ u = v

u ← Error otherwise
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proc eval(σ ∈ L)
for (Func,t , f ) ∈ σ , do

ft ← f
for i = 1, . . . , ft .n do xt,i ← ⊥
for j = 1, . . . , ft .m do yt,j ← ⊥

for (Input,t ,i,x ) ∈ σ do xt,i ←↩ x
T ← ∅
repeat

U ← T
for (Func,t , f ) ∈ σ do

(yt,1, . . . ,yt,ft .m ) ← ft (xt,1, . . . ,xt,ft .n )

for (Link,t ,i1,t2,i2) ∈ σ do xt2,i2 ←↩ yt,i1
T ← {(t ,i,yt,i ) | t ∈ Tags(σ ),i = 1, . . . , ft .m}

until T = U ∨ (·, ·,Error) ∈ T
return T

Fig. 2. Plaintext evaluation

We now de�ne an algorithm eval, which takes as

input a legal garbling sequence σ and outputs a set of

tuples (t ,i,yt,i ), one for each command (Output,t ,i ),
where possiblyyt,i = ⊥. �e values are computed by

taking the least �x point of the evaluation of all the

gradual functions, see Figure 2. We call this the plain
evaluation of σ . We extend the de�nition of a legal

sequence to include the requirement that

Input uniqueness (·, ·,Error) < eval(σ ).

�erefore the use of the safe assignment in eval is

only to conveniently de�ne the notion of legal se-

quence. In the rest of the paper we assume that all

inputs to eval are legal. �e values yt,i , ⊥ are by

de�nition the values that are ready in σ , i.e., ready(σ ) = {(t ,i ) |∃(t ,i,yt,i ) ∈ eval(σ ) (yt,i , ⊥)}. Note that

since the gradual functions are variable de�ned, which outputs are ready does not depend on the values

of the inputs, except via whether they are ⊥ or not.

�e procedure Eval in Figure 3 demonstrates how a legal garbling sequence is intended to be trans-

lated into calls to the algorithms of the garbling scheme. We call the procedure executed by Eval garbled
evaluation of σ .

Lemma 1. For a function description f , let T ( f ) be the worst case running time of ev( f , ·). �e algorithm
eval will terminate in time poly(T |σ |(n +m)), where n = max(Func,t,f )∈σ f .n,m = max(Func,t,f )∈σ f .m, and
T = max(Func,t,f )∈σ T ( f ).

Proof. By monotonicity, if the loop in eval does not terminate, another variable yt,i has changed from ⊥

to , ⊥ and can never change value again. �is bounds the number of iterations as needed.

proc Eval(σ ∈ L)
for c ∈ σ do

if c = (Func,t , f ) then ft ← f ;

if c = (Garble,t ) then
(Ft ,et ,ot ,dt ) ← Gb(sps, ft ,t )
F ← F ‖ (t ,Ft )

if c = (Input,t ,i,x ) then
Xt,i ← En(et ,t ,i,x )
X ← X ‖ (t ,i,Xt,i )

if c = (Link,t1,i1,t2,i2) then
Lt1,i1,t2,i2 ← li(t1,i1,t2,i2,ot1

,et2
)

L ← L ‖ (t1,i1,t2,i2,Lt1,i1,t2,i2 )
if c = (Output,t ,i ) then

δ ← δ ‖ (t ,i,dt,i )
return De(δ ,Ev(F ,X,L))

Fig. 3. Garbled Evaluation

Side-Information Functions We use the same notion of side-

information functions as in [3]. A side information function

Φ maps function descriptions f into the side information

Φ = Φ( f ) ∈ {0,1}∗. Intuitively, a garbling of f should not

leak more than Φ( f ). �e exactly meaning of the side infor-

mation functions are given by our security de�nition. We

extend a side information function Φ to the set of garbling

sequences. For the empty sequence σ = () we let Φ(σ ) = ().

For a sequence σ , we de�ne the side-information as

Φ(σ ) := Φσ (σ ) where for a sequence σ̄ and a command

c: Φσ (σ̄ ‖ c ) = Φσ (σ̄ ) ‖ Φσ (c ), where Φσ (Func,t , f ) =
(Func,t ,Φ( f )), Φσ (Link,t1,i1,t2,i2) = (Link,t1,i1,t2,i2),
Φσ (Input,t ,i,x ) = (Input,t ,i, |x |), Φσ (Garble,t ) =

(Garble,t ) and Φσ (Output,t ,i ) = (Output,t ,i,yt,i ), where

yt,i is de�ned by eval(σ ).

Legal Sequence Classes We de�ne the notion of a legal sequence class L (relative to a given side-information

function Φ). It is a subset of the legal garbling sequences which additionally has these four properties:
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Monotone If σ ′ ‖ σ ′′ ∈ L, then σ ′ ∈ L.

Input independent If σ ′ ‖ (Input,t ,i,x ) ‖ σ ′′ ∈ L, then σ ′ ‖ (Input,t ,i,x ′) ‖ σ ′′ ∈ L for all x ′ ∈ {0,1} |x | .
Function independent If σ ′ ‖ (Func,t , f ) ‖ σ ′′ ∈ L, then σ ′ ‖ (Func,t , f ′) ‖ σ ′′ ∈ L for all f with Φ( f ′) =

Φ( f ).
Name invarariant If σ ∈ L and σ ′ is σ with all tags t replaced by t ′ = π (t ) for an injection π , then

σ ′ ∈ L.

E�cient Finally, the language L should be in P, i.e., in polynomial time.

It is easy to see that the set of all legal garbling sequences is a legal sequence class.

De�nition 5 (Correctness). For a legal sequence class L and a reactive garbling scheme G we say that
G is L-correct if for all σ ∈ L, it holds that De(Eval(σ )) ⊆ eval(σ ) for all choices of randomness by the
randomised algorithms.

Function Individual Garbled Evaluation �e garbled evaluation function Ev just takes as input sets of gar-

bled functions, inputs and linking information and then somehow produces a set of garbled outputs. It is

o�en convenient to have more structure to the garbled evaluation than this.

proc Ev(F ,X,L)
for (t ,F ) ∈ F do

Ft ← F
for i = 1, . . . ,Ft .n do Xt,i ← ⊥

for (t ,i,X ) ∈ X do Xt,i ← X
T ← ∅
repeat

U ← T
for (t ,Ft ) ∈ F do

(Yt,1, . . . ,Yt,Ft .m ) ← EvI(Ft , (Xt,1, . . . ,Xt,Ft .n ))
for (t ,i1,t2,i2,L) ∈ L do Xt2,i2 ← Li(L,Yt,i1 )
T ← {(t ,i,Yt,i ) | t ∈ Tags(σ ) ∧ i = 1, . . . ,Ft .m}

until T = U
return T

Fig. 4. Function Individual Evaluation

We say that garbled evaluation is function
individual if each garbled function F is evalu-

ated on its own. Speci�cally there exist deter-

ministic poly-time algorithms EvI and Li called

the individual garbled evaluation algorithm and

the garbled linking algorithm. �e input to EvI
is a garbled function and some garbled inputs.

For each �xed garbled function F with n = F .n
and m = F .m the algorithm computes a grad-

ual function EvI(F ) : A1 × · · · × An → B1 ×

· · · × Bm and (X1, . . . ,Xn ) 7→ EvI(F ,X1, . . . ,Xn ),
with access(EvI(F )) = access( f ), where f is the

function garbled by F . We denote the output by

(Y1, . . . ,Ym ) = EvI(F ,X1, . . . ,Xn ). �e intention

is that the Yj are garbled outputs (or ⊥). To say

that Ev has individual garbling we then require that it is de�ned from EvI and Li as in Figure 4.

Security of Reactive Garbling We de�ne a notion of security that we call con�dentiality, which uni�es

privacy and obliviousness as de�ned in [3]. �is is necessary since we envision protocols where the receiver

of the garbled functions might receive some of the decoding keys but not all of them. Obliviousness does

not cover this case, since the adversary has some of the decoding keys. It is not covered by privacy either,

as the receiver should not gain any information about outputs for which he does not have a decoding key.

De�nition 6 (Con�dentiality). For a legal sequence class L relative to side-information function Φ and a
reactive garbling schemeG, we say thatG is (L,Φ)-con�dential if for all PPTA it holds thatAdvadp.ind.con

G,L′,Φ,A (1k )

is negligible, where Advadp.ind.con

G,L′,Φ,A (1k ) = Pr[Gameadp.ind.con

G,L′,Φ,A (1k ) = >] − 1

2
and Gameadp.ind.con

G,L′,Φ is given in
Figure 5.
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proc Initialize()
b � {0,1}
σ0 ← ∅

σ1 ← ∅

proc Func( f0, f1,t )
for c ∈ {0,1} do σc ← σc ‖ (Func, fc ,t )
if f0 � f1 then return ⊥

proc Output(t ,i )
for c ∈ {0,1} do σc ← σc ‖ (Output,t ,i )
return dt,i

proc Input(t ,i,x0,x1)
for c ∈ {0,1} do σc ← σc ‖ (Input,t ,i,xc )
return En(et ,t ,i,xb )

proc Link(t1,i1,t2,i2)
for c ∈ {0,1} do σc ← σc ‖ (Link,t1,i1,t2,i2)
return li(t1,i1,t2,i2,ot1,i1 ,et2,i2 )

proc Finalize(b ′)
if b = b ′ ∧ Φ(σ0) = Φ(σ1) ∧ σ0 ∈ L then return >
else return ⊥

proc Garble(t )
for c ∈ {0,1} do σc ← σc ‖ (Garble,t )
(Ft ,et ,ot ,dt ) ← Gb(sps, ft ,t )
return Ft

Fig. 5. �e game Gameadp.ind.con

G,L,Φ (1k ) de�ning adaptive indistinguishability con�dentiality. In Finalize we check that σ0 ∈ L and

the adversary loses if this is not the case. It is easy to see that when L is a legal sequence class and Φ(σ0) = Φ(σ1), then σ0 ∈ L i�

σ1 ∈ L. We can therefore by monotonicity assume that the game returns ⊥ as soon as it happens that σc < L. We use a number

of notational conventions from above. Tags are used to name objects relative to σc , which is assumed to be legal. As an example,

in Garble(t ), the function ft refers to the function fc occurring in the command (Func, fc ,t ) which was added to σc in Func

by Garble Legality. For another example, the dt,i in Output(t ,i ) refers to the ith component of the dt component output by

Gb(sps, ft ,t ) in the execution of Garble(t ,π ) which must have been executed by Output Legality.

4 An Instantiation

We show that the instantiation of garbling schemes in [3] can be extended to a reactive garbling scheme in

the random-oracle (RO) model. We essentially implement the dual-key cipher construction from [3] using

the RO. To link a wire with 0-tokenT0 and 1-tokenT1 to an input wire with tokens I0 and I1, we provide the

linking information L0 = RO (T0)⊕ I0 and L1 = RO (T1)⊕ I1 in a random order with each value tagged by the

permutation bits of their corresponding input wires and output wires. Evaluation is done using function

individual evaluation. Evaluation of a single garbled circuit is done as in [3]. Evaluation of a linking is:

givenTb and a permutation bit, the bit is used to retrieve Lb from which Ib = Lb ⊕RO (Tb ) is computed. We

provide the details in the full version (see Appendix D) and its proof of security (see Appendix E). We use

the RO because reactive garbling schemes run into many of the same subtle security problems as adaptive

garbling schemes [2], which are conveniently handled by being able to program the RO. We leave as an

open problem the construction of (e�cient) reactive garbling schemes in the standard model.

5 Application to Secure Reactive Two-Party Computation

We now show how to implement reactive two-party computation secure against a malicious, static adver-

sary using a projective reactive garbling scheme. For simplicity we assume that L is the set of all legal

sequences. It can, however, in general consist of a set of sequences closed under the few augmentations we

do of the sequence in the protocol. �e implementation could be optimised using contemporary tricks for

garbling based protocols, but we have chosen to not do this, as the purpose of this section is to demonstrate

the use of our security de�nition, not e�ciency.

We implement the ideal functionality in Figure 6. �e inputs to the parties will be a garbling sequence.

�e commands are received one-by-one, to have a well de�ned sequence, but can be executed in parallel.
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rule Initialize
σ ← {}

rule Func
on (Func,t , f ) from A
on (Func,t , f ) from B
σ ← σ ‖ (Func,t , f )

rule InputA
on (Input,t ,i,x ) from A
on (Input,t ,i,?) from B
await (Garble,t ) ∈ σ
on (Input,t ,i,x ′) from S
if A ∈ Corrupt then x ← x ′

send (Input,t ,i,done) to A
send (Input,t ,i,done) to B
σ ← σ ‖ (Input,t ,i,x )

rule Output
on (Output,t ,i ) from A
on (Output,t ,i ) from B
await ∃(t ,i,yt,i , ⊥) ∈ eval(σ )
send (Output,t ,i,done) to A
send (Output,t ,i,yt,i ) to B
σ ← σ ‖ (Output,t ,i )

rule Link
await (Garble,t ) ∈ σ )
on (Link,t1,i1,t2,i2) from A
on (Link,t1,i1,t2,i2) from B
await (Garble,t ) ∈ σ )
send (Link,t1,i1,t2,i2,done) to A
send (Link,t1,i1,t2,i2,done) to B
σ ← σ ‖ (Link,t1,i1,t2,i2)

rule Garble
on (Garble,t ) from A
on (Garble,t ) from B
await (Func,t , f ) ∈ σ
send (Garble,t ,done) to A
send (Garble,t ,done) to B
σ ← σ ‖ (Garble,t )

Fig. 6. Ideal Functionality F
L,Φ

R2PC (only suitable for static security). �ere is also a rule InputB de�ned as InputA with all occur-

rences of A and B in the �rst six of the nine lines of code swapped. For each line of the form, “on c from P” for a command c and

a party P, when the activation is given to the adversary the ideal functionality sends along (Φ(c ),P).

We assume that at any point in time the input sequence received by a party is a pre�x or su�x of the

input sequence of the other parties, except that when a party receives a secret input by receiving input

(Input,t ,i,x ), then the other party receives (Input,t ,i,?), to not leak the secret x , where we use ? as a

notational convention for 1
|x |

and assume that 1
|x |

never occurs as regular input. We also assume that the

sequence of inputs given to any party is in L. If not the ideal functionality will simply stop operating. We

only specify an ideal functionality for static security. To correctly handle adaptive security a party should

sometimes be allowed to replace its input when becoming adaptively corrupted. Since we only prove static

security we chose to not add these complication to the speci�cation.

�e implementation will be based on the idea of a watch list[17]. Alice and Bob will run many instances

of a base protocol where Alice is the garbler and Bob is the evaluator. Alice will in each instance provide

Bob with garbled functions, linking information, encoded inputs for Alice’s inputs and encoded inputs for

Bob’s inputs, and decoding information. For all Bob’s input bits, Alice computes encodings of both 0 and 1,

and Bob uses an oblivious transfer to pick the encoding he wants. For a given input bit, the same oblivious

transfer instance is used to choose the appropriate encodings in all the instances, to force Bob to use the

same input in all instances. Bob then does a garbled evaluation and decodes to get a plaintext output. Bob

therefore gets one possible value of the output from each instance. If Alice cheats by sending incorrect

garblings or using di�erent inputs in di�erent instances, the outputs might be di�erent. We combat this

using a watch list. For a random subset of the instances, Bob will learn all the randomness used by Alice

to run the algorithms of the garbling scheme and Bob can therefore check whether Alice is sending the

expected values in these instances. �e instances inspected by Bob are called the watch list instances. �e

other instances are called the evaluation instances. �e watch list is random and unknown to Alice. �e

number of instances and the size of the watch list is set up such that except with negligible probability,

either a majority of the evaluation instances are correct or Bob will detect that Alice cheated without

leaking information about his input. Bob can therefore take the output value that appears the most o�en

among the evaluation instances as his output. �ere are several issues with this general approach that

must be handled.
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1. We cannot allow Bob to learn the encoded inputs of Alice in watch list instances, as Bob knows also the

input encoding functions for the watch list instances. �is is handled by le�ing Alice send her random

tape ri for each instance i to Bob in an oblivious transfer, where the other message is a key that will be

used by Alice to encrypt the encodings of her input. �at way Bob can choose to either make instance

i a watch list instance, by choosing ri , or learn the encoded inputs of Alice, but not both.

2. Alice might not send correct input encodings of her own inputs, in which case correctness is not guar-

anteed. �is is not caught by the watch list mechanism as Bob does not learn Alice’s input encodings

for the watch list instances. To combat this a�ack Alice must for all input bits of Alice in all instances

commit to both the encoding of 0 and 1, in a random order, and send along with her input encodings

an opening of one of the commitments. �e randomness used to commit is picked from the random

tape that Bob knows in the watch list instances. �at way Bob can check in the watch list instances

that the commitments were computed correctly, and hence the check in the evaluation position that

the encoding sent by Alice opens one of the commitments will ensure that most evaluation instances

were run with correct input encodings, except with negligible probability.

3. We have to ensure that Alice uses the same input for herself in all instances. For the same reason as

for item 2, this cannot be caught by the watch list mechanism. Instead it is done by revealing in all

instances a privacy preserving message digest of the input of Alice. Bob can then check that this digest

is the same in all instances. For e�ciency, the digest is computed using a two-universal hash function.

�is is a common trick by now, see [9,25,7]. However, all previous work used garbled circuits in a white

box manner to make this trick work. We can do it by a black box use of reactive garbling, as follows.

First Alice garbles the function f to be evaluated producing the garbling F where Alice is to provide

some input component x . �en Alice garbles the function д which takes as input a maskm, an index c
for a family h of two-universal hash functions and an input x for the hash function and which outputs

x and y = hc (x ) ⊕m. Alice then randomly samples a mask m and then sends encodings of m and x to

Bob as well as the output decoding function for y. Bob then samples an index c at random and makes

it public. �en Alice sends the encoding of c to Bob. Alice then links the output component x ofG into

the input component x of F . �is lets Bob compute y and an encoding X of the input x of f .

4. As usual Alice can mount a selective a�ack by for example o�ering Bob a correct encoding of 0 and

an incorrect encoding of 1 in one of the OTs used for picking Bob’s input. �is will not be caught by

the watch list mechanism if Bob’s input is 0. As usual this is combated by encoding Bob’s input and

instead using the encoding as input. �e encoding is such that any s positions are uniformly random

and independent of the input of Bob. Hence if Alice learns up to s bits of the encoding it gives her no

information on the input of Bob, and if she mounts more than s selective a�acks, she will get caught

except with probability 2
−s

. �is is again a known trick used in a white box manner in previous works,

and again we use linking to generalise this technique to (reactive) garbling schemes. First Alice will

garble an identity function for which Bob will get an encoding of a randomly chosen input x ′ via OT.

�en Bob selects a random hash function h from a two-universal family of hash functions such that

h(x ′) = x where x is Bob’s real input. Bob sends h to Alice. Alice then garbles the hash function and

links the output of the identity function to the input of the hash function and she links the output of

the hash function to the encoded function which Bob is providing an input for.

With the above augmentations which solves obvious security problems, along with an augmentation de-

scribed below, addressing a problem with simulation, the protocol is UC secure against a static adversary.

We brie�y sketch how to achieve simulation security.

Simulating corrupted Alice is easy. �e simulator can cheat in the OTs used to set up the watch list

and learn both the randomness ri and the input encodings of Alice in all the evaluation instances. �e
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mechanisms described above ensure that in a majority of evaluation instances Alice correctly garbled and

also used the same correct input encoding. Since the input encoding is projective, the input x of Alice

can be computed from the input encoding function and her garbled input. By correctness of the garbling

scheme, it follows that all correct evaluation instances would give the same output z consistent with x .

Hence the simulator can use x as the input of Alice in the simulation.

As usual simulating corrupted Bob is more challenging. To get a feeling for the problem, assume that

Alice has to send a garbled circuit F of the function f to be computed before Bob gives inputs. When

Bob then gives input, the input y of Bob can be extracted in the simulation by cheating in the OTs and

inspecting the choice bits used by Bob. �e simulator then inputs y to the ideal functionality and gets

back the output z = f (x ,y) that Bob is to learn. However, the simulator then in addition has to make F
output z in the simulated execution of the protocol. �is in general would require �nding an input x ′ of

Alice such that z = f (x ′,y), which could be computationally hard. Previous papers have used white-box

modi�cations of the garbled circuit or the output decoding function to facilitate enough cheating to make F
hit z without having to compute x ′. We show how to do it in a very simple and elegant way in a black-box

manner from any reactive garbling scheme which can garble the exclusive-or function. In our protocol

Alice will not send to Bob the decoding key for the encoded output Z . Instead, she garbles a masking

function (ψ (z,m) = z ⊕ m) and links the output of the function f to the �rst argument of the masking

function. �en she produces an encoding M of the all-zero string form and sends M to Bob along with the

output decoding function for ψ . Bob can then compute and decode from Z and M the value z ⊕ 0 = z. In

the simulation, the simulator of corrupted Bob knows the watch list and can hence behave honestly in the

watch list instances and use the freedom of m to make the output z ⊕m hit the desired output from the

ideal functionality in the evaluation positions. �is will be indistinguishable from the real world because of

the con�dentiality property. Since this trick does not require modifying the garbled function, our protocol

will only require a projective garbling scheme which is con�dential. It will work for any side-information

function. Earlier protocols required that the side-information be the topology of the circuit to hide the

modi�cation of the function f needed for simulation, or they needed to do white box modi�cations of the

output decoding function to make the needed cheating occur as part of the output decoding.

In Appendix A we describe in detail the protocol πG,com,E . In Appendix B, we give a visual description

of the protocol. In Appendix C, we prove the following theorem.

�eorem 1. LetL be the set of all legal sequences and letΦ be a side-information function. Let G be a reactive
garbling scheme. Let com be a commitment scheme and E an encryption scheme. If G is L-correct and (L,Φ)-
con�dential and com is computationally hiding and perfect binding and E is IND-CPA secure, then πG,com,E

UC securely realises F L,ΦR2PC in the FOT-hybrid model against a static, malicious adversary.
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A Details of the Reactive 2PC Protocol

We now give more details on the protocol. �e di�erent instances will be indexed by j ∈ I = {1, . . . ,s}.
�e watch list is given by w = (w1, . . . ,ws ) ∈ {0,1}

s
, where w j = 1 i� j is a watch list instance. In the

protocol s instances are run in parallel. When a copy of a variablev is used in each instance, the copy used

in instance j is denoted by v j . In most cases the code for an instance does not depend on j explicitly but

only on wether the instance is on the watch list or the evaluation list, in which case we will write the code

generically using the variable name v . �e convention is that all s copies v1, . . . ,vs are manipulated the

same way, in single instruction multiple data program style. For instance, w = 1 will mean w j = 1, such

that w = 1 is true i� the instance is in the watch list.

rule A.Initialize
wk,ek� {0,1}k

OT.send(ek,wk)
σ ← ()

rule B.Initialize
w � {0,1}
k ← OT.choose(w )
σ ← ()

rule A.Func
on (Func,t , f )
σ ← σ ‖ (Func,t , f )

rule B.Func
on (Func,t , f )
σ ← σ ‖ (Func,t , f )

rule A.Garble
on (Garble,t )
await ∃f : (Func,t , f ) ∈ σ
(Ft ,et ,ot ,dt ) ← Gb( f ,t ; r )
E ← Ewk (r )
send Ft ,E to B
σ ← σ ‖ (Garble,t )

rule B.Garble
on (Garble,t )
await ∃f : (Func,t , f ) ∈ σ
on F ′,E from A
if w = 1 then

r ← Dwk (E)
(Ft ,et ,ot ,dt ) ← Gb( f ,t ; r )
verify F ′ = Ft

Ft ← F ′

σ ← σ ‖ (Garble,t )

rule A.Link
on (Link,t1,i1,t ,i2)
await (Garble,t ) ∈ σ
await (Garble,t1) ∈ σ
send li(ot1,i1 ,et,i2 ) to B
σ ← σ ‖ (Link,t1,i1,t ,i2)

rule B.Link
on (Link,t1,i1,t ,i2)
await (Garble,t ) ∈ σ
await (Garble,t1) ∈ σ
on L̄ from A
L ← L ‖ (t1,i1,t ,i2, L̄)
if w = 1 then verify L̄ = li(ot1,i1 ,et,i2 )
σ ← σ ‖ (Link,t1,i1,t ,i2)

Fig. 7. Protocol (Initialize,Garble,Link)

We will use commitments and oblivious transfer within the protocol. We work in the OT hybrid model.

We use OT.send(m0,m1) to mean that Alice sends two messages via the oblivious-transfer functionality

and we use the notation OT.choose(b) to say that bob chooses to receive mb . We use a perfect binding

and computationally hiding comment scheme. If a public key is needed, it could be generated by Alice and

sent to Bob in initialization. A commitment to a message m produced with randomness r is denoted by

com(m; r ), sending (m,r ) constitutes an opening of the commitment.

If we write A(x ; r ) for a randomised algorithm, where r is not bound before, then it means that we

make a random run of A on input x and that we use r in the following to denote the randomness used by

A. If we send a set {x ,y}, then it is sent as a vector with the bit strings x and y sorted lexicographically,

such that all information extra to the elements is removed before sending. When rules are called, tags t are

provided. It follows from the input sequences being legal that these tags are unique, except when referring

to a legal previous occurrence. We further assume that all tags provided as inputs are of the form 0‖{0,1}∗,
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rule A.InputA
on (Input,t ,i,x )
await (Garble,t ) ∈ σ
t̄ ← 1‖ (Input,t ,i )‖0
`1 ← len( ft .Ai )
`2 ← len(д`1

.A2)
`3 ← len(д`1

.A3)

m � {0,1}`2

(Gt̄ ,et̄ ,dt̄ ,ot̄ ) ← Gb(д`1
, t̄ ; r )

E ← Ewk (r )
send (Gt̄ ,dt̄,2,E) to B
for u ∈ {1, . . . , `1} do

Xu,0 ← En(et̄,1,u ,0)
Xu,1 ← En(et̄,1,u ,1)
ru,0,ru,1 � {0,1}k

Su,1 ← {com(Xu,0; ru,0),com(Xu,1; ru,1)}
Eu,1 ← Ewk ((Xu,0,Xu,1))
Eu,2 ← Ewk ((ru,0,ru,1))
Eu,3 ← Eek ((Xu,xi,u ,ru,xi,u ))
Lu ← li(ot̄,1,u ,et,i,u )
send (Su,1,Eu,1,Eu,2,Eu,3,Lu ) to B

for u ∈ {1, . . . , `2} do
Mu,0 ← En(et̄,2,u ,0)
Mu,1 ← En(et̄,2,u ,1)
r ′u,0,r

′
u,1 � {0,1}

k

Su,2 ← {com(Mu,0; r ′u,0),com(Mu,1; r ′u,1)}

Eu,4 ← Ewk ((Mu,0,Mu,1))
Eu,5 ← Ewk ((r ′u,0,r

′
u,1))

Eu,6 ← Eek ((Mu,mi,u ,r
′
u,mu

))
send (Su,2,Eu,4,Eu,5,Eu,6) to B

on c from B
for u ∈ {1, . . . , `3} do send Cu,cu to B
σ ← σ ‖ (Input,t ,i,>)

rule B.InputA
on (Input,t ,i,?)
await (Garble,t ) ∈ σ
t̄ ← 1‖ (Input,t ,i )‖0

c � {0,1}`3

on G ′t̄ ,d
′
t̄,2,E from A

for u ∈ {1, . . . , `1} do on (Su,1,Eu,1,Eu,2,Eu,3,Lu ) from A
for u ∈ {1, . . . , `2} do on (Su,2,Eu,4,Eu,5,Eu,6) from A
send c to A
for u ∈ {1, . . . , `3} do on Cu,cu from A
if w = 1 then

r ← Dwk (E), (Gt̄ ,et̄ ,dt̄ ,ot̄ ) ← Gb(д`1
, t̄ ; r )

for u ∈ {1, . . . , `1} do
Xu,0 ← En(et̄,1,u ,0)
Xu,1 ← En(et̄,1,u ,1)

for u ∈ {1, . . . , `2} do
Mu,0 ← En(et̄,2,u ,0)
Mu,1 ← En(et̄,2,u ,1)

for u ∈ {1, . . . , `3} do
Cu,0 ← En(et̄,3,u ,0)
Cu,1 ← En(et̄,3,u ,1)

for u ∈ {1, . . . , `1} do
(ru,0,ru,1) ← Dwk (Eu,2)
verify Dwk (Eu,1) = (Xu,0,Xu,1)
verify Su,1 = {com(Xu,0; ru,0),com(Xu,1; ru,1)}
verify Lu = li(ot̄,1,u ,et,i,u )

for u ∈ {1, . . . , `2} do
(r ′u,0,r

′
u,1) ← Dwk (Eu,5)

verify Dwk (Eu,3) = (Mu,0,Mu,1)
verify Su,2 = {com(Mu,0; ru,0),com(Mu,1,ru,1)}

for u ∈ {1, . . . , `3} do
verify Cu,cu = En(et̄,3,u ,cu )

else
for u ∈ {1, . . . , `1} do

(Xu,xi,u ,ru,xi,u ) ← Dek (Eu,3)
for u ∈ {1, . . . , `2} do

(Mu,xi,u ,r
′
u,xi,u ) ← Dek (Eu,6)

verify ∀u ∈ {1, . . . , `1} (com(Xu,xi,u ; ru,xi,u ) ∈ Su,1)
verify ∀u ∈ {1, . . . , `2} (com(Mu,mu ; r ′u,mu

) ∈ Su,2)
¯X ← {(t̄ ,1,Xx ), (t̄ ,2,Mm ), (t̄ ,3,Cc )}
Ȳ ← Ev({(t̄ ,Gt̄ )}, ¯X)
y2 ← De(d2,Ȳ2)

verify ∀j, j ′ (y j
2
= y

j′
2
)

X ← X ‖ ¯X

F ← F ‖ (t̄ ,Gt̄ )
L ← L ‖ (t̄ ,1,t ,i,L)
σ ← σ ‖ (Input,t ,i,>)

Fig. 8. InputA

which allows us to use tags of the form 1‖{0,1}∗ for internal book keeping. Tags for internal use will be

derived from the tags given as input and the name of the rule creating the new tag. For a garbling scheme
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rule A.InputB
on (Input,t ,i,?)
await (Garble,t ) ∈ σ
` ← len( ft .Ai )
`1 ← ` + 2s + 1

t̄ ← 1‖ (Input,t ,i )‖0
t ′ ← 1‖ (Input,t ,i )‖1
(Idt̄ ,et̄ ,ot̄ ,dt̄ ) ← Gb(id`1

, t̄ ; r )
send E ← Ewk (r ), Idt̄ to B
for u ∈ {1, . . . , `1} do

Xu,0 ← En(et̄,u ,0)
Xu,1 ← En(et̄,u ,1)

OT.send({X j
u,0}j ∈{1, ...,s } , {X

j
u,1}j ∈{1, ...,s } )

on h from B
(Ht ′ ,et ′ ,ot ′ ,dt ′ ) ← Gb(h,t ′; r ′)
send Ht ′ ,Ewk (r ′) to B
for u ∈ {1, . . . , `1} do

send L̄u ← li(ot̄,u ,et ′,u ) to B
send Lu ← li(ot ′,u ,et,i,u ) to B

σ ← σ ‖ (Input,t ,i,>)

rule B.InputB
on (Input,t ,i,x )
await (Garble,t ) ∈ σ
t̄ ← 1‖ (Input,t ,i )‖0
t ′ ← 1‖ (Input,t ,i )‖1

x̄ � {0,1}`1

h � { ¯h ∈ H` |
¯h(x̄ ) = x }

on E, Id′t̄ from A
for u ∈ {1, . . . , `1} do
{X̄

j
u,x̄u }j ∈{1, ...,s } ← OT.choose(x̄u )

X̄ t̄,x̄ ← (X̄1,x̄1
, . . . ,X̄l,x̄l )

if w = 1 then
r ← Dwk (E)
(Idt̄ ,et̄ ,ot̄ ,dt̄ ) ← Gb(id`1

, t̄ ; r )
verify Idt̄ = Id′t̄
verify ∃u (X̄ t̄,u,0 = En(et̄,u ,0) ∨ X̄ t̄,u,1 , En(et̄,u ,1)

else
X ← X ‖ (t̄ ,X̄ t̄,x̄ )

send h to A
on H ′,E ′ from A
for u ∈ {1, . . . , `1} do

on L̄u from A
on Lu from A

if w = 1 then
r ′ ← Dwk (E

′)
(Ht ′ ,et ′ ,ot ′ ,dt ′ ) ← Gb(h,t ′; r ′)
verify Ht ′ = H ′

for u ∈ {1, . . . , `1} do
verify L̄u = li(ot̄,u ,et ′,u )
verify Lu = li(ot ′,u ,et,i,u )

else
F ← F ‖ (t̄ , Id )
F ← F ‖ (t ′,H )
X ← X ‖ (t̄ ,X̄ t̄,x̄ )
L ← L ‖ (t ′,1,t ,i,L)
for u ∈ {1, . . . , `1} do
L ← L ‖ (t̄ ,u,t ′,u, L̄u )

σ ← σ ‖ (Input,t ,i,>)

Fig. 9. InputB

G, a commitment scheme com and an encryption scheme E, we use πG,com,E to denote protocol given by

the set of rules in Figures 7 to 10. We add a few remarks to the �gures.

In the Initialize-rules Alice and Bob setup the watch list. �ey use a (symmetric) encryption scheme

E = (E,D) withk-bit keys. For each instance j, Alice sends two keys via the oblivious transfer functionality,

the watch list key wkj and the evaluation key ekj . Alice will later encrypt and send the information Bob is

to learn for watch list (evaluation) instances with the key wk (ek). In the Func-rules they simply associates

a function to a tag. In the Garble-rules Alice garbles the function and sends the garbling to Bob, she also

sends an encryption using the watch list key of the randomness used to produce this garbling. �is allows

Bob, for the watch list positions to check that Alice produced a correct garbling and to store the result of

garbling. �is knowledge will be used in other rules. In the Link-rules Alice sends linking information.

Bob can for all watch list positions check that the information is correct, since he knows the randomness
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rule A.Output
on (Output,t ,i )
await (t ,i ) ∈ ready(σ )
t̄ ← 1‖ (Output,t ,i )
(Ψ,et̄ ,dt̄ ,ot̄ ) ← Gb(ψ , t̄ ; r )
L ← li(ot,i ,et̄,1)
E ← Ewk (r )
X t̄,0 ← En(et̄,2,0)
send (L,E,Ψ,X t̄,0,dt̄ ) to B

rule B.Output
on (Output,t ,i )
await (t ,i,>) ∈ ready(σ )
t̄ ← 1‖ (Output,t ,i )
on (L̄, Ē, Ψ̄,X̄ t̄,0, ¯dt̄ ) from A
if w = 1 then

r ← Dwk (Ē)
(Ψ,et̄ ,dt̄ ,ot̄ ) ← Gb(ψ , t̄ ; r )
L ← li(ot,i ,et̄,1)
verify L̄ = L ∧ Ψ̄ = Ψ
verify X̄ t̄,0 = En(et̄,2,0) ∧ ¯dt̄,1 = dt̄,1

else
F ← F ‖ (t̄ ,Ψ)
X ← X ‖ (t̄ ,2,X̄ t̄,0)
L ← L ‖ (t ,i, t̄ ,1, L̄)
δ ← δ ‖ (t̄ ,1, ¯dt̄,1)
await ∃(t̄ ,1,Yt,1) ∈ Ev(F ,X,L)
y
j
t,i ← De( ¯dt̄,1,Yt̄,1)

yt,i ← maj(y1

t,i , . . . ,y
1

t,i )

Fig. 10. Protocol (Output)

used to garble. In the Output-rules Alice awaits that she has sent to Bob the encoded inputs and linkings

to produce the encoded output associated to this rule. She produces a garbling ofψ . She will link the output

to ψ and produce an encoding of the zero-string for the second component, she also sends an encryption

of the randomness used to produce the garbling ofψ to Bob. Bob awaits that he has received the garbling,

linking and encoding to produce the encoded output in question. For each instance of the watch list, he

uses the randomness to check that the linking was done correctly, that ψ was garbled correctly and that

an encoding of an all zero-string was sent for the second component ofψ . He then evaluates each instance

in the evaluation set and takes the majority value as his output.

In the InputA-rules Alice commits to both her input encodings and encrypts the openings of the com-

mitments using the watch list key. �e opening of Alice’s input encoding will be encrypted using the

evaluation key. To verify Alice’s input, we �rst pass Alice’s input through an auxilary function which

combines the identity function with an additional veri�cation function which forces Alice to use the same

input in di�erent instances. We then link the output of the identity function to the appropriate input. We

denoted the auxiliary function by дl : A1 × A2 × A3 → B1 × B2 and д` (x ,m,c ) = (x ,v` (x ,m,c )) where

A1 = A2 = B1 = {0,1}
` ∪ {⊥} and v` : A1 × A2 × A3 → B2. E�cient such functions with the properties

needed for the security of the protocol can be based on universal hash functions, see for instance [25,7].

In the InputB-rules Alice �rst garbles the identity function. Bob then randomly samples a value x ′ and

gets an encoding of that value via oblivious transfer for the garbled identity function. �en Bob sample

uniformly at random a function h from a two-universal family of hash functions such that h(x ′) = x where

x is the input of Bob. Alice will then garble the hash function. She will link the garbling of the identity

function to the garbling of the hash function. She will then link the garbled hash function to the garbled

function. We will denote byH` a two-universal family of hash functions h : {0,1}`+2s+1 → {0,1}` . We use

id : A→ A to denote the identify function on A.
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B Visual Description of Alice’s input phase, Bob’s input phase and the output rule

Figure 11 is a visual representation of Alice’s input rule, Bob’s input rule and the output rule if we exclude

the information used for checking. �e boxes represents garblings produced by Alice. Horizontal arrows

which do not point towards Bob represents inputs for which Bob is provided with the encoding. Horizontal

arrows which point towards Bob represent encoded outputs which Bob will decode, the decoding will be

given to him by Alice. Vertical arrows represent encoded output which will only be used in the evaluation

procedure of individual garbling schemes. �e dashed box expresses that Bob chooses the hash function.

�e blue arrow is used to indicate linking. �e red arrow indicates that the encoding was chosen by Bob

from calls to Oblivious Transfer.

Alice Input rule

Alice Bob

G

F

xt,i ,m c

v(xt,i ,m,c )

Xt,i

Bob Input rule

Alice Bob

Id

H

F

x ′

X ′

Xt,i

Output rule

Alice Bob

F

Yt,i

Φ0
` yt,i ⊕ 0

`

Fig. 11. Input, Output diagram
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C Proof of �eorem 1

In this section, we analyse the protocol. In the analysis, we use that the auxiliary function by дl : A1×A2×

A3 → B1×B2 andд` (x ,m,c ) = (x ,v` (x ,m,c )) whereA1 = A2 = B1 = {0,1}
`∪{⊥} andv` : A1×A2×A3 → B2

has the following properties:

Statistical Binding ∀x ,y,m,m′ ∈ A1

x , x ′ ⇒ Pr[v (x ,m,c ) = v (x ′,m′,c ′) | c � A3] ≤ 2
−s

Perfect Hiding ∀x ,x ′ ∈ A1,c ∈ A3,d ∈ B2

Pr[v (x ,m,c ) = d | m � A2] − Pr[v (x ′,m′,c ) = d | m′ � A2] = 0

E�cient such functions can be based on universal hash functions, see for instance [25,7].

C.1 Legality

We will demonstrate if the sequence input to the protocol is legal, then the sequence of garbling com-

mands used by the protocol is legal too. We assume that we work with L being the set of all legal garbling

commands.

Note that it is by assumption that the garbling sequence provided to both players is a legal garbling

sequence. We have to show that the garbling sequence (σ ) associated to the invocation of the rules results

in a legal garbling sequence. �e legality of the sequence is analysed casing on each required property.

Function uniqueness Since the sequence given to both players is legal and the tags are produced in a

way that avoids collisions, the associated sequence will only have one command of the form (Func,t , ·).
Garble uniqueness Since the sequence given to both players is legal and the tags are produced in a way

that avoids collisions, the associated sequence will only have one command of the form (Garble,t ).
Linkage legality Since, the sequence given to both players is legal and that we ensure by construction

that we only allow linking between components of the same length. In addition, linking rule only

proceeds a�er the associated garbling have terminated. We can therefore deduce that linkage legality

holds.

Input legality �e same reasoning to show linkage legality also applies to input legality.

Garble legality Since the garble rule can only proceed a�er the (Func,t , ·) has become part of the se-

quence, for all tags within the sequence, if (Garble,t , ·) occurs in σ then it is preceded by (Func,t , ·). In

the case where we garble functions within the context of the protocol, we can see that each garbling

uses a tag which is unique to its rule. We can therefore deduce that garble legality holds.

Output legality If (Output,t ,i ) occurs in a sequence, it is preceded by (Garble,t ) because the output rule

cannot proceed until (Garble,t ) is part of the sequence.

Input uniqueness �is holds since the sequence is legal by assumption.

C.2 Corrupted Alice

We prove security for the case where Alice is corrupted. Since corrupted Alice is controlled by the envi-

ronment, we will o�en use the term environment to mean corrupted Alice. �e simulator will essentially

run the protocol as an honest Bob would but with random inputs. �e only additional thing that he will

do is to extract the input of corrupted Alice. �is he will be able to do because he will have access to all of

the evaluation keys and all the watch list keys.
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�e simulator in the initialization phase selects a random watch list. For each element of the watch list,

the simulator aborts if the randomness commi�ed to by the environment does not produce the encoded

functions or the linking sent by the environment, as in the protocol.

For the output phase, for each element of the watch list, if the garbling produced for ψ is incorrect, if

an encoding of a non zero-string is sent or a di�erent decoding is sent instead of the one produced during

the garbling procedure with the speci�ed randomness, the simulator aborts, as in the protocol.

For Alice’s input phase, for the watch list, the simulator checks that all the values sent by the environ-

ment are valid (relative to the speci�cation of the protocol and the randomness sent by the environment),

otherwise the simulator aborts. �e simulator select a random input c for the validation function, checks

that the output of the validation phase is consistent. If not it aborts. Otherwise, the simulator can compute

the environment’s input by using both the evaluation keys and the watch list keys to see which encoded

inputs did the environment open for evaluation indices. �is is done by having the simulator take the

majority input over all indices. �e simulator will then forward the command (Input,t ,i,x ) to the ideal

functionality where x is the value the simulator extracted.

For Bob’s input phase, the simulator selects a random x ′,h′. For the watch list, the simulator checks

that all the values sent by the environment and received by the OT for the choice of x ′ are valid otherwise

abort. Otherwise, for the evaluation indices, run the protocol with random x ′ and h′ and abort if given the

chosen watch list Bob would have aborted. Store the result and send (Input,t ,i,?) to the ideal functionality.

�e simulator is formally speci�ed in Figures 12 to 14. We now proceed to analyse the simulator.

We call an instance j correct if all the garblings, linkings and output decoding functions sent by Alice

were computed correctly from the randomness r obtained by decrypting under the evaluation key ekj , and

if in addition all the input encodings of Alice’s input bits encrypted under the evaluation key were correct,

i.e., a correct encoding of either 0 or 1, as computed by the input encoding functions which by de�nition

were correctly generated for that instance. We use C to denote the set of correct instances. We use W to

denote the set of watch list instances. We use E to denote the set of evaluation instances.

For each correct instance j and each input component (t ,i ) Alice has a well-de�ned input, as computed

in line 5 of Figure 14. We say that Alice has consistent inputs if it holds at all points at which Bob did not

abort that the input of Alice in all instances j ∈ C ∩ E are the same.

�e only di�erence between the simulation and the protocol is that in the simulation, Bob uses dummy

(incorrect) inputs as opposed to his real inputs and outputs the value from the ideal functionality as opposed

to the value he computes in the protocol. Also, there might be a di�erence in the probability that Bob aborts

because of a failed check. �e following three lemmas can be proven using standard techniques.

Lemma 2. �e probability that Bob aborts does not depend on the inputs of Bob, except for a probability mass
negligible in s .

Lemma 3. It holds except with negligible probability in s that that Alice has consistent inputs.

Lemma 4. It holds that |C ∩ E | > |E \C |, except with negligible probability in s .

We �rst argue that security follows from these lemmas and then sketch how to prove them. By the

�rst of the lemmas it is su�cient to prove that the protocol and the simulation are indistinguishable up to

the point where Bob aborts. Assume then that Bob does not abort. In that case the view the environment

has of Bob is view is the outputs of Bob and the hash functions h sent to Alice. It is easy to prove that

h does not depend on the inputs of Bob[21]. Hence we only need to argue that the outputs of Bob are

indistinguishable in the two cases. By correctness, we know that all the instances j ∈ C ∩E in the protocol
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would output values consistent with the inputs of Bob and the inputs extracted for Alice in those instances.

�is is because j ∈ C ∩E implies that the garblings and linkings were done correctly and that Bob received

the correct encodings for his inputs and Alice supplied correct encodings for her inputs. From the second

lemma it then follows that all the instances j ∈ C ∩ E in the protocol would output values consistent with

the inputs of Bob and the consistent inputs extracted for Alice in those instances. From |C ∩ E | > |E \ C |
it then follows that it is the inputs of Alice in the instances j ∈ C ∩ E that becomes the values sent to the

ideal functionality on behalf of corrupted Alice in the simulation. From |C ∩E | > |E \C | it also follows that

it is the consistent outputs of the instances j ∈ C ∩E that become the output that Bob uses in the protocol.

From this it follows that the outputs are the same in the protocol and the simulation.

�e proof of Lemma 2 follows from the properties of the hash function h used using a by now standard

argument, see for instance [21]. All other abort probabilities are clearly independent of the inputs of Bob.

�e proof of Lemma 2 follows from the properties of the auxiliary function, speci�cally the statistical

binding. Namely, if the environment uses inconsistent inputs in otherwise correct evaluation instances,

then that instance will correctly evaluate the auxiliary function (by correctness of the garbling scheme) and

will therefore provide Bob with di�erent check values except with negligible probability, by the statistical

binding property. See for instance [25,7] for the details. �e proof of Lemma 4 follows from the fact that

if an instance j < C becomes a watch list instance, then Bob will abort except with negligible probability,

as detailed below. Hence by se�ing s large enough we can ensure that if Bob does not abort, then less

than half of the evaluation positions are correct except with probability 2
−O (s )

. To see that if an incorrect

position becomes a watch list position, then Bob aborts, except with negligible probability, observe that

if a garbling, linking or output decoding function is incorrect, then clearly Bob detects. Assume then that

Alice encrypted an incorrect input encoding under the evaluation key. Recall that this input encoding is

encrypted together with an opening of one of the two commitments to the input encodings of 0 and 1. From

this and the perfect binding of the commitment scheme, it follows that when Bob checks the encodings

inside the commitments (he can do this on watch list positions), he will see the same incorrect encoding,

and abort.

C.3 Corrupted Bob

We now consider the case where Bob is corrupt. We use environment to designate the entity controlling

the corrupted Bob. �e idea of the simulator is that it will follow the description of an honest Alice except

in four places. In the input rule for Bob, the simulator will also extract the environment’s input without

deviating from the behaviour of a real world Alice. It just inspects the choice bits of the OTs simulated by

the simulator. In the input rule for Alice, it will follow the behaviour of Alice with an all-zero string. Only

in the output phase will the simulate di�er behaviourally from a real world Alice. In the output phase, the

simulator will learn the output from the ideal functionality and will then in the simulated protocol send a

correction string (instead) of the all-zero string, to make it the value from the ideal functionality. During

the function, garbling and linking phases, the simulator will follow the behaviour speci�ed in the protocol.

We now describe the deviations from the real protocol in a li�le more detail.

During Alice’s input phase, the simulator will select value 0
`

(` is the size of the input component in

question) for Alice and follow the description of the protocol with this value. It will send (Input,t ,i,0` ) to

the ideal functionality.

During Bob’s input phase, the simulator follows the description of the protocol. �e simulator will

extract the environment’s input x via the choice of Bob to the oblivious transfer and the hash functions. It

then send (Input,t ,i,x ) to the ideal functionality.
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rule Initialize
on (Send,ek,wk) from Env
w � {0,1}
store ek,wk
σ ← {}

rule Func
on (Func,t , f ) from Env
send (Func,t , f ) to FR2PC
on (Func,t ,done) from FR2PC
send (Func,t ,done) to Env
σ ← σ ‖ (Func,t , f )

rule Garble
on (Garble,t ) from Env
await ∃f : (Func,t , f ) ∈ σ
on F ′,E from Env
if w = 1 then

rt ← Dwk (E)
(Ft ,et ,ot ,dt ) ← Gb( f ,t ; r )
verify F ′ = Ft

send (Garble,t ) to FR2PC
on (Garble,t ,done) from FR2PC
send (Garble,t ,done) to Env
σ ← σ ‖ (Garble,t )

rule Link
on (Link,t1,i1,t ,i2) from Env
await (Garble,t1) ∈ σ
await (Garble,t ) ∈ σ
on L from Env
L ← L ‖ (t1,i1,t ,i2,L)
if w = 1 then

verify L = Li (ot1,i1 ,et,i2 )
send (Link,t1,i1,t ,i2) to FR2PC
on (Link,t1,i1,t ,i2,done) from FR2PC
send (Link,t1,i1,t ,i2,done) to Env
σ ← σ ‖ (Link,t1,i1,t ,i2)

rule Output
on (Output,t ,i ) from Env
await (t ,i,>) ∈ ready(σ )
on (L̄, Ē, Ψ̄,X̄ t̄,0, ¯dt̄ ) from Env
if w = 1 then

r ← Dwk (Ē)
(Ψ,et̄ ,dt̄ ,ot̄ ) ← Gb(ψ , t̄ ; r )
verify Ψ̄ = Ψ
verify X̄ t̄,0 = En(et̄,2,0)
verify ¯dt̄ = dt̄
verify L̄ = li(ot,i ,et̄,1)

send (Output,t ,i ) to FR2PC
on (Output,t ,i,done) from Env
send (Output,t ,i,done) to Env

Fig. 12. Alice Corrupt: Initialize,Func,Garble,Link,Output

During the output phase, the simulator will deviate from the protocol. It will call the functionality with

the output rule and receive an output y. �e simulator also computes the output that Bob receives in the

simulated protocol, call it y ′. Note the most likely y ′ , y as in the simulated protocol, Alice was run with

the dummy inputs 0
`

which are most likely di�erent from her real inputs. �e simulator will then compute

∆← y⊕y ′. For each watch list index, he will send encodings of 0
`

where ` denotes the length of the output

component in question. For the evaluation indices, he will send encodings of ∆. As a result, the simulated

evaluation will compute the same output as the one given by the functionality.

C.4 Indistinguishability

We will show that if the environment can distinguish between the real and ideal world then it can break

the con�dentiality property of a reactive garbling scheme or the computational hiding of the commitment

scheme or the IND-CPA security of the encryption scheme.

Notice that aside from InputA, InputB and the Output phase, the simulator follows exactly the steps

that an honest Alice would. In those steps, for the watch list positions, the distribution of what the envi-

ronment sees is the same in both worlds. Since the watch list in both the ideal and real world have the same
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rule InputB
on (Input,t ,i,?) from Env
await (Garble,t ) ∈ σ
send (t ,i,?) to FR2PC
` ← len( ft .Ai )
`1 ← 2(` + s )
t̄ ← 1‖ (Input,t ,i )‖0
t ′ ← 1‖ (Input,t ,i )‖1
on E, Id′ from Env
if w = 1 then

r ← Dwk (E)
(Idt̄ ,et̄ ,ot̄ ,dt̄ ) ← Gb(id`1

, t̄ ; r )
verify Id′ = Idt̄

for u ∈ {1, . . . , `1} do
on (Send,X̄ t̄,u,0,X̄ t̄,u,1) from Env

x̄ � {0,1}`1

h � H
X̄ t̄,x̄ ← (X̄1,x̄1

, . . . ,X̄l,x̄l )

if w = 1 then
verify ∀u,X̄ t̄,u,xu = En(et̄,u ,xu )

send h to Env
on E ′,H ′ from Env
for u ∈ {1, . . . , `1} do

on L̄u from Env
on Lu from Env

if w = 1 then
r ′ ← Dwk (E

′)
(Ht ′ ,et ′ ,ot ′ ,dt ′ ) ← Gb(h,t ′; r ′)
verify Ht ′ = H ′

for u ∈ {1, . . . , `1} do
verify L̄u = li(ot̄,u ,et ′,u )
verify Lu = li(ot ′,u ,et,i,u )

send (Input,t ,i,?) to FR2PC
on (Input,t ,i,done ) from FR2PC
send (Input,t ,i,done ) to Env
σ ← σ ‖ (Input,t ,i,>)

Fig. 13. Alice corrupt: InputB

distribution, the watch list cannot help the environment distinguish between the real and ideal world. We

thus only need to look at what changes for the non-watch list positions. In InputA, the simulator uses the

encoding of the all-zero string. In InputB, he extracts the environments choice of input via the choice of

hash function and the input to the oblivious oblivious transfer. In the output phase, it uses ∆ to correct for

an output from the ideal evaluation di�erent from the one in the simulated execution.

We argue indistinguishability using �ve hybrids.

In the �rst hybrid the simulator will in all evaluation positions change one of the commi�ed values to

a dummy value. It will correctly commit to the input encoding that it is going to send to B, but is going

to commit to a dummy value in the other commitment, say the all-zero string. Since this commitment is

never opened, the di�erence is indistinguishable by the computational hiding of the commitment scheme.

In the watch list positions it still commits correctly to both input tokens.

In the second hybrid, we let the simulator replace encryptions under the watch list keys with encryp-

tion of dummy values under the watch list key in all evaluation instances. Since the environment does
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rule InputA
on (Input,t ,i,z) from Env
await (Garble,t ) ∈ σ
send (Input,t ,i,z) to FR2PC
t̄ ← 1‖ (Input,t ,i )‖0
`1 ← len( ft .Ai )
`2 ← len(д` .A2)
`3 ← len(д` .A3)
on E from Env
on (G ′,d ′

2
) from Env

for u ∈ {1, . . . , `1} do on (Su,1,Eu,1,Eu,2,Eu,3,Lu ) from Env
for u ∈ {1, . . . , `2} do on (Su,2,Eu,4,Eu,5,Eu,6) from Env
c � {0,1}`3

send c to Env
for u ∈ {1, . . . , `3} do on Cu,cu from Env
r ← Dwk (E)
(Gt̄ ,et̄ ,dt̄ ,ot̄ ) ← Gb(д`1

, t̄ ; r )
for u ∈ {1, . . . , `1} do Xu,0 ← En(et̄,1,u ,0), Xu,1 ← En(et̄,1,u ,1)
for u ∈ {1, . . . , `2} do Mu,0 ← En(et̄,2,u ,0), Mu,1 ← En(et̄,2,u ,1)
if w = 1 then

verify (G ′,d ′
2
) = (Gt̄ ,dt̄,2)

for u ∈ {1, . . . , `1} do
(ru,0,ru,1) ← Dwk (Eu,2)
verify Dwk (Eu,1) = (Xu,0,Xu,1)
verify Su,1 = {com(Xu,0,ru,0),com(Xu,1,ru,1)}
verify Lu = li(ot̄,1,u ,et,i,u )

for u ∈ {1, . . . , `2} do
(r ′u,0,r

′
u,1) ← Dwk (Eu,5)

verify Dwk (Eu,3) = (Mu,0,Mu,1)
verify Su,2 = {com(Mu,0,ru,0),com(Mu,1,ru,1)}

for u ∈ {1, . . . , `3} do
verify Cu,cu = com(En(et̄,3,u ,cu ),r

′′
u,cu )

else
for u ∈ {1, . . . , `1} do (X̄u ,ru ) ← Dek (Eu,3)
for u ∈ {1, . . . , `2} do (M̄u ,r

′
u ) ← Dek (Eu,6)

verify ∀u ∈ {1, . . . , `1}, com(X̄u ,ru ) ∈ Su,1
verify ∀u ∈ {1, . . . , `2}, com(M̄u ,ru ) ∈ Su,2
¯X ← {(t̄ ,1,Xx ), (t̄ ,2,Mm ), (t̄ ,3,Cc )}, Ȳ ← Ev({(t̄ ,Gt̄ )}, ¯X),
y2 ← De(d2,Ȳ2)

verify ∀j, j ′, y (j )
2
= y

(j′)
2

for u ∈ {1, . . . , `1} do
for j ∈ {1, . . . ,s} do

if X̄ j
u = X

j
u,0 then x

j
u ← 0

else x ju ← 1

xu ← maj(x1

u , . . . ,x
s
u )

x ← x1 . . . x`1

send (Input,t ,i,x ) to FR2PC
on (Input,t ,i,done) from FR2PC
send (Input,t ,i,done) to Env
σ ← σ ‖ (Input,t ,i,>)

Fig. 14. Alice corrupt: InputA
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rule Initialize
wk,ek� {0,1}k

on (Transfer,w ) from Env
if w then z ← wk
else z ← ek
send (Transfered,w ,z) to Env

rule Link
on (Link,t1,i1,t ,i2) from Env
await (Garble,t ) ∈ σ
await (Garble,t1) ∈ σ
send li(ot1,i1 ,et,i2 ) to Env
send (Link,t1,i1,t ,i2) to FR2PC
σ ← σ ‖ (Link,t1,i1,t ,i2)

rule Func
on (Func,t , f ) from Env
send (Func,t , f ) to FR2PC
on (Func,t , f ,done) from FR2PC
send (Func,t , f ,done) to FR2PC
σ ← σ ‖ (Func,t , f )

rule Garble
on (Garble,t ) from Env
await (Func,t , f ) ∈ σ
(Ft ,et ,ot ,dt ) ← Gb( f ,t ; r )
send Ft ,Ewk (r ) to Env
send (Garble,t ) to FR2PC
σ ← σ ‖ (Garble,t )

rule Output
on (Output,t ,i ) from Env
await (t ,i,>) ∈ access(eval) (σ )
send (Output,t ,i ) to FR2PC
on (t ,i,yt,i ) from FR2PC
(t ,i,y′t,i ) ∈ eval(σ )
∆← yt,i ⊕ y

′
t,i

(Ψ,et̄ ,dt̄ ,ot̄ ) ← Gb(ψ , t̄ ; r )
L ← li(ot,i ,et̄,i )
E ← Ewk (r )
if w = 1 then

X t̄,0 ← En(et ,t ,i + f .n,0)
else

X̄t,0 ← En(et ,t ,i + f .n,∆)
send (L,E,Ψ,X t̄,0,dt̄ ) to Env

Fig. 15. Bob corrupt: Initialize,Func,Garble,Link,Output

no know the watch list key in the evaluation instances, this change is indistinguishable by the IND-CPA

security of the encryption scheme. Similarly, it will encrypt dummy values under the evaluation keys in

the watch list positions.

Notice that now the values sent in the watch list positions can be computed without knowing the

input of Alice, as only the input tokens encrypted under the evaluation key depend on the input of Alice.

Furthermore, the garbled values sent in the evaluation instances corresponds to values that the simulator

could get when being an adversary in the game in Figure 5, namely garbled inputs, where it gets/needs

only one token for each wire, garbled functions and output decoding functions. We can therefore now

change the simulation such that the simulator uses the real inputs of Alice (it can learn these by inspecting

the ideal functionality (a simulator might not do this, but we may do this as part of the proof as we are

just de�ning a hybrid distribution)) and ∆ = 0
`
. When garbling the input of Alice it asks to get an input

encoding of 0
`

or the real input of Alice and then commits to the received tokens and all-zero values for

the tokens it does not know, and when it is to give output it asks to get a garbling of either ∆ = y ⊕ y ′ or

∆ = 0
`
. If one is concisely using either the le� value or the right value, these inputs give the same outputs.

�erefore the change to using the real inputs goes unnoticed by the environment by con�dentiality of the

garbling scheme. �is also uses the perfect hiding of the auxiliary function.
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rule InputA
on (Input,t ,i,?) from Env
await (Garble,t ) ∈ σ
t̄ ← 1‖ (Input,t ,i )‖0
`1 ← len( ft .Ai )
`2 ← len(д` .A2)
`3 ← len(д` .A3)

m � {0,1}`2

x ′ ← 0
len(ft .Ai )

r ∈ {0,1}k ,

(Gt̄ ,et̄ ,dt̄ ,ot̄ ) ← Gb(д`1
, t̄ ; r )

for u ∈ {1, . . . , `1} do Xu,0 ← En(et̄,1,u ,0), Xu,1 ← En(et̄,1,u ,1), ru,0,ru,1 � {0,1}
k

for u ∈ {1, . . . , `2} do Mu,0 ← En(et̄,2,u ,0), Mu,1 ← En(et̄,2,u ,1), r
′
u,0,r

′
u,1 � {0,1}

k

for u ∈ {1, . . . , `3} do Cu,0 ← En(et̄,3,u ,0), Cu,1 ← En(et̄,3,u ,1), r
′′
u,0,r

′′
u,1 � {0,1}

k

send E ← Ewk (r ) to Env
send (G ′t̄ t ,d

′
t̄,2) ← (Gt̄ ,dt̄,2) to Env

for u ∈ {1, . . . , `1} do
Su,1 ← {com(Xu,0,ru,0),com(Xu,1,ru,1)}
Eu,1 ← Ewk ((Xu,0,Xu,1)), Eu,2 ← Ewk ((ru,0,ru,1))
Eu,3 ← Eek ((Xu,xi,u ,ru,xi,u ))
Lu ← li(ot̄,1,u ,et,i,u )
send Su,1,Eu,1,Eu,2,Eu,3,Lu to Env

for u ∈ {1, . . . , `2} do
Su,2 ← {com(Mu,0,r

′
u,0),com(Mu,1,r

′
u,1)}

Eu,4 ← Ewk ((Mu,0,Mu,1)), Eu,5 ← Ewk ((r ′u,0,r
′
i,1))

Eu,6 ← Eek ((Mu,mi,u ,r
′
u,mu

))
send Su,2,Eu,4,Eu,5,Eu,6,Lu to Env

for u ∈ {1, . . . , `3} do
(Cu,0,Cu,1) ← (com(Cu,0; r ′′u,0),com(Cu,1; r ′′u,1))
send Cu,0,Cu,1 to Env

on c from Env
for u ∈ {1, . . . , `3} do

send (Cu,cu ,r
′′
u,cu ) to Env

send (Input,t ,i,?) to FR2PC
on (Input,t ,i,done) from FR2PC
send (Input,t ,i,done) to Env
σ ← σ ‖ (Input,t ,i,x ′)

Fig. 16. Bob corrupt: InputA

A�er the change to using the real inputs and the all-zero string in output, we can then reverse the

two �rst changes. First we start encrypting correct values under all evaluation and watch list keys, and

then we start commi�ing to all the correct values again. �is goes unnoticed by IND-CPA security and

computational hiding.

A�er this series of changes, the hybrid we arrived at is identical to the real protocol, so apply transitivity

of indistinguishability.

D Reactive garbling scheme

We will give a construction of a con�dential reactive garbling scheme based on a random oracle. �e

protocol is inspired by the construction of garbling schemes from dual-key ciphers presented in [3].
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rule InputB
on (Input,t ,i,?) from Env
await (Garble,t ) ∈ σ
` ← len( ft .Ai )
`1 ← 2(` + s )
t̄ ← next()
t ′ ← next()
(Idt̄ ,et̄ ,ot̄ ,dt̄ ) ← Gb(id` , t̄ ; r )
for u ∈ {1, . . . , `1} do

X̄u,0 ← En(et̄,u ,0)
X̄u,1 ← En(et̄,u ,1)

send E ← Ewk (r ), Idt̄ to Env
for u ∈ {1, . . . , `1} do

on (Transfer, x̄u ) from Env
send (Transfered, x̄u ,X̄u,x̄u ) to Env
store x̄u

x̄ ← x̄1, . . . , x̄`1

on h from Env
(Ht ′ ,et ′ ,ot ′ ,dt ′ ) ← Gb(h,t ′; r ′)
send Ewk (r ′) to Env
send Ht ′ to Env
for u ∈ {1, . . . , `1} do

send L̄u ← li(ot̄,u ,et ′,u ) to Env
send Lu ← li(ot ′,u ,et,i,u ) to Env

x ← h(x̄ )
send (Input,t ,i,x ) to FR2PC
on (Input,t ,i,done) from FR2PC
send (Input,t ,i,done) to Env
σ ← σ ‖ (Input,t ,i,x )

Fig. 17. Bob corrupt: InputB

We use the notation of [3] to represent a circuit. A circuit is a 6-tuple f = (n,m,q,A,B,G ). Here n ≥ 2 is

the number of inputs,m ≥ 1 is the number of outputs and q ≥ 1 is the number of gates. We let r = n+q be

the number of wires. We let Inputs = {1, . . . ,n}, Wire = {1, . . . ,n+q}, OutputWires = {n+q−m+1, . . . ,n+q}
and Gates = {n, . . . ,n+q}. �enA : Gates→Wires \OutputWires is a function to identify each gate’s �rst

incoming wire and B : Gates→Wires \OutputWires is a function to identify each gate’s second incoming

wire. Finally, G : Gates×{0,1}2 → {0,1} is a function that determines the functionality of each gate. We

require that A(д) < B (д) < д for all д ∈ Gates.

Our protocol will also follow the approach of [3]. To garble a circuit, two tokens are selected for each

wire, one denoted byXt,i,0 which shall encode the value 0 and the other denoted byXt,i,1 which will encode

the value 1, we refer to this mapping as the semantic of a token.

�e encoding of an input for a value x is simply the token of the given wire with semantic x . �e

decoding of an output is the mask for that wire. We decouple the decoding from the linking to simplify

the proof of security. �e simulator will be able to produce linking without having to worry about the

semantics of the output encoding.

For each wire, the two associated tokens will be chosen such that the least signi�cant bit (the type of

a token) will di�er. It is important to note that the semantics and type of a token are independent. �e

second least signi�cant bit is called the mask and will have a special meaning later when the tokens are

output tokens. We use root(X ) to denote the part of a token that is not the type bit or the mask bit.
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Each gate д will be garbled by producing a garbled table. A garbled table will consist of four ciphertexts

p[д,a,b] where a,b ∈ {0,1}, �e ciphertext P[д,a,b] will be produced in the following way: �rst �nd the

token associated to the le� input wire (i1) with type a, denote the semantic of this token as x . Secondly,

�nd the token associated to the right input wire (i2) with type b, denote the semantic of this token as y.

�e ciphertext will be an encryption of the token of z ← G (д,x ,y). We will denote T ← t ‖ д ‖ a ‖ b. �e

encryption will be P[д,a,b]← H(T ‖ root(Xt,i1,x ) ‖ root(Xt,i2,y )) ⊕ (Xt,i,z )

For each non-output wire, the token with semantic 0 will be chosen randomly and the token with

semantic 1 will be chosen uniformly at random except for the last bit which will be chosen to be the

negation of the least signi�cant of the token with semantic 0 for the same wire.

For each output wires, the �rst token will also be chosen uniformly at random. �e token with semantic

0 will be chosen randomly and the token with semantic 1 will be chosen uniformly at random except for

the least signi�cant bit and the second least signi�cant bit. For both of these positions, the second token

will be chosen so that they di�er from the value in the 0-token for the same position. We refer to the second

least signi�cant bit of the 0-token of an output token as the mask of an output wire.

A linking between output (t1,i1) and input (t2,i2) consists of two cyphertexts: let c be the type of the

0-token for the output wire. In this case, we set T = t1 ‖ i1 ‖ t2 ‖ i2. �e linking is simply

L ← (ETroot(Yt
1
,i

1
,c )
(Xt2,i2,c ),Eroot(Yt

1
,i

1
,1−c ) (Xt2,i2,1−c ))

where ETk (z) = H(T | |k ) ⊕ z. Converting an encoded output into an encoded input follows naturally.

To simplify notation, we de�ne lsb as the least signi�cant bit, slsb as the second least signi�cant bit. �e

operation Root removes the last two bits of a string. �e symbol H denotes of course the random oracle.

E Analysis

In this section, we demonstrate the security of our reactive garbling scheme in the random oracle model.

�e �rst key idea of this proof is that the values produced by the simulator will only depend on the leakage

of one of the sequences. If the sequence don’t have the same leakage then the adversary loses anyways.

As a result, either the adversary loses the game or the views produced are indistinguishable.

�e second key idea is that we can explain the values produced as an instance of either sequence by

programming the random oracle. �erefore, if we show that the adversary cannot distinguish between the

simulation, and a real garbler, we can show that the adversary has negligible advantage in the con�den-

tiality game.

�e basic methodology of the simulator is as follows: when the adversary sends a Garble command,

the simulator will produce random tokens and random tables that only depend on the leakage of the

function. For each non-output wire, we will �x a token that the sender will receive and one token that

will remain hidden from the sender. �e same thing will be apllied to outputs except for the seconnd least

signi�cant bit which will be de�ned a�er the garbling.

As each output becomes de�ned, the second least signi�cant of encoded output and the decoding will

be chosen by the simulator to re�ect this value. If they are not the same then the adversary loses the game.

�ere is a subtle issue that need to be considered, the adversary might �rst request a decoding string for

an output before the output is ready or he may ask for tokens or linking which de�nes an output before

the decoding string is given. In the �rst case, we will select a random decoding and then �x the second

least signi�cant so that decoding produces the correct output and in the second case, we will instead select

the second least signi�cant randomly and then select the decoding so the correct output is produced.
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proc Gb( ft ,t )
(n,m,q,A,B,G ) ← ft
for i ∈ {1, . . . ,n + q −m} do

c � {0,1}

Xt,i,0 ← {0,1}
k−1 ‖ c

Xt,i,1 ← {0,1}
k−1 ‖ 1 − c

for i ∈ {1, . . . ,m} do
c � {0,1},ri � {0,1}

Yt,i,0 ← {0,1}
k−2 ‖ ri ‖ c

Yt,i,1 ← {0,1}
k−2 ‖ 1 − ri ‖ 1 − c

Xt,n+q−m+i,0 ← Yt,i,0
Xt,n+q−m+i,1 ← Yt,i,1

for (i,v,q) ∈ {n + 1, . . . ,n + q} × {0,1} × {0,1} do
a ← A(i ),b ← B (i )
A← root(Xt,a,v ),a ← lsb(Xt,a,v )
B ← root(Xt,b,q ),b ← lsb(Xt,b,q )
T ← t ‖ i ‖ a ‖ b
P[i,v,q]← H(T ‖A ‖ B) ⊕ Yt,i,G (i,v,q )

Ft ← (n,m,q,A,B,P )
et ← ((X1,0,X1,1), . . . , (Xn,0,Xn,1))
ot ← ((Y1,0,Y1,1), . . . , (Ym,0,Ym,1))
dt ← {r1, . . . ,rm }
return (Ft ,et ,ot ,dt )

proc En(t ,i,x )
Xt,i ← et,i,x
return Xt,i

proc De(t ,i,Yt,i ,dt,i )
yt,i ← slsb(Yt,i ) ⊕ dt,i
return yt,i

Fig. 18. Reactive garbling scheme

To show that the values shown to the adversary could be used to explain the sequence, we simply

program the oracle to match one of the two sequences.

Here is a short description of what the simulator does. Program() is used to ensure that the chosen

token would be produced by an adversary who evaluates the sequence correctly. On Garble(t ) return a

garbling with the right structure and number of garbled tables, where each entry in each table is chosen

uniformly at random. Additionally for each non-output wire select two uniformly random tokens with-

out assigning semantics. �e random oracle will only at evaluation time be programmed to be consistent

with the tables and the tokens. For the output wire, do the same but with the second least signi�cant

to bit be determined. On Input(t ,i,x ), simply return the token that the simulator intended to reveal. On

Link(t1,i1,t2,i2), simply return the values that are meant to be produced.

O�en we will use σ0, in the simulation. �is is to show that the simulator does not really care which

bit was chosen by the game, he only needs the leakage of the function.

We use the following notation to simplify the description of the simulation. We denote the value of the

wire i of ft for the sequence σb as w(t ,i,b). We use the notation Gt,i,b to denote the gate associated to the

function ft for the sequence σb .
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proc li(ot1,i1 ,et2,i2 )
r ← lsb(ot1,i1,0)
K0 ← root(ot1,i1,0)
K1 ← root(ot1,i1,1)
T ← (t1,i1,t2,i2)
U0 ← H(T ‖ kr ) ⊕ et2,i2,r
U1 ← H(T ‖ k1−r ) ⊕ et2,i2,1−r
Lt1,i1,t2,i2 ← (U0,U1)
return Lt1,i1,t2,i2

proc Li(Lt1,i1,t2,i2 ,Yt1,i1 )
r ← lsb(Yt1,i1 )
K ← root(Yt1,i1 )
T ← (t1,i1,t2,i2)
Xt,i ← H(T ‖ k ) ⊕ Lt1,i1,t2,i2,r
return Xt,i

proc EvI(Ft ,X1, . . . ,Xn )
(n,m,q,A,B,P ) ← Ft
for i ← n + 1 to n + q do

a ← A(i ),b ← B (i )
A← Xt,a ,B ← Xt,b
if A , ⊥ ∧ B , ⊥ then
a ← lsb(A),b ← lsb(B)
T ← t ‖ i ‖ a ‖ b
Xд ← P[д,a,b] ⊕ H(T ‖A ‖ B)

(Yt,i , . . . ,Yt,m ) ← (Xn+q−m+1, . . . ,Xn+q )
return (Yt,1, . . . ,Yt .m )

Fig. 19. Reactive garbling scheme (continued)

E.1 Proof

�eorem 2. Let L be the set of all legal garbling sequence, let Φ denote the circuit topology of a function.
�en RGS is (L,Φ)-con�dential in the random oracle model.

First, we will prove that either the adversary sends a command which loses him the game or that the

view of the adversary when interacting with the simulator when b = 0 is statistically indistinguishable

from the view of the adversary when interacting with the simulator and the game picks b = 1. Secondly,

we need to show that given the linking, the garbled tables, the encoding and decodings that are produced,

we can explain for any choice of b ∈ {0,1} these values as a garbling of σb by programming the random

oracle. We also need to prove that the explaination is indistinguishable from a real garbling of the sequence

σb .

We �rst prove that the view of the adversary when b = 0 and b = 1 are statistically indistinguishable

unless the adversary loses the game. We prove that by showing that for any legal sequences σ0 and σ1 for

which Φ(σ0) = Φ(σ1) we can produce the view of the adversary of a garbling of σb without using the value

b. �is clearly proves the statement.

�e following are constructed without taking into account the bit that was selected. On garble com-

mand, the simulator produces two token for each input, the �rst token is always the token that the sim-

ulator will provide to the adversary if asked to encode an input and the other will always remain hidden.

One of the tokens will always stay hidden by the input uniqueness condition.

For the non-output wires and non-input wires, the simulator chooses randomly a token that the ad-

versary would compute using inputs, output and linking and a token that would remain hidden. It is the
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proc Garble(t )
(n,m,q,A,B) ← ϕ (σ0. ft )
for i ∈ {1, . . . ,n + q −m} do

ct,i � {0,1}

Vt,i,0 ← {0,1}
k−1 ‖ ct,i

Vt,i,1 ← {0,1}
k−1 ‖ 1 − ct,i

for i ∈ {n + q −m + 1, . . . ,n + q} do
Kt,i,0 � {0,1}k−2

Kt,i,1 � {0,1}k−2

ct,i � {0,1}
for (i,v,q) ∈ {1, . . . ,n + q} × {0,1} × {0,1} do

P[i,v,q]� {0,1}k

Ft ← (n,m,q,A,B,P )
σ0 ← σ0 ‖ (Garble,t )
σ1 ← σ1 ‖ (Garble,t )
return Ft

proc Input(t ,i,x0,x1)
σ̄0 ← σ0‖ (Input,t ,i,x0)
S ← ready(σ̄0) \ ready(σ0)
for (t ,i ) ∈ S do

update(t ,i, σ̄0)
σ0 ← σ0 ‖ (Input,t ,i,x0)
σ1 ← σ1 ‖ (Input,t ,i,x1)
return Vt,i,0

proc update(t ,i, σ̄0)
if (Output,t ,i ) ∈ σ0 then

for (t ,i,yt,i ) ∈ eval(σ̄0) do
rt,i ← yt,i ⊕ dt,i

else
rt,i � {0,1}

Yt,i,yt ,i ← Kt,i,0 ‖ rt,i ‖ ct,i
Yt,i,1−yt ,i ← Kt,i,1 ‖ 1 − rt,i ‖ 1 − ct,i

Fig. 20. Reactive garbling Simulation

same thing for the output wires except that the second to last bit is le� unde�ned until later. Since linking

does not depend on this bit, linking does not depend on b.

Now the second to last bit of an output wire and the decoding are always randomly constructed such

that their xor is the output produced by the �rst sequence. �e adversary could select two sequences

which produce di�erent output and where a decoding is provided but then the adversary would lose the

game. Since both sequences need to produce the same output for any output which is ready and where the

decoding is provided and that the function associated to tag t in σ0 and σ1 have to be similar. �erefore, the

values produced when b = 0 is the same when b = 1. �erefore, the adversary cannot distinguish between

the view produced with b = 0 and the view produced with b = 1 without losing the game.

Next, we prove that for any b ∈ {0,1}, the values produced can be explained as a garbling of the

sequence σb .

Notice that only one element of each garbled table has been given a pre-image, namely the one that

would be decoded by the adversary. �is of course, leaves the simulator the freedom to program the pre-

images of the other elements in a garbled table. �e other thing to note is that except for the encoded

outputs for which both of the following conditions hold: 1) they are ready and 2) the associated decoding

has been given, none of the other tokens have been given a semantic meaning yet.

�e simulator in the Explain procedure, for each token that the adversary would be able to produce

assigns the correct semantic by programming the oracle for that token (the one that the sequence would

give). Now there might be inputs that are still unde�ned and as such the value of gates which depend on

that input would still be unde�ned. In this case, the simulator just choose all four pre-images and can just

assign semantics as he chooses. �e result is that the garbling with the chosen tokens and the programming

is a valid garbling of the sequence σb .
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proc Link(t1,i1,t2,i2)
σ̄0 ← σ0‖Link(t1,i1,t2,i2)
S ← ready(σ̄0) \ ready(σ0)
for (t ,i ) ∈ S do

update(t ,i, σ̄0)
σ0 ← σ0 ‖ Link(t1,i1,t2,i2)
σ1 ← σ1 ‖ Link(t1,i1,t2,i2)
U0 ← H(C ‖ kt,i,ri ) ⊕ Vt,i,ct ,i
U1 ← H(C ‖ kt,i,1−ri ) ⊕ Vt,i,1−ct ,i
Lt1,i1,t2,i2 ← (U0,U1)
return Lt1,i1,t2,i2

proc Output(t ,i )
σ0 ← σ0 ‖ (Output,t ,i )
σ1 ← σ1 ‖ (Output,t ,i )
if (t ,i ) < ready(σ0) then

dt,i � {0,1}
else
∃(t ,i,yt,i ) ∈ eval(σ0)
dt,i ← rt,i ⊕ yt,i

return dt,i

proc Program()
for t ∈ Tags(σ0) do

(n,m,q,A,B,P ) ← σ0. ft
for i ∈ {1, . . . ,n + q −m} do

if w(t ,i,σ0) , ⊥ then
a ← A(i ),b ← B (i )
A← root(Vt,a,0)
B ← root(Vt,b,0)
a ← lsb(Vt,a,0)
b ← lsb(Vt,b,0)
T ← i ‖ a ‖ b
H(T ‖A ‖ B) ← P[i,a,b] ⊕ Vt,i,0

for i ∈ {1, . . . ,m} do
if (yt,i ∈ eval(σ0)) then

a ← A(n+q−m+ i ),b ← B (n+q−m+1)
A← root(Vt,a,0)
B ← root(Vt,b,0)
a ← lsb(Vt,a,0)
b ← lsb(Vt,b,0)
T ← i ‖ a ‖ b
H(T ‖A ‖ B) ← P[i,a,b] ⊕ Yt,i,yt ,i

Fig. 21. Program

We also need to prove that the explanation is indistinguishable from a real garbling of the sequence

σb . �is is trivial, since there is a one-to-one correspondence between what could be produced by a garbler

and a random oracle and a simulator programming the random oracle.

We thus have that the views produced are indistinguishable or the adversary loses. �e values produced

by the simulator can be explained as a garbling of each sequence and is indistinguishable from a sequence

generated by a real garbler. As a result, we can see that the adversary’s advantage is negligible and that

the protocol is con�dential.
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proc Explain()

for {t | (Garble,t ) ∈ σ0} do
(n,m,q,A,B,P ) ← σb . ft
for i ∈ {1, . . . ,n + q −m} do

if w(t ,i,σb ) , ⊥ then
∆← w(t ,i,σb )
Xt,i,∆ ← Vt,i,0
Xt,i,1−∆ ← Vt,i,1

else
Xt,i,0 ← Vt,i,0
Xt,i,1 ← Vt,i,1

for i ∈ {1, . . . ,m} do
if dt,i , ⊥ ∧ rt,i = ⊥ then

rt,i ← dt,i
Upd(t ,i )

if rt,i , ⊥ ∧ dt,i = ⊥ then
dt,i ← rt,i
Upd(t ,i )

for i ∈ {1, . . . ,n + q} do
a ← A(i ),b ← B (i )
for (v,q) ∈ {0,1} × {0,1} do

A← root(Xt,a,v ),a ← root(Xt,a,v
B ← root(Xt,b,q ),b ← root(Xt,b,q
T ← д ‖ a ‖ b
H(T ‖A ‖ B) ←
P[i,v,q] ⊕ Xt,i,Gt ,i,b (i,v,q )

proc Upd(t ,i )
∆� {0,1}
Yt,i,0 ← Kt,i,∆ ‖ rt,i ‖ ct,i
Yt,i,1 ← Kt,i,1−∆ ‖ 1 − rt,i ‖ 1 − ct,i
Xt,n−q+m+i,1 ← Yt,i,0
Xt,n−q+m+i,0 ← Yt,i,1

Fig. 22. Correctness
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F Circuit reduction technique

In the work of [20], it was shown how to apply cut-and-choose with garbled circuits. We will show that if

a reactive garbling scheme ful�lls two conditions then we can apply Lindell’s technique. �e �rst require-

ment is that the output encoding is projective. �e second condition requires that if an output encoding is

not linked then it is safe to reveal the output encoding. We provide a brief overview of the protocol. We

will avoid discussing enforcing input consistency, preventing selective failure a�acks since these can be

derived from the previous protocol. �e cut-and-choose occurs a�er the evaluation.

First, we will note that the scheme of Lindell is a garbling scheme with projective output tokens. On

garbling a function, the algorithm select random output tokens for each output. �e decoding string is the

table containing all the hashes of the output tokens. To decode an encoded output, look for the hash which

matches this encoded output.

�e protocol overview is as follows. First, Alice garbles the identity function once, she also garbles the

function f a total of s times, she also links each garbling of f to the garbling of the identity function. Next,

Alice and Bob will �rst run the evaluation of the garbled function using their respective input x ,y. Next

Alice and Bob will run the cheater detection phase. If Bob has for any i both ot,i,0,ot,i,1 then he can extract

Alice’s input. Now, he gets an output either from the evaluation or he can compute it using Alice’s input.

Note that a�er evaluation, Alice and Bob will execute Cut-and-Choose to verify that Alice acted honestly.

�is entails that Alice reveal the output encoding of the identity function.

dt = H (ot,1,0),H (ot,1,1), . . . ,H (ot,m,0),H (ot,m,1)

F F F
x y x y x y

Itot,i,z0
, . . . ,ot,i,zm

D(ot )
x v

if ∃i : ot,i = v then x

G Minilego

In the case of minilego, we can de�ne minilego soldering of gates as a reactive garbling scheme. Minilego

uses the free-xor technique. Each gate is a function. Prior to garbling a �xed parameter ∆ is randomly

selected.

To garble a gate, each input zero token et,i,o is randomly selected and et,i,1 ← et,i,0 ⊕ ∆. �e output

zero token ot,1,o is randomly selected and ot,1,1 ← ot,1,0 ⊕ ∆. To link a gate associate with label t to a gate

with label t̄ and input i ∈ {0,1}, we set Lt,1,t̄,i ← ot,1,o ⊕et̄,i,0. �erefore, we have that Lt,1,t̄,i ⊕ot,i,b = et̄,i,b .

A bucket is simply produced by garbling two input identity gate and an output identity gate and then

linking each gate in the bucket with the identity functions.
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proc Gb(∆, ft ,t )
if ft = I then

return GBID(t )
et,1,0,et,2,0 � {0,1}k

et,1,1 ← et,1,0 ⊕ ∆
et,2,1 ← et,2,0 ⊕ ∆

a0,a1 � {0,1}k

dt ← H (ot,1,0),H (ot,1,1)
if ft = Xor then

Ft = Xor
ot,1,0 ← et,1,0 ⊕ et,2,0

else
ot,1,0 � {0,1}k

a ← lsb(et,1,0)
b ← lsb(et,2,0)
for v,q ∈ {0,1}2 do

c ← a ⊕ v
d ← b ⊕ q
z ← H (t ‖et,1,c ‖et,2,d )
Pt [v,q]← z ⊕ ot,i,ft (c,d )

Ft ← Pt
ot,1,1 ← ot,1,0 ⊕ ∆
ot ← (ot,1,0,ot,1,1)
et ← (et,1,0,et,1,1,et,2,0,et,2,1)
return (Ft ,ot ,et ,dt )

proc GBID(t )

et,1,0 � {0,1}k

et,1,1 = et,1,0 ⊕ ∆

δt � {0,1}k

ot,1,0 ← et,1,0 ⊕ δt
ot,1,1 ← et,1,1 ⊕ δt
return ((I ,δt ),et ,ot )

proc EvI(Ft ,X)
if Ft = (I ,δt ) then

EvIdentity(Ft ,X1)
else if Ft = Xor then

EvXor(X1,X2)
else

EvF(Ft ,X1,X2)

proc En(t ,i,x )
Xt,i ← et,i,x
return Xt,i

proc li(t1,i1,t2,i2,ot1,i1 ,et2,i2 )
Lt1,i1,t2,i2 ← ot1,i1 ⊕ et2,i2
return Lt1,i1,t2,i2

proc Li(Lt1,i1,t2,i2 ,Yt1,i1 )
return Lt1,i1,t2,i2 ⊕ Yt1,i1

proc EvXor(Xt,1,Xt,2)
return Xt,1 ⊕ Xt,2

proc EvF(Ft ,Xt,1,Xt,2)
a ← lsb(Xt,1)
b ← lsb(Xt,2)
return H (t ‖Xt,1‖Xt,2) ⊕ Ft [a,b]

proc EvIdentity(Ft ,Xt,1)
(I ,δt ) ← Ft
return Xt,1 ⊕ δt

proc De(Yt,i ,dt,i )
if H (Yt,i ) = dt,i,0 then

return 0

if H (Yt,i ) = dt,i,1 then
return 1

return error

Fig. 23. Minilego
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H Simulation Proof

De�nition 7 (Con�dentiality). For a legal sequence class L relative to side-information function Φ and
a reactive garbling scheme G, we say that G is (L,Φ)-simulation con�dential if for all PPT A it holds
that Advadp.sim.con

G,L′,Φ,A (1k ) is negligible, where Advadp.sim.con

G,L′,Φ,A (1k ) = Pr[Gameadp.sim.con

G,L′,Φ,A (1k ) = >] − 1

2
and

Gameadp.sim.con

G,L′,Φ is given in Figure 24.

proc Initialize()
b � {0,1}
σ ← ∅

proc Func( f ,t )
ft ← f
σ ← (Func, f ,t )
(S ◦ Φ)(σ ))

proc Output(t ,i )
σ ← σ ‖ (Output,t ,i )
if b=0 then

return (S ◦ Φ)(σ )
return dt,i

proc Input(t ,i,x )
σ ← σ ‖ (Input,t ,i,x )
if b=0 then

return (S ◦ Φ)(σ )
return En(et ,t ,i,x )

proc Link(t1,i1,t2,i2)
σ ← σ ‖ Link,t1,i1,t2,i2)
if b=0 then

return (S ◦ Φ)(σ )
return li(t1,i1,t2,i2,ot1,i1 ,et2,i2 )

proc Garble(t )
σ ← σ ‖ (Garble,t )
if b=0 then

return (S ◦ Φ)(σ )
(Ft ,et ,ot ,dt ) ← Gb(sps, ft ,t )
return Ft

proc Finalize(b ′)
if b = b ′ ∧ σ ∈ L ∧ eval(σ ) , Error then

return >
else return ⊥

Fig. 24. �e game Gameadp.sim.con,L,Φ
G

(1k ) de�ning adaptive simulation con�dentiality. In Finalize, we check that σ ∈ L and the

adversary loses if this is not the case. We can therefore by monotonicity assume that the game returns ⊥ as soon as it happens

that σ < L. �e notation (S ◦ Φ)(σ ) is used to mean that the game sends Φ(σ ) to the simulator. We also use the conventions used

in Gameadp.sim.con,L,Φ
G

(1k ).

�eorem 3. Let L be the set of all legal garbling sequence, let Φ denote the circuit topology of a function.
�en RGS is (L,Φ)-simulation con�dential in the random oracle model.

On garble command, the simulator produces two token for each input, the �rst token is always the

token that the simulator will provide to the adversary if asked to encode an input and the other will

always remain hidden. One of the tokens will always stay hidden by the input uniqueness condition.

For the non-output wires and non-input wires, the simulator chooses randomly a token that the ad-

versary would compute using inputs, output and linking and a token that would remain hidden. It is the

same thing for the output wires except that the second to last bit is le� unde�ned until later. Since linking

does not depend on this bit, linking does not depend on the particular sequence.

Now the second to last bit of an output wire and the decoding are always randomly constructed such

that their xor is the output produced by the leakage of the sequence. Since any sequences with the same

side-information produces the same output for any output which is ready and where the decoding is pro-

vided and that the function associated to tag t has to to have the same side-information. �erefore, the

values produced do not depend on the sequence.
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proc Link(t1,i1,t2,i2)
σ̄ ← σ ‖Link(t1,i1,t2,i2)
S ← ready(σ̄ ) \ ready(σ )
for (t ,i ) ∈ S do

update(t ,i, σ̄ )
σ ← σ ‖ Link(t1,i1,t2,i2)
U0 ← H(C ‖ kt,i,ri ) ⊕ Vt,i,ct ,i
U1 ← H(C ‖ kt,i,1−ri ) ⊕ Vt,i,1−ct ,i
Lt1,i1,t2,i2 ← (U0,U1)
σ ← σ ‖ (Link,t1,i1,t2,i2))
Program()
return Lt1,i1,t2,i2

proc Garble(t )
(n,m,q,A,B,?) ← Φ(σ . ft )
for i ∈ {1, . . . ,n + q −m} do

ct,i � {0,1}

Vt,i,0 ← {0,1}
k−1 ‖ ct,i

Vt,i,1 ← {0,1}
k−1 ‖ 1 − ct,i

for i ∈ {n + q −m + 1, . . . ,n + q} do
Kt,i,0 � {0,1}k−2

Kt,i,1 � {0,1}k−2

ct,i � {0,1}
for (i,v,q) ∈ {1, . . . ,n + q} × {0,1}2
do

P[i,v,q]� {0,1}k

Ft ← (n,m,q,A,B,P )
σ ← σ ‖ (Garble,t ))
Program()
return Ft

proc Program()
for t ∈ Tags(σ ) do

(n,m,q,A,B,?) ← Φ(σ . ft )
for i ∈ {1, . . . ,n + q −m} do

if ready(w(t ,i,σ )) then
a ← A(i ),b ← B (i )
A← root(Vt,a,0)
B ← root(Vt,b,0)
a ← lsb(Vt,a,0)
b ← lsb(Vt,b,0)
T ← i ‖ a ‖ b
H(T ‖A ‖ B) ← P[i,a,b] ⊕ Vt,i,0

proc Input(t ,i,?)
σ̄ ← σ ‖ (Input,t ,i,?)
S ← ready(σ̄ ) \ ready(σ )
for (t ,i ) ∈ S do

update(t ,i, σ̄ )
return Vt,i,0

proc Output(t ,i )
if (t ,i ) < ready(σ ) then

dt,i � {0,1}
else

for (t ,i,yt,i ) ∈ eval(σ ) do
dt,i ← rt,i ⊕ yt,i

σ ← σ ‖ (Output,t ,i )
Program()
return dt,i

proc update(t ,i, σ̄ )
if (Output,t ,i ) ∈ σ then

for (Output,t ,i,yt,i ) ∈ Φ(σ̄ ) do
rt,i ← yt,i ⊕ dt,i

else
rt,i � {0,1}

Yt,i,yt ,i ← Kt,i,0 ‖ rt,i ‖ ct,i
Yt,i,1−yt ,i ← Kt,i,1 ‖ 1 − rt,i ‖ 1 − ct,i

Fig. 25. Reactive garbling simulation

Next, we prove that for any sequence with the given side-information, the values produced are the

same.

Notice that only one element of each garbled table has been given a pre-image, namely the one that

that would be decoded by the adversary. �is of course, leaves the other pre-images of the other elements

unde�ned for the garbled table.

�e other thing to note is that except for the encoded outputs for which both of the following conditions

hold: 1) they are ready and 2) the associated decoding has been given, none of the other tokens have been

given a semantic meaning yet.

�e simulator in the Explain procedure, for each token that the adversary would be able to produce

assigns the correct semantic by programming the oracle for that token (the one that the sequence would
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give). Now there might be inputs that are still unde�ned and as such the value of gates which depend on

that input would still be unde�ned. In this case, the simulator just choose all four pre-images and can just

assign semantics later. �e result is that the garbling with the chosen tokens and the programming looks

like a valid garbling of any sequence with the given side-information.

We also need to prove that the explanation is indistinguishable from a real garbling of any sequence

with the given side-information. �is holds since the values produced are either random or only depend

on the side-information of the sequence.

We thus have that the views produced are indistinguishable. As a result, we can see that the adversary’s

advantage is negligible and that the protocol is simulation-con�dential.

�eorem 4. Let L be the set of all legal garbling sequence, let Φ denote a side-information function. If a RGS
is (L,Φ)-simulation con�dential then it is (L,Φ)-indistinguishable con�dential.

Our proof will consist of an initial view and three hybrids. �e initial view consists of the adversary

interacting with the indistinguishability game that initially sampled b = 0. �e �rst hybrid consists of a

game that on receipt of sequences σ0,σ1, if Φ(σ0) , Φ(σ1) outputs ⊥, otherwise it simply sends Φ(σ0) to

the simulator and forwards the response to the adversary. �e third game is the same as the second game

except that it sends Φ(σ1) to the simulator. �e �nal hybrid, consists of the adversary interacting with the

indistinguishability game that initially sampled b = 1.

Since by assumption, the garbling scheme is (L,Φ)-simulation con�dential, it must be that the initial

view and the �rst hybrid are indistinguishable. �is also holds for the second and third hybrid. Since

by assumption, Φ(σ0) = Φ(σ1) and that the game only forwards responses from the simulator, the �rst

and second hybrids are indistinguishable. �erefore by transitivity of indistinguishability, we have that

the initial view and the �nal hybrid are indistinguishable and thus the scheme is (L,Φ)-indistinguishable

con�dential.
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