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Abstract

A secure ad-hoc survey scheme enables a survey authority to independently (with-
out any interaction) select an ad-hoc group of registered users based only on their
identities (e.g., their email addresses), and create a survey where only selected users
can anonymously submit exactly one response. We present a formalization of secure
ad-hoc surveys and present:

• an abstract provably-secure implementation based on standard cryptographic
building blocks (which in particular are implied by the existence of enhanced
trapdoor permutations in the CRS model);

• a practical instantiation of our abstract protocol, called anonize, which is provably-
secure in the random oracle model based on cryptographic assumptions on
groups with bilinear maps.

As far as we know, anonize constitutes the first implementation of a large-scale
secure computation protocol (of non-trivial functionalities) that can scale to millions
of users.



1 Introduction

We study the basic conflict between anonymity and authenticity in large network set-
tings. Companies, universities, health providers and government agencies routinely con-
duct asynchronous and real-time data collection surveys for targeted groups of users
over the Internet. To do so, they aim for authenticity (i.e., ensuring that only the legiti-
mate users can participate in the data collections) and anonymity (i.e., ensuring that the
there is no link between the legitimate user and his/her data so that users are more likely
to submit honest feedback). The intrinsic conflict between these two goals may result in
users self-censoring or purposely biasing data they submit.

A simple example is a course evaluation for a university class. A typical implemen-
tation of such a survey requires a trusted third party (such as the university or some
external party) to ensure that feedback is collected anonymously from the participants
and that only authorized participants, i.e., the students enrolled in a particular class,
can submit feedback for that class. In such trusted-party implementations, students are
required to authenticate themselves with their university IDs and thus leave a link be-
tween their evaluation and their identity; they are trusting the survey collector to keep
such links private.

Assuming that the survey collector acts as a trusted third party is dangerous. Even
if the survey collector intends to keep the links between users and their surveys private,
its computer may be stolen or broken into, and the information leaked. For instance, in
2009, a computer at Cornell was stolen, containing sensitive personal information, such
as name and social security number, for over 45,000 current and former university mem-
bers [1]. Additionally, even if users have full confidence in the trusted third party, and
in particular, its ability to keep its data secure, developing an anonymous survey system
using such a trusted party still requires extreme care. For example, in the implemen-
tation of course reviews at the University of Virginia, side channel information about
participation in the survey may leak information about the order in which students par-
ticipate. Later, the order of the students’ comments in the aggregated responses may be
correlated to break anonymity [2].

Furthermore, in many situations, jurisdictional boundaries or legal requirements
make it unfeasible to rely on solutions with external trusted third parties: it may be
illegal to store sensitive patient information on a third-party system; similarly, many
countries do not permit sensitive data to be stored on servers run by foreign corpora-
tions due to the potential for this data to be seized [3].

For these reasons, we seek cryptographic solutions to the problem of anonymous
surveys that offer security guarantees where anonymity and authenticity hold without
needing to trust a third party.

Cryptographic voting techniques described in prior work may offer a partial solu-
tion to this problem (see e.g., [4, 5, 6, 7, 8]). In such schemes, each survey consists of
two steps: 1) users authenticate themselves to a server and anonymously check out a
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single-use “token”; the token itself carries no link to the user’s identity. 2) a user can
then use her token to participate in the specified survey. Such schemes provide good
anonymity assuming that users actually separate steps 1 and 2 with a reasonably long
time lag (otherwise there is a clear time link between the user and its data). But if users
are required to separate the two steps by, say, a day, the ease-of-use of the survey is sig-
nificantly hampered and become much less convenient than “non-anonymous” surveys
(or anonymous surveys employing a trusted third party). Additionally, the extra steps
required to authenticate for each survey may be onerous. Consequently, such techniques
have gained little traction.

1.1 Our innovation: electronic ad-hoc surveys

In this paper, we consider a general solution to the problem of anonymously collecting
feedback from an authenticated group of individuals by introducing the notion of an
ad-hoc survey. The “ad-hoc” aspect of this notion means that anyone can select a group
of individuals and create a survey in which those and only those individuals can com-
plete the survey at most once; additionally, the survey initiator can initiate this survey
knowing only the identities (e.g., the email addresses) of the users in the ad-hoc group—
no further interaction between the survey initiator and the users is required.1 As such,
our method provides essentially the same ease-of-use as traditional (non-anonymous)
electronic surveys (and it thus is expected to increase user participation and make the
feedback submitted more valuable).

As we demonstrate, ad-hoc surveys admit practical and efficient solutions for very
large surveys: we present an ad-hoc survey scheme, anonize, a proof of security for the
cryptographic protocols in anonize, and an implementation of the protocol. anonize

supports millions of “write-in” (i.e., collection of arbitrary strings of data) surveys in
minutes. As far as we know, this is the first implementation of a provably-secure2 multi-
party protocol that scales to handle millions of users. Additionally, we prove security
of our scheme even if the adversary participates in an arbitrary number of concurrent
surveys.

1.2 Ad-hoc Surveys in more detail

In more details, there are three parties in an ad-hoc survey system: a registration author-
ity (RA) that issues master user tokens, a survey authority (SA) that can create surveys,
and users that provide survey data. A user must first register with the RA and retrieve a
secret “master user token”. This is a single token that can be used for all future surveys
the user participates in. Anyone can act as an SA by choosing a uniquel survey ID and

1Before users can complete a survey, we additionally require them to register their identity. We emphasize
that this registration is done only once and can be used for any number of subsequent surveys.

2By “provably-secure”, we only refer to the cryptographic protocol.
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publishing a list of identities that are permitted to participate in that survey. The list of
identities that can participate in a particular survey can grow dynamically, and the SA
can create a survey without any interaction with others. Finally, a user who is on the
list of valid identities for a survey can non-interactively submit a response to the survey
by simply routing one message to the SA (through an anonymous network like Tor, or
anonymous proxy relay).

To exemplify this approach and informally discuss the anonymity/authenticity prop-
erties it provides, we consider the course evaluation scenario.

1.2.1 Student Registration

When a student is asked to set-up his college/university account information (while
proving his identity using traditional, non-electronic, methods), the student also gener-
ates an unlinkable master user token that is tied to his school email identity (e.g., his email
address). This step can also be done at a later stage if the student desires (or if the
student loses his credential), but it only needs to be done once.

1.2.2 Course Survey Setup

Whenever a course administrator wishes to set-up a course survey, she generates a survey
key based only on the actual identities (e.g., the email addresses) of the course partici-
pants.

1.2.3 Survey Execution

Upon filling out a survey with its associated survey key, the student’s client (either com-
puter or smart phone) combines the survey key and her master user token to generate
an unlikable one-time token that she can use to complete the survey. The one-time to-
ken satisfies two properties: 1) it carries no link to the student’s identity (thus we have
anonymity), and 2) for a given survey key, the student can obtain at most one such token
(and thus we ensure that a student can only complete the survey once3). The results of
the survey can now be tabulated, and, possibly announced.

We emphasize that once Step 1 has been done (presumably once the students enroll
into college), Steps 2 and 3 can be repeatedly performed. The participants do not need
to check-out new single-use tokens for each survey; rather their client uses the master
user token to create a unique single-use token for this survey without any interaction (that
could deanonymize the student).

3Our systems support the (optional) ability for the user to change her response (before the voting dead-
line) in a manner that replaces her previous submission, but in no other way leaks any information about
her identity.
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Part of our contribution is to precisely define security properties of ad-hoc surveys
such as anonymity (intuitively, that there is no link between users and the surveys they
submit), and authenticity (intuitively, that only authorized users can complete the sur-
vey, and they can complete it only once). As mentioned, we are interested in providing
security not only for a single survey, but also if an attacker participates in many surveys,
be they in the past, concurrent, or in the future. We emphasize that although related
notions of anonymity and authenticity have been defined in the literature for other ap-
plications, our setting is considerably more complex and thus the actual definitions are
quite different.

1.3 Anonize in more detail

Our system is constructed in two steps. We first provide an abstract implementation of
secure ad-hoc surveys from generic primitives, such as commitment schemes, signatures
schemes, pseudo-random functions (PRF) and generic non-interactive zero-knowledge
(NIZK) arguments for NP4. We prove the security of the abstract scheme based on the
assumption that all generic primitives employed are secure. Note that we have taken
explicit care to show that our schemes remain secure even when the adversary initiates
many concurrently executing sessions with the system.

In a second step we show that (somewhat surprisingly) the generic scheme can be
instantiated with specific commitment schemes, signatures schemes, PRFs and NIZKs to
obtain our efficient secure ad-hoc survey scheme anonize (which now is based on spe-
cific computational assumptions related to the security of the underlying primitives in
the Random Oracle Model). The surprising aspect of this second step is that our generic
protocol does not rely on the underlying primitives in a black-box way; rather, the NIZK
is used to prove complex statements which require code of the actual commitments, sig-
natures and PRFs used. In this second step, we rely on ideas similar to those underlying
efficient constructions of anonymous credentials in bilinear groups [9, 10], although our
constructions differ in a few ways. As far as we know, our scheme is also one of the first
implementations of a cryptographic scheme that is concurrently secure.

Let us briefly provide a high-level overview which omits several important features,
but conveys the intuition of our abstract protocol (we assume basic familiarity with the
concepts of commitment schemes, signature schemes, PRFs and NIZKs).

Registration A user with identity id registers with the RA by sending a commitment to
a random seed sid of a pseudo-random function (PRF) F. If the user has not previ-
ously been registered, the RA signs the user’s name along with the commitment.
The signature σ is returned to the user is its “master user token”.

Survey Creation To create a survey with identity vid, an SA generates a signature key
pair (vkSA, skSA) and publishes:

4As we show, we actually need a new variant of standard NIZKs.
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• the signature verification key vkSA, and

• a list of signed pairs {(vid, id)}id∈I where I is the set of users authorized for
the survey.

Submitting a Response To complete a survey with survey identity vid, user id generates
a single-use token tok = Fsid(vid) (by evaluating the PRF on the seed sid with input
vid) and presents a NIZK that

• it “knows a signature by the RA on some identity id and a commitment to
some seed sid” (note that neither id nor sid is revealed);

• it “knows a signature by the SA on the pair (vid, id)” (again, id is not revealed);
and,

• the single-use token tok is computed as Fsid(vid).

The user’s actual survey data as well as tok and vid are included into the ”tag” of
the NIZK to ensure ”non-malleability” of submitted responses.

1.3.1 Proof of Security and the Concrete Instantation

Roughly speaking, the NIZK proof in the survey completion step ensures that only au-
thorized users can complete the survey, and that they can compute at most one single-
use token, and thus complete it at most once. 5 Anonymity, on the other hand, roughly
speaking follows from the fact that neither the RA nor the SA ever get to see the seed sid
(they only see commitments to it), the zero-knowledge property of the NIZKs, and the
pseudo-randomness property of the PRF.

Proving this abstract protocol secure is non-trivial. In fact, to guarantee security un-
der concurrent executions, we introduce and rely on a new notion of a online simulation-
extractable NIZK (related to simulation-sound NIZK [11] and simulation-extractable in-
teractive zero-knowledge arguments [12, 13]).

To enable the concrete instantiation of the abstract protocol using specific primi-
tives, we demonstrate a simple and efficient way of implementing online simulation-
extractable NIZK in the Random Oracle Model. Finally, the key to the construction is
choosing appropriate commitments, signatures and PRF that can be “stitched together”
so that we can provide an efficient NIZK for the rather complex statement used in the
abstract protocol.

5If the user wants to replace her survey response before the deadline and this is allowed by the system,
then she can create a new NIZK with new data for the same Fsid (vid) value. The old survey with this value
can be deleted.
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1.4 Related notions and techniques

Ad-hoc surveys are related to, but different from, a number of primitives previously
considered in the literature such as group signatures, ring signatures, voting schemes and
anonymous credentials. Roughly speaking, group [14, 15, 16] and ring [17] signatures allow
members of a set of users to sign messages in a way that makes it indistinguishable who
in the set signed the message (in the case of group signatures the set is fixed 6, whereas
in the case of ring signatures the set can be selected “ad-hoc”). This property is similar to
the anonymity property of ad-hoc survey, but unfortunately, the authentication property
these notions provide is insufficient for our setting—in a ring signature scheme, a user
may sign multiple messages with impunity which corresponds to the ability to complete
the survey multiple times in our context. Voting schemes [4, 5, 6, 7, 8] on the other hand
do provide both the anonymity and the authenticity properties we require; however, they
do not allow for the authenticated users to be selected ad-hoc for multiple elections.

An anonymous credential system [19, 20, 21, 9] allows users to obtain credentials from
authorities and to anonymously demonstrate possession of these credentials. In essence
such systems provide methods for providing, a “zero-knowledge proof of knowledge of
a signature on a set of attributes.” As mentioned, the NIZKs we use rely on intuitions
similar to those used in constructions of anonymous credentials (most closely related
to [9] and the electronic cash/token extensions in [22, 10]), but we have different goals
and rely on different complexity assumptions. Moreover, since anonymous credentials
typically are not analyzed under concurrent executions, we must develop new techniques
for the security analysis.

1.5 Our Implementation

One of the key points of our system is that it can be implemented and can easily handle
large numbers of users with moderate resources. The computational costs on the users
are quite low as well, with a typical desktop being able to compute the worst-case sce-
nario in under a few seconds, using a single core of the machine. Thus we argue our
system scales to manage that vast majority of practical surveying needs at costs that are
easily affordable.

1.6 Outline of the Paper

We provide some preliminaries in Section 2. In Section 3 we define correctness and secu-
rity properties of Ad-hoc Surveys. In Section 4 we provide an abstract implementation
of Ad-hoc surveys based on general cryptographic building blocks. Finally, in Section 5

6The desirability of making group signatures dynamic was addressed by Bellare, Shi and Zhang [18].
Their solution, however, requires that every group member or potential group member has their own per-
sonal public key, established and certified, e.g., by a PKI, independently of any group authority. Our ad-hoc
survey solution does not require this.
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we show how to instantiate the abstract implementation with a concrete protocol in the
Random Oracle Model.

2 Preliminaries

In this section, we introduce the notations we use and recall some standard cryptographic
notions and primitives.

2.1 Notations

Let N denote the set of positive integers, and [n] denote the set {1, 2, . . . , n}. By a prob-
abilistic algorithm we mean a Turing machine that receives an auxiliary random tape
as input. PPT stands for probabilistic polynomial-time algorithms, and nuPPT denotes
non-uniform probabilistic polynomial-time algorithms. If M is a probabilistic algorithm,
then for any input x, the notation “Mr(x)” or “M(x; r)” denotes the output of the M on
input x when M’s random tape is fixed to r, while M(x) represents the distribution of
outputs of Mr(x) when r is chosen uniformly. An oracle algorithm is a machine that gets
oracle access to another machine. Given a probabilistic oracle algorithm M and a prob-
abilistic algorithm A, we let MA(x) denote the probability distribution over the outputs
of the oracle algorithm M on input x, when given oracle access to A.

By x ← S , we denote an element x is sampled from a distribution S . If F is a finite
set, then x ← F means x is sampled uniformly from the set F . To denote the ordered se-
quence in which the experiments happen we use semicolon, e.g. (x ← S ; (y, z)← A(x)).
Using this notation we can describe probability of events. For example, if p(·, ·) denotes
a predicate, then Pr[x ← S ; (y, z) ← A(x) : p(y, z)] is the probability that the predicate
p(y, z) is true in the ordered sequence of experiments (x ← S ; (y, z) ← A(x)). The no-
tation {(x ← S ; (y, z) ← A(x) : (y, z))} denotes the resulting probability distribution
{(y, z)} generated by the ordered sequence of experiments (x ← S ; (y, z)← A(x)).

If A and B are probabilistic interactive algorithms, we denote by “A↔ B” the interac-
tion between A and B. This interaction is formally a random variable describing the joint
view of both parties (which includes both parties’ inputs, random tapes, and messages
received). Given an outcome (i.e., joint view) o of an interaction, we let

• trans(o) denote the transcript of the interaction in o (i.e., the messages sent by the
players);

• viewb(o) denote the view of the b’th player in o;

• outb(o) denote the output of the b’th player in o;

• out(o) denote the output of both players in o.
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2.2 Computational Indistinguishability

We recall the definition of computational indistinguishability [23].

Definition 1 (Computational Indistinguishability) Let X and Y be countable sets. Two
ensembles {Ax,y}x∈X,y∈Y and {Bx,y}x∈X,y∈Y are said to be computationall indistinguishable if for
every probabilistic distinguishing algorithm D with polynomial running-time in its first input,
there exists a negligible function µ(·) such that for every x ∈ X, y ∈ Y it holds that:∣∣Pr

[
a← Ax,y : D(x, y, a) = 1

]
− Pr

[
b← Bx,y : D(x, y, b) = 1

]∣∣ < µ(|x|)

2.3 Signatures Schemes

We recall the definition of signature schemes that are secure against adaptive chosen
message attacks [24].

Definition 2 (Signature Schemes) We say that a tuple of probabilistic polynomial-time algo-
rithms π = (Gen,Sign,Ver) is a signature scheme if the following conditions hold:

• Validity: For every n ∈ N, every (pk, sk) ∈ Gen(1n), every m, s ∈ {0, 1}n, every
σ ∈ Sign(sk, m), Ver(vk, m, σ) = 1.

• Unforgeability: For every nuPPT A, there exists a negligible function µ such that for
every n ∈N, the probability that A wins in the following experiment is bounded by µ(n):
Sample (vk, sk) ← Gen(1n) and let A(1n, vk) get oracle access to Sign(sk, ·); A is said to
win if it manages to output a message-signature pair (m, σ) such that Ver(vk, m, σ) = 1
while never having queried its oracle on m.

Signature schemes can be constructed based on any one-way functions [25, 26].

2.4 Pseudorandom Functions

We recall the definition of a pseudorandom function (PRF).

Definition 3 (PRF) We say that a PPT computable function f is a pseudorandom function over
{Rn}n∈N if for every n ∈ N, s ∈ {0, 1}n, f (s, ·) is a function from {0, 1}n to Rn, and for every
nuPPT oracle machine D there exists a negligible function µ(·) such that∣∣∣Pr [ρ← {{0, 1}n → Rn} : Dρ(1n) = 1]− Pr

[
s← {0, 1}n : D f (s,·)(1n) = 1

]∣∣∣ < µ(n)

PRFs over {{0, 1}n}n∈N can be constructed based on any one-way functions [27, 28].
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2.5 Commitment Schemes

Commitment protocols allow a sender to commit itself to a value while keeping it secret
from the receiver; this property is called hiding. At a later time, the commitment can
only be opened to a single value as determined during the commitment protocol; this
property is called binding. For our purposes, we restrict our attention to collections of
non-interactive commitments.

Definition 4 (Collection of Non-interactive Commitments) We say that a tuple of PPT al-
gorithms (Gen,Com) is a collection of non-interactive commitments if the following condi-
tions hold:

• Computational Binding: For every nuPPT A there exists a negligible function µ such
that for every n ∈N,

Pr
[

i← Gen(1n) : (m0, r0), (m1, r1)← A(1n, i) :
m0 6= m1, |m0| = |m1| = n,Comi(m0; r0) = Comi(m1; r1)

]
≤ µ(n)

• Computational Hiding: The following ensembles are computationally indistinguishable:

– {Comi(m0)}n∈N,i∈{0,1}∗,m0,m1∈{0,1}n,,z∈{0,1}∗

– {Comi(m1)}n∈N,i∈{0,1}∗,m0,m1∈{0,1}n,z∈{0,1}∗

Collections of non-interactive commitments can be constructed based on any one-way
function [29, 28].7

3 Ad-hoc Surveys

An Ad-hoc Survey Scheme is a protocol involving three types of players:

— A single Registration Authority (RA).

— One or multiple Survey Authorities (SA).

— Users; each user is associate with a public user identity id (e.g., its email address).

We assume that the RA has the ability to set up a secure session (private and authen-
ticated) with the user associated with a particular user identity. Each user additionally
has the ability to setup an anonymous connection to the SA when returning their survey.

An ad-hoc survey scheme is a tuple of algorithms (GenRA,RegUserRA,RegUserU , GenSurvey,
Authorized, SubmitSurvey,Check) which we formalize shortly. To gain some intuition, let
us first explain how these algorithms are intended to be used in a system and informally
explain what types of security requirements are needed from them.

7In fact, those commitments satisfy an even stronger “statistical” binding property which quantifies over
all (potentially unbounded) attackers A.
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System Set-up

— The RA generates a public key-pair vkRA, skRA ← GenRA(1n); vkRA is made public
and skRA is secretly stored by the RA.

— For systems that require the use of a Common Reference String (CRS), a CRS is
generated and made publicly available. For simplicity of notation, we omit the CRS
in all the procedures below and simply assume that all these procedures get the
CRS as an input. Likewise, for systems in the Random Oracle model, we assume
the procedures below have access to the Random Oracle.

User Registration To use the system, users need to register with the RA; at this point
the user and the RA execute the protocol (RegUserRA,RegUserU) which allows the user to
check out an unlinkable “master credential”. A user with identity id proceeds as follows:

1. The user sets up a secure session with the RA.

2. The RA checks that user identity id previously has not been registered. If it has,
the RA closes the session. Otherwise, the RA and the user invoke the interactive
protocol (RegUserRA,RegUserU) on the common input 1n, id.

3. If the protocol ends successfully, the RA stores that user identity id has been regis-
tered, and the user secretly stores the output as credid.

Survey Registration Whenever an SA wants to set-up a survey with identifier vid, it
generates a survey public-key based on the identities of the participants. More precisely,
the SA on input a survey identifier vid and a list L of user identities (they may be previ-
ously registered or not) computes and makes public

vkvid ← GenSurvey(1n, vid, L)

Completing a Survey Given a registered survey with identifier vid and its associated
public-key vkvid, each authorized user id can combine its master credential credid with the
survey identifier vid and public-key vkvid to generate an unlikable one-time token that it
can then use to make a submission in the survey. Roughly speaking, the one-time token
satisfies two properties: 1) it carries no link to the students identity id (thus we have
anonymity), and 2) for a given survey key, the student can obtain at most one such token
(and thus can only submit one response).

More precisely, user id with master credential credid submits the message m as the
completed survey by privately executing the algorithm

Sub = (tok, m, tokauth)← SubmitSurvey(1n, vid, vkvid, m, credid)
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and then submitting Sub to the SA through an anonymous channel; tok is the one-time
token, and tokauth is an authenticator required to bind the message m to the one-time to-
ken, and to ensure uniqueness of the one-time token. SA checks whether the submission
is correctly computed by executing

Check(vkRA, vid, vkvid, Sub)

If it outputs accept it stores the submission. If a submission with the same token tok
has been previously stored (i.e., if a Sub of the form (tok, m′, tokauth′) has already been
stored, the old record is removed. (Or alternatively, the new Sub is not stored.))

Announcing the results Once all the submissions have been collected, the SA may
(depending on external privacy requirements) publish a list of all stored submissions
Sub = (tok, m, tokauth).

Audit Procedures The system also includes audit procedures. First, users can check
that their submission was recorded by simply inspecting that their submission is output.
Second, a user may use Check(vkRA, vid, vkvid,Sub) to check whether Sub is a valid submis-
sion (i.e., user can check that there is no “ballot/survey-stuffing”). Finally, to ensure that
a survey is not targeted to a particular user (for de-anonymization purposes), the user
may use function Authorized(vid, vkvid, id′) to check whether user id′ is also authorized for
survey vid with public key vkvid.

Key features and Security Properties A crucial aspect of an ad-hoc survey is the pri-
vacy property: even if the RA and SA are arbitrarily corrupted (and in collusion) they
cannot learn anything about how particular users answered submissions. The key secu-
rity property of our ad-hoc survey is that only authorized users can complete a survey,
and furthermore they can complete it at most once.

3.1 Definition of an Ad-hoc Survey

We proceed to provide a formal definition of Ad-hoc Survey schemes and their privacy
and security properties.

Definition 5 An ad-hoc survey scheme Γ is a tuple of PPT algorithms and interactive PPTs
(GenRA,RegUserRA,RegUserU , GenSurvey, Authorized, SubmitSurvey, Check) where

• GenRA(1n) outputs a key-pair vkRA, skRA.

• RegUserRA(1n, skRA, vkRA, id) is an interactive PPT that outputs either accept or fail.

• RegUserU(1n, vkRA, id) is an interactive PPT that outputs a bitstring credid or fail.
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• GenSurvey(1n, vid, L) outputs a bitstring vkvid. Here vid is a unique arbitrary identifier
and L is a description of the set of users eligible to participate in the survey.

• Authorized(vid, vkvid, id) outputs either accept or fail.

• SubmitSurvey(1n, vid, vkvid, m, credid) outputs Sub = (tok, m, tokauth).

• Check(vkRA, vid, vkvid, Sub) outputs either accept or fail.

A remark on the Authorized procedure We are interested in schemes where the de-
scription of the authorized procedure makes it possible to naturally interpret the set of
users that are allowed to complete a survey (and indeed, our constructions fall into this
category). For instance, the description of the Authorized procedure specifies a list of
user identities, or specifies a list of user identities with wildcard (e.g., ∗@ ∗ .cornell.edu).
In our specific implementation, the public key for the survey vkvid consists of a list of
authorized users.

3.2 Correctness

We proceed to define what it means for an ad-hoc survey scheme to be correct. The fol-
lowing definition requires that for every set of users L, if an SA sets up a survey for L,
and if a user in L correctly registers with the RA, then this user will be authorized to
complete the survey, and will be able to submit a response that passes the check. Addi-
tionally, we require all (authorized) users’ submissions have different token numbers (or
else some of the submission would be thrown out).

Definition 6 An ad-hoc survey scheme Γ is correct if there exists a negligible function µ(·),
such that the following experiment outputs fail with probability at most µ(n) for every n ∈ N,
vid, m ∈ {0, 1}n, set L of n-bit strings, every mapping m : L→ {0, 1}n:

– (vkRA, skRA)← GenRA(1n)

– For every id ∈ L:

– (outRA, outU)← out[RegUserRA(1n, skRA, vkRA, id)↔ RegUserU(1n, vkRA, id)]

– Output fail if either outRA or outU is fail; otherwise let credid = outU.

– vkvid ← GenSurvey(1n, vid, L)

– Output fail if there exists some id ∈ L such that Authorized(vid, vkvid, id) = fail

– For every id ∈ L:

– Subid = (tokid, mid, tokauthid)← SubmitSurvey(1n, vid, vkvid, m[id], credid).
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– Output fail if Check(vkRA, vid, vkvid,Subid) = fail, or if mid 6= m[id].

– Output fail if there exists id, id′ ∈ L such that Subid and Subid′ have the same first compo-
nent (i.e., the same token number).

3.3 Privacy and Security

We turn to defining the privacy and security requirements of an ad-hoc survey scheme.

• Anonymity (Unlinkability). Roughly speaking, the privacy property stipulates that
nobody, even the SAs and RA in collusion, can link a specific submission to a specific
user. This property holds, even if the link between users and submissions in other
surveys are revealed to the attacker.

• Authenticity (Security). This propety ensures a (potentially) malicious user can only
complete surveys they are authorized for, and additionally can only complete such
surveys once (or more precisely, if they successfully submit multiple times, their
submissions all use the same token-number and can be easily identified and joined,
or discarded depending on the survey policy).

3.3.1 Anonymity (Unlikability)

The following definition stipulates that the SA(s) and RA and malicious users, even
if arbitrarily corrupted (and in collusion), cannot distinguish the submissions of two
authorized honest users, even for an adaptively chosen participant list, user identities
and submission messages, and even if they may see the submission messages of the two
participants for any messages of their choosing, in any other survey of its choice. Thus,
even if an attacker knows what submissions correspond to which users in any surveys of
its choice (before and after the survey of interest), it still cannot identify what these users
submitted for a survey of interest. The definition mirrors the definition of CCA-secure
encryption: we give the attacker the opportunity to generate an arbitrary public-key for
the RA, pick two user identities id0, id1, ask the users to register with him, and then
make oracle queries to the users’ SubmitSurvey procedure. Finally, the attacker selects a
survey consisting of a vid and a public key for the survey vkvid such that id0, id1 are both
authorized (for which it has not yet queried the SubmitSurvey oracle on vid), a pair of
messages m0, m1, and then sees two submissions. The attacker must guess whether the
two submissions correspond to ones from id0 and id1 or from id1 and id0 respectively;
the attacker continues to have oracle access to the users’ SubmitSurvey procedure during
this decision-making phase but cannot make queries on the vid.

Definition 7 An ad-hoc survey scheme Γ is unlinkable if for every non-uniform PPT A the
ensembles {EXEC0(1n, A)}n∈N and {EXEC1(1n, A)}n∈N are computationally indistinguishable
where EXECb(1n, A) is defined as follows:
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– (vkRA, z)← A(1n)

– Let adversary A(1n) concurrently interact with RegUserU(1n, vkRA, ·) with adaptively
chosen, but unique, user identities id ∈ {0, 1}n of its choice. (That is, A can only
use each user identity id in a single interaction with RegUserU .) Whenever an
interaction with some RegUserU(1n, vkRA, id) successfully completes (i.e., the output
of the user is not fail), let credid be the output of RegUserU , and for the remainder
of the experiment, A gets oracle access to SubmitSurvey(1n, ·, ·, ·, credid).

– (vid, vkvid, id0, id1, m0, m1, z′)← A(1n, z)

– Output fail if Authorized(vid, vkvid, idβ) = fail for any β ∈ {0, 1}.

– Let Subβ = SubmitSurvey(1n, vid, vkvid, mβ, credidβ⊕b) for β ∈ {0, 1}.

– out← A(1n, (Sub0, Sub1), z′)

– Output fail if there exists some β ∈ {0, 1} such that A queried its SubmitSurvey(1n, ·, ·, ·, credidβ
)

oracle with vid as its second input; otherwise, output out.

3.3.2 Authenticity (Security)

Let us now turn to defining security. The following definition stipulates that only au-
thorized users may complete surveys, and only one of their submissions is counted. We
require that this holds even if the attacker may register multiple identities, and see sub-
missions of the attacker’s choice for any other user of its choice and in any survey (this
one, or any other survey).

To begin, we formalize what it means to give the attacker access to submission oracles
for users of its choice by defining the stateful oracle

SubmitSurvey′(1n, vid, vkvid, m, id, vkRA, skRA)

that operates as follows: if the oracle has not previously been queried on the identity id
(as its 5th input), let (outRA, credid) be the output of an execution of

RegUserRA(skRA, 1n, vkRA, id)↔ RegUserU(1n, vkRA, id)

Next output SubmitSurvey(1n, vid, vkvid, m, credid). If the oracle has previously been queried
on the identity id, recover the previously computed credential credid, and directly output
SubmitSurvey(1n, vid, vkvid, m, credid).

Definition 8 An ad-hoc survey scheme Γ is secure against malicious users if for every non-
uniform PPT A, every polynomial p(·), there exists a negligible function µ(·), such that the
following experiment outputs accept with probability at most µ(n) for every n ∈N,
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– (vkRA, skRA)← GenRA(1n)

– Honest User Registration and Survey Submission: Throughout the experiment, A(1n)
has oracle access to SubmitSurvey′(1n, ·, ·, ·, vkRA, skRA). Let Lhonest be the set of identi-
ties on which A queries the oracle (as its 5th input).

– Corrupt User Registration: Throughout the experiment, A can concurrently interact
with RegUserRA(1n, skRA) with adaptively chosen, but unique, user identities id ∈
{0, 1}n of its choice. (That is, A can only use each user identity id in a single
interaction with RegUserRA.) Let Lcorrupt be the set of identities on which RegUserRA

outputs accept.

– z, L, vid← A(1n)

– vkvid ← GenSurvey(1n, vid, L)

– S← A(1n, z, vkvid).

– Output accept if

1. Lhonest ∩ Lcorrupt = ∅;

2. |S| > |L ∩ Lcorrupt|;
3. Check(pkRA, vid, vkvid,Sub) accepts for all Sub ∈ S;

4. for any two (tok, m, tokauth), (tok′, m′, tokauth′) ∈ S, tok 6= tok′.

5. For all (tok, m, tokauth) ∈ S, (tok, m, tokauth′) was never received as an output from
A’s SubmitSurvey′(1n, vid, ·, m) oracle.

The above four conditions correspond to the determining whether 1) A produced more
submissions than it is authorized to do, 2) all submissions are valid (or else they would
be rejected), 3) all submissions have different token-numbers (or else only one of them
is counted), and 4) all token-numbers are “new” (i.e., it didn’t “take” them from some
honest user for which it has seen a response).

To get some intuition for what these conditions imply, note that a minimal property
guaranteed by these conditions (and the correctness property of ad-hoc surverys) is that
if a user submits multiple responses, they will all receive the same token number tok
(and thus only one of them will be counted). Additionally, these conditions guarantee
that a malicious user, even if it can see responses of its choice of other users (which
thus have different token numbers), and even if they by mistake submit many responses,
it still cannot come up with a valid submission with a new token-number. Finally, the
fourth condition is worth elaborating on: Not only it guarantees that an attacker cannot
come up with a new token number tok, but also that it cannot “change” the response
of a user, even if this user has filled out the same survey multiple times: we allow the
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attacker to request many submissions by some honest user, which thus all will have the
same token-number tok, on (perhaps different) messages of its choice, yet the attacker
should still not be able to come up with a valid submission (tok, m, tokauth) for some
new message m.

Remark 1 In the above definition, we restrict the attacker to only output a single “challenge”.
survey. However, this is without loss of generality: any A that breaks security in one out of
p(n) surveys, can be used to construct an attacker A′ that picks a random of the surveys as
its “challenge” survey and internally emulates all the others. This only decreases A success
probability by at most a factor 1/p(n).

Remark 2 An even stronger definition of security would require that whenever the attacker
makes a submission, it must “know” which of its registered and authorized users it is actually
submitting for. More precisely, this requires the existence of an “online” extractor that extracts
out the identity for each valid submission. We mention that our scheme also satisfies this “explicit
knowledge” notion.

4 An Ad-hoc Survey Scheme Based on General Assumptions

In this section we provide a general construction of Ad-hoc Survey systems. As de-
scribed in the introduction, this construction will be based on general assumptions and
primitives that later can be instantiated with concrete protocols. In particular, as shown
in Section 5, the general protocol can be instantiated under concrete assumption in the
Random Oracle Model. (Alternatively, these primitives can be instantiated under general
assumptions in the CRS model, but the resulting solution would no longer be practical.)

Towards providing our protocol, we start by introducing and studying two new prim-
itives: online simulation-extractable NIZK and partially blind signatures.

4.1 Online Simulation-Extractable NIZK

We consider a notion of “online” concurrent simulation-extractable (oSE) NIZK, a non-
interactive version of tag-based concurrent simulation-extractable zero-knowledge from [12,
13], but with an online simulation-extraction property à la definition of universally com-
posable UC NIZK of [30]. (This notion is closely related—but stronger than—the notions
of non-malleability in the explicit witnesses sense of [31] (which in turn relies on the notion
of simulation-soundness of [11]).) We note that our definition is essentially equivalent to
the notion of UC NIZK, but to simplify exposition (and for self-containment), we prefer
to provide an explicit definition without needing to import the UC framework.

Since our instantiated protocol will be in either the Random Oracle Model (ROM) or
in the Common Reference String (CRS) model, we provide a definition of oracle NIZK,
where all parties have access to some auxiliary oracle O = {On}n∈N where On is a
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distribution over functions {0, 1}p(n) → {0, 1}p′(n) for polynomials p, p′. In the Random
Oracle model, we consider a setting where all parties have access to ROp,p′ = {On}n∈N

where On is simply uniform distribution over functions {0, 1}p(n) → {0, 1}n. In the CRS
model, on the other hand, we consider a degenerate oracle that simply outputs a single
string (namely the CRS). For our purposes, we restrict to oracles On that can be efficiently
implemented (e.g., it is well known that a Random oracle can be implemented in PPT
using lazy evaluation).

For our purposes (and following [12, 13]) we require the use of a “tag-based” NIZK
in which both the prover and the verifier get an additional string tag as input.8

Definition 9 (Tag-Based Non-Interactive Proofs) A tuple (P, V, O), is called a tag-based
non-interactive proof system for a language L with witness-relation RL(·) if the algorithm V is
a deterministic polynomial-time, and P is probabilistic polynomial-time, and O = {On}n∈N is a
sequence of distributions On over oracles {0, 1}p(n) → {0, 1}p′(n) (where p, p′ are polynomials),
such that the following two conditions hold:

• Completeness: There exists a negligible function µ such that for every n ∈N, x ∈ L s.t.
|x| = n, every w ∈ RL(x) and every tag ∈ {0, 1}n,

Pr[ ρ← On; π ← Pρ(tag, x, w) : Vρ(tag, x, π) = 1 ] ≥ 1− µ(n)

• Soundness: For every algorithm B, there exists a negligible function µ such for every
n ∈N, x /∈ L s.t. |x| = n and every tag ∈ {0, 1}n,

Pr[ ρ← On; π′ ← Bρ(tag, x) : Vρ(tag, x, π′) = 1 ] ≤ µ(n)

If the soundness condition only holds for polynomial-time adversaries B, then (P, V) is a non-
interactive argument.

Before defining our notion of simulation-extractability, let us first define an intermediary
notion which only strengthens the soundness condition of non-interactive arguments to
an online extraction condition.

Definition 10 (Tag-Based Online Extractable Non-Interactive Arguments) A tag-based non-
interactive argument (P, V, O) (resp. tag-based non-interactive proof system) for a language L
with witness-relation RL(·) is called online extractable if the following condition holds:

• Online Extraction: There exists a PPT extractor X such that for any nuPPT algorithm
B, there exists a negligible function µ such for every n ∈N,

Pr
[

ρ← On; tag, x, π′ ← Bρ(1n) :
Vρ(tag, x, π′) = 1∧ tag ∈ {0, 1}n ∧ X(x, Q) /∈ RL(x)

]
≤ µ(n)

where Q is the set of queries, and answers to those queries, made by B to ρ.
8The tag is the analog of a “session id” in the UC security setting.
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We now turn to defining (concurrent) simulation extractability. Consider a man-in-
the-middle attacker A that receives proofs from an honest prover “on the left” and outputs
its own proofs “on the right”. More specifically, in the left interaction, attacker A can
request proofs of any true statement x of its choice using any tag tag of its choice. In the
right interaction, A outputs a list of tags, statements and proofs ( ~tag,~x, ~π). We require
that the all the proofs requested by A can be simulated “online” for A (i.e., without
knowing the internals of A and without “rewinding” it), and additionally that witnesses
for all accepting proofs (x, π) ∈ (~x, ~π) on the right that use a “new” tag can be extracted
out. To enable this task, the simulator-extractor may simulate all oracle queries made by
A (and, in particular, may extract witnesses by observing what queries are made).

We proceed with a formal definition. Let (P, V, O) be an online extractable tag-based
NIZK for the language L with witness relation RL, and with the extractor X. Given any
PPT attacker A, “witness determining function” W, n ∈ N and auxiliary input z to A,
let real(1n, A, W, z) denote the output of the following experiment: Let ρ ← On; give
Aρ(1n, z) oracle access to P′(·, ·) where P′(tag, x) runs Pρ(tag, x, W(x, view′)) where view′

is A’s view up until this query. Finally, output the view of A (which includes the random
coins of A, the proofs received by A, and the answers to all ρ queries made by A); for
convenience of notation, we assume (without loss of generality) that A runs Vρ on any
proof that it outputs, right after outputting it, and thus the view of A suffices to determine
whether a proof it outputs is accepting. We call the pair (A, W) valid if A never queries
its prover oracle on some statement x such that W(x, view) /∈ RL(x) where view is the
view of A at the time of the query.

Given a PPT simulator S, we similarly define sim(1n, A, S, z): We let S(1n) interact
with A(1n, z) in a straight-line fashion, without rewinding it: in particular, S gets to answer
any ρ queries made by A and any proof request made by A (but can only communicate
with A once, and cannot rewind A). Finally, output the view of A in this interaction.

Finally, define the predicate ExtractFail(view) = 1 if and only if A, when given the
view view, ever outputs a proof π of some statement x with respect to tag tag such that
a) none of the proofs received by A in the view view use tag tag, b) Vρ accepts the proof
π (recall that we have assumed that the oracle queries needed to verify π are part of the
view of A), and c) X(x, π, Q) /∈ RL(x), where Q is the set of oracle queries, and answers
to those queries, made by A.

Definition 11 (Online Simulation-Extractability) Let (P, V, O) be an online extractable tag-
based NIZK for the language L with witness relation RL, and with the extractor X. We say that
(P, V, O) is online simulation extractable (oSE) if there exists a PPT machine S such that for
every PPT A, the following two conditions hold:

• Simulatability: For all PPT algorithms A, W such that (A, W) is a valid, the following
ensembles are computationally indistinguishable:

– {real(1n, A, W, z)}n∈N,z∈{0,1}∗
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– {sim(1n, A, S, z)}n∈N,z∈{0,1}∗

• Extractability: There exists a negligible function µ such that for every n ∈ N, every
` ∈N

Pr[(view← sim(1n, A, S, z) : extractfail(view) = 1] ≤ µ(n)

Let us finally remark that any “Universally Composable NIZK” [30, 31, 32] in e.g., the
CRS model (which can be based on enhanced trapdoor permutations) directly yield an
oSE NIZK in the CRS model:

Theorem 1 Assume the existence of enhanced trapdoor permutations. Then there exists a oSE
NIZK in the CRS model for every language in NP.

In the next section we turn to providing more efficient implementations in the ROM.

4.1.1 Simulation-extractability from HVZK

In this section we show how to transform any 3-round special-sound special Honest-
verifier Zero-knowledge (HVZK) [33] satisfying online simulation-extractability into an
online simulation-extractable NIZK in the ROM. Let us first recall such proof systems.

Definition 12 ([33]) A proof system (P, V) is a 3 round special-sound special Honest-
verifier Zero-knowledge (HVZK) proof/argument for language L with witness relation
RL if:

1. Three-move form: (P, V) is a 3-round public coin interactive proof where the 2-round
public coin message is of lenght t(|x|) > 1 where x is the common input.

2. Special soundness: There exists a PPT extractor X such that given any two accepting
transcripts (a, c, z) and (a, c′, z′) for the instance x, X(x, a, c, c′, z, z′) ∈ RL(x).

3. Special HVZK: There exists a polynomial time simulator S such that the following distri-
butions are computationally indistinguishable

• {trans[P(x, w)↔ Vc(x)]}x∈L,w∈RL(x),c∈{0,1}t(|x|),z∈{0,1}∗

• {S(x, c)}x∈L,w∈RL(x),c∈{0,1}t(|x|),z∈{0,1}∗

Note that in the above definition of special honest-verifier zero-knowledge, the auxiliary
input z is not given to any algorithms but is present to ensure that indistinguishability
holds also w.r.t. nuPPT distinguishers.

Our transformation proceeds in two steps:

• In the first step, we rely on a result by Pass [34] which transforms any 3-round
special-sounds special HVZK protocol into an online extractable special HVZK pro-
tocol in the Random Oracle Model.
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• We next apply the ”Fiat Shamir heuristic” [?] (but additionally apply the Random
Oracle to the tag) to turn any 3-round online extractable special HVZK protocol
into a online simulation-extractable NIZK in the Random Oracle model.

Towards this, let us first define oracle-based online-extractable special HVZK proto-
col.

Definition 13 (Online Extractable Special HVZK Interactive Arguments) A tuple (P, V, O),
is called a online extractable special HVZK interactive argument for a language L with witness-
relation RL(·) if P, V are PPTs that communicate in 3-rounds, V is “public coin” and the length
of the second message is t(n) for inputs of lenght n, O = {On}n∈N is a sequence of distributions
On over oracles {0, 1}p(n) → {0, 1}p′(n) (where p, p′ are polynomials), such that the following
two conditions hold:

• Completeness: There exists a negligible function µ such that for every n ∈N, x ∈ L s.t.
|x| = n, every w ∈ RL(x),

Pr[ ρ← On; out2[Pρ(x, w)↔ Vρ(x)] = 1 ] ≥ 1− µ(n)

• Online Extraction: There exists a PPT extractor X such that for any nuPPT algorithm
B, there exists a negligible function µ such for every n ∈N,

Pr
[

ρ← On; x, z← Bρ(1n) :
out2[Bρ(x, z)↔ Vρ(x)] = 1∧ X(x, Q) /∈ RL(x)

]
≤ µ(n)

where Q denotes the set of queries, and answers to those queries, made by B to ρ.

• Special HVZK: There exists a polynomial time simulator S such that for every nuPPT
oracle machine D, there exists a negligible function µ such that for every x ∈ L, w ∈
RL(x), c ∈ {0, 1}t(|x|),

|Pr
[
ρ← On : Dρ(trans[Pρ(x, w)↔ Vρ

c (x)]) = 1
]
−Pr [ρ← On : Dρ(S(x, c)) = 1] | ≤ µ(|x|)

Let us remark that our definition of zero-knowledge in the oracle model is somewhat
stronger than what is usually required (and also what we require in our definition of
simulation extractability): our definition is “non-programmable” [35, 34] in that we do
not allow the simulator to program the oracle. This property will be useful to ensure that
there will be no “conflict” in the simulation when dealing with multiple proofs (which
is needed for acheiving simulation extractability).

Step 1: Achieving online extractable special HVZK The following theorem is proven
in [34] (using slightly different language).

20



Theorem 2 Let (P, V) be a 3-round special-sound special HVZK protocol for L with witness
relation RL. Then, there exists a polynomial p and PPT algorithms P′, V ′ such that (P′, V ′, ROp)
is an online extractable special HVZK for L with witness relation RL.

Additionally, the modified protocol (P′, V ′) is obtained from (P, V) through an efficient
transformation (with ω(log n) computational overhead).

Step 2: Acheiving simulation-extractable NIZK Given a 3-round online extractable
special HVZK protocol Π = (P, V, O) where the length of the first message is p(·),
and the length of the second message is t(·), we construct a tag-based NIZK P̃i =
(P′, V ′, (O, ROp̃,t)) where p̃(n) = p(n) + n by applying the “Fiat-Shamir heuristic”, and
viewing the tag tag as part of the first message—that is, the second-message “challenge”
c is generated by applying the random oracle ρ to the first message a and the tag tag (i.e.,
c = ρ(a, tag)), and letting V ′ accept iff Vc accepts.

Theorem 3 Let (P, V, O) be an online extractable special HVZK argument for L with witness
relation RL, where the first message a of Π has ω(log n) min-entropy 9 and the second message b
is of length ω(log n) (where n is the length of the common input x). Then Π̃ constructed above
is a tag-based online simulation-extractable argument.

Proof: For simplicity of notation, we assume that the challenge b in Π has length t(n) = n
(where n is the statement length); the proof easily extends to the case when the challenge
is of super-logarithmic length. Let X denote the online extractor guaranteed to exists for
Π. Consider some simulation-extractability attacker A′ for Π̃. Recall that A′ asks to hear
proofs “on the left” and provides proofs “on the right”. We show how to simulate all
“left” proofs (and additionally all oracle queries), while ensuring that X still succeeds in
extracting witnesses from all accepting proofs on the right (that use a new tag).

Let ρ denote the On oracle, and RO denote the random oracle. The simulator S(1n)
proceeds as follows:

Simulation of ρ queries: S honestly emulates these queries. (Recall that we restrict to
oracles On that can be efficiently implemented, and thus this step can be performed
efficiently.)

Simulation of P′(tag, x) queries: S picks a random challenge c ∈ {0, 1}n, and runs the
HVZK simulator for Πρ on (x, c) to obtain a transcript (a, c, z)—we here rely on the
fact that the simulator does not program ρ, and thus the simulator needs to make ρ
queries which (as per above) are honestly emulated. We finally “program” RO to
return c on the input (a, tag) and store this query-answer pair, and return (a, c, z).

9Every special-sound special HVZK argument for a hard-on-the-average language must have this prop-
erty: if not, with polynomial probability two honest executions would have the same first message, but
different second messages and thus a witness can be extracted out.
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In the unlikely case that S attempts to program the oracle on an input that was
already stored, S halts and outputs fail.

Simulation of RO queries: For any RO query that that has not previously been stored,
simply pick a random n-bitstring, return it, and store this query-answer pair; if a
query-answer pair has been previously stored, simply output the answer.

Correctness of the Simulation Let us first argue that, assuming that S never outputs
fail, the simulation is correctly distributed. As usual, we define a sequence of hybrids
H0, . . . , Hm(n) (where m(n) is the running-time of A), where Hi denotes the view of A
in a hybrid experiment where the first i queries to P′’s responses are simulated and the
remaining ones are honestly emulated (but all ρ, RO queries are still simulated by S).
Note that Hm(n) is the simulated experiment, and H0 is identically distributed to the real
experiment (this follows from the fact that S honestly emulates ρ and RO queries if no
P′ queries are simulated). By a hybrid argument, we need to show that any two con-
sequetive hybrids Hi, Hi+1 are indistinguishable. Note that the only difference between
these two experiments is that the (i + 1)’th “left” proof is honestly generated simulated
in Hi, whereas it is simulated in Hi+1 (and thus RO is programmed at one more point
in Hi+1). Assume for contradiction that there exists a distinguisher D and a polynomial
p, such that for infinitely many n, there exists some i such that D distinguishes Hi and
Hi+1 with probability 1/p(n), for some polynomial p. Towards reaching a contradiction,
consider yet another hybird H̃i which is defined identically to Hi+1, except that when
generating the ith “left” proof, instead of running the HVZK simulator on input of a
uniformly generated challenge c to generate the transcript (a, c, z), generate it by letting
the honest prover communicate with Vρ

c . Note that since the challenge c is uniformly
chosen, it follows that H̃i is identically distributed to Hi. Thus, D must distinguish be-
tween H̃i and Hi+1 with probability 1/p(n) for infinitely many n. For each such n, there
thus exists some prefix τ of the view of A, leading up to the point when A asks to here
the ith proof (of some statement x using tag tag), and including the choice of the chal-
lenge c, such that D distinguishes H̃i and Hi+1 with probability 1/p(n) also conditioned
on τ (this follows since H̃i and Hi+1 proceed identically the same up until this point).
Additionally, the continuation of the experiments can be efficiently generated given τ;
this directly contradicts the special HVZK property of Π.

Next, note that S only outputs fail with negligible probability; this directly follows
from the fact that the first message in Π has ω(log n) min-entropy so the probability
that it collides with any previously programmed RO queries is negligible; as a result, it
follows by a union bound that the probability of ever getting a collision is also negligible.
We conclude that the simulated experiment is indistinguishable from the real one.

Correctness of the Extraction Assume for contradiction that the extraction fails. That
is, there exists some polynomial p(·) such that for infinitely many n, A succeeds in
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outputting a proof for statement x w.r.t. some tag tag for which it does not receive any
proofs, yet X fails to extract a witness for x. Assume without loss of generality that A
never makes the same ρ or RO queries twice. We construct an attacker B for Π such that
X fails to extract a witness from B. B internally emulates the whole simulated experiment
for A, but picks a random RO query of the form tag, a and externally forwards a; upon
receiving back the challenge c, it sets the answer to the RO query to be c. If eventually A
outputs an accepting proof (a, c, z) w.r.t. tag, externally forward z.

Note that unless the query tag, a had already been “programmed” by the simulator,
the view of A in the emulation by B is identical to its view in the simulated experiment
(and if it had to be programmed, the returned answer will with high probability be
inconsistent with the previously set value). Furthermore, recall that we only program
RO on tag, a if A request a proof w.r.t. tag. Thus conditioned on us picking the “right”
query (on which extraction fails, yet A uses a “new” tag), B is perfectly simulating the
execution for A, and thus conditioned on us picking the “right” query, extraction using
X for B fails. Since the number of queries is polynomially bounded, we conclude that B
performs an online extraction for π with inverse polynomial probability. 2

4.2 Partially Blind Signatures

We consider a variant of blind signatures [?] where a user (receiver) R can ask a signer S
to sign a tuple (m, s) of messages without revealing s. Additionally, this “partially blind”
signature is required to be unforgeable under a (standard) adaptive chosen message
attack. We formalize this notion using a weak notion of blinding which requires that no
efficient signer S∗ can tell what s is, even if it observes whether the receiver got a valid
signature or not.10

Definition 14 [Partially Blind Signature] We say that a tuple of probabilistic polynomial-time
algorithms π = (Gen,Sign,Ver,Blind,Unblind) is a partially blind signature if the following
conditions hold:

• Validity: For every n ∈N, every (vk, sk) ∈ Gen(1n), every m, s ∈ {0, 1}n, every random
tape r ∈ {0, 1}∞, every σ ∈ Unblindr(vk, Sign(sk, (m,Blindr(vk, s)))), Ver(vk, (m, s), σ) =
1.

• Weak Blinding: For every polynomial time S∗, the following ensembles are computation-
ally indistinguishable

– {EXEC0(1n, S∗, z, vk, m, s0, s1)}n∈N,z,vk∈{0,1}∗,m,s0,s1∈{0,1}n

– {EXEC1(1n, S∗, z, vk, m, s0, s1)}n∈N,z,vk∈{0,1}∗,m,s0,s1∈{0,1}n

10More traditional definitions of blinding require that a notion of “unlinkability” holds even if the signer
gets to see actual signatures recovered by the receiver (and not just whether a valid signature was recoverd)..
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where EXECb(1n, S∗, z, vk, m, s0, s1) is defined as follows:

– r ← {0, 1}poly(n) and let y = (m,Blindr(vk, sb));

– x ← S∗(1n, z, y);

– Let o = Ver(vk, (m, s),Unblindr(vk, x)).

– Output S∗(1n, z, y, o).

• Unforgeability: for every nuPPT A, there exists a negligible function µ such that for
every n ∈ N, the probability that A wins in the following experiment is bounded by µ(n):
Sample (vk, sk) ← Gen(1n) and let A(1n, vk) get oracle access to Sign(sk, ·); A is said
to win if it manages to output ` unique message-signature pairs ((m, si), σi)i∈[`] such that
Ver(vk, (m, si), σi) = 1 for i ∈ [`], while having made less than ` oracle queries of the form
(m, ·).

4.2.1 A construction based on general assumptions

We here provide a construction of partially blind signatures based on one-way functions
using standard cryptographic building blocks.

Theorem 4 Assume the existence of one-way functions. Then there exists a partially blind sig-
nature scheme.

Proof: Let,

• (Gen, Sign,Ver) be a signature scheme.

• (Gencom,Com) be a collection of non-interactive commitments over {{0, 1}n}n∈N ,
where commitments to n-bit strings have length s(n).

Recall that all these primitives can be constructed based on one-way functions (see Sec-
tion 2 for details). Define:

• Gen′(1n) : {j← Gencom(1n), (vk, sk)← Gen(1n+s(n)) : (j, vk), sk}.

• Sign′sk(m, c) = Signsk(m, c)

• Blind′r((j, vk), s) = Comj(s; r)

• Unblind′r((j, vk), σ) = (r, σ)

• Ver′((j, vk), (m, s), (r, σ)) = Ver(vk, (m,Comj(s; r)), σ)

We now how the following proposition that implies the theorem.
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Proposition 5 If (Gen,Sign,Ver) is a secure signature scheme and (Gencom,Com) is a collection
of non-interactive commitment schemes, then (Gen′,Sign′,Ver′,Blind′,Unblind′) is a partially
blind signature scheme.

Proof: We note that the validity property is immediate. We next show unforgeability and
then turn to the weak blinding property.

Unforgeability Assume for contradiction that there exists some nuPPT A, and a poly-
nomial p such that for infinitely many n ∈ N, A makes ` signature queries of the
form (m, ·) but manages to output ` + 1 valid message-signature pairs (m, si), (ri, σi)
(for unique messages si We have two cases: a) either all Comj(si; ri) are unique, or b)
there exists i, i′ such that Com(si, ri) = Com(si′ ; ri′). One of these cases must happen with
probability p(n)/2 for infinitely many n. If it is case a), then we violate unforgeability of
(Gen, Sign,Ver), and if it is case b), then we violate the binding property of Comj for an
honestly generated j, which is a contradiction.

Weak Blinding Consider some malicious signer S∗, z, vk, m, s0, s1 and the execution of
EXECb(1n, S∗, z, vk, m, s0, s1). We first show that, without loss of generality, S∗ can ignore
the “verdict” o (i.e., whether the receiver accepts or rejects the unblinded signature)—it
can perfectly “simulate” this verdict on its own. More specifically, recall that in EXECb,
we first let

y = (m,Blindr((j, vk), sb)) = (m, Comj(sb; r))

and provide y to S∗; S∗ next computes some answer (presumably a blinded signature) x,
and finally S∗ gets the back the verdict

Ver′((j, vk), (m, sb),Unblindr((j, vk), x)) =
Ver′((j, vk), (m, sb), (r, x)) =
Ver(vk, (m,Comj(sb; r)), x) =

Ver(vk, y, x)

Thus instead of returning a (persumed) signature x to the receiver (to find out if it is
accepted), S∗ could simply emulate the verdict on its own by computing by Ver(vk, y, x).

Thus if EXEC0 and EXEC1 are distinguishable, then Blind((j, vk), s0) = Comj(s0) and
Blind((j, vk), s1) = Comj(s1) are distinguishable, which contradicts the hiding property
(Gencom,Com). 2 2

4.3 The Ad-hoc Survey Construction

We now proceed to describe our construction of an ad-hoc survey scheme (based on
general assumptions).
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4.3.1 Primitives used

We first describe the underlying primitives we rely on. Let,

• (Gen, Sign,Ver) be a signature scheme.

• (Gen′,Ver′, Sign′,Blind′,Unblind′) be a partially blind signature scheme.

• { fs}s∈{0,1}∗ be a family of PRFs.

• Let L be the NP language defined as follows: (tok, vid, vkRA, vkSA) ∈ L iff there exist
strings s, id, σs, σvidid such that Ver′(vkRA, (id, s), σs) = 1 and Ver(vkSA, (vid, id), σvidid) =
1 and tok = fs(vid)

• Let (P, V, O) be an oSE NIZK protocols for L.

4.3.2 The Abstract Ad-hoc Survey Scheme

We are now ready to describe our ad-hoc survey scheme.

• GenRA(1n) = Gen′(1n);

• (RegUserRA(skRA),RegUserU)(1n, idi) proceeds as follows:

– A user with identity id uniformly generates and stores s ← {0, 1}n, r ←
{0, 1}poly(n) and computes y = (id,Blindr(vkRA, s) and sends it to the RA.

– The RA returns x = Sign′(skRA, y).

– The user computes σs = Unblind′r(vkRA, x), checks if Ver′(vkRA, (id, s), σs) = 1
and if so outputs cred = (s, σs) and otherwise ⊥.

• GenSurvey(1n, vid, L) proceeds as follows.

– vkSA, skSA ← Gen(1n) For each id ∈ L, compute σvid
id = Sign(skSA, (vid, id)) and

output vkSA and the list of tuples (id, σvid
id )id∈L.

– Authorized(vid, vkvid, id) parses vkvid as (vkSA, L̃) and outputs YES iff L̃ contains
a record of the form (id, σvid

id ) such that Ver(vkSA, (vid, id), σvid
id ) = 1

– SubmitSurvey(1n, vid, vkvid, m, id, cred) proceeds as:

∗ Parse cred = (s, σs).
∗ Parses vkvid = (vkSA, L̃)
∗ Compute token-number tok = fs(vid).
∗ Recover a tuple of the form (id, σvid

id ) from L̃. If no such tuple exists, or if
Ver(vkSA, (vid, id), σvid

id ) 6= 1 abort.

26



∗ Compute a on SE NIZK π using P that (tok, vid, vkRA, vkSA) ∈ L with tag
tok||vid||m using s, vid, σs, σvid

id as witness.
∗ Send the tuple Sub = (tok, m, π) to the SA.

– Check(vkRA, vid, tok, m, π) outputs accept if V accepts π as a proof of the state-
ment (tok, vid, vkRA) ∈ L with tag tok||vid||m.

Theorem 6 If (Gen, Sign,Ver) is a secure signature scheme, (Gen′, Sign′,Ver′,Blind′,Unblind′)
is a partially blind signature scheme, { fs}s∈{0,1}∗ is a family of PRFs, and (P, V, O) is an oSE
NIZK for the languages L, then the scheme Γ is an unlinkable ad-hoc survey scheme that is secure
against malicious users.

Before proving Theorem 6, let us remark that by instantiating all the above-mentioned
primitives with generic constructions (see Theorem 3, 4), Theorem 6 directly implies the
following result.

Theorem 7 Assume the existence of enhanced trapdoor permutations. Then there exists a correct,
unlinkable ad-hoc voting scheme that is secure against malicious users.

Let us now turn to proving Theorem 6.
Proof: (of Theorem 6). We start by showing Unlinkability.

Unlinkability Towards proving unlinkability, we consider a sequence of hybrid exper-
iments:

– Hybrid 1 = EXEC0.

– Hybrid 2 is identical to Hybrid 1 except that all NIZK proofs are simulated (More
precisely, we consider an attacker A′ and witness selector W ′ for simulation-extractability
experiment of the NIZK: A′ incorporates A and emulates the experiment EXEC0 for
A except that whenever the experiment dictates that A receives an NIZK, A′ request
an NIZK for the same statement and tag from its prover oracle and let W ′ be the
machine that outputs the witnesses used for the proofs in EXEC0.) It directly fol-
lows by the correctness of the simulation property of (P, V, O), and the fact that in
EXEC0 we only invoke P on true statements for which P is provided a valid witness
(this follows from the fact that we always run Authorized before invoking P which
ensures that P has a valid witness) that the output of Hybrid 2 is indistinguishable
from Hybrid 1.

– Hybrid 3 is identical to Hybrid 2 except that in the execution of RegUserU , honest
users blind 0n (as opposed to the seed s), but still use the seed s later on in the
experiment). Note that in Hybird 3 honest users never use the signature received
from the RA—the only way the message received by the RA is used is to determine
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whether the signature is accepting or not (this follows from the fact that all NIZK
proofs are simulated in Hybrid 3, and in the real execution the signature is only
used as a witness to the NIZKs). Consequently, it follows from the weak partial
blinding property, and a straight-forward hybrid argument (over the number of
registration queries), that the output of Hybrid 3 is indistinguishable from Hybrid
2.

– Hybrid 4 is identical to Hybrid 3 except that in the execution of SubmitSurvey, we
use a truly random function (which can be efficiently simulated using lazy evalua-
tion) instead of using a PRF. Consequently, it follows from the pseudorandomness
property of the PRF, and a straight-forward hybrid argument (over the number of
different users and thus PRFs), that the output of Hybrid 4 is indistinguishable
from Hybrid 3.

– Hybrid 5 is identical to Hybrid 4, except that b (of EXECb) is set to 1. First, note that
conditioned on Authorized(vkSA, vid, vkvid, idβ) = fail for some β or A querying its
SubmitSurvey(1n, vid, vkvid, ·, credidβ

) oracle, the outputs of the Hybrid 5 and Hybrid
4 are identical (since it will be fail). Second, conditioned on Authorized(vkSA, vid, vkvid, idβ) =
accept for both β ∈ {0, 1} and A never queried its SubmitSurvey(1n, vid, vkvid, ·, credidβ

)
oracle, it follows by independence property of the random function that the outputs
of Hybrid 5 and Hybrid 4 are identically distributed (since the only difference be-
tween the two experiments is the order in which we evaluate two different random
functions on vid, without ever evaluating these function of vid any other times).

– Hybrid 6 is identical to Hybrid 3, except that we set b is set to 1 (i.e., we, switch
back using a PRF); indistinguishability of the outputs of Hybrid 6 and 5 follows by
the same argument as indistinguishability between Hybrid 4 and 3.

– Hybrid 7 is identical to Hybrid 2, except that we set b is set to 1 (i.e., we, switch
back to request a blinding of s); indistinguishability of the outputs of Hybrid 7 and
6 follows by the same argument as indistinguishability between Hybrid 3 and 2.

– Hybrid 8 = EXEC1 (i.e., we, switch back to using real NIZK proofs); indistinguisha-
bility of the outputs of Hybrid 8 and 9 follows by the same argument as indistin-
guishability between Hybrid 1 and 2.

We have thus concluded that EXEC0 and EXEC1 are indistinguishable, and thus unlinka-
bility follows.

We are now ready to prove security.

Security Consider some nuPPT that breaks security with probability 1/p(n) for in-
finitely many n for some polynomial p. As above, consider a hybrid experiment, which
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is identical to the real experiment except that all NIZK proofs received by A are simu-
lated. It directly follows by the correctness of the simulation property of (P, V, O), and
the fact that in Hybrid 1 we only invoke P on true statements for which P is provided
a valid witness, that A succeeds in breaking security with probability, say, 1/2p(n) for
infinitely many n. Additionally, note that in this hybrid experiment, when implementing
the SubmitSurvey′ oracle for A, we never actually have to generate a (blind) signature
on the seed sid of some honest party id—this signture was only used as a witness to
NIZK proofs generated in survey submission but all those proofs are now simulated
without the witnesses, so whether these signatures are generated or not does not affect
the experiment.

Now, note that whenever A is successful in breaking security, then by condition 5, it
holds that tags for the NIZK proofs in all submissions output by A are different from the
tags of all NIZKs in SubmitSurvey′ queries; thus, by the correctness property of the online
extractor X for the NIZK, with overwhelming probability, for every submission output by
A, X will extract out the identity, seed, and appropriate signatures for that submission,
given only the oracle queries made by A (and their answers). By the unforgeability of
(Gen,Sign,Ver), each such identity belongs to L (or else we have obtained a signature
on a new message). By the unforgeability of (Gen′,Sign′,Ver′,Blind′,Unblind′), each such
identity also belongs to Lcorrupted (as mentioned above, in the hybrid experiment we
consider, we no longer requests signatures for identities in Lhonest and thus the only
signatures generated in the experiment are for identities in Lcorrupted). Thus, the number
of distinct identities is at most |L ∩ Lcorrupter|. Additionally, since the RA only agree to
sign a single (blinded) seed sid per identity id, it follows (again) from the unforgeability
of (Gen′, Sign′,Ver′,Blind′,Unblind′) that the number of distinct seeds sid is |L ∩ Lcorrupted|.
But since the PRF is deterministic (once the seed has been fixed), it follows that that there
can be at most |L ∩ Lhonest| different token numbers in submissions output by A, which
implies that A does not break security. 2

5 Concrete Instantiation

In this section, we provide concrete instantiations of a PRF, a partially blind signature
scheme, and an NIZK proof system for language L that are all based on a group that
supports a bilinear pairing. We briefly describe our setting.

Let G1, G2 and GT be groups of prime order q. A bilinear map is an efficient map-
ping e : G1 × G2 → GT, which is both: (bilinear) for all g ∈ G1, g2 ∈ G2 and a, b ←
Zq, e(ga, gb

2) = e(g, g2)ab; and (non-degenerate) if g generates G1 and g2 generates G2,
then e(g, g2) generates GT. Let G(1λ) be an efficient deterministic (but potentially non-
uniform11) algorithm that on input 1λ produces the description (q, G1, G2, GT, g, g2, e, H)

11 Constructing an elliptic curve of a given size typically requires random coins. We assume these coins are
given non-uniformly to make the construction algorithm deterministic for analysis (in practice, we simply
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of a prime q = Θ(2λ), descriptions of cyclic groups G1, G2, and GT of order q along with
a generator g for G1, a generator g2 for G2, a bilinear map e, and a description of a hash
function modeled as a random oracle H that maps {0, 1}∗ → Zq. In our case, G produces
the description of a Barreto-Naehrig pairing-friendly curve [36].

5.1 Our Assumptions

Our schemes rely on the Pedersen commitment scheme, a signature scheme implicitly
used in the Boneh-Boyen identity-based encryption scheme, and the Dodis-Yampolskiy
pseudo-random function, all described in Figure 1. We assume that these schemes are se-
cure with respect to our group generator G. The Pedersen commitment scheme is secure
assuming that discrete logarithm is hard in the groups produced by G [37]. The later two
schemes have been well-studied and versions have been reduced to the (sub-exponential
hardness of) Decisional Bilinear Diffie-Hellman assumption and the n-Decisional Diffie-
Hellman Inversion Assumption respectively. See [38, Section 4.3], [10], and [39] for
details.

We will later refer to the following assumptions.

Assumption 1 When instantiated with group generator G(λ), the Pedersen commitment scheme
is a perfectly-hiding and computationally-binding commitment scheme.

Assumption 2 When instantiated with group generator G(λ), the Boneh-Boyen scheme in Fig. 1
is an unforgeable signature scheme for λ-bit messages.

Assumption 3 When instantiated with group generator G(λ), the Dodis-Yampolskiy function
in Fig. 1 is a secure pseudo-random function that maps λ-bit strings to elements of GT.

Theorem 8 (Security of the Survey System) Under Assumptions 1, 2 and 3, the concrete
instantiation in section 5.4 is a correct (Def. 6), unlinkable (Def. 7) ad-hoc survey scheme that is
secure against malicious users (Def. 8) in the random oracle model.

Proof: By Assumption 1 and 3, we have a commitment scheme and a PRF scheme. By
Assumption 2 and Theorem 10 in Section 5.2.1, we show how to instantiate a secure
partially-blind signature scheme. In Theorem 13 in Section 5.3, we instantiate an online
extractable NIZK proof system for language L. The concrete implementation in Sec-
tion 5.4 is an instantiation of the abstract implementation from Section 4.3 with these
primitives. Thus, the security of our system follows from the combination of these three
primitives with Theorem 3 from Section 4.1 concerning simulation extraction and finally
the abstract implementation Theorem 6. 2

use well-studied curves selected by experts). We require this because our modular security analysis assumes
that the four cryptographic primitives are run independently. In practice, however, all four primitives must
run using the same group parameters. We can ensure this by assuming that our group generator G is
deterministic. Technically, this makes all of our cryptographic primitives non-uniform constructions (since
G is now possibly non-uniform), but we ignore this slight mismatch as it has no impact.
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(1) Commitment Scheme

Commitment Key: Receiver publishes generators g, h ∈ G.

Commit(m) S −→ R Sender chooses random s ∈ Zq, and sends α = gmhs to R.

Open(α): S −→ R Sender sends (m, s) to R. Receiver checks α
?
= gmhs.

(2) Dodis-Yampolskiy PRF Fy that maps Zq → GT where y ∈ Zq.

Setup: A group GT of prime order q with generator e(g, g2) and PRF seed y ∈ Zq.

Fy(m): The user computes Fy(m) = e(g, g2)1/(y+m) for any m such that (m + y) 6= 0
mod q.

(3) BB Signature Scheme

Gen(1n) : Sample the secret key sk ← α ∈ Zq. Sample random group gen-
erators u, v, h ∈ G1 and compute U = e(g, g2)α. The verification key is
vk← (u, v, h, U).

Sign(sk, m0, m1): Choose r ∈ Zq randomly and compute

σ1 ← gα(um0 vm1 h)r, σ2 ← gr
2, σ3 ← gr

and output (σ1, σ2, σ3) as the signature.

Ver(vk, m0, m1, σ1, σ2): Accept if e(σ1, g2)
?
= U · e(um0 vm1 h, σ2) ∧ e(σ3, g2) = e(g, σ2)

Figure 1: A commitment, and PRF family, and signature scheme

5.2 Primitives

The common input for all protocols is the output (q, G1, G2, GT, g, g2, e) of the group
generating algorithm and a description of a hash function modeled as a random oracle
H that maps {0, 1}∗ → Zq.

5.2.1 Instantiation of Partially-Blind Signature Scheme

Our instantiation of a partially-bling signature scheme roughly follows the abstract con-
struction presented in Definition 14, with the commitment scheme instantiated by the
Pedersen scheme, and the signature scheme instantiated with the Boneh-Boyen signa-
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ture scheme. The difference is that instead of computing a signature on the commitment,
the signer manages to directly compute a blinded signature on the message. In order to
show the unforgeability of our scheme, we add an online-extractable NIZK proof to the
commitment message to certify that the commitment is well-formed. The language for
this proof is:

Lblind = PoK
{
(sid, d) : α = vsid gd

}
which corresponds to a standard Schnorr [40] zero-knowledge proof of knowledge of
integers sid, d such that α = vsid gd holds” where α, v, g are elements of a group G.

Gen′(1n) : Sample the secret key sk ← α ∈ Zq. Sample random group gener-
ators u, v, g, h ∈ G1 and compute U = e(g, g2)α. The verification key is
vk← (u, v, g, g2, h, U).

Blind′r(vk, s): If g is not a generator, output ⊥. Else, use random tape r to choose
d ∈ Zq, compute α = vsgd. Compute an online extractable (NI)zero-knowledge
proof of knowledge for (s, d) ∈ Lblind:

π = PoK
{
(s, d) : α = vsgd

}
Output (α, π).

Sign′(sk, (m, α)): Choose w ∈ Zq randomly and compute

σ1 ← gα(umαh)w, σ2 ← gw
2 σ3 ← gw

and output (σ1, σ2, σ3) as the signature.

Unblind′r(vk, (σ1, σ2, σ3)): Use tape r to fix d ∈ Zq and output the pair (σ1/σd
3 , σ2).

Ver′(vk, (m, s), (σ1, σ2)): Accept if e(σ1, g2)
?
= U · e(umvsh, σ2).

Figure 2: A semi-blind signature scheme based on the Boneh-Boyen signature scheme

Theorem 9 ([40]) There exists a 3-round honest-verifier special-sound zero-knowledge protocol
for Lblind.

The result of applying Theorem 2 to the protocol from Theorem 9 is an online-
extractable NIZKPoK for language Lblind.

Theorem 10 The partially-blind signature scheme in Fig. 2 is weakly-blind.
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Proof: Consider some malicious signer S∗, and some strings z, vk, m, s0, s1. Through
a sequence of hybrids, we show that the experiments EXEC0(1n, S∗, z, vk, m, s0, s1) and
EXEC1(1n, S∗, z, vk, m, s0, s1) are indistinguishable.

We first define an oracle O(vk, (m, α), (x1, x2, x3)) to output 1 if and only if e(x1, g2)
?
=

U · e(umαh, x2) and e(g, x2)
?
= e(x3, g2). Consider the following sequence of hybrid ex-

periments.

Hybrid H1(1n, S∗, z, vk, m, s0, s1) This experiment is the same as EXEC0 except that line
(3) of the experiment is replaced by computing o ← O(vk, (m, α), x). By the following
lemma which states that the answer o computed in this way always matches the answer
computed in EXEC0, these two experiments are identical.

Lemma 11 O(vk, (m, α), (x1, x2, x3)) = Ver′(vk, (m, s),Unblind′r(vk, (x1, x2, x3)))

Proof: Note that

e(umαh, x2) = e(um(vsgd)h, x2) = e(umvsh, x2)e(gd, x2)

and if e(g, x2)
?
= e(x3, g2) holds, then e(gd, x2) = e(xd

3, g2). Expanding, we have:

Ver′(vk, (m, s),Unblind′r(vk, (x1, x2, x3))) = Ver′(vk, (m, s), (x1/xd
3, x2))

= 1 iff e(x1/xd
3, g2)

?
= U · e(umvsh, x2)

= 1 iff e(x1, g2)
?
= U · e(umvsh, x2)e(xd

3, g2)

= 1 iff e(x1, g2)
?
= U · e(umvsh, x2)e(gd, x3)

∧ e(g, x2)
?
= e(x3, g2)

= O(vk, (m, α), (x1, x2, x3))

where the second to last line follows from the substitution above. 2

Since vk, (m, α) and (x1, x2, x3) are all publicly available in the EXEC experiment, it
follows that line (3) of the experiment EXECb can be computed directly.

Hybrid H2(1n, S∗, z, vk, m, s0, s1) Same as H1 except that the NIZK proof in the Blind
operation is generated using the simulator S instead of the prover algorithm P. By the
special HVZK property of the online extractable NIZK system (Def. 10), the output of H2
is indistinguishable from Hybrid H1.

Hybrid H3(1n, S∗, z, vk, m, s0, s1) Instead of sending the message vs0 gd as the result of
the Blind operation, send vs1 gd. Hybrid H3 is identically distributed to H2 by the perfect
hiding property of the Pedersen commitment (Theorem 1).
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Hybrid H4(1n, S∗, z, vk, m, s0, s1) Replace the simulator for the NIZK proof with the real
prover algorithm run using witness s1, d. Hybrids H3 and H4 are indistinguishable based
on the zero-knowledge property of the NIZK system as discussed in hybrid H2.

EXEC1(1n, S∗, z, vk, m, s0, s1) Replace the use of oracle O with the instructions from EXEC1.
Since all steps are either identically distributed or computationally indistinguishable, it
follows that experiments EXEC0(· · · ) and EXEC1(· · · ) are indistinguishable. 2

Theorem 12 Assuming the security of the Boneh-Boyen signature scheme, the scheme in Fig. 2
is unforgeable.

Proof: Suppose that there exists some nuPPT A, and a polynomial p such that for in-
finitely many n ∈N, A makes ` signature queries of the form (mi, αi, πi) but manages to
output `+ 1 valid message-signature pairs (mi, si), (σ1, σ2) (for unique messages si) with
probability p(n).

We use A to construct an adversary A′ that breaks the unforgeability of the Boneh-
Boyen signature scheme with probability that is polynomially related to p(n). Adversary
A′ works as follows: it receives public key vk for the Boneh-Boyen scheme and begins a
simulation of the partial-blind unforgeability game for A by running A(vk). A′ intercepts
and records every query to the oracle H into the set Q. When A submits a partial-blind
signature query of the form (m, α, π), then A′ first checks the proof π. If the proof π
verifies, then A′ runs the extraction function (s, d) ← X(π, Q) using the set of random
oracle queries made by A up to this point of the execution. If X fails, then A′ aborts.
A′ submits the message pair (m, s) to the signature-query oracle for the Boneh-Boyen
scheme and receives a signature (σ1, σ2, σ3). A′ then computes the pair (σ1 · (σ3)d, σ2)
and returns it to the adversary A. At the end of this simulation, after asking ` queries,
the adversary A outputs `+ 1 pairs {(mi, si), (σ1,i, σ2,i)} where each si is unique and A′

outputs the same.
We now analyze the success probability of A′. First, conditioned on the event that X

never fails during extraction, we argue that the simulation for A is identically distributed
to the partial-blind game. Differences may only occur when responding to A’s signature
queries (m, α, π) (observe that the vk fed as input to A in the first step, and the answers
from the oracle H are identically distributed to the partial-blind game). In the partial-
blind game, A receives a triple of elements σ1 = gx(umαh)r, σ2 = gr

2, σ3 = gr
1) where

r is chosen randomly. In our simulation, A receives a triple (x1, x2, x3) where x1 =
gx(umvsgdh)r, x2 = gr

2, x3 = gr subject to the constraint that α = vsgd, and thus the
simulation is perfect.

Finally, we argue that by the online extraction property (Def 13) of the NIZK system
and the union bound over the polynomial number of queries issued by A, it follows that
the extractor X fails with at most negligible probability. Thus, the success probability
of A′ in outputting forgeries for the Boneh-Boyen scheme is at least (1− ε(n))p(n) for
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a negligible function ε. Combining this with Assumption 2 which state that the Boneh-
Boyen scheme is unforgeable, we conclude that p(n) must also be negligible. 2

5.3 Instantiation of NIZK proof system for L

We now describe a Σ-protocol for L and then apply Theorem 3 to produce the re-
quired online-extractable NIZK for language L. A statement in L consists of the tuple
(g, g2, vid, C, vkRA, vkSA) where vkRA = (u, v, h, e(g, g2)x) and vkSA = (uv, vv, hv, e(g, g2)y).
The witness for an instance is the tuple (sid, id, c, r, σ, σvidid) such that σ = (σ1, σ2) forms
a Boneh-Boyen signature on the values (id, sid), σvidid = (σvidid,1, σvidid,2) forms a Boneh-
Boyen signature on (vid, id), and C = Fsid(vid) = e(g, g2)1/(sid+vid) where F is the Dodis-
Yampolskiy PRF.

In the first step of the proof for L, the prover re-randomizes (σ, σvidid) by choosing
random d1, d2 ∈ Zq and computes

(s1 = σ1 · (uidvsid h)d1 , s2 = σ2 · gd1
2 )

(s3 = σvidid,1 · (uvid
v vid

v h)d2 , s4 = σvidid,2 · gd2
2 ).

The values s2, s4 are sent to the Verifier, and the problem reduces to proving the
statement: (a) (s1, s2) form a Boneh-Boyen signature on the values (id, sid), (b) (s3, s4)
form a Boneh-Boyen signature on (vid, id), and (c) C = Fsid(vid) as follows:

PoK


(id, sid, s1, s3) :

Ex · e(h, s2) = e(s1, g2) · e(uidvsid , s2)−1∧
Ey · e(uvid

v hv, s4) = e(s3, g2) · e(vid
v , s4)

−1∧
E · C−vid = Csid


where E = e(g, g2) as follows:

1. P2 → V2 Prover picks random b1, b2 ∈ Zq and J1, J2 ∈ G and computes

E1 ← e(J1, g2) · e(ub1 vb2 , s2)
−1

E2 ← e(J2, g2) · e(vb2
v , s4)

−1

E3 ← Cb2

2. P2 ← V2 Verifier picks a random c ∈ Zq.

3. P2 → V2 Prover computes a response

z1 ← b1 + c · id z2 ← b2 + c · sid

z3 ← sc
1 · J1 z4 ← sc

3 · J2
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4. Verifier checks the following:

E1 · e(g, g2)
xc · e(h, s2)

c = e(z3, g2) · e(uz1 vz2 , s2)
−1

E2 · e(g, g2)
yc · e(uvid

v hv, s4)
c = e(z4, g2) · e(vz1

v , s4)
−1

E3 · e(g, g2)
c · C−c(vid) = Cz2

Although not specifically written, the Verifier must perform standard checks that each
element of the proof is indeed a member of the appropriate group.

Theorem 13 (P2, V2) is an honest-verifier special-sound zero-knowledge protocol for L.

Proof: The completeness of the protocol is standard. First we show honest-verifier zero-
knowledge. On input an instance and a random challenge c, the simulator first chooses
a random z1, z2 ∈ Zq and random z3, z4 ∈ G and computes

E1 =
e(z3, g2) · e(uz1 vz2 , s2)−1

e(g, g2)cx · e(h, s2)c

E2 =
e(z4, g2) · e(vz1

v , s4)
−1

e(g, g2)cy · e(uvid
v hv, s4)c

E3 =
Cz2

e(g, g2)c · C−c(vid)

and outputs (E1, E2, E3), c, (z1, z2, z3, z4) as the transcript. By inspection, it follows that the
distribution of transcripts is perfectly identical to a transcript from a successful protocol
execution.

We now show that the protocol is special-sound. Consider the elements of two ver-
ifying transcripts (s2, s4, E1, E2, E3), c, (z1, z2, z3, z4) and (s2, s4, E1, E2, E3), c′, (z′1, z′2, z′3, z′4)
that share the same first message but where c 6= c′. We use these group elements to solve
for the witness values (id, sid, s1, s3). Since both transcripts verify, it follows that

E1 · e(g, g2)
xc · e(h, s2)

c = e(z3, g2) · e(uz1 vz2 , s2)
−1 (1)

E1 · e(g, g2)
xc′ · e(h, s2)

c′ = e(z′3, g2) · e(uz′1 vz′2 , s2)
−1 (2)

E2 · e(g, g2)
yc · e(uvid

v hv, s4)
c = e(z4, g2) · e(vz1

v , s4)
−1 (3)

E2 · e(g, g2)
yc′ · e(uvid

v hv, s4)
c′ = e(z′4, g2) · e(v

z′1
v , s4)

−1 (4)

E3 · e(g, g2)
c · C−c(vid) = Cz2 (5)

E3 · e(g, g2)
c′ · C−c′(vid) = Cz′2 (6)
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Dividing equation (1) by (2), equation (3) by (4), and equation (5) by (6), we have:

e(g, g2)
x(c−c′) · e(h, s2)

(c−c′) = e(z3/z′3, g2) · e(uz1−z′1 vz2−z′2 , s2)
−1 (7)

e(g, g2)
y(c−c′) · e(uvid

v hv, s4)
(c−c′) = e(z4/z′4, g2) · e(v

z1−z′1
v , s4)

−1 (8)

e(g, g2)
(c−c′) · C−(c−c′)(vid) = C(z2−z′2) (9)

Finally, rearranging, and raising each side to 1/(c− c′), we have

e(g, g2)
x · e(u(z1−z′1)/(c−c′)v(z2−z′2)/(c−c′)h, s2) = e((z3/z′3)

1/(c−c′), g2)

e(g, g2)
y · e(uvid

v v(z1−z′1)/(c−c′)
v hv, s4) = e((z4/z′4)

1/(c−c′), g2)

e(g, g2) = C(z2−z′2)/(c−c′)+vid

Thus, by inspection, it follows that
((

z3
z′3

)1/(c−c′)
, s2

)
verifies as a signature on the tuple

(id, sid) where

id =
z1 − z′1
c− c′

sid =
z2 − z′2
c− c′

and
(

s3 =
(

z4
z′4

)1/(c−c′)
, s4

)
verifies as a signature on the tuple (id, vid), and C is Fsid(vid).

Thus, we have shown that two transcripts of the proper form can be used to extract
witnesses for the theorem statement. 2

Corollary 14 In the random oracle model, there exists an online extractable NIZK for L.

Proof: Follows from Thm. 13 and Thm. 3. 2

5.4 Concrete scheme

For convenience, we combine all building blocks to describe the full scheme.

GenRA and GenSA The RA picks random group elements u, v, h ∈ G1 and a secret
element x ∈ Zq. The RA’s public key vkRA = (u, v, h, e(g, g2)x) and skRA = x. (RA will be
signing m1 as the id with u and m2 as the user’s secret seed with v.)

The SA picks random group elements uv, vv, hv ∈ G1 and a secret element y ∈ Zq.
The SA’s public key SAvk = (uv, vv, hv, e(g, g2)y) and SAsk = y. (m1 will be the vid and m2
will be the user id of a participant authorized to submit in the survey.)
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The RegUser protocol A user registers by invoking the following protocol with the RA:

Common: RAvk = (u, v, h, e(g, g2)x)

RA Secret Key: x

User identity: id

User and RA establish a mutually authenticated secure communication channel.

U → RA The user chooses a random PRF seed sid ∈ Zq and a random d ∈ Zq, computes
α = vsid gd, and sends (id, α) to RA.

The user also gives a (NI)zero-knowledge proof of knowledge for (sid, d) ∈ L1 using
the Σ-protocol for L1 described above:

PoK
{
(sid, d) : α = vsid gd

}
U → RA User picks a random b1, b2 and sends γ = vb1 gb2 to RA.

U → RA User generates a random challenge c ∈ Zq by using the random-oracle H and
the tag 0n as c = H(g,RAvk, id, α, γ, 0n)

U → RA User computes z1 = b1 + csid, z2 = b2 + cd and sends (z1, z2) to RA.

RA verifies vz1 gz2
?
= αcγ.

U ←− RA RA checks that the identity id has not been registered before. RA chooses
r ∈ Zq randomly, computes the signature tuple σ1 ← gx(uidαh)r, σ2 ← gr

2 and
sends R the signature σid = (σ1, σ2).

U User verifies the signature by checking that

e(σ1, g2) = e(g, g2)
x · e(uidvsid gdh, σ2).

If this verifies, the user removes the commitment randomness by computing σ′1 =
σ1/σd

2 and stores the secret credential (id, sid, σid = (σ1, σ2)).

Survey Registration To create a survey:

SA Input: SAvk = (uv, vv, hv, e(g, g2)y), SAsk = y, vid ∈ Zq

List of identies: L
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SA For each id ∈ L, the SA computes the following:

Pick a random r ∈ Zq and compute

σvidid = (gy(uvid
v vid

v h)r, gr
2)

Publish the list Lvid = (vid, {idi, σvidid}i∈L)

Authorized: Anyone can verify that a user with identity id is authorized to submit in
survey vid by finding the corresponding signature σvidid = (σ1, σ2) in Lvid and then
checking that

e(σ1, g2)
?
= e(g, g2)

y · e(uvid
v vidi

v h, σ2).

Submission To submit a survey:

Common Input: List Lvid, the public keys SAvk = (uv, vv, hv, e(g, g2)y), and RAvk =
(u, v, h, e(g, g2)x)

User Secrets: id, submission m, credential (σid, sid)

The user aborts if the user has already participated in an survey with vid or vid = sid.
The user and SA establish a secure connection in which SA is authenticated, but
the user is anonymous.

U The user identifies the tuple (vid, idi, σ(i)) in Lvid in which idi = id. The user computes
Fsid(vid) = C ← e(g, g2)1/(sid+vid).

U → SA User sends (vid, C, m, s2, s4) and an NIZKPOK of the statement (id, sid, s1, s3) in
L with tag 1||vid||m to the SA:

PoK


(id, sid, s1, s3) :

e(g, g2)xe(h, s2) = e(s1, g2)e(uidvsid , s2)−1∧
e(g, g2)ye(uvid

v hv, s4) = e(s3, g2)e(vid
v , s4)

−1∧
e(g, g2) · C−vid = Csid


SA : If the proof verifies, record the submission (C, m) replacing any prior occurrence

of (C, ·).
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