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Abstract. SiMON is a lightweight block cipher family proposed by NSA in 2013. It has drawn many
cryptanalysts’ attention and varity of cryptanalysis results have been published, including differential,
linear, impossible differential, integral cryptanalysis and so on. In this paper, we give improved linear at-
tack on all versions of SIMON with dynamic key-guessing techniques, which was proposed to improve the
differential attack on SIMON recently. By establishing the boolean function of parity bit in the linear hull
distinguisher and reducing the function accroding the property of AND operation, we can guess different
subkeys (or equivalent subkeys) for different situations, which decrease the number of key bits involved
in the attack and decrease the time complexity in a further step. As a result, 23-round SIMON32/64,
24-round SIMON48/72, 25-round SIMON48/96, 30-round SIMON64/96, 31-round SIMONG4 /128, 37-round
SIMON96/96, 38-round SIMON96/144, 49-round S1MON128/128, 51-round SIMON128/192 and 53-round
SIMON128/256 can be attacked. The linear attacks on most versions of SIMON are the best attacks
among all cryptanalysis results on these variants known up to now. However, this does not shake the
security of SIMON family with full rounds.

1 Introduction

In 2013, NSA proposed a new family of lightweight block cipher with Feistel structure, named as SIMON,
which is tuned for optimal performance in hardware applications [1]. The SIMON family consists of various
block and key sizes to match different application requirements. There is no S-box in the round function.
The round function consists of AND, rotation and Xor (ARX structure), leading to a low-area hardware
requirement.

Ralated Works. SIMON family has attracted a lot of cryptanalysts’ attention since its proposation. Many
cryptanalysis results on various versions of SIMON were published. For differential attack, Alkhzaimi and
Lauridsen [13] gave the first differential attacks on all versions of SIMON. The atacks cover 16, 18, 24, 29,
40 rounds for the versions with blcok size 32, 48, 64, 96 and 128 respectively. At FSE 2014, Abed et al. [9]
gave differential attack on variants of SIMON reduced to 18, 19, 26, 35, 46 rounds with respective block
size 32, 48, 64, 96 and 128 respectively. At the same time, Biryukov et al. [10] gave differentail attack on
several versions of SIMON independently. And 19-round SIMON32, 20-round SIMON48, 26-round SIMON64
were attacked. Then Wang et al. [14] proposed better differential attacks with existing differentials, using
dynamic key-guessing techniques. As a result, 21-round SIMON32/64, 23-round SIMON48/72, 24-round SI-
MON48/96, 28-round SIMONG4/96, 29-round SIMON64 /128, 37-round SIMON96/96, 37-round SIMON96/144,
49-round SIMON128/128, 49-round SIMON128/192, 50-round SIMON128/256 were attacked.

For the direction of linear cryptanalysis, 11, 14, 16, 20, 23-round key recovery attacks on SIMON with
block size 32, 48, 64, 96, 128 were presented in [9]. Then, Alizadeh et al. [15] improved linear attacks and
gave cryptanalysis results on 13-round SIMON32, 15-round SIMON48, 19-round SIMON64, 28-round SIMON96,
35-round SIMON128. Recently, Abdelraheem et al. [6] took advantage of the links between linear char-
acteirstics and differential characteristics for SIMON and found some linear distinguishers using differential
characteristics found earlier. They presented various linear attacks on SIMON with linear, multiple linear,
linear hull cryptanalysis. The linear hull cryptanalysis has better attack results, which can attack 21-round
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SIMON32/64, 20-round SIMON48/72, 21-round SIMON48/96, 27-round SIMON64/96, 29-round SIMONG4 /128,
36-round SIMON96/144, 48-round SIMON128/192 and 50-round SIMON128/256. Then, with the Mixed-integer
Linear Programming based technique, Shi et al. [7] searched new linear trails and linear hulls, and 21, 21, 29
rounds for SIMON32/64, SIMON48/96, SIMON64,/128 were attacked respectively. Also, Sun et al. [12] found
a 16-round linear hull distinguisher of SIMON48, with which he attacked 23-round SIMON48/96. Ashur [20]
presented a new way to calculate the correlations of short linear hulls and provode a more accurate estimation
for some previously published linear trails. He gave multiple linear ctyptanalysis on 24-round SIMON32/64,
23-round SIMON48/72, 24-round SIMON48/96, 24-round SIMON64/96 and 25-round SIMON64/128. However,
it uses the correlation when all the subkeys are zero as the expected correlation under random key situations,
which is not exact. What’s more, if the potential of each linear hull used in multiple linear is smaller than
that of random permutations, the gather of these linear hulls can not distinguish the cipher and random
permutation.

Table 1. Summary of Linear Hull Attacks on SiMON

Cipher Total Rounds|Attacked rounds| Data Time Reference
21 93056 95556 [6]
SIMON32/64 32 21 - - [7]
23 Q3L ST I9T 7 Oy 251-8% A< 956 4T Section 4.2
20 QT TT 57061 [6]
SIMON48 /72 36 oY QATIZ[ SIIZO N ey 29759 4 £ 9°°F |Appendix B
21 QI TT 57061 [6]
21 - - 7
SIMON48/96 36 73 AT 9707 [[12]]
25 2TV O + 2399 A + 2°°FE | Appendix B
27 96253 98853 [6]
SiMONG4/96 42 30 20553 PITBONE + 299524 + 2°E |Appendix B
29 96253 QI23753 [6]
SIMON64/128 44 29 - - [7]
31 26‘5‘55 2115A55TWO _|_ 2119‘6214 + 2120E Appendix B
SIMON96/96 52 37 2952 2°TA+2%E Appendix B
36 294,2 2123.5 [6]
StMON96/144 o 38 277 [ 2 ?ONE + 2774 1 2°°F |Appendix B
SIMON128/128 68 49 21276 87T A 42129 Appendix B
48 2126.6 21876 [6]
Smon128/192 69 51 IO QTS ONE + 2707 A § 2% E |Appendix B
50 2126.6 2242.6 [6]
SmoN128/256 & 53 QTS TIONE + 2297 A + 27 E |Appendix B

&7 means not given

> TWO means two rounds encryption or decryption
¢ A means addition

4 F means encryption of attacked rounds

¢ ONFE means one round encryption or decryption

Also, there are some results with other attack models, such as impossible differential cryptanalysis [15-18],
zero-correlation cryptanalysis [16] and integral cryptanalysis [16].

Our Contributions. In this paper, we give improved linear hull cryptanalysis on all versions of SIMON
family with dynamic key-guessing technique, which was proposed initially to improve the differential attack
on SIMON [14], using existing linear hull distinguishers. In linear attack, one important point is to compute
the empirical correlations (bias) of the parity bit, which derives from the Xor-sum of the active bits at both
sides of the linear hull distinguisher, under some key guess. And our attack on SIMON improves this procedure
efficiently.

The non-linear part in the round function of SIMON is mainly dedrived from the bitwise AND (&)
operation while it has a significant weakness. For details, if one of the two elements is equal to zero, the result



of their AND will be zero, no matter what value the other element is. For a function f = fi (21, k1)& fa (22, k2),
if we GUESS k; at first, and SPLIT the all x = z]||zo into two cases: case 1, fi(z1,k1) = 0; case 2,
fi(z1,k1) = 1, there is no need to guess the key bits ks in case 1, since f = 0 holds for any value of fs in
case 1. Then, we can compute the correlations in each case with less time and at last, we COMBINE the
two correlations together for corresponding key k = kq||k.

At first, we give the boolean representations for the parity bit in the linear distinguisher of SIMON. And
then we apply the GUESS, SPLIT and COMBINE technique in the calculation of the empirical correlations,
which mainly exploits the dynamic key-guessing idea to reduce the number of subkey bits guessed signifi-
cantly. For example, in the attack on 21-round SIMON32, 32 subkey bits are involved. With above technique,
we can only guess 12.5 bits from the total 32-bit subkey on average to compute the correlations.

As a result, the improved attack results are shown as follows. We can attack 23-round SiMON32/64,
24-round SIMON48/72, 25-round SIMON48,/96, 30-round SIMON64,/96, 31-round SIMON64,/128, 37-round SI-
MON96,/96, 38-round SIMON96/144, 49-round SIMON128/128, 51-round SIMON128/192 and 53-round SI-
MON128/256. This improves the linear attack results for all versions. From the point of number of rounds
attacked, the results on all versions are best known up to state.

The paper is organised as follows. In section 2, we introduce the linear (hull) cryptanalysis and give the
description of SIMON family. Section 3 gives the time reduction technique used in the linear cryptanalysis.
Then the improved attack on SIMON32/64 is given in section 4. Finally, we conclude in section 5. Appendix
A gives the time complexities to calculate the empirical correlations in some simple situations. The detailed
linear attacks on other versions of SIMON except SIMON32 are given in Appendix B.

2 Preliminaries

2.1 Linear Cryptanalysis and Linear Hull

Fs denotes the field with two elements and F} is the n-dimensional vector space of Fy. Let g : F — Fs be a
Boolean function. Let B(g) = ZmeF;(—l)g(i). The correlation ¢(g) of g is defined by
clg)=2""Y (1)) =27"B(g).

zeFy

(In some situations of the remainder of this paper, we regard B(g) as the correlation for simplicity of
description.) The bias of g is defined by half of ¢(g), which is represented as €(g) = 1c(g).

Linear cryptanalysis [2] is a powerful cryptanalytic method proposed in 1993 to cryptanalysis DES. At
first, one tries to find a good linear approximation involving some plaintext bits, ciphertext bits and the
subkey bits as follows

a-Pep-C=~-K,

where «, 3,7 are masks and P,C, K represent the plaintext, ciphertext and keys. 'good’ means that the
probability of the linear approximations is far away from 1/2, which is the probability in random situations.
In other words, higher absolute of bias e(ac- P® 8- C @ - K) leads to better linear crypanalysis result in
general. Algorithm 1 and Algorithm 2 in [2] are two attack models exploiting the linear approximation as
distinguisher. O(E%) known plaintextx are needed in the key-recovery attacks.

Then in 1994, Nyberg [4] studied the linear approximations with same input mask « and output mask
[, and denoted them as linear hull. The potential of a linear hull is defined as

ALH(Q,B):Zez(a~P@B~C’@7~K):€2.
¥

The effect of linear hull is that the final bias € may become significantly higher than that of any individual
linear trail. Then the linear attacks with linear hull require less known plaintexts, i.e., O(g%)

Selguk and Bigak [5] gave the estimation of success probability in linear attack for achieving a desired
advantage level. The advantage is the complexity reduction over the exhaustive search. For example, if m-bit
key is attacked and the right key is ranked ¢-th among all 2 candidates, the advantage of this attack is
m — loga(t). Theorem 2 in [5] described the relation between success rate, advantage and number of data
samples.



Theorem 1 (Theorem 2 in [5]). Let Ps be the probability that a linear attack, as defined by Algorithm-
2 in [2], where all candidates are tried for an m-bit subkey, in an approzimation of probability p, with N
known plaintext blocks, delivers an a-bit or higher advantage. Assuming that the approximation’s probablity
is independent for each key tried and is equal to 1/2 for all wrong keys, we have, for sufficiently large m and

N,
Pg = / o(x)dx,

—2VN|p—1/2|+&-1(1—-22~1)

independent of m.

2.2 Description of SIMON

SIMON is a family of lightweight block cipher with Feistel structure designed by NSA, which is tuned for
optimal performance in hardware applications [1]. The SIMON block cipher with an n-bit word (hence 2n-bit
block) is denoted SIMON2n, where n is limited to be 16, 24, 32, 48 or 64. The key length is required to be
mn where m takes value from 2,3 and 4. SIMON2n with m-word key is referred to SIMON2n/mn. There are
ten versions in the SIMON family and the detailed parameters are listed in Table 2.

Table 2. The SiMON Family Block Ciphers

block size (2n)|key size (mn)|rounds

32(n=106) | 64 (m=4) | 32
_ 72 (m=3) | 36

8 (=240 55 —1 T 36
- 96 (m=3) | 42

64 (n=32) Hogm=a) 14
_ 96 (m=2) | 52

96 (n=48) 'y =31 54
128 (m=2) | 68

128 (n = 64) [192 (m =3) | 69
256 (m=4) | 72

Before introducing the round functions of SIMON, we give some notations of symbols used throughout
this paper.

X 2n-bit output of round r (input of round r + 1)

X7 left half n-bit of X"

Xk right half n-bit of X7

KT subkey used in round r + 1

T; the i-th bit of z, begin with bit 0 from right (e.g., X7 .o is the LSB of X7 )
Ziy,...ip the XOR-sum of z; for i = iq,i2,...,4 (e.g., 0,1 = To ® x1)

r < i left circulant shift by ¢ bits of x

@® bitwise XOR

& bitwise AND

F(z) non-linear function used in round function of SIMON, F(z) = ((z <€ 1)&(z < 8)) @ (z K 2)
The r-th round function of SIMON2n is a Feistel map

Fyro1 i F§ x Fy — F x Fg,

(Xp L XE ) = (XL, XR)

where X5, = X; " and X7 = F(X; " )® X}, '@ K . The round function of SIMON is depicted in Figure 1.
Suppose the number of rounds is 7', the whole encryption of SIMON is the composition Fgr-10---0Fy10Fgo.
The subkeys are derived from the master key. The key schedules are a little different depending on the key
size. However, the master key can be derived from any m consecutive subkeys. Please refer to [1] for more
details.



Fig. 1. Round Function of SiMoN

3 Time Reduction in Linear Cryptanalysis for Bit-Oriented Block Cipher

For bit-oriented block cipher, such as SIMON, the operations of round function can be seen as the concaneta-
tion of some Boolean functions. For example, in SIMON32, the O-th bit of X} is a Boolean function of some
bits of X"~! and subkeys as follows,

Xio= (X[ p&X e X[ e Xy o Kj '

Other bits in X} have similar Boolean represetations and the bits in X} are same with the bits in Xz_l.
The Boolean representation of one bit can be extended to multiple rounds.

3.1 Linear Compression

In Matsui’s improved linear cryptanalysis [3], the attacker can pre-construct a table to store the plaintexts
and ciphertexts. We call this pre-construction procedure as linear compression, since the purpose is to reduce
the size of efficient states by compressing the linear part. The detail of the compression is as follows.

Suppose x is a [1-bit value derived from the n-bit plaintext or cipertext and &y is a [-bit value derived
from the subkey. y € Fy is a Boolean function of x and k, y = f(z, k). Let V[z] denote the number of . We
define B*(y) with counter vector V and function y = f(z, k) for k as

BF(y) =Y (~1)/"PV[a].

x

So, B¥(y) is the correlation of y under key guess k. One needs to do 2/**!2 computations of function f to
calculate the correlations of y for all k£ with a straight-forward method at most. If y is linear with some bits
of x and k, the time can be decreased.

For simplicity, let = a'||xg, k = k'||ko and y = z¢ & ko © g(2’, k"). The correlation of y under some k is

B (y) = (=)%Y (1)@ (V] |[ko] — Vo'l @ 1]).

x/

It is obvious the correlations of y under same k' and different ky have same absolute value, and they are
different just in the sign. So if we compress the z¢ bit at first according to V'[z'] = V[2/||0] =V [/|[1], B¥ (¢/)
with counter vertor V’/ and function 3’ = ¢/(2’, k') for k' can be computed with 2/1+2=2 calculations of ¢'.
And the correlation B¥(y) can be derived directly from B*(y) = (—=1)kB¥ (y/). We define ko the related
bit. If the absolute correlations are desired, the related bit kg can be omitted directly, since it has no effect
on the absolute values.

If y is linear with multiple bits of x and k&, the linear bits can be combined at first, then above linear
compression can be applied. For example, y = (xg @ ko) ® -+ D (21 ® k) @ ¢’ (2", k") where 2’ k' are the
other bits of x and k respectively. We can initialize a new counter vector V'[z”||x(] where z{, is 1-bit and set
V" ||z = Zxo@_,@mt:% V[z]. Let k{, = ko @ - - - @ k¢. The target value y becomes y = x(, ® k{, ® ¢’ (", k")
with counter vector V’[x”||z(], which is the case discussed above.



3.2 Dynamic key-guessing in linear attack: Guess, Split and Combination

Suppose one want to compute B*(y) with counter vector V' and Boolean function y = f(x, k), along with
the definitions in the above section. With a straight-forward method, the time to compute B*(y) is 21+, If
for different values of x, different key bits of k are involved in function f(z, k), the time to calculate B*(y)
can be decreased.

Guess Ko |fa(z, kallkc) Sp
= k — 3
y=fak) Sa fe(z, kp|lkc)

Fig. 2. When k¢ is known, the set of x can be splitted to two sets. f is independent of kp in set S4 and independent
of k4 in set Sp.

For simplicity, let k = kg||ka||ks||kc, where kg, ka, kp, ko are 1S, 13,15 and IS bits (1§ +15 418 +1$ = 1y)
respectively. Suppose when k¢ is known, the all  can be splitted into two sets, i.e. S4 with V4 elements and
Sp with Np elements (N4 + Np = 21). And when = € Sa, f(z,k) = fa(x,kal|kc) which is independent of
kp; when x € Sg, f(x,k) = fg(w, kp||kc) which is independent of k4 (See Figure 2). Then, B*(y) can be
obtained from the following combination

Bk(y) — Z (_1)fA(377kA||kC)V[m] + Z (_l)fB(w,kBch)V[x]

rESA €SB

for some guessed kg. The time to compute S (—1)f4(@kallke) V7 [g] for the 2 € S4 needs N 25 +5 4 caleu-
lations, while 32(—1)78(@*5lkc)V 2] for 2 € Sp needs Np2!s +5+15 . The combination needs 2" additions.
So the time complexity in total is about

NA21§+1;‘+1§+N321§+z§+l§+2l2

which improves the time complexity compared with 21tz

The AND operation in SIMON will generate the situations discussed above. Let z, k € F5 and y = f(z, k) =
(2o ® ko)&(x1 @ k1). V[z] denotes the number of z. With a straight-forward method, the calculation of
correlations for all k need time 2272 = 24, If one side of the AND in f(x, k) is 0, ¥ would be 0 without knowing
the value in the other side. Exploiting this property, we can improve the time complxity for calculating the
correlations. At first, we guess one bit of k, e.g. kg. Then we split the x into two sets and compute the
correlations in each set. At last, we compose the correlations according to the keys guessed.

— GUESS k¢ and SPLIT the z into two sets
e For the z with 2y = ko, initialize a counter Ty and set Ty = V[0||zo] + V[1]|xo)
e For the z with 2y = ko®1, initialize a counter T} and set 77 = V[0||zo]—V[1]|xo] (Linear compression)
e COMBINATION B(y) = Ty + (—1)"1T (k; is a related bit)

So in total, it needs 2(1 + 1 + 2) = 23 additions to compute the correlations for all the k, which improves
the time complexity compared to the straight-forward method. Although there are 2 bits of k involved in
the attack, we guess only one bit and make some computations while another bit is just involved in the final
combination. This can be viewed as that we reduce the number of key bits guessed from 2 to 1. Morever,
this technique adapts to some complicated Boolean functions and more key (or equivalent key) bits can be
reduced significantly. Some cases have been discussed in Appendix A.

4 Linear Cryptanalysis on SIMON

In this section, we will give the improved procedure of linear attack on SIMON using existing linear hull
distinguishers for all versions of SIMON



Table 3. Linear Hulls for SiMON

Versions Input Active Bits Output Active Bits ALH |#Rounds|Ref.
SIMON32/K Xi6 X 27318913 [6]
Xis )12;{—119? T2 272(2);: 13 7]
_ _ Xio _ ( X;,rs 7){1?—6 ] _ 2 14 [6]
SiMON48/K | X1 7, XL 11, X110 XRoos XRo7 XZLT51°7X?zz,lo’X?;ld,X?llf:X?llg 2~ 15 [6]
X0 X1, Xb, 50 X o X KEA X503 00 X2 B X2 15[
1 — .
Xi1 b5 Xpon Xhas XX X 206 (1]
SIMON64/K X7 20, X124 X oo +)51; . Xiio, Xiiai - 2 21 6]
Xi6 X5, X, X7 X7 2770 21 [7]
X0, X1, Xb o1, X RN 2% 2 1
397 sal? ;010 5 3 ) >

: ; ; ) ) 30 30 30 30 30 —04.2
SmMoN96/ K X£,27X2,347X£,38_’X2,42_7X}L%,SG XZTQ X X e Xioos X a0 2 30 [6]
SIMON128/K| X} 2, X[ 58, X162, X .60 X0 Xm0 Xna s Xnesr Xnes |2 7% 41 [6]

4.1 Linear Hulls of SIMON

Some linear hulls have been proposed recently in [6,7,12], and they are displayed in Table 3. Abdelraheem
et al. [6] took advantage of the connection between linear- and differential- characteristics for SIMON and
transformed the differential characteristics proposed in [8,10] to linear characteristics directly. Similarly, dif-
ferentials can be transformed to the linear hulls. Also, they found a new 14-round linear hull for SIMON32/64,
by constructing squared correlation matrix to compute the average squared correlation. Shi et al. [7] searched
the linear characteristics with same input and output masks using the Mixed-integer Linear Programming
modelling, which was investigated to search the differential characteristics for bit-oriented block cipher [11]
and then extended to search the linear characteristics (hull) later [12].

Similar to the rotational property of integral distinguishers and zero-correlation linear hull shown in [16],
more linear hulls can be constructed as follows.

7 7 i 7 i+r i+r i+r i+r .
Property 1. Assume that XL’jg, e XLJ.?(J , XR’jé, e ,XRJ}1 — XLJS’ e ’XL,,j$2 , XR)jg, o ,XRJ.t33 is a r-
round linear hull with potential € for SIMON2n, where j, ..., i, s - - -5 1500 -+ diys Jos - - -+ Jiy € {0, n—
1}. Then for any 0 < s <n —1, let j2* = (j# + s) mod n, for p=0,...,3,¢=0,...,t, and the potential of
: i i i i itr itr itr itr -
the r-round linear hull XLng*, . ’XL,j?O* , XR’].&*, o K — XL,jg* yens ’XLJ‘?;‘ , XR’jS,* ey XRJ?; is also

é.

Observe the two 13-round linear hulls of SIMON32 in Table 3 and we can find they are in fact the rotations
of same linear hull. The potential of X} ; — Xf’rllf is estimated as 272169 in [6] while that of X} ; — Xf’rllf
is estimated as 273%1% in [7]. The difference may come from the different search methods and different linear
trails found. In the following attack, the potential of the two linear hulls is thought to be 2730-19,

4.2 TImproved Key Recovery Attack on SIMON32/64

We exploit the 13-round linear hull proposed in [7] to make key recovery attack on round-reduced SIMON32.
The linear hull is _ 4
X5 — X ?113?

with potential €2 = 273919 We mount a key recovery attack on 21-round SIMON32/64 by adding four
rounds before and appending four rounds after the distinguisher. Here let P = X?~* be the plaintext and
C = X*17 be the corresponding ciphertext. Suppose the key bits involved in the first four rounds are Kp
and those in the last four rounds are K. Then X7} ; is a function of P and Kp, X} 5 = E(P, Kp). Similarly,
X;{Jrll:f = D(C,K¢) is a function of C and K¢. Let S be the set of N plaintext-ciphertext pairs obtained,
the empirical correlation under some key Kp, K¢ is

G e = — S (—1)B(RKR®SDC.Ke).

PCeS



Table 4. 4 rounds before XES for SiMON32

zo | X1 - s X, & Xiho Xy soXr | oX,:, k|[K"o Kl PO0K, oK, 2o KT
L1 XE 14 O (X7, 145&X1L,84) D X;?,(;l k1 K8_4

T2 | Xi 1O (X J&X DX ko [KI72

w3 [ Xpo & (X3 &X1 fé)@X?{f ks [KG*

T4 | X7 11@(XZ 142&X1 4)@XR 13 k4 KEZI

L5 XL 14D (XZ 145&X1 4) X;% 0 XZ{; ks K(l)74 D K;73

w6 | X1 @ (XL o &X] 94)€BX2‘14 ke [Ki°

z7 | X7, 84@()(1 4&X1 4)@XR 10 kr K164

as X27 o (XL, 4&XZ 4)@X§9 ® X ks [Ky '@ Kj°

T [ XE 1@ (XL, 4&X; )0 Xps ko [KiT

L10 XL 14 D (XZ 145&X1L 84) Xllz (XZ 4&X2 142) Xlzz_f k1o K(Z)_4 D Ké_g D Ki_4 D Ki_Q
o | X 50 (X[ &X ) o X, @ X) ku|Ki*e Ky 3

T12| X} 04@()(2 f&Xi 140)69)(%24 ki K"

13 XZ 9 @ (XE 140&)(Z 4) D XR 11 ki3 KHZI

L14 Xz,s (X2,94&XZ,24) XR 10 D X2T142 k14 Kigél D KES

15| Xy 7 @ (X g &X ) © X g @ (Xp p&eX7 ) & X [[kas[KG 0 K 6 Ky © Koy
o0 X (X, &X, ) & X d 6 Xy Fao| Ky @ K5

Notice: z10 = 3 D 5, T15 = T4 D T3

Table 5. 4 rounds after X3 for SIMON32

2o [Xie' © (Xps &Xph) @ X7 & X' & Xphy ko [Ki P oK "o KiP o Kij o Ky
z1 Xz+17@(X1+17&X1+17) Xz+17 %1 K1+16

T X;%+15 @( z+17&X1+17) z+17 ko K7i+16

7 [ Xptg © (X 1 &X5 1) @ X”” By |[K157°

S HE e Xz+17 ka [KZTTC

25 [ X ® (X7 &Xpo") © X”” ® X ks K0 @ Kig ™

Z6 X?—?l? ( z+17&X1+17) Xz+17 ke K§+16

7 Xz+17 ( Z+17&XEL1107) z+17 k’7 K;«HS

s X;{+15 e (X;{+Ol7&XZ+17) Xz+17 Xz+17 ks K;+16 ) K§+15

v [ X510 (X X B X, o [T

10 X”” & (X7 & Xpo ) & Xy " @ (X [& XG0 1) & Xy ||k K0 @ K0 @ K" @ Kig ™
11 Xz+17 e (Xz+17&Xz+17) ) Xz+17 D X;{_‘—llf kll Ké+16 D KH—15

1o Xz+17 D (Xz+17&Xz+17) X2+1107 k1o K1+16

T13 Xz+17 (Xz+l7&X}L:t+117) Xz+17 k13 K—z+16

14 Xz+17 2) (X1+17&X%+11(’)7) D Xz+17 D X1+17 ]f14 K1+16 D K1+15

15 Xl,*" & (X &Xpo) @ X”” (X?f&X?fJ) ER Ki+16 @ K””’ oK o KT
70| Xa @ (X & Xpga ) © Xy & Xigia bl KT 6 KT

Notice: x10 = 3 D 5,15 = T4 D T3

In a further step, Xi,s can be represented as

f(.’b, k) =X ©® ]ﬂo D ((.Tl ) kl)&(xg (&) kg)) (&)

(23 @ k3)&(zs @ ka))®

(75 © ks @ ((z6 © ke)& (27 © k7)))&(28 @ ks © ((w9 © ko) &(27 D k7)))]|D

{(z10 ® k10 ® ((x6 D ke)&(x7 ® k7))®
(11 @ ki1 @
(15 @ k15 ® ((z7 D k7)&
[

(xg B ko))
(5614 D k14 D ((1713 & k13)

where the representation of x and k are 17-bit value shown in Table 4. With the same way,

(212 ® k12)& (213 B k13)))& (214 B k14 B (23 @ k3)& (213 @ k13)))])&

(73 @ k3)))&(w16 @ k16 © ((23 © k3)& (24 © k4)))])}

Xz+13

R13 can also

be represented as f(x, k) where the corresponding = and k are described in Table 5. To dlbtlngulbh them,
let zp,kp be the z,k described in Table 4 and z¢, ko be the x, k described in Table 5. The N plaintext-



ciphertext pairs in S can be compressed into a counter vector V[zp, z¢], which stores the number of 2p, z¢.
Then there is

1
Ckpke = 7 Z (—1)ferkr)@f ekl y [z p 20,

Tp,rc

Notice that f(x, k) is linear with x¢@®k. According to the linear compression technique, the 0-th bit of p and
zc could be compressed initially. Suppose that /5 is the 16-bit value of zp without the 0-th bit (same rep-
resentations for zf, kb, ki) Initialize a new counter vector V4 [z/p, 2] = > (—1)zPo®TcoV [zp z0].
Then the correlation becomes

1 i / i / 1 1y / 1o ’
Gy, = Y (1) I Rl ] = L ST R S (1) RV ot
Tp

! ’ !
TpsTc To

Zp,0,TC,0

where f' is part of f, i.e. f(x, k) =x9 B ko ® f'(¢/, k), 2" = (z1,...,216), K = (k1, ..., Kkig).

So we can guess ki (16-bit) at first and compress the plaintexts into a counter. Then guess ki, (16-
bit) to decrypt the appending rounds, to achieve the final correlations. In the following, we introduce the
attack procedure in the forward rounds in detail. And the procedure to compute Zw% (=) keI [, ]

for some x}, is same with the procedure to compute B¥ (y) with counter vector V'[z'] (here V'[z/] =
Vil2', z] when zy, takes some const value) and Boolean function f’. Morever, there are relations that
T10 = T3 S T5, T15 = T4 B xg in Table 4,5, which means there are only 14 independent bits for 2’ (25 or z(,).

Compute Bk'(y) with counter vector V’[z’] and Boolean function f’. (For simplicity, we define
this procedure as Procedure A.) Although 2’ is a 16-bit value, there are only 2'* possible values for 2’ as
explained above. We use the guess, split and combination technique to decrease the time complexity to
compute B¥ (y) with counter vector V’[#’] and Boolean function y = f’, for 2'¢ key vaules k.

1. Guess ki, k3, k7 and split the plaintexts into 8 sets according to the value (x1 @ ki, x3 D k3, x7 D k7). The
simplification for f’(z’, k') after guessing some keys are shown in Table 6. The representation of f;; are

Table 6. Simplification for f'(z’, k') after guessing ki1, ks, k7

Guess |z1 @ k1,23 ® k3, z7 @ k7| f' |Related Bit

0,0,0 foo
0,0,1 fo1
0,1,0 f1o k4
0,1,1 fia k4

k1, ks, kr 1,0,0 foo ks
1,0,1 for ko
1,1,0 f1o k2,4
1,1,1 f11 k2,4

as follows,

foo =((z5 @ ks)&(zs @ ks)) ® {(z10 @ k10 @ [(z11 @ k11 © (212 B k12)& (13 ® K13))) & (214 B k14)])
& (215 @ k1s ® [(z14 D k14)& (216 D k16)]) }s

for =((z5,6 ® ks,6)& (28,9 B ks,9)) ® {(x6,10 B k6,10 B [(x11 B k11 & ((x12 D k12)&(z13 B k13)))& (214 D k14)])
&(x9,15 D k9,15 ® [(14 D k14)&(z16 ® k16)])},

fio =((ws @ ks)&(zs ® kg)) B {(x10 ® k10 ® [(x11 B k11 & (w12 B k12)& (213 @ k13)))& (213,14 B K13,14)])
&(z15 B k1s @ [(z13,14 D k13,14)& (4,16 D ka,16)]) },

fi1 =((z5,6 ® ks,6)& (28,9 D ks,0)) D {(x6,10 D k6,10 D [(x11 D k11 D ((x12 D k12)& (213 B k13)))& (213,14 D k13,14)])
& (9,15 ® ko,15 @ [(z13,14 B k13,14)& (24,16 D ka,16)]) }-



The counter vectors for 2’ can be compressed in a further step according to the new representations of
f'. For example, if (1 @ k1,23 ® k3,27 & k7) = (0,0,0), f’ will be equal to the formula foo, which is
independent of x3, x4, Tg, Tg. SO we compress the corresponding counters into a new counter Vg, and

Voools, T, T10 — T16] = Z V'[2].

x1=k1,x3=k3,x7=k7,22€F2,24€F2,x6E€F2,x9EF

Notice x19 = x3 D x5, so there are 8 independent x bits for x5, xg,x190 — T16. Notice x15 = x4 D x5, for
some fixed value of x5, g, z19 — 16, there are 7 times addition in above equation. So generating this
new counter vectror needs 2% x 7 additions.

We give another example to illustrate the situations with related key bit. If (x1 @ k1,25 ® k3, x7 ® k) =
(1,0,0), there is f' = (z2 ® ko) ® foo. Notice in this subset, f’ is linear with o @ ks and x5 can be
compressed into the new counters with related key ko. So the new counter vector Vi is as follows,

Vioo[s, T8, 210 — T16] = Z (—=1)"2V'[2'].

z1=k1®1,23=k3,x7=k7,22€F2,74€F2,76EF2,79€EF2

Also, there are 8 independent z bits for =5, xg, 10 — x16. For each fixed x5, xs, 19 — 16, the new counter
can be obtained with 7 additions according to above equation.
The procedures to generate the new counter vectors for other cases are similar as that of case (x1 ®
k1,23 ® ks, x7 ® k7) = (0,0,0) or (1,0,0). Morever, the time complexity to split the plaintexts and
construct new counter vectors is same for each case. Observing the four functions foo, fo1, f10 and fi1,
we know that they are with same form. In the following step, we explain the attack procedure of case
(1 @ k1,23 ® k3, z7 ® k7) = (0,0,0) in detail and the others can be obtained in the same way.
Note that, there are 9 subkey bits in each function of fy, fo1, fio and f11 after guessing kq, k3, k7. So
this can be viewed as that 3 + 9 = 12 subkey bits are involved in the attack while there are 16 subkey
bits are involved initially in f’. In the following, the number of key bits can be reduced in a further step.
2. For foo, guess ks, k14 and split the plaintexts into 4 sets according to the value (x5 @ ks, 214 B k14). The
simplification for fyo after guessing some keys are shown in Table 7.

Table 7. Simplification for foo after guessing ks, k14

Guess |Value foo Related key bit
0,0 (z10 ® k10)&(x15 B k1s)
ks, k4 0,1 [(z10,11 D k10,11 B ((z12 ® k12)&(z13 B k13)))& (215,16 B k15,16)
’ 1,0 (z10 ® k10)&(x15 B k1s) ks
1,1 [(z10,11 ® k10,11 ® (212 D k12)& (213 D k13)))& (215,16 D k15,16) ks

The time complexity of computing the counters’ value B¥s:Fs:F10=ki6(y) with counter vector Voo and
function fyq is as follows:
(a) Guess ks, k14 and split the states into four parts
i. (x5 © ks, 714 © k14) = (0,0)
A. New counter vector V& [210, 215) = D s—ks ra=kia
26 — 2 additions. (Notice that x1q is fixed here since the dependence between x5 and 1¢.)
B. Partial Bi10"*1% () with new function and vector VE%: If k1o = 210, Bia® % (y) = V9 [z10, 0]+
V0 (210, 1]; if k1o = 10 @1, B2 (y) = (=1)F15 (V99 [10, 0] — VY [210, 1])-So in total there
are no more than 22 additions.
ii. (375 @ ks, 14 D k14) = (O, 1)
A. New counter vector Viy[®10.11, %12, T13, T15,16) = 215:,65@14:,614@1 Vooo[zs, T8, 10 — T16]
needs : 24 x (22 — 1) = 26 — 2% additions.
B. Partial Bglm'“’kl?"kl3’k15’w (y) with new function and vector V,: 2564 additions (See f5 in
Appendix A)
1ii. (935 D k5,1‘14 D k14) = (170)

V000[$5,£687£L'1071'16] needs : 2X(2571) =
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A. New counter vector Vi[210,715] = ZI5:k5@171’14:k’14(_1>$8%00[x57:L.87:I:10 — x16] needs :
2 x (25 — 1) = 2° — 2 additions. (Notice that z1¢ is fixed here since the dependence between
x5 and z19.)

B. Partial Bféo’kls (y) with new function and vector Vji: 22 additions (same with case (0,0)).

iv. (1'5 P ks, x14 P k14) = (1, 1) ‘

A. New counter Vector Voool10.11, T12, T13, T15,16) = Z%:k&muzkm@l(—I)LSVOOO[%,338,mlo —
716) needs : 24 x (22 — 1) = 26 — 2% additions.

B. Partial B} “’kl? F12.M5.16 (1)) with new function and vector Viii: 2564 additions (See fs in

Appendlx A)
(b) For each of 2° keys involved in foq, partial B*s:Fs:k10=k1s(y)) with function y = fyo and counter vector

Vooo under key guess ks, k14 is
Bk5,kg,k10—k16( ) Bkm,km( )+Bk10 11,k12,k13,k15, 16(y) +( )k}g (Bkl(],klg,( )+Bk10 11,k12,k13,k15,16 (y))

We can add Bkw’kl“’( ) and Bk10 1ok, ks s, 1% (y) at first, then add Bkw’k”’( ) and Bk10 1ok12,K1s, ks, 16 (y),
at last add the two parts accordlng the index value and kg. The combination phase needs 26426427 =
28 additions in total when ks, k14 are fixed.

(¢) In total, there are

22 X ((26 _ 2 + 22 + 26 _ 24 + 25.64) X 2 + 28) ~ 211.19

additions to compute B¥s-Fs:F10=kis (y/) for all 22 possible key values. Note that, about 1 subkey bit is
guessed in the first (or third) step of step 2a. In the second (or forth) step of step 2a, 1.5 subkey bits
are guessed on average. So, although there are 9 subkey bits in total, only 2+ (1+1+1.5+1.5)/4=3.25
bits on average are guessed with dynamic key-guessing technique.

3. The time of computing B¥ (y) with counter vector V’[2’] and Boolean function f is shown in Table 8.
T7 denotes the time of seperation of the plaintexts according to the guessed bit of k. T5 denotes the time
of computation in the inner part. T3 is the time in the combination phase. When k1, k3, k7 are fixed, in
each case, T) = 28 x 7 as explainted in Step 1. Ty is 2'1'1? as explained in Step 2. There are 13 bits for
k' except ki, ks, k7, leading to T3 = 2'2 x 7. For all guesses of ki, ks, k7, the total time is about 2!9-46
additions.

Table 8. Time Complexity of computing Bk/(y) with counter vector V'[z] and Boolean function f’

Guess |x1 @ k1,23 @ ks, 7 © k7| f'| Related Bit o T Time T
0,0,0 foo 28 x 7[2™H 19
07071 fOl 2° %7 211‘19
07170 flO k4 28 x 7 211‘19
0,1,1 fi1 ka 28 x 7|2t 1Y 13
ks ks, ke 1,0,0 Too ks w7t 2T X7
1,0,1 f01 k2 2% x 7219
1,1,0 f1o k2,4 28 x 7|2t 1Y
1,1,1 fi1 k2.4 2% x 721119
Total Time ((2° x 7+2 1) x 8+ 2 x 7) x 2% = 21990

In Step 1, 3 key bits are guessed and the plaintexts are splitted into 8 situations. For each situation, 3.25
key bits are guessed as explained above. So on average, about 3+ 3.25 = 6.25 subkey bits are guessed in this
procedure, while there are 16 subkey bits involved.

21-round attack on SIMON32/64. Adding four rounds and appending four rounds after the 13-round
linear hull distinguisher, we give the 21-round linear attack on SIMON32/64. The linear hull holds with
potential €2 = 273919 We set N = 2672 = 23119 and advantage a = 8. The success probability would be
0.477 according to Theorem 1. There are 32 subkey bits involved in this attack. With our attack method,
only about 6.25 4 6.25 = 12.5 bits are guessed on average, which reduces the number of key bits greatly.
Attack:
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1. Compress the N plaintext-ciphertext pairs into the counter vector Vi |2, z}] of size 214114,
2. For each of 2 z7,

(a) Call Procedure A. Store the counters according to =, and k'
3. For each k» of 2'6 possible values.
(a) Call procedure A. Store the counters according to k» and k.

4. The keys with counter values ranked in the largest 23278 = 224 values would be the right subkey
candidates. Exploiting the key schedule and guessing some other bits, use two plaintex-ciphertext pairs
to check the right key.

Time: (1)N = 23119 times compression (2) 24 x 21946 = 23346 5qditions. (3)21¢ x 21946 = 23546 aqditions.
So the time to compute the empirical bias for the subkeys involved is about 235#* while that given in [6]
with similar linear hull is 263:6%. The time is improved significantly. Step (4) is to recovery the master key,
which needs 26478 = 256 21-round encryptions. However, [6] does not give this step.

22-round attack on SIMON32/64. Add one more round before the 21-round attack, we can attack
22-round of STMON32/64. There are 13 active key bits involved in round 7 — 5, which is x; = (Ki® —
Ky K P K — K{5° Ki;°, Ki5°), to obtain the = represented in Table 4.

Attack:

1. Guess each of 213 k,

(a) Encrypt the plaintexts by one round.
(b) Do as the first three steps in the 21-round attack
2. The keys with counter values ranked in the largest 232+13=8 —= 237 values would be the right subkey

candidates. Exploiting the key schedule and guessing some other bits, use two plaintex-ciphertext pairs
to check the right key.

Time: (1.a)2'® x N = 2419 one-round encryptions. (1.b) 213 x 23584 = 24881 4qditions. (2) Exhaustive
phase needs about 264=8 = 256 22-round encryptions.

23-round attack on SIMON32/64. Add one more round before and one round after the 21-round attack,
we can attack 23-round of SIMON32/64. There are 13 active key bits involved in round i + 17, which is
Ko = (KETYT — KA YT AT YT KT K)o obtain the @ represented in Table 5.
Attack:

213+13

1. Guess each of K1||ka

(a) Encrypt the plaintexts by one round and decrypt the ciphertexts by one round.
(b) Do as the first three steps in the 21-round attack

2. The keys with counter values ranked in the largest 232126—8 = 9250 values would be the right subkey
candidates. Exploiting the key schedule and guessing some other bits, use two plaintex-ciphertext pairs
to check the right key.

Time: (1.a)226 x N = 2571 two-round encryptions. (1.b) 226 x 23584 = 26184 4qditions. (2) Exhaustive
phase needs about 264=8 = 256 23-round encryptions.

4.3 Improved Key Recovery Attack on Other Variants of SiMON

The improved attack on SIMON32/64 is given above. The similar procedure can be applied to the other
variants of SIMON using some linear hulls given in Table 3. See Appendix B for more details.
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4.4 Multiple Linear Hull Attack on SIMON

Combining multiple linear cryptanalysis [19] and linear hull together, one can make multiple linear hull
attack with improved data complexity. Our attack technique can be used in the multiple linear hull attack
of SIMON well. According to the rotational property, Property 1, of SIMON, lots of linear hulls with high
potential can be found. For example, the two 13-round linear hulls for SIMON32 in Table 3 are rotations of
same linear hull.

Suppose that the time to compute the bias for one linear hull is 7; and data complexity is . If m linear
hulls with same bias are used in the multiple linear hull attack, the data complexity would be decreased to
N /m. But the time complexity would increase to m7; + 2%, where K is the size of the independent key bits
involved in all m linear hull attacks. For example, there are 32 independent key bits involved in the 21-round
attack of SIMON32 with linear hull Xi,s — X};rllg . The data complexity is 23119 known plaintext-ciphertext
pairs and the time needs about 23°8% additions to get the bias. When another linear hull XE,G — Xgrllf
is taken in to make a multiple linear hull attack, the data size will decrease to 23919, There are also 32
independent key bits involved in this linear hull attack. But, the total independent key size of both linear
hulls is 48. So the time to compute the bias for the multiple linear hull attack with above two linear hulls
needs about 236-% additions and 24® combinations.

5 Conclusion

In this paper, we gave improved linear attack on all versions of SIMON family with dynamic key-guessing
technique. By establishing the boolean function of parity bit in the linear hull distinguisher and reducing
the function accroding the property of AND operation, we decrease the number of key bits involved in
the attack and decrease the attack complexity in a further step. As a result, we can attack 23-round Si-
MON32/64, 24-round SIMON48/72, 25-round SIMON48/96, 30-round SIMON64,/96, 31-round SIMONG4/128,
37-round SIMON96/96, 38-round SIMON96/144, 49-round SIMON128/128, 51-round SIMON128/192 and 53-
round SIMON128/256. The differential attack in [14] and our linear hull attack are bit-level cryptanalysis
results, which propose more efficient and precise security estimation results on SIMON. The cryptanalysis
results imply that the security of SIMON family does not shake.
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Time complexity in some situations

In this section, we give the time complexities of computing the counters B*(y) for some simple functions of
y = f(x, k). This would be the deepest layer’s operation in the linear attack to SIMON. Notice in the following,
"Guess’ denotes the bits guessed at first. The second column z; @ k; denotes the value of x; which is used
in the splitting phase. The third column denotes the new representation of the target function according to
the value of x; @ k;. 'RB’ is the related bit (defined in Section 3). T} denotes the time of seperation of the
plaintexts according to the guessed bit of k. T5 denotes the time of computation in the inner part. T3 is the
time in the combination phase. Total Time is the final time complexity, which is twice of the sum of all 17,75
and T3. Notice that 77,75 and T3 represent the number of addition operations. For simplicity, we denote fx
the function with same form of f. For example, if f1 = (2o ® ko)&(z1 @ k1) and f] = (zo © ko)&(x3 @ k3),
we say f1 is with form f1*. The calculation of B(y) for the functions with same form have same procedures
and time complexties.

1.

2.

3.

4.

fi=(xo ® ko)&(z1 @ k1)

Guess|zg @ kol f1|RB|T1|T5 T3
0 0 1
Ko T [0]k |1 2
Total Time 2x (1+1+2)=23

Jo = ((o ® ko) ® ((x1 ® k1)&(22 ® k2)))&((23 ® k3) & ((21 © k1)&(24 © k4)))

Guess|z1 @ k1| fo |[RB| T1 |15 Ts
& 0 |fix 22 x 3[23 91

! T [fix] [22x3[2°
Total Time 2 x ((22 x 3+2%) x 2+ 2%) = 2646

f3=((x0o ® ko)&(x1 & k1)) ® (22 ® k2) © (73 © k3)&(za ® k4)))&((25 © k5) © (73 © k3)&(z6 © ko))

Guess|zg @ ko| f3 |[RB| 17 | Tv Ts
B 0 |fox| [25 x1[26%6 56
0 1T |fox| by |2° x 1]26%6
Total Time 2 x ((2° x 14 2546) x 2 + 26) = 2925

fa= (2o ® ko) ® (x1 ® k1) & (22 P ko)
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Guess|zo| fa |[RB| T7 |13 T
fi*| ko 22 % 1]23 23
Total Time |22 + 23 4+ 23 = 2432

5. fs = (z0 ® ko)&((z1 @ k1) @ (22 ® k2)& (23 & k3))

Guess|zg @ ko| f5 |[RB| T3 15 T3
0 0 23 —1 3
ko 1 Tax o432 2
Total Time 2 x (25 —1+2%32 1 2%) = 2564

6. fo = ((zo @ ko)&(r1 ® k1)) ® ((x2 ® k2) ® (23 © k3)& (21 @ k1)) &((24 @ ka) © (23 ® k3)&(25 D k5)))

Guess|z1 @ k1| fo [RB| Th TS T3
& 0 f5% 2% x 1]2°64 95
! T [fox| ko [2F x 1[2507
Total Time 2 x ((2% +2°64) x 2 +2°) = 2836

7. fr=[20@ko® ((21Dk1)&(22Dk2)) D ((23Dk3® (24D ka)&(25Dks5))) & (26 Dhe D (w5 Dks)& (27D kr))))]&
(18D ks ® (22 ®k2)&(w9 D kg)) D (w6 D ke D (5 D ks )& (27 D kr)))&(T10 D k10D (27 © k7)& (711 D k11))))]

Guess |xo @ ko, x5 D ks, x7 D k7| f7 |RB T T T3
0,0,0 fox 25 x (24 -1 2646
0,0,1 fox 25 x (24 -1) 206-16
0,1,0 fox 25 x (24 — 1) 26-46
0,1,1 * 25 x (2% —1)[2646
Fa, ks kz 1,0,0 ;z* P % 524 - 1; 2645 2 x7
1,0,1 fox 25 x (24 -1 26-16
1,1,0 fox 25 x (24 —-1) 26-16
1,1,1 fox 25 x (24 — 1) 26-46
Total Time 23 x ((25 X (24 -1+ 26‘46) x 8+ 29 x 7) = 215.99

8. fs=[fr D (12 @ k12 ® (21 ® k1) & (22 B k2)))&(213 D k13 B ((22 D k2)&(x9 @ k9))))

Guess |xo @ ko, x5 @ ks, x7 B k7| fs |[RB T T T3
0,0,0 fax| |27 x (2T —1)[29%
0,0,1 fax| |27 x (2T —1)[29%
0,1,0 fax| |27 x (2T —1)[29F
0,1,1 fax| 27 x (2T —1)[2%% "
ko, ks, kr 10,0 Farl 27 x (27 = 13 9975 X
1,0,1 fax| |27 x (2T —1)[29%
1,1,0 fax| |27 x (2T —1)[29%
111 fax| |27 x (2T —1)[29%
Total Time 22 x (2Tx (22 =1) +29B) x 8 + 211 x 7) = 21808

Case 1 gives the time complexity when y = f(z,k) = (xg ® ko)&(x1 @ k1). We explain Case 2 in detail
and the others are similar. fo is a function of 5-bit value x and k. Suppose V]z] denotes the number of .
After ky is guessed, the representation of fs will be simplified for x1 = ky and 2y = k1 ® 1. If &1 = kq, there
is fo = f = (20 ® ko)& (w3 @ k3) which is with form f; . Initialize a new counter vector Vp[2°] where 2V is of
2-bit. Set Vp[z°] = Zxo=x8,x3=x?,x1=k1 V[xz]. There are three additions for each 2° and in total 7} = 22 x 3.
If 21 = k1 @ 1, there is fo = f3 = (202 ® ko,2)&(x3,4 @ k3 4) which is also with form f;*. Similarly, initialize
a new counter vector V; [z'] where z! is of 2-bit. Set Vi[z'] =3, . ., o V[z]. There are three

T0,2=T(,T3,4=T1,T1=FK1
additions for each z! and in total T} = 22 x 3. The function in the inner part is with form f;* for both
situations and it is easy to know Tp = 2% according to Case 1. Let BE**(y) be the B(y) with counter
vector Vy and function f9 for ko, ks. Let By®>"*%(y) be the B(y) with counter vector Vi and function f}
for ko2, ks.a. When ky is fixed, B(y) for k is Bgo* (y) + BfO’Q’kg“‘ (y). Since there are 4 independent bits of
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k when k; is fixed, leading to T3 = 2%, which is the complexity of combination. In total, the time is twice of
(22 + 23) + 24, since there are two possible guesses for k;.

The related bit (RB) is generated in linear compression. For example in Case 3, when zo ® ko = 1, f3
is linear with x1 @ k1. As explained in Section 3, x1 is compressed and ki becomes a related bit. In Case
4, linear compression is done before any key guess, leading to the compression of bit xy and generation of
related bit kg.

B Improved Linear Attacks on SIMON48, SIMONG64, SIMON96, SIMON128

B.1 Linear Attack on SIMON48/K

The linear hull we used to attack SIMON48/K is
Xi,l @ X%,s @ Xz,zl @ X;%,zs - Xfﬁw D X2T516 D X?,zl??

which is proposed in [12], with potential €2 = 274492,

Table 9. 3 rounds before X}, ; @ X} 5 ® X7 21 ® X§ 03 for SIMON48

wo | X © Xpgtr © (XL 68X ) @ X Joll ) K" @ K" & Kig” @ K
(X7 7&X]51) & Xpp 3) @ (X 50&X] 13) SR @Ky @Ky @ Ky

T1 Xz_og D XIZ%_QS D (erlg&Xz_IBS) k1 K;_S

Z2 XZL_137 @ X;%_,39 D (X2_138&XZL_131) ko K;§3

T3 X27136 D X;;,:is D (X£7137&X27130) ks Kg3

T4 XZLBB @ X;;lgl ® (X27130&X2733) k4 KH?)

L5 X;:QSO D X;;,232 D (XE231&XIZ:134) D XE:OS ks K;;?’ D K(?Q

L6 XIL_231 @ X;%_233 D (Xz_232&XZL_135) ke Kég?’

L7 XZL_134 & X;%_,36 D (XE_I3S&X2_83) k7 K;g:i

T8 X27133 D X;;,135 D (X27134&X2773) D XZLT137 ks KE?’ D K{;Q

L9 X2773 D X};QS D (XJZ:TSB&XFE) ko KZ;B

w10[ X7 o & Xpo @ (Xp P &XT )@ Xpy [k |[Ky " @ K °

L11 XZL_l3 D Xlz%_:? ® (Xlezg&Xlelgg) k11 K§_3

T12 XZL_138 & X;a_,230 D (X2_139&X2L_132) k12 K563

L13 X27137 D X};,f’g D (X27138&X27131) D X27231 k1s Kg?) D K%IQ

T14 XZLT131 D X}27133 D (X27132&XZLT53) k14 Kg?’

15 X]Z;136 & X;{138 D (X27137&X127130) D X£7230 k1s KEB D K§82

L16 XZL_130 @ X;?:132 D (X£_131&XZL_43) k16 K{;?’

L17 Xz_93 D X;%_131 D (XZ?130&X2_33) D X2_133 k17 KH?’ D KEQ

L18 X2733 D X;;53 D (XZLT43&X}:231) kis Kg73

Similar to the attack on SIMON32, at first we give the procedure to compress the plaintexts, then the pro-
cedure to compress the ciphertexts. Add 3 rounds before the distinguisher. According to the representations
for z, k in Table 9, X} | ® X} 5 @ X] 5 @ X} o3 can be represented as

2o © ko @ (21 @ k1)&(z2 @ k2)) ® (w3 © k3)& (24 © ka))®

(25 @ ks & ((z6 © ko )& (27 & k7)) &(28 ® ks © ((27 & kr)&(29 @ ko))

(10 @ k10 @ (w11 ® k11)& (212 B k12)))& (213 @ k13 @ (212 © k12)& (214 © K14))))D
(215 ® k15 @ (w2 © k2)&(w16 @ ki16)))& (217 © k17 © (716 D k16)& (218 D k18))))

Compress the plaintexts: (Procedure SIMON48-Head) At first compress the data samples into a counter
vertor V]zr; — 1], then DO

1. For each x3 — x14
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(a) Guess the keys related to x;
A. There are 6-bit keys (k;
is about 26 x

— X9, T15—x18 and compress x1 — X2, T15 — 18 as the Case fg in Appendix
— ko, k15 — k13) to store, and the time is about 28-36. So here the memory
212 counters, and the total time is about 212 x 28:36 = 22036,

2. For each key k‘l — ]{)2, kJ15 - klg

(a) For each z19 — x14

i. Guess the keys related to z3 — xg and compress x3 — xg9 as Case f3 in Appendix A. There are

7-bit keys (k3 — ko) to store, and the time is about 2°-25. So here the memory is about 26+7 x 25

counters, and the total time is about 2675 x 29:25 = 22025,

3. For each key ki1 — kg, k15 — k1s

(a) Guess the keys related to x19 —x14 and compress x19 —x14 as Case f2 in Appendix A. There are 5-bit
keys (k1p — k14) to store, and the time is about 2646 S0 here the memory is about 2'375 counters,
and the total time is about 213 x 26-46 = 21946,

4. Total time is 220-36 4. 22025 4 21946 — 921.66 5qditions. Memory is about O(2'8).

Table 10. 4 rounds after Xi':“lw D Xz—;w & X};’“ng for S1MON48

20 20 20 20 20 20 20 19 17 16
Xps @ X320 @ (X &XE00) @ XE30 @ Xy @ X7y Ko KT @ Ky
z+20 7,+20 ’i4-20 i+20 "1420 i+19 i+19 i+18 i+17
Lo @(XR IG&X )@XL 21 @ (XR 20 &X 7 13) ko K1+19@K5+19@K3+18@K5+17
K7 D K2 DK o K.
17 21 19 21
1+20 1+20 1+20 1+20 7+19
z1 | Xpie @ Xphs @ (X 17 & X 10) ki | Kig
T X’L+2O D XH—QO D (X'H—QO&XH—QO) ICQ Kii&-lg
R,9 L,11 R,10
Z3 X'L+20 EB X’L+20 @ (X'L+2O&X;,%+12é)) k‘3 K;+19
1+20 z+20 7120 T+20 F19
zs | Xpr © X e @ (Xpis&XET) ks | Kig
+20 o T+20 +20 7120 z+20 19 iFI8
o5 | Xpoo © Xioo @ (Xpo &X5hy) @ ks |K35 ™" @ Kg
7+20 7+20 7+20 1+20 7+19
e e
k3 1 K3 1 1
z7 | Xp iy EBXL 16 @ (Xis &XESY) k7 | Ki§
7+20 'L+20 7+20 7,+20 z+20 7119 7118
zg | Xpis EBXL 15 @(XR 14&X ) Xprar ks | K15~ @ Ki7
T X1+20 z+20 (XH»QO&XH»QO) kg Kz+19
R,8 R,1 9
Z10 X;{+020 XH—QO (X}%+120&X%+1280) z+20 kl() K;+19 e Ki+18
211 X’L+20 X1+20 (X’L+20&X;%+1290) kll K§+19
'L+2O 'L+20 7+20 7,+20 7+19
T12 XR 18 L20 (XR IQ&XR 12) k12 Ky
13 X}L%+2O Xz+20 (X;2+2O&X%+2O) }zz+20 k13 K{;}FIQ @ K;TIS
11 L,13 12 5 21
+20 o z+20 7120 720 F19
T N
K K 3 K Z 1 1
215\ Xp 6 D Xi'hs @ (X7 &Xi10) @& Xgso kis| K15~ @ Ky
L16 X;?+10 @ X2+1220 (X;?+12{)&X;z+jo) ke Kgm
'L+2O 'L+20 7+20 7,+20 7+20 7+19 7+18
L1 XRQQO L1210 (XR 12%&XR320)@XR 13 k17 K1119@K13
T+ z+ T+ 7+ 7+
L XR+3§0 ©X, +20 (X +20&XR+22%)) 20 4 F20 F20 s Ky +19 FI8 FI9 FI7
k3 Z k3 1 l k2 K2 K2 K2 K2 K2
T19 XR 12% L+1280 (XR 12%&XR+12%) L2220 (XR 21 &XR,14) k1o K1-8&-19 & Ky +18 S Ky @Ky
i+ 1 i+ 7 i+ 7 7
w20 Xp 0 D Xr o B (X1 &X5ra) @ Xy koo | K5 ™" @ Ky
’L+2O z+20 7+20 7+20 z+20 7+20 1+20 7+19 z+18 7+19 T+17
T21 XR9 XL 11 (XR IO&XRB ) X @(XR 14&X ) ko1 | K17 @ Ky @K EBK15
Too X}L%Jrfo EB X’L+20 (X’L+2O&X%+2220) k'22 Kz+19
Tos XEFSQO XH»ZO (X'L+2O&X}{+22{)) z+20 k}23 Kz+19 @ K;+18
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If we append four rounds at the end of the linear distinguisher, according to Table 10, Xﬁlm DX 2?516 &

X ?211? can be represented as

2o D ko ® ((x1 @ k1)& (22 D k2)) D ((x3 D k3)& (x4 @ ka))D

(5 ® ks @ (w6 ® ko) & (17 B k7)) & (28 B ks B (27 B k7)&(T9 D K9))) D

(10 @ k10 @ (211 @ k11)& (212 D k12)))&(213 © k13 © (212 D k12)& (214 D K14)))D
(w15 D k15 @ (w4 ® ka)&(x16 @ k16)))&(x17 B k17 ® (w16 D K16)& (218 B k18)))D
{(x19 B k19 B (24 D ka)&(16 P k16))P

((£C13 © k13 ® (w12 © k12)& (214 © K14)))&(220 D k2o & (214 © k14)& (222 © k22)))))

(1:21 © ko1 © (16 © k16)& (218 D K18))D
(w20 @ k2o B (214 ® k14)& (w22 B k22)))& (w23 D kas & ((z22 ® koo2)&(x6 © k6)))))}

Compress the ciphertexts: (Procedure SIMON48-Tail) To simplify our description, we introduce the sit-
uations that the XOR for the guessed k bit and corresponding = bit is zero in Step 2 to Step 8, since the
representation of the target parity bit in another situation has same form with it. At first compress the data
samples into a counter vertor V[zy — x23], then DO

1. For each of 23 — 223
(a) Compress z7 — x2 as Case f; in Appendix A. There is 2-bit key (k1 — k2) to store and the time is
23. So this step needs memory 223 counters and total time is about 22! x 23 = 224,

Guess k4. Since x4 @ k4 = 0, 23 can be compressed. The time is about 2!° additions.

Guess k7. Since z7 @ k7 = 0, 9 can be compressed. The time is about 2!7 additions.

Guess ks. Since x5 @ ks = 0, g can be compressed. The time is about 2!° additions.

Guess kis. Since 212 ® k12 = 0, 211 can be compressed. The time is about 2!2 additions.

Guess kas. Since 95 @ kg = 0, 214, 2 can be compressed. The time is about 2'° x 3 additions.

Guess kig. Since 16 ® kig = 0, z15 can be compressed. The time is about 28 additions.

. Guess kis. Since x15 @ k15 = 0, 217 can be compressed. The time is about 26 additions.

. After above guessing and split, remained bits for z and k are bit 10, 13, 19, 20, 21, 23. We can compress
them as Case fg in Appendix A. The time is 2836,

10. Calculate the other situations similar to that above.

© 00N ® T o

Time is estimated from the inner part to outer part. Step 9 needs about Ty = 2836 additions. In Step 8, the
two cases, x15 @ k15 = 0, 15 ® k15 = 1 have same time complexity and there are two possible guesses for
k15. So the total time for Step 8 and 9 is Ty = 2 x ((2° + Tp) x 2 + 27) = 21983 where 27 is the time for
combination. Similarly, the time for Step 2 to Step 9 is as follows.

Step Time

89| Tyg=2x((2°0+Tp) x 2 +27) =21083
79 Tr=2x (285 +Ts) x2+29) =200
6-9 [T =2 x (210 x 3+ Tx) x 2 + 212) = 21582
5-9 [ Ts=2x ((213 4 Tp) x 2+ 211) = 21818
49 Ty=2x (25 +T5) x 2+ 216) = 22017
39| T3 =2x (27 +Ty) x 2+ 218) =22271
2-9 [To =2 x (219 x 3+ T3) x 2 + 220) = 22291

So in total, the time is 22491 x 22 4 224 ~ 22799 The memory is about O(22) counters.

23-round attack on SIMON48/72. We add three rounds before and four rounds after the 16-round linear
distinguisher to attack 23-round SIMON48/K. Suppose we use N = 8¢~ 2 = 247-92 known plaintext-ciphertext
pairs. Set advantage a = 16. The success probability would be 0.909. At first, compress the N plaintext-
ciphertext pairs to 2!8%23 counters according to Table 9, 10. Suppose the plaintext be compressed to zp and
ciphertext be compressed to x¢.

1. For each of 222 z¢
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(a) Call Procedure SIMON48-Head, and store the counters according to the keys used in the forward
rounds
2. For each of 2'8 keys involved in the forward rounds
(a) Call Procedure S1MON48-Tail, and store the counters according to the keys used in the backward

rounds
3. Rank the keys and exhaustive the candidates with the help of key schedule

Time: 1. 223 x 221.66 — 944.66 54 (jtions; 2. 218 x 22709 = 24509 4qditions. So it needs 24466 4 245.09 — 945.89
additions to get the correlations. 3. Since the size of master key is 72, the exhaustive phase needs 272716 = 256
23-round encryptions.

24-round attack on SIMON48/72. Expand one more round before X*~3. The key bits of K'~* involved
to obtain the z represented in Table 9 are r; = (K4 * — Ki™* Ki™* — Ki7*), in total 22 bits.

1. Guess each of 222 k;
(a) Encrypt the N plaintexts by one round
(b) Do as first two steps of the 23-round attack
2. Rank the keys and exhaustive the candidates with the help of key schedule

Time: (1.a) 222 x N = 26992 gne-round encryptions. (1.b) 222 x 245-89 = 267-89 a4ditons. 2. Since the size of
master key is 72, the exhaustive phase needs 272716 = 256 24-round encryptions.

25-round attack on SIMON48/96. Expand one more round before X*~3 and one more round after X“‘QO.
The key bits of K20 involved to obtain the z represented in Table 10 are xy = (K8+20 — Kg”o, K;Jrzo —

Ki'®), in total 22 bits.
1. Guess each of 24* k1 ||k
(a) Encrypt the N plaintexts by one round
(b) Do as first two steps of the 23-round attack
2. Rank the keys and exhaustive the candidates with the help of key schedule

Time: (1.a) 2% x N = 29292 two-round encryptions. (1.b) 244 x 24589 = 28989 additons. 2. The exhaustive
phase needs 29616 = 280 25_round encryptions.

B.2 Linear Attack on SIMON64/K
The linear hull we used to attack SIMONG4/K is

i ; ; i+21 i+21 it21
X120 ® X[ 04 ® Xp oo = X150 ® Xpog @ Xy

which is proposed in [6], with potential €2 = 2762:53,
If we add four rounds before the linear hull, accodring to Table 11, Xi,zo &) X2,24 @ X}i%,22 can be
represented as

zo ® ko @ (21 @ k1)&(w2 @ k2)) © (23 © k3)& (w4 @ ka)) @ (25 ks )& (26 @ k6 ))D
(27 D k7 ® ((x6 D ko) & (28 D ks))) & (29 D ko @ ((28 D ks)&(210 ® K10)))D

{(z11 @ k11 © (w6 @ ke)& (28 © kg))®

(212 ® k12 © (213 @ k13)& (214 © k14)))& (215 © k15 © (213 D k13)& (216 D K16))))
&

(217 @ k17 B ((zs D ksg)&(x10 B k10))D

(15 ® k15 © (213 © k13)&(@16 ® K16)) )& (218 D k18 © (w16 © k16)& (219 B K19)))) }
{(w20 ® koo ® ((w21 @ F21)& (w22 @ k22))®

(223 ® ko3 @ (w4 @ koa)& (225 ® kas)))&(w26 © kae @ ((x25 ® kas)&(z27  ka7))))
&

Tog @ kog © ((z22 @ ko2)& (229 @ kag))®

(226 ® kae © (w25 D ko5 )& (w27 @ ko7)))&(230 © k30 © (w27 © kor)&(z31 @ k31)))) }-

—~
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Since x11 = 1 © z7 and 17 = x2 D xg, there are 30 independent bits for x and 32 independent bits for k.

Compress the plaintexts: (Procedure SIMON64-Head) At first, compress the plaintexts into a counter
vector V[r; — x31] using the linear compression technique. There are 229 elements for V. To simplify our
description of attack, the zg, k¢ with underline above are regarded as new variables g, k.

1. For each T3 — I31
(a) Compress x1,zs. Since x1 = x7 B x11, T2 = x9 O T17, there is only one value for 1, xo. There is 2-bit
key to store (ki,kz), and the time is 22. So here the memory is about 22 x 22 = 23! counters and
total time is 229 x 22 = 231,
2. For each ki, ko, x5 — 31
(a) Compress x3,x4 as the Case fi in Appendix A. There is 2-bit key to store (ks, k4), and the time is
23. So here the memory is about 229 x 22 = 23! counters and total time is 229 x 23 = 232,
3. For each k1 — k4, x6 — 231
(a) Compress x5, xg. Since xzg = g, there is only two values for x5, zg. There is 1-bit key to store (ks)
since kf = k¢ becomes a related bit, which will be determined in the following steps. The time is 23.
So here the memory is about 230 x 2! = 23! counters and total time is 230 x 23 = 233,
4. For each ki1 — ks, x99 — =31
(a) Compress x¢ — x19 as Case fg in Appendix A. There is 14-bit key to store (kg — k19)and the time is
21808 G5 here the memory is about 2'7 x 24 = 23! counters and total time is 2!7 x 218:08 = 235.08
5. For each k1 — k19
(a) Compress xo9 —x31 as Case f; in Appendix A. There is 12-bit key to store (ka9 — k31 )and the time is
21599 G here the memory is about 2! x 212 = 23! counters and total time is 2'9 x 215:99 = 234.99,
6. The total time is about 236-3! additions and memory is O(23!).

Compress the ciphertexts: (Procedure SIMONG4-Tail) Add four rounds after the distinguisher, the rep-
resentation of X};ﬁol &) X};ﬁi &) Xif;; is same as that of XZ,QO ® X£,24 &) X}lmz, except that the new
representations for z and k are shown in Table 12. Compress the ciphertexts to a counter vector V[zy — x31]
at first. Then do as the compressing procedure SIMONG4-Head.

29-round attack on SIMON64/96. We add four rounds before and after the 21-round linear distinguisher
to attack 29-round SIMON64/96. Suppose we use N = 2¢~2 = 263-53 known plaintext-ciphertext pairs. Set
advantage a = 8. The success probability would be 0.477. At first, compress the N plaintext-ciphertext pairs
to 229429 counters according to Table 11 and 12. Suppose the plaintext be compressed to zp and ciphertext
be compressed to z¢.

1. For each of 2%° z¢
(a) Call Procedure SIMON64-Head, and store the counters according to the keys used in the first four
rounds
2. For each of 23! keys involved in the first four rounds
(a) Call Procedure SIMONG4-Tail, and store the counters according to the keys used in the last four
rounds
3. Rank the keys and exhaustive the candidates with the help of key schedule

Time: 1. 229 x 23631 — 265:31 5qditions; 2. 231 x 236-31 = 26731 additions. So it needs 26531 4 26731 — 967.62
additions to get the bias for the subkeys. 3. The exhaustive phase needs 2°6~8 = 288 29-round encryptions.

30-round attack on SIMONG64/96. Expand one more round before Xi*4_. The key bits of Kif‘r’ involved
to obtain the x represented in Table 11 are s = (K ° — K3 ° Ki™° — Kiy® Kir® Kis® Kig® Kir®), in
total 26 bits.

1. Guess each of 226 k;
(a) Encrypt the N plaintexts by one round. Compress the internal states to a counter vectr of size
(b) Do as first two steps of the 29-round attack

2. Rank the keys and exhaustive the candidates with the help of key schedule

258,
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Table 11. 4 rounds before X};QO <) X2724 &) X}é,m for SiMONG4

1—4 1—4 1—4 1—4 1—4 1—4
XL,240 @ XL,146 ® XL,124@ (XLZLIS&XL’ﬁz ® XR,14@
XL 24 @ XL 20 D (XL,Ql&XL 14) D XR,22

ko

K ' 0K @ Kig” © Kj, @
K Po Ky 'o K e Ky!

1—4 1—4 1—4 1—4
XL 17 D (XL lS&XL 11) D XR 19

1—4
KIQ

T k'l

T2 X27140 D (XZLT141&XZ{44) D X;{142 ks Ki54

T3 XF;% D (X£T144&X1{74) D X11%7145 ks Ki;l

w4 [Xio ® (Xp,&X745) ® Xpg ka |[K§ "

L5 Xf;‘éﬁ @ (XZL_242&XZ_145) D le?,_gs ks K53T4

L6 X£7144 @ (XZLffls&stZl) D X}?fb‘ ke ng‘l

r7 X27147 D XZLT143 D (X27144&X2774) D Xg145 ke K;;B D Kgél

25 | X; -~ @ (Xs g&X; O Xpg ks Ko T

29 [ X710 ® Xpg & (Xp 7 &X70) @ Xy ko [Kip° & Ky "

z10[ X1 o ® (X7 1 &X[56) © Xy kio| K5 *

o (X7 & X7 10) @ X 1o © X7 3y & (X & X7 7) @ X s ki |[Ki7" © Kig” @ K1y " @ K
T12 XZT148 D X]Z:144 D (X2T145&XZT84) D XE146 k12 KgS D K§g4

13 Xi_zf D (X2_94&X£_24) D XIZ%_140 ki3 Ki64

L14 XE_145 D (X1L_146&X2_94) D lea_147 k14 Ki;zl

o1 Xy & Xp 7 & (K] g &X7 1) & Xy ks | Kip® & Ko

16 X2714 @ (X2724&X27247) ® X;a734 ke K§74

217 | (Xp n&X70) & X n @ X7 5 & (Xp 7&X1 ) & Xy ke[ Ko @ Ky @ Kip ' & Ky *
218| X7 4 & X7 o & (X7 1 &X] 00) & Xpy ks [ K7 @ Ky "

L19 X£_246 D (XZL_247&XE240) D le?/_éls k1o K5§4

20 (Xf242&XZLT145) D X}l27243 D X27247 D (XZT148&X27141) D X;27149 k20 K%IB D K;§2 D K;§4 D K1974
T21 X27148 D (XZLTflg&Xfflz) D X1127240 k21 K§84

2| X1y & (X7 & X7 ) & Xy kaz | Ki5”

23 X2_242 D X2_148 @ (X1L_149&X2_f2) @ X;%_240 kas K;2_3 D K;0_4

L24 XE_149 D (XZL_240&XE143) D le%—241 ka4 K51_4

25 Xff; D (X27143&X2764) D X}l27144 kas Kﬁ4

26 X£7145 @ XZLT141 & (XJZ37142&X2754) @ XJZ{143 kas Kgg @ Kg4

Lar7 X2754 D (X2764&X27341) & X}L{?ﬁ ka7 K;74

o8| (X7 & X)) & X576 X770 © (X 11 &XT ) & Xy |kas| K" © Kig” @ Kig" © Ky
w20 Xp 4 © (X7 5 &X7 50) & Xig kg | Kg

w30 X7 o ® X7 4 ® (X0 &X7 50) ® Xpo kso| K§ ° @ Kg

31 X27340 @ (XZLT341&X27244) D XIZ;(;I ks1 K(Z)74

r11 = 21 D X7, 17 = T2 D T,
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Table 12. 4 rounds after X,ijfol ® Xfﬁf

o) X21

R,22

for SIMONG4

R FER Lo G LR AL WLk e
R,24 EB‘X}% 20 69()(R 21&XR,14)®XL 22 K24 69I(24 @Klzl 69I(22

n [ X7 6 (X e X ) @ Xy kK"

w2 X0 & (X n&X i) & Xy iy k2 |Ki3™"

w5 | X3 1 @ (X & X P & X Ry [K2™"

24 [ X & (X P& X3 0%) © X5 ha [ KT

w5 | Xpor © (Xpoo & X3 19) & X5y ks [ Ko

wo X7y © (X X ) & XTg Fo |Ki ™"

o [N X 6 (G X )6 X b K376 K™

w5 [ X2 & (X X ) @ X1P s [ K5

o (X0 6 X @ (X7 &Xpia) & Xg Ry [K35% @ K™

0K & (X P Xa0) & Xy Fuo | K "

o | EEXE ) & Xy © X 0 (N X2 & Xp [l K72 & K32 0 Kig ™ @ Kii™!

e [ XGE ® X 6 (G 26X 7) & X7 [ K176 Ky

13| X7 0 (X PR X © Xy Fis | K"

21| X2 0 (X X" © X7 R K3

w15 | Xy 17 © Xp° & (G X ) & X5 s [ K51 & K"

w16 X1 0 (G PN 2 © X | K5

2 | (X 8 X ) © X7y @ Xjpg” @ (X & XG0°) @ X7 ke [ Ko™ @ Ki3™ & K™ @ K™

218 [Xe & Xyo® @ (X PEXF 1) & Xpg R [ Ry & Ky

19| Xir a6 © (Nppr & Xpo0) © X o8 Fio [ Kpe ™"

w20|(Xpg 5y & X 15) © X1 o3 © Xjg o7 © (N g & XETT) © X [[keo [ Ko™ @ Ko™ © Ky ™ @ Kig™

w1 | X7 & (Npio & Xphy) @ X o0 kot | K50 ™"

o2 Xt © (X & X35") @ X)) has | K52

w23 | Xpg 5y © Xpgyy © (X 9 & Xp5) © X750 has|[ K™ & Ko™

w24 Xig 1o & (N0 & Xpyy) © X750 haa | K31

w25 | Xy 1y © (X X ) © X7 Fos | K7

w26 Xte & Xy ® (X &XG07) & XFY koo |[ K13 & Kig™

w1 X & (X P& XG7) & X7 For [

w8 | (X X ) © X g © Xpo & (N AXET) © X [[kas [KG1 2 0 K @ Kig "t @ Kip "

w20 | Xip " @ (X & Xpg0) © X 76" koo | K™

0| Xpoo © X & (Ko &Xp0) & X" oo | K 2 & K™

X © (X e Xy ) & Xy Far [R5

Time: (1.a) 225 x N = 2893 one-round encryptions. (1.b) 226 x 267-62 = 293:62 3qditons. 2. The exhaustive
30-round encryptions.

phase needs 2968 = 288

31-round attack on SIMON64/128. Expand one more round before X~* and one more round after

T11 =21 D x7,017 = T2 D T9

X?*25, The key bits of K2 involved to obtain the x represented in Table 12 are

425 i+25 7-i4+25 i4+25 7-i425 7-i4+25 7-i4+25 7-i+25
’12*(K0 - Ky Ky — K5 ™ Koy ™7 Kog ™7 Ky ™7, Ky )s

in total 26 bits.

1. Guess each of 252 kq ||k

(a) Encrypt the N plaintexts by one round and decrypt coresponding ciphertext by one round. Compress

the internal states to a counter vectr of size 2°8.
(b) Do as first two steps of the 29-round attack

2.

Time: (1.a) 2°2 x N = 211553 two-round encryptions. (1.b) 252 x 267-62 = 2119:62 5qditons. 2. The exhaustive
= 2120 31-round encryptions.

phase needs 21288
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Rank the keys and exhaustive the candidates with the help of key schedule




B.3 Linear Attack on SIMON96/K
The linear hull used to attack SIMON96/K is

XL 2D XL 34 @ XL 38 @ XL 12D XR 36 XH?)O & Xﬁ4320 & Xﬁfeo ©® XHBO ® X?fga

which is proposed in [6] with potential 27942,

Table 13. Add 3 rounds before X} 5 @ X7 34 ® X} 35 ® X[, 40 D Xk 36 for SIMONIG

Xy ® (XL r&Xp ) @ Xipay © (Xp5p& X 06) © X p®| K "B K" © Kip " © Ky
Zo (X;, 431&X2 334) XR 46@XL s ® (XlL 435&X2 338) X;z 3?0 ko ®K§52®Kio’2 EBKQ&‘"’@K%ES
OXL R @ (X H&X] ) SR, @Ky & Ky @ Kip'
o1 [ Xpar © X 45@(X2 436&X£ 30) ki |Ki7®
Ty | Xp SOEBXL 38@(X2 339&X1L 332) ko Ki53
x3 | X 331 b X7 29 & (X7, BBO&XZL 233) ks K§I3
zq | X 234 & XL 22 @ (X7 233&X2 136) k4 Kﬁ?’

)

)

)

s XR 39 D XL 37 D (X7 338&X2 331 ks K§§3

z6 | X 332 ® X1 30@(X2 331&XZL 234 kg ng_?’
z7 | Xp, 47€9XZ 3 5 © (XL, gge&XZL 5339 69XZ,13 kr KZZ@KTQ
8 lea D XL ag S (X 47&X7: 10) ks |[K§y~

9 XR 4 DX L 39 D Xi 430&XZ 333
z10| X Ziﬂﬁo@XL 3869 X 339&X2 332 69XL 42 k1o K;i63®K252
z11 | X 34@ L5269 Xr. sss&XlL 236 k1 KSZS

z12| X 331 EBXL 29EB Xr. 330&XZL 233 69XL 33 k12 K§13€BK

( ko [Kip®
(
(
(
13 XR 95 X L 23 D (Xfl: 234 XZ 137 ks K553
(
(
(

)
)
)
i
L14 X;z234@XL 22@ Xr. 233&XZ 136)@XL 26 k14 K§Z3@K§g2
15 Xlz?, 18 P XL 16 & (X7 137&X2 130) k15 Kgg’
16| Xp 335 X 55 @ (X7 334&X£ 237) @ XL 37 k16 K§5_3 D Ké;z
)
)
)
)
)@
)
)@
)

L17 le?, 336 & X 34 D (Xfl: 335&XZL 238 k7 K§g3
18 lea 239 & XL 27 D (XZ QSS&Xz 231 ks ng?)

19 XR 28 D Lzﬁ@(Xz 237&XZL 230 @XL 30 k1o K§§3@K§52
220 | Xy . 232 & XL 20 & (X7 231&X2 134

21 XR 39 @ XL 37 @ (X7 338&XZL 331
@22 | X 9?3 & X 1 & (X7 332&X2 235
23 XR 32D X L 30 @ (X7 331&XZ 234
24| Xp . 236 b XL 21 D (X7 235&XZL 138

k20| K55~
L 41 k21 K§§3 D KHQ
koo | K33°
L 34 ka3 K%EP) D K;,ZZ
kaa[Kjg®

If we add three rounds before the linear hull, according to Table 13, X7 » ® X7 3, ® X} 35 ® X} 40 ® X}, 5
can be represented as

2o ® ko ® ((x1 B k1)& (12 D k2)) & ((x3 D k3)& (x4 B ka)) & (x5 & ks5)& (26 D k¢))
© (27 © kr @ (w8 @ ks)& (w9 @ ko)))&(z10 © k10 © (w9 ® ko)& (211 © k11))))
((x12 ® k12 B (w6 ® k)& (213 & k13))) & (214 D k14 & (213 D k13)& (215 B k15))))
@ (216 D k16 D (w17 © k17)& (218 © k1g)))& (219 © k19 © (218 ® k1s)& (220 D k20))))
(221 @ ko1 © (w2 D ko)&e(w22 @ k22)))& (223 © Koz O (222 © kao)&(w24 @ k24))))

Compress the plaintexts: (Procedure SIMON96-Head) At first, compress the plaintexts into a counter
vector V[z1 — xa4] using the linear compression technique.

1. For each x3 — x99
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(a) Compress x1,Ta, 221 — a4 as Case fg in Appendix A. There is 6-bit key (k1, k2, ka1 — k24) to store and
time is 2836, So here the memory is about 28 x 26 = 224 counters and total time is 2! x 28:36 = 226.36,
2. For each 3,4, 27 — 11, %16 — 20, k1, k2, ka1 — k24
(a) Compress x5, xg, 12— 215 as Case fg in Appendix A. There is 6-bit key (ks, kg, k12 — k15) to store and
time is 2836, So here the memory is about 218 x 26 = 224 counters and total time is 218 x 28:36 = 226.36
3. For each w16 — @20, k1, k2, ks, ke, k12 — k15, ka1 — k2
(a) Compress 3, x4, 27 —x11 as Case f3 in Appendix A. There is 7-bit key (ks, k4, k7 — k11) to store and
time is 2°2%. So here the memory is about 2'7 x 27 = 224 counters and total time is 217 x 29-25 = 226-25
4. For each kl - k15, k21 — k24
(a) Compress x16 — a9, as Case fy in Appendix A. There is 5-bit key (k16 — k20) to store and time is
2646 S0 here the memory is about 2'9 x 2° = 224 counters and total time is 2'9 x 26:46 = 225-46
5. The total time is about 22%-1° additions and memory is O(2%*)

If we add four rounds after the linear hull, according to Table 14, X}'7% @ X770 & X0 & X150 e X H0
can be represented as
2o ® ko B (21 B k1)&(z2 ® k2))®
(w3 © ks ® (24 ® ka)&(w5 @ ks5)))& (26 © ks © (25 ® ks)& (27 S k7))))®
(28 @ ks @ ((z9 @ ko)& (210 ® k10)))&(711 @ k11 @ (210 © Kk10)&(T12 © k12))))D
(213 © k13 © (714 D k14)& (215 D k15)))&(216 © k16 © (215 D k15)& (217 © K17))))©
{(z18 ® k18 ® ((z19 @ k19)& (220 ® k2o))®
(w21 @ k21 @ ((x22 ® ka2)& (w23 @ k23)) )& (24 D ks ® ((w23 @ ko3)&(x25 ® k25)))))&
(726 @ k2e D ((220 D Koo)& (227 © k7))@

T30 ® kao)
)
)
(224 © Koy © (w23 D ko3 )& (a5 © kas)))&(w28 © kag © (w25 O kas)& (220 © ka9))))) } &
{(x30 ® k3o ® ((z31 @ k31)&(x15 ® k15))®
(232 @ k32 © ((w20 @ k20)& (227 © kar)))&(w33 © K3z © ((x27 © kar)& (234 D k34)))))&
(735 @ k35 © ((x15 ® k15)&(x17 @ k17)) D

(233 © k33 © (w27 ® kor)& (234 © k34)))&(236 © kze © (w34 D k34)& (37 © k37)))))}

Compress the ciphertexts: (Procedure SIMON96-Tail) At first, compress the ciphertexts into a counter
vector V[z1 — x37] using the linear compression technique. To simplify our description of attack, we regard
the xgg, x27 with underline as new variables @b, 257. It is the same with ko and ko7.

1. For each xg — x37
(a) Compress x; — x7 as Case f3 in Appendix A. There is 7-bit key (k; — k7) to store and time is 2°-2°.
So here the memory is about 239 x 27 = 237 counters and total time is 230 x 29:25 = 239:25,
2. For each r13 — 37, k‘l - k‘7
(a) Compress xg — 12 as Case f» in Appendix A. There is 5-bit key (ks — k12) to store and time is 2645,
So here the memory is about 232 x 2° = 237 counters and total time is 232 x 26-46 = 238.46
3. For each $187$197$’20, T21 — T26, CU/277$2879529, k1 — k12
(a) Compress w13 — T17,%20,Ta7, 30 — 37 as Case fr in Appendix A. There is 15-bit key (ki3 —
k17, koo, ko7, k3o — k37) to store and time is 2'8:98. So here the memory is about 224 x 215 = 239
counters and total time is 224 x 218.08 — 942.08
4. For each kl — k17, 19207 k27, kgo — k37
(a) Compress x1s, T19, Thy, T21 —Tag, Thy, Tag, T29, as Case fr in Appendix A. There is 10-bit key (k1s, k19,
ko1 — kag, kasg, kag) to store and time is 21599, So here the memory is about 227 x 210 = 237 counters
and total time is 227 x 215-99 = 242.99,
5. The total time is less than 2*3-71 additions and memory is O(2%9).

37-round attack on SIMON96,/96. We add three rounds before and four rounds after the 30-round linear
distinguisher to attack 37-round SIMON96/K. Suppose we use N = 2¢~2 = 2952 known plaintext-ciphertext
pairs. Set advantage a = 8. The success probability would be 0.477. At first, compress the N plaintext-
ciphertext pairs to 224137 counters according to Table 13 and 14. Suppose the plaintext be compressed to
zp and ciphertext be compressed to z¢.
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Table 14. Add 4 rounds after Xﬁr;’o @ XZJr @ X3

L,46

@ Xz+30 D X

1430
R,40

for SIMON96

1134

X1+34 D Xz+34 D (X7.+34&XR 42) ) X?—f(é)l ) X?ff@ Kz+33 e K;:BZS,@ K;;SO—IBZS,@ K‘g—33
o0 |(KEREXIEE) 0 X1 0 (XXt © Xi e o [R5 @ K5 @ Kt
Xpgr ® (X3 & X e oKy © Kot @ Kif™
o X e XU & (X e X LS
22 [ ® XLt @ (X s Xy o) b K™
7 [ X, e (N X o & Xpo o [Ry 8 K
o Xy © Xy © (X 7 & X ) R [Kg ™
o IR e (g s (K
7o [ Xy ® XL o & (Xy Xy 2 & X o [Kii ™ 0 K™
o Xy ® Xy © (g Xy ) Bl
7o [ T8 Xy o (X 51X, 5 & X b Ky B K™
7o [ Xy o ® (X X0 b (K™
P10| X35 B Xy ® (X X g 30) T K3y ™
11| Niag & Xpap © (Xt &XG00) & Xy Fu K™ @ Ki™
12| Xjpn © Xlo6 ® (Xpgon &X1) k12| K50 ™
23| X3 & Xpap © (Xp n&X ) @ Xy Fas | Kig ™ & Kig ™
T Xy @ Xy @ (Xp  eX g0 F1a [ K50 ™
215 | X o7 © Xp g0 & (X pu&Xioy) ks K35
w16 Xjie © Xpiaw ® (Xpggr& Xjpn) @ X ki | Ko™ @ K3g™
7Ky © Xy © Xy X ) R | K3
s X X) 0 (X X ) 6 X 6 (X X [ | Ky ™ 6 K™ 6 K™ 6 K™
10| Xi i @ Xan ® (Xp 3 &Xp 35 i
w20 | Xy & X7 & (X ye & X5, ) Fao 31
221 | Xy @ Xﬁff (Xioa3 & X 06) & Xigi b [y K
r2 [ Xy © Xj 0 ® (N Xy ) Faa| K
223 | X6 @ 2*338“ © (X &X G50 ) b |y,
[ X © X © (X o X 3) & X b K76 K
w25 | X oo & X1 & (X g0 & XG5y ) bas [,
o [ & X o & (XX & Xy & (X [ K™ & K™ & K™ & K™
721X n © Xy © (Xyan&X ) o |3
28| Xam ® Xp 5 © (Xp & X5 33) © Xpi b K™ 8 K™
20| X ® Xy © (Xp 3 kX i o) i
oo K 0 X T (X X ) & X (X e[ [ Ryt ™ K™ K™ K™
71 [ X gy © X g © (pygn X030 o [
waa|Xp o @ Xp o @ (Xp X pon) © Xgor b K™ 8 K
25 [ X © Xy © (Xjan X ) & Xpyiy s [Kg ™ & Ky ™
T34 X @ Xp oy @ (Xp3n X i) K3
e K 0 X (X X 1) © X (X e[ [ Kt ™ K™ K™ K™
235 | Xz © Xpign ® (Xpggr & X i) @ X5y b K0 K,
57| Xi 11 © Xp g ® (Xp 1 &X g5 ) o |1
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1. For each of 237 z¢
(a) Call Procedure SIMON96-Head, and store the counters according to the keys used in the first three
rounds
2. For each of 224 keys involved in the first three rounds
(a) Call Procedure SIMON96-Tail, and store the counters according to the keys used in the last four
rounds
3. Rank the keys and exhaustive the candidates with the help of key schedule

Time: 1. 237 x 22815 — 265.15 yditions; 2. 224 x 24371 = 26771 zqditions. So it needs 265-15 4 96771 — 967.94
additions to get the bias for the subkeys. 3. The exhaustive phase needs 2968 = 288 37-round encryptions.

38-round attack on SIMON96,/144. Expand one more round before X*~3. The key bits of K*~* involved
to obtain the x represented in Table 13 are k1 = (Kim* Kigh Kigh Kigh — Kigh Kigh — Kist Ki* —
K% Kiz* — Ki7*), in total 31 bits.
1. Guess each of 23! k;
(a) Encrypt the N plaintexts by one round. Compress the internal states to a counter vectr of size 261.
(b) Do as first two steps of the 37-round attack
2. Rank the keys and exhaustive the candidates with the help of key schedule

Time: (1.a) 23! x N = 21262 gpe-round encryptions. (1.b) 23! x 267-94 = 29894 3qditons. 2.The exhaustive
phase needs 2'44=8 = 2136 38 yound encryptions.

B.4 Linear Attack on SIMON128/K

The linear hull used to attack SIMON128/K is
XZ,Q @ Xi,ss 2 Xz,esz @ Xzi%,Go - Xﬁ6401 D XH41 D X;%+5481 ® X;%J,rézl,
which is proposed in [6] with popential 27126-6.
If we add four rounds before the linear hull, according to Table 15, X} , @ X} o @ X} 4, ® X§ g9 can be
represented as

zo ® ko @ (21 @ k1)&(w2 @ k2)) © (23 @ k3)& (w4 @ ka)) @ (25 © ks)& (w6 @ k6 ))D
(7 ® k7 ® ((xs @ kg)& (29 D k9)))&(z10 B k10 D ((x9 D ko)& (211 B k11))))D

(212 © k12 © (213 © k13)& (214 © k14)))&(215 © k15 © (213 © k13)& (216 D K16)))) D
{(z17 © k17 © (w8 © kg)&(wg D ko)) D

(18 @ k18 © (219 ® k19)& (220 D k20)))& (221 © k21 © (w20 D k2o)& (w22 @ ka2)))))&
T3 @ ko3 B ((z9 ® ko)&(x11 @ k11))®

(221 @ ko1 © ((w20 D k20)& (222 © k22)))&(w24 © oy © (222 © ka2)& (225 D k25))))) D
{(w26 D kas © (213 © k13)& (216 D k16))D

(210 © k10 © (w9 © ko)&(w11 @ k11)))& (227 © kot © (w11 © k11)& (228  kog)))))&
(w2 (713 @ k13)& (214 © K14))D

(227 @ ko7 @ (w11 @ F11)& (228 © ka2g)))&(w30 © k30 © (228 © kag)& (w34 D k34))))) 1D
{(232 @ k32 @ (22 @ ko)& (233 © k33))D

(234 @ k3a © (w35 D k3s5)& (236 D k36)))&(w37 © kar & (w36 D k3e)& (138 © k3g)))))&
(w39 @ k3o ® ((z33 B k33)&(xa0 ® kao))®

(237 @ k37 © (w36 @ k36)& (238 © k3g)))&(wa1 © kay @ (238 D kzg)& (w42 D k42))))) }

Compress the plaintexts: (Procedure SIMON128-Head) At first, compress the plaintexts into a counter
vector V[z; — x42]. In fact, there are 23% elements for vector V, since w17 = 11 @® 77,723 = o O T10, Tog =
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T5 @ x15 and xo9 = xg D x12. To simplify our description, we introduce the situations that the XOR for
the guessed k bit and corresponding x bit is zero in Step 2 to Step 9, since the representation of the target
parity bit in another situation has same form with it. zs, ks with underline shown above are regarded as new
variables x5, kb, independent of x4, ko.

1. Guess kl, 1{32, k‘5, k6
(a) 1, 22,2s5,26 can be removed and the index value for counter vectors becomes %, x3, 4, 27 — T42.
There are 22® new counters and the counter values are refreshed according to (1 ® k1 )& (2o @ ko)) ®
(x5 @ ks5)& (26 D kg)). The time is 238 x 2% = 242 simple calculations.

2. Guess ki3. Since 213 ® ki3 = 0, 214, 216 can be compressed. The time is 23° x 3 additions.
3. Guess kg. Since zg ® kg = 0, g can be compressed. The time is 232 additions.
4. Guess kag. Since xo9 ® koo = 0, z19 can be compressed. The time is 23! additions.
5. Guess k. Since 299 @ koo = 0, 225 can be compressed. The time is 227 additions.
6. Guess kag. Since o8 ® kag = 0, z11, 234 can be compressed. The time is 22% x 3 additions.
7. Guess ksg. Since 36 ® k3g = 0, x35 can be compressed. The time is 22* additions.
8. Guess kss. Since z33 ® kg3 = 0, 9 with underline and x40 can be compressed. The time is 222 additions.
9. Guess ksg. Since 33 ® ksg = 0, 242 can be compressed. The time is 220 additions.
10. After above guess and split, remained bits for z and k are bit 3,4,7,10,12,15,17,18,21,23,24,26,27,29,30,32,

34,37, 39,41. We can compress T3, T4, L17, L18, T21, L23, Toa a5 case fz in Appendix A. The time is 2'3 x
2925 = 92225 Then we compress X7, T19, 26, La7, L29, T30 as case fg in Appendix A. The time is 2'* x
2836 — 922.36 At last, we compress T12, %15, T32, T34, L37, £39, T41 as case fz in Appendix A. The time is
913 y 99.25 _ 922.25

11. Calculate the other situations as above.

Time is estimated from the inner part to outer part. Step 10 needs about Tio = 22387 additions. In Step 9,
the two cases, x3s @ ksg = 0, x38 ® k3zg = 1 have same time complexity and there are two possible guesses
for k3s. So the total time for Step 9 and 10 is Ty = 2 x ((220 + T1o) x 2+ 22!) = 226:95 where 22! is the time
for combination. Similarly, the time for Step 2 to Step 10 is as follows.

Step Time

9-10] Ty =2 x ((2%0 + T1o) x 2 + 221) = 2%6:0
810 Tz =2 x ((222 + Ty) x 2+ 2%) =2%21
7-10] Ty =2 x (2% + Tg) x 2 + 2%) = 23036
6-10|T = 2 x ((2%5 x 3 + T7) x 2 + 2%) = 23267
5-10] T5 =2 x ((2%° + Tp) x 2 + 230) = 23488
4-10] Ty =2x ((2%T + T5) x 2 4 25%) = 23706
3-10] T3 =2x ((233 +Ty) x 2+ 23%) = 239-22
2-10]Ty = 2 x ((23° x 3+ T3) x 2 + 257) = 21156

So in total, the time is 241-56 x 24 4 242 ~ 24568 The memory is about O(2%?) counters.

Compress the ciphertexts: (Procedure SIMON128-Tail) Since the input active bits and output active
bits in the linear hull distinguisher for SIMON128 are one-to-one, the representation for X2+6401 & X?;l &)
X};‘ég @ X};‘gg expanding four rounds (see Table 16) are same with that for Xi,z & X/é,:as @ XLGQ @ X}i%,ﬁo.

So at first compress the ciphertexts into a counter vector V[z; — 243], then do as Procedure SIMON128-Head.

49-round attack on SIMON128/128. We add four rounds before and after the 41-round linear hull
distinguisher to attack 49-round SIMON128/K. We use N = 262 = 2!27:6 known plaintexts. Set advantage
a = 8. The success probability would be 0.477. At first, compress the plaintext-ciphertext pairs to 238+38
counters according to Table 15 and Table 16. Suppose the plaintext be compressed to xp and ciphertext be
compressed to zo.

1. For each of 238 2

(a) Call Procedure SIMON128-Head, and store the keys used in the first four rounds
2. For each of 242 keys involved in the first four rounds

(a) Call Procedure SIMON128-Tail, and store the keys used in the last four rounds
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3. Rank the keys and exhaustive the candidates with the help of key schedule.

Time: 1. 238 x 24568 = 983.68 zqditions. 2. 242 x 245:68 = 28768 Qo the total time to compute the bias is
283.68 4 98768 ~ 987.77 3. The exhaustive phase needs 2288 = 2120 49_round encryptions.

51-round attack on SIMON128/192. We add five rounds before and after the 41-round linear hull distin-
guisher to attack 51-round SIMON128/K. Compared with the 49-round attack, we expand one more round
at each side. To get the = represented in Table 15, we should know the 0, 2, 26, 30, 32 — 34,36 — 63 bits (35
bits) of Xf5 and the 1,34, 38,40 — 42,44 — 59,61 — 63 bits (25 bits) of X};S. Notice that the input parity
bit of the linear hull is linear with XEQS and this bit can be compressed at first. So we can compress the
plaintexts into one counter vector with 23425 = 259 elements. The key bits involved in round i — 5 are the
0,26, 30,32—34,36—63 (34 bits) of K*~°. Similarly, we can compress the ciphertexts to a counter vector with
259 elements and there are 34 bits of K45 involved. So, at first, we compress the the plaintext-ciphertext
pairs to a counter vector of size 25959 = 2118,

1. Guess the 23* bits of K*~°
(a) Encrypt the plaintexts by one round and compress the states into a counter vector of size
2. Guess the 234 bits of K*+45
(a) Decrypt the ciphertexts by one round and compress the states into a counter vector of size
276
3. Do as Step 1 and 2 in the 49-round attack
4. Rank the keys and exhaustive the candidates with the help of key schedule.

238+59 — 297

938438 _

Time: 1. 2118 x 23% = 2152 gpe-round encryptions. 2. 297 x 23434 = 2165 ope-round encryptions. 3. 268 x
287.T7 — 915577 additions. So the total time to compute the bias is 21°2 4 2165 x 2165 one-round encryptions
and 21577 additions, which is approximately equal to 2'6° one-round encryptions. 4. The exhaustive phase
needs 219278 = 2184 51_round encryptions.

53-round attack on SIMON128/256. We add six rounds before and after the 41-round linear hull distin-
guisher to attack 53-round SiMON128/K. Compared with the 51-round attack, we expand one more round
at each side. The 1,18,22,24 — 26,28 — 63 bits (42 bits) of K*~¢ and K?+*> are involved in the attack.

1. Guess the 242142 bits of K~6, K46 involved

(a) Encrypt the plaintexts by one round and decrypt the corresponding ciphertext by one round
2. Do as Step 1-3 in the 51-round attack
3. Rank the keys and exhaustive the candidates with the help of key schedule.

Time: 1. 21276 x 284 = 2211.6 two_round encryptions. 2. 2165 x 284 = 2249 one-round encryptions. So the total
time to compute the bias is about 224 one-round encryptions. 3. Since K = 256, the exhaustive phase needs
2256—=8 — 9248 53 yound encryptions.
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Table 15. 4 rounds beofre X}i’z &) Xi,ss &) Xﬂm P XRGO for SiMoN128

=7 =2 =3 =3 =)
Lo XZ 2 X L 540 D le?:542 D (Xz 541&X2 4%1) D XL 54 D X27548 ko g;?% gg{;—?gzéglaa@[;%;l@ K56
vy | X7 645 & Xpy ] (X o&X1 57) ki |Ki°

v | X7 QG@XB’ 58EB XL o47 Xp. 040 ko ;)8_4

x3 | X 51@XR 53@ Xi 942&X2 445 ks Ké§4

zq | X7 44®XR 46@ X 445&X£ 348 k4 K3€4

s | X1 55®XR 575B Xp» 546&X£ 49 ks Ké?“

L6 X248@XR50€B X7 49&XZ 442 ke Ké54

w7 | X7 59@XR 61EB X7 640 X7 543 69XL 63 K Kéf4@Ké§3

w8 | X7 640@XR 62 ® (X7 641&X2 544 ks Ké;l

zo | X7 SSEBXR 55 @ XZL 544&X2 447 ko Ké?

z10| X 52®XR 54EB X 543&X2 446 ® X 546 k1o Kg24@K§ES

z11 | X7 46@XR48€B X7 47&XZL 440 k11 K}L;l

T12| X7 4469)(1-?,46EB X7 445 X7, 348 69XL 48 k12 Kig4@Kis_3

z13| X7 445 @ XR a7 ® (X, 446&X2 349 k13 K};;4

T14| X7 SSEBXR 40@ Xr 349&XZ 342 k1a K41184

L1s5 XlL 51 ® Xk, 536B Xi 542&X1L 445 ®XL 55 k1s Kg§4@Kég3

16 XZL 5269XRE,4EB XL 53&XZ 446 k16 Kéfl

Li7 XZ 59@)(1?,6169 XE 640 XE 043 GBX%f@(Xi 04&X2 547) k17 Ki_4@Ké1_4@Ké§3@Ki_2

z18| X7 640@XR 62 ® (X7 641&XZ 544 ® X7 04 k1s Kéf@K(ZfS

L19 Xi 61 @ XR 63 ® (X 642&X2 545 k19 Ké§4

w20 | X} 54@XR 56@ Xr 545 X7, 448 ka0 Kég4

r21 XIL 043@X 55 D Xz 044&X2 447 @X 547 ka1 K§;5_469K§;3

T22 koo | Kig ™

23 XZ 542@XR 54EB XZ 543&X2 446 @ (XZ 547&X2 540) ka3 K§Z4@Ké§4@Kg53@Kég2
@24 | X7 4669 R48@ X7 447 X7 440 £_5 ka4 Kis_4@K

25 XL 40 ® X 42 ® (X, 441&X2 344 kas Kzl;l

26 XJZ; 51 @ XR 53 @ XZL 542&X2 445 R 57 b (XE 546&X}_, 449) kae Ké§4 D Kg;4 b KEZ);S @ Ké;Q
T27| X 45®XR 475B X 446&X£ 349 X fg ka7 Kﬁ§4@Ki§3

T28 XZL 39 @ XR 41 ® (XL, fo&XZL 343 kas| Ky *

29 XZ 4469)(1-?,46EB XZ 445 XE 348 RBOEB(XZ 449&X11: fz) kag Kié“@KéE‘lEBKig?’@KéEQ
T30 XL 38 ® X 40 ® (X 349&X2 342 X, 1;12 kso K};54 D Kiga

31 XZL 32 @ XR 34 ® (X 343&XZ 246 kg1 K§Z4

( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
XZ 47@XR49@(X2 448 XZ 441)
( ) D
( ) @
( )
( ) D
( ) @
( )
( )@
( ) D
( )
( )
( )
( )
( )
( )
( )
@ ( )
( )
( )
( )

w32 | X 55 O Xy 57 B (X568 X a0) B Xjra1 ® (X s0& X on)|[kae| Ko7 " @ K¢ " @ Kiy® @ K,
33 XZL 49@XR 51EB Xz 540&XZ 445 k33 Ké#

L34 XZ 56@XR 5869 Xi 547&X2 a4O 69XL 60 ksa Kg8_4@KéO_3

35| X7 57@ 1!%359EB Xi 548&XZ 541 kss Ké§4

w36 X 50®XR 52 ® (X7 541&XZL 444 kse K554

L37 XZL 49@XR 515B Xi 540 XIL 443 @XL 53 k37 Kg;4@Ké§3

38 XZ 13 ® Xk, X7 444&X2 347 kss Kzi5_4

39 XZ 48@XR 5069 XL 49&X2 442 @ R54@(X2 543&XL 46 ksg Kg54@Kg4_4@K @K;42
T40 XL 42 ® Xk 44 ® (X 443&X2 346 kao KLI“

T4 | Xy 42®XR 446B X 443&XZL 346 ® XL, 4;16 ka1 KZLZ‘l@K}LgS

T42

XL 36 D XR 38 @ (Xz 347&X2 340)

k4o

Notice: x17 = 1 @ x7, %23 = T2 @ T10,T26 = T5 P T15, T2g = Te D T12
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Table 16. 4 rounds after Xi‘f‘éol @ Xl+41 & X};‘ég & X}Z;'g; for SIMON128

i i i i i ; ; K1+44 2 K1+42 2 K1+43 e K1+43 2 K1+42
no X 0 X3 @ Xl @ Crtexgth o Xt o xip [ KRS LD IS K L K
2
R TS TR R

7.+44 z+44
XR 56 L 58

’L+44 z+44

1+44
R a7 R 50 ko

58

X'L+44 Xz+44

'L+44 2+44
T3 | AR 51 L.53 X

'L+44
R 52 R 45 ks K

7,+44 7,+44

7,+44 'L+44
X R 45 R 38

z+44
R,44 L 46 k4 K

L+44 z+44

’L+44 z+44
X R 56 R 49

z+44
R,55 L 57 ks K

1+44
R,48 L 50 R 49 R 42 ke K

X’L+44 Xz+44

’L+44 z+44
L7 | AR 59 L.61 X

z+44 z+44 1+43
R60 R53 R63 ke K61 @K

X'L+44 Xz+44

'L+44 2+44
T8 AR 60 L.,62 X

'L+44
R 61 R 54 ks K

X7,+44 z+44 1+44 7,+44

z+44
R,53 L 55 ko Ks5

R54 R47

o (X
o (
o (X
o (X
X7,+44 z+44 ( 1+44 1+44
o (
o (
o (X
( 1+44 z+44

X1+44 z+44

XA AT z+43
ras ® X5y k10| K e K;

10 R53 &X R e

R 56
14 44 44 41 41
Xz+ D Xz-‘r @( 1+ H— kll Ki;_

T11| AR 46 L.,48 rar & X k10

X’L+44 Xz+44 X’L+44 z+44

z+44 1+44 1+43
T12| Xp a4 D Xpye @( R,45 R38 R48 k12 Kig™ © Ky

X’L+44 Xz+44 X'L+44 2+44

1144
w13| Xp's © X707 @ (XR 6 R39 k13| K7

X1+44 Xz+44 ( 1+44 z+44

PR VS
R,38 L,40 R 39 R 32 k14 K4o

X1+44 ) Xz+44 (X1+44 2+44

z+44 L+44 L+43
R,51 L.,53 R,52 R,45 kis K K

R 55
14 44 44 41 41
X1+ D Xz+ @( 1+ H— k16 K%Z_

R,52 L,54 Ro& R46

X’L+44 Xz+44 X’L+44 H—44

z+44 1144 1+44 T+44 T+44 1+43 T+42
17| Xp 59 © X161 @( R,60 R53 X @(X &XR57) k17K1 O Kol @ Kgg © Ky

X7,+44 Xz+44 X'L+44 7,+44

7,+44 1144 1143
218 Xig0 D Xpoo ® (XRer Xps1) D Xp kig|Kgy ™~ @ K

X1+44 Xz+44 ( 1+44 1+44

z+44
R,61 L,63 R,62 R 55 k19| Kg

THIT AT iFaTg 2+44
Xpss ® X 56 @ ( R55 Xras

k,20 Kz+44
1+44 z+44 ’L+44 1+44 z+44 1+44 1+43
XRoJ @X ( Ro4 R47 Ra7 ko1 K @Ksﬁ

1+44 1+44 'L+44 7,+44 7,+44 1144 1+44 'L+44 1144 1143 1142
X X X L58 EB(XRS7&XR50) k23K G K™ @ Kgs @ Ky

w23 Xig50 ® X5y ® (XRss& R46
Xt g it (X1+44 7,+44 ;{4?61 Tooa K1+44 Kg#?’

R46 D XL 4s R,AT R,40

i+44 i+44 AT 1+44 2+44
XR4O XL 42 ( R41 R34 kas K

1+44 1+44 ’L+44 z+44 z+44 7.+44 1+44 1+44 1+44 1+43 T+42
XRol@XLo‘S @( RQQ R4o L57 @( RQG&XR49) k%K @K @K @K

X'L+44 X'L+44 @ (X'L+44 2+44

z+44 'L+44 'L+43
27| Xpas © X 7 R,46 R,39 R 49 ka7 Ky & Ky

X;Q+;;151 @ Xz+44 @ ( 'L+44 7,+44 k28 K1+44

L.,41 R40 R33

1+44 7,+44

7,+44 z+44
X R 44 R 37

¥4
R,43 L 45 kss K45

T T A g z+44 X o (A a4 z+44 44 43 IEp)
L29 XR,44 L ,46 ( R, 45 R 38 L ,50 ( R,49 &XRAZ ) koo | Ky K50 D K48 D K50
REEE z+44 1+44 1+44 z+44 1+44 F43
z30| Xp 38 D X1'ao B (Xpao& XF3o Xpoao kao|Kyg ™~ ® Ki3
X1+44 z+44 ( ’L+44 z+44 k K1+44
T s 3;124 X ?ﬁl z :El R %31 zvis vvs vvis 2L vvis vvis a3 %)
7+ 7+ 7+ 2+ z+ 71+ 7+ 'L+ 7+ 7+ 7+
®32| Xp 55 © X157 (XR 56 R49 X1 P (XR GO&XR,53) ksa | K & Kgi ~ @ K5~ @ Kgy
7,+44 'L+44 7,+44 7,+44 z+44
233 Xiao ® X5 ® (XR50& R 43 kss| K3
- @+44 NI g x g z+44 XA z+44 43
T34 | X 5431 Xr 5484 & (Xg 541 Xk 50 X k60 ksa| Ky - & Kgg
7+ z+ 1+ H— H—
z35| Xp 57 ® X5 B (Xpss& Xrs1 kss | Ky
X’L+44 Xz+44 (X’L+44 z+44 k Kz+44
L36|-A R 50 L.52 R,51 R44 36|59
'L+44 z+44 'L+44 2+44 z+44 1144 1143
€37 XR 49 XL 51 (XR 50 R43 R53 ks7 K51 ™ & Kgs

1+44 z+44 Xy z+44 X g (XA =S 44 =S 43 E=v)
39 XR48 L5O R49 R42 L54 ( RSS&XR 46) kso|Kgg ™™ @ Kgy @ K53 @ Kgj

X7,+44 D Xz+44 @ ( 1+44 1+44

144
R.,42 L.44 R 43 R 36 kao K44

40

1+44 1+44 ’L+44 z+44 z+44 'L+44 1+43
%41 | Xp a0 @ X'y 69(XR43 R36 X ka6 ka1 | K} @ Ky

)
)
)
)
)
) ®
)
)
) @
)
) D
)
)
) @
)
) D
) D
)
)
) ®
oo X T X 6 (X X ) Fas[Kiy ™
) D
)@
)
)@
) @
)
)@
) ®
)
) ®
)
)@
)
)
) D
)
) @
)
) D
)

1+44 1+44 'L+44 2+44 'L+44
Ta2| Xiae © Xpas @ (Xp5r &X R,30 kaz| K3

Notice: x17 = x1 @ @7, T23 = T2 @ T10,T26 = L5 D 9015,1329 = T6 D T12
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