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Abstract. Simon is a lightweight block cipher family proposed by NSA in 2013. It has drawn many
cryptanalysts’ attention and varity of cryptanalysis results have been published, including differential,
linear, impossible differential, integral cryptanalysis and so on. In this paper, we give improved linear at-
tack on all versions of Simon with dynamic key-guessing techniques, which was proposed to improve the
differential attack on Simon recently. By establishing the boolean function of parity bit in the linear hull
distinguisher and reducing the function accroding the property of AND operation, we can guess different
subkeys (or equivalent subkeys) for different situations, which decrease the number of key bits involved
in the attack and decrease the time complexity in a further step. As a result, 23-round Simon32/64,
24-round Simon48/72, 25-round Simon48/96, 30-round Simon64/96, 31-round Simon64/128, 37-round
Simon96/96, 38-round Simon96/144, 49-round Simon128/128, 51-round Simon128/192 and 53-round
Simon128/256 can be attacked. The linear attacks on most versions of Simon are the best attacks
among all cryptanalysis results on these variants known up to now. However, this does not shake the
security of Simon family with full rounds.

1 Introduction

In 2013, NSA proposed a new family of lightweight block cipher with Feistel structure, named as Simon,
which is tuned for optimal performance in hardware applications [1]. The Simon family consists of various
block and key sizes to match different application requirements. There is no S-box in the round function.
The round function consists of AND, rotation and Xor (ARX structure), leading to a low-area hardware
requirement.

Ralated Works. Simon family has attracted a lot of cryptanalysts’ attention since its proposation. Many
cryptanalysis results on various versions of Simon were published. For differential attack, Alkhzaimi and
Lauridsen [13] gave the first differential attacks on all versions of Simon. The atacks cover 16, 18, 24, 29,
40 rounds for the versions with blcok size 32, 48, 64, 96 and 128 respectively. At FSE 2014, Abed et al. [9]
gave differential attack on variants of Simon reduced to 18, 19, 26, 35, 46 rounds with respective block
size 32, 48, 64, 96 and 128 respectively. At the same time, Biryukov et al. [10] gave differentail attack on
several versions of Simon independently. And 19-round Simon32, 20-round Simon48, 26-round Simon64
were attacked. Then Wang et al. [14] proposed better differential attacks with existing differentials, using
dynamic key-guessing techniques. As a result, 21-round Simon32/64, 23-round Simon48/72, 24-round Si-
mon48/96, 28-round Simon64/96, 29-round Simon64/128, 37-round Simon96/96, 37-round Simon96/144,
49-round Simon128/128, 49-round Simon128/192, 50-round Simon128/256 were attacked.

For the direction of linear cryptanalysis, 11, 14, 16, 20, 23-round key recovery attacks on Simon with
block size 32, 48, 64, 96, 128 were presented in [9]. Then, Alizadeh et al. [15] improved linear attacks and
gave cryptanalysis results on 13-round Simon32, 15-round Simon48, 19-round Simon64, 28-round Simon96,
35-round Simon128. Recently, Abdelraheem et al. [6] took advantage of the links between linear char-
acteirstics and differential characteristics for Simon and found some linear distinguishers using differential
characteristics found earlier. They presented various linear attacks on Simon with linear, multiple linear,
linear hull cryptanalysis. The linear hull cryptanalysis has better attack results, which can attack 21-round
? Corresponding Author



Simon32/64, 20-round Simon48/72, 21-round Simon48/96, 27-round Simon64/96, 29-round Simon64/128,
36-round Simon96/144, 48-round Simon128/192 and 50-round Simon128/256. Then, with the Mixed-integer
Linear Programming based technique, Shi et al. [7] searched new linear trails and linear hulls, and 21, 21, 29
rounds for Simon32/64, Simon48/96, Simon64/128 were attacked respectively. Also, Sun et al. [12] found
a 16-round linear hull distinguisher of Simon48, with which he attacked 23-round Simon48/96. Ashur [20]
presented a new way to calculate the correlations of short linear hulls and provode a more accurate estimation
for some previously published linear trails. He gave multiple linear ctyptanalysis on 24-round Simon32/64,
23-round Simon48/72, 24-round Simon48/96, 24-round Simon64/96 and 25-round Simon64/128. However,
it uses the correlation when all the subkeys are zero as the expected correlation under random key situations,
which is not exact. What’s more, if the potential of each linear hull used in multiple linear is smaller than
that of random permutations, the gather of these linear hulls can not distinguish the cipher and random
permutation.

Table 1. Summary of Linear Hull Attacks on Simon

Cipher Total Rounds Attacked rounds Data Time Reference

Simon32/64 32
21 230.56 255.56 [6]
21 - a - [7]
23 231.19 257.19TWOb+ 261.84Ac+ 256Ed Section 4.2

Simon48/72 36 20 244.11 270.61 [6]
24 247.92 269.92ONEe+ 267.89A+ 256E Appendix B

Simon48/96 36

21 244.11 270.61 [6]
21 - - [7]
23 247.92 292.92 [12]
25 247.92 291.92TWO + 289.89A+ 280E Appendix B

Simon64/96 42 27 262.53 288.53 [6]
30 263.53 289.53ONE + 293.62A+ 288E Appendix B

Simon64/128 44
29 262.53 2123.53 [6]
29 - - [7]
31 263.53 2115.53TWO + 2119.62A+ 2120E Appendix B

Simon96/96 52 37 295.2 267.94A+ 288E Appendix B

Simon96/144 54 36 294.2 2123.5 [6]
38 295.2 2126.2ONE + 298.94A+ 2136E Appendix B

Simon128/128 68 49 2127.6 287.77A+ 2120E Appendix B

Simon128/192 69 48 2126.6 2187.6 [6]
51 2127.6 2165ONE + 2155.77A+ 2184E Appendix B

Simon128/256 72 50 2126.6 2242.6 [6]
53 2127.6 2249ONE + 2239.77A+ 2248E Appendix B

a ’-’ means not given
b TWO means two rounds encryption or decryption
c A means addition
d E means encryption of attacked rounds
e ONE means one round encryption or decryption

Also, there are some results with other attack models, such as impossible differential cryptanalysis [15–18],
zero-correlation cryptanalysis [16] and integral cryptanalysis [16].

Our Contributions. In this paper, we give improved linear hull cryptanalysis on all versions of Simon
family with dynamic key-guessing technique, which was proposed initially to improve the differential attack
on Simon [14], using existing linear hull distinguishers. In linear attack, one important point is to compute
the empirical correlations (bias) of the parity bit, which derives from the Xor-sum of the active bits at both
sides of the linear hull distinguisher, under some key guess. And our attack on Simon improves this procedure
efficiently.

The non-linear part in the round function of Simon is mainly dedrived from the bitwise AND (&)
operation while it has a significant weakness. For details, if one of the two elements is equal to zero, the result

2



of their AND will be zero, no matter what value the other element is. For a function f = f1(x1, k1)&f2(x2, k2),
if we GUESS k1 at first, and SPLIT the all x = x1||x2 into two cases: case 1, f1(x1, k1) = 0; case 2,
f1(x1, k1) = 1, there is no need to guess the key bits k2 in case 1, since f = 0 holds for any value of f2 in
case 1. Then, we can compute the correlations in each case with less time and at last, we COMBINE the
two correlations together for corresponding key k = k1||k2.

At first, we give the boolean representations for the parity bit in the linear distinguisher of Simon. And
then we apply the GUESS, SPLIT and COMBINE technique in the calculation of the empirical correlations,
which mainly exploits the dynamic key-guessing idea to reduce the number of subkey bits guessed signifi-
cantly. For example, in the attack on 21-round Simon32, 32 subkey bits are involved. With above technique,
we can only guess 12.5 bits from the total 32-bit subkey on average to compute the correlations.

As a result, the improved attack results are shown as follows. We can attack 23-round Simon32/64,
24-round Simon48/72, 25-round Simon48/96, 30-round Simon64/96, 31-round Simon64/128, 37-round Si-
mon96/96, 38-round Simon96/144, 49-round Simon128/128, 51-round Simon128/192 and 53-round Si-
mon128/256. This improves the linear attack results for all versions. From the point of number of rounds
attacked, the results on all versions are best known up to state.

The paper is organised as follows. In section 2, we introduce the linear (hull) cryptanalysis and give the
description of Simon family. Section 3 gives the time reduction technique used in the linear cryptanalysis.
Then the improved attack on Simon32/64 is given in section 4. Finally, we conclude in section 5. Appendix
A gives the time complexities to calculate the empirical correlations in some simple situations. The detailed
linear attacks on other versions of Simon except Simon32 are given in Appendix B.

2 Preliminaries

2.1 Linear Cryptanalysis and Linear Hull

F2 denotes the field with two elements and Fn2 is the n-dimensional vector space of F2. Let g : Fn2 → F2 be a
Boolean function. Let B(g) =

∑
x∈Fn

2
(−1)g(x). The correlation c(g) of g is defined by

c(g) = 2−n
∑
x∈Fn

2

(−1)g(x) = 2−nB(g).

(In some situations of the remainder of this paper, we regard B(g) as the correlation for simplicity of
description.) The bias of g is defined by half of c(g), which is represented as ε(g) = 1

2c(g).
Linear cryptanalysis [2] is a powerful cryptanalytic method proposed in 1993 to cryptanalysis DES. At

first, one tries to find a good linear approximation involving some plaintext bits, ciphertext bits and the
subkey bits as follows

α · P ⊕ β · C = γ ·K,
where α, β, γ are masks and P,C,K represent the plaintext, ciphertext and keys. ’good’ means that the
probability of the linear approximations is far away from 1/2, which is the probability in random situations.
In other words, higher absolute of bias ε(α · P ⊕ β · C ⊕ γ ·K) leads to better linear crypanalysis result in
general. Algorithm 1 and Algorithm 2 in [2] are two attack models exploiting the linear approximation as
distinguisher. O( 1

ε2 ) known plaintextx are needed in the key-recovery attacks.
Then in 1994, Nyberg [4] studied the linear approximations with same input mask α and output mask

β, and denoted them as linear hull. The potential of a linear hull is defined as

ALH(α, β) =
∑
γ

ε2(α · P ⊕ β · C ⊕ γ ·K) = ε̄2.

The effect of linear hull is that the final bias ε̄ may become significantly higher than that of any individual
linear trail. Then the linear attacks with linear hull require less known plaintexts, i.e., O( 1

ε̄2 ).
Selçuk and Biçak [5] gave the estimation of success probability in linear attack for achieving a desired

advantage level. The advantage is the complexity reduction over the exhaustive search. For example, if m-bit
key is attacked and the right key is ranked t-th among all 2m candidates, the advantage of this attack is
m − log2(t). Theorem 2 in [5] described the relation between success rate, advantage and number of data
samples.
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Theorem 1 (Theorem 2 in [5]). Let PS be the probability that a linear attack, as defined by Algorithm-
2 in [2], where all candidates are tried for an m-bit subkey, in an approximation of probability p, with N
known plaintext blocks, delivers an a-bit or higher advantage. Assuming that the approximation’s probablity
is independent for each key tried and is equal to 1/2 for all wrong keys, we have, for sufficiently large m and
N ,

PS =

∫ ∞
−2
√
N |p−1/2|+Φ−1(1−2−a−1)

φ(x)dx,

independent of m.

2.2 Description of Simon

Simon is a family of lightweight block cipher with Feistel structure designed by NSA, which is tuned for
optimal performance in hardware applications [1]. The Simon block cipher with an n-bit word (hence 2n-bit
block) is denoted Simon2n, where n is limited to be 16, 24, 32, 48 or 64. The key length is required to be
mn where m takes value from 2, 3 and 4. Simon2n with m-word key is referred to Simon2n/mn. There are
ten versions in the Simon family and the detailed parameters are listed in Table 2.

Table 2. The Simon Family Block Ciphers

block size (2n) key size (mn) rounds
32 (n = 16) 64 (m = 4) 32

48 (n = 24)
72 (m = 3) 36
96 (m = 4) 36

64 (n = 32)
96 (m = 3) 42
128 (m = 4) 44

96 (n = 48)
96 (m = 2) 52
144 (m = 3) 54

128 (n = 64)
128 (m = 2) 68
192 (m = 3) 69
256 (m = 4) 72

Before introducing the round functions of Simon, we give some notations of symbols used throughout
this paper.

Xr 2n-bit output of round r (input of round r + 1)
Xr
L left half n-bit of Xr

Xr
R right half n-bit of Xr

Kr subkey used in round r + 1
xi the i-th bit of x, begin with bit 0 from right (e.g., Xr

L,0 is the LSB of Xr
L )

xi1,...,it the XOR-sum of xi for i = i1, i2, . . . , it (e.g., x0,1 = x0 ⊕ x1)
x≪ i left circulant shift by i bits of x
⊕ bitwise XOR
& bitwise AND
F (x) non-linear function used in round function of Simon, F (x) = ((x≪ 1)&(x≪ 8))⊕ (x≪ 2)
The r-th round function of Simon2n is a Feistel map

FKr−1 : Fn2 × Fn2 → Fn2 × Fn2 ,
(Xr−1

L , Xr−1
R )→ (Xr

L, X
r
R)

where Xr
R = Xr−1

L and Xr
L = F (Xr−1

L )⊕Xr−1
R ⊕Kr−1. The round function of Simon is depicted in Figure 1.

Suppose the number of rounds is T , the whole encryption of Simon is the composition FKT−1 ◦· · ·◦FK1 ◦FK0 .
The subkeys are derived from the master key. The key schedules are a little different depending on the key
size. However, the master key can be derived from any m consecutive subkeys. Please refer to [1] for more
details.
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Xr−1
L Xr−1

R

≪ 8

≪ 1

≪ 2

&
⊕ ⊕ Kr−1

Xr
L Xr

R

Fig. 1. Round Function of Simon

3 Time Reduction in Linear Cryptanalysis for Bit-Oriented Block Cipher

For bit-oriented block cipher, such as Simon, the operations of round function can be seen as the concaneta-
tion of some Boolean functions. For example, in Simon32, the 0-th bit of Xr

L is a Boolean function of some
bits of Xr−1 and subkeys as follows,

Xr
L,0 = (Xr−1

L,15&Xr−1
L,8 )⊕Xr−1

L,14 ⊕X
r−1
R,0 ⊕K

r−1
0 .

Other bits in Xr
L have similar Boolean represetations and the bits in Xr

R are same with the bits in Xr−1
L .

The Boolean representation of one bit can be extended to multiple rounds.

3.1 Linear Compression

In Matsui’s improved linear cryptanalysis [3], the attacker can pre-construct a table to store the plaintexts
and ciphertexts. We call this pre-construction procedure as linear compression, since the purpose is to reduce
the size of efficient states by compressing the linear part. The detail of the compression is as follows.

Suppose x is a l1-bit value derived from the n-bit plaintext or cipertext and k1 is a l-bit value derived
from the subkey. y ∈ F2 is a Boolean function of x and k, y = f(x, k). Let V [x] denote the number of x. We
define Bk(y) with counter vector V and function y = f(x, k) for k as

Bk(y) =
∑
x

(−1)f(x,k)V [x].

So, Bk(y) is the correlation of y under key guess k. One needs to do 2l1+l2 computations of function f to
calculate the correlations of y for all k with a straight-forward method at most. If y is linear with some bits
of x and k, the time can be decreased.

For simplicity, let x = x′||x0, k = k′||k0 and y = x0 ⊕ k0 ⊕ g(x′, k′). The correlation of y under some k is

Bk(y) = (−1)k0
∑
x′

(−1)g(x
′,k′)(V [x′||k0]− V [x′||k0 ⊕ 1]).

It is obvious the correlations of y under same k′ and different k0 have same absolute value, and they are
different just in the sign. So if we compress the x0 bit at first according to V ′[x′] = V [x′||0]−V [x′||1], Bk

′
(y′)

with counter vertor V ′ and function y′ = g′(x′, k′) for k′ can be computed with 2l1+l2−2 calculations of g′.
And the correlation Bk(y) can be derived directly from Bk(y) = (−1)k0Bk

′
(y′). We define k0 the related

bit. If the absolute correlations are desired, the related bit k0 can be omitted directly, since it has no effect
on the absolute values.

If y is linear with multiple bits of x and k, the linear bits can be combined at first, then above linear
compression can be applied. For example, y = (x0 ⊕ k0) ⊕ · · · ⊕ (xt ⊕ kt) ⊕ g′(x′′, k′′) where x′′, k′′ are the
other bits of x and k respectively. We can initialize a new counter vector V ′[x′′||x′0] where x′0 is 1-bit and set
V ′[x′′||x′0] =

∑
x0⊕···⊕xt=x′0

V [x]. Let k′0 = k0⊕ · · · ⊕ kt. The target value y becomes y = x′0⊕ k′0⊕ g′(x′′, k′′)
with counter vector V ′[x′′||x′0], which is the case discussed above.
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3.2 Dynamic key-guessing in linear attack: Guess, Split and Combination

Suppose one want to compute Bk(y) with counter vector V and Boolean function y = f(x, k), along with
the definitions in the above section. With a straight-forward method, the time to compute Bk(y) is 2l1+l2 . If
for different values of x, different key bits of k are involved in function f(x, k), the time to calculate Bk(y)
can be decreased.

y = f(x, k) Guess KG fA(x, kA||kC)
fB(x, kB ||kC)SA

SB

Fig. 2. When kG is known, the set of x can be splitted to two sets. f is independent of kB in set SA and independent
of kA in set SB .

For simplicity, let k = kG||kA||kB ||kC , where kG, kA, kB , kC are lG2 , lA2 , lB2 and lC2 bits (lG2 +lA2 +lB2 +lC2 = l2)
respectively. Suppose when kG is known, the all x can be splitted into two sets, i.e. SA with NA elements and
SB with NB elements (NA +NB = 2l1). And when x ∈ SA, f(x, k) = fA(x, kA||kC) which is independent of
kB ; when x ∈ SB , f(x, k) = fB(x, kB ||kC) which is independent of kA (See Figure 2). Then, Bk(y) can be
obtained from the following combination

Bk(y) =
∑
x∈SA

(−1)fA(x,kA||kC)V [x] +
∑
x∈SB

(−1)fB(x,kB ||kC)V [x]

for some guessed kG. The time to compute
∑

(−1)fA(x,kA||kC)V [x] for the x ∈ SA needs NA2l
G
2 +lA2 +lC2 calcu-

lations, while
∑

(−1)fB(x,kB ||kC)V [x] for x ∈ SB needs NB2l
G
2 +lB2 +lC2 . The combination needs 2l2 additions.

So the time complexity in total is about

NA2l
G
2 +lA2 +lC2 +NB2l

G
2 +lB2 +lC2 + 2l2

which improves the time complexity compared with 2l1+l2 .
The AND operation in Simon will generate the situations discussed above. Let x, k ∈ F2

2 and y = f(x, k) =
(x0 ⊕ k0)&(x1 ⊕ k1). V [x] denotes the number of x. With a straight-forward method, the calculation of
correlations for all k need time 22+2 = 24. If one side of the AND in f(x, k) is 0, y would be 0 without knowing
the value in the other side. Exploiting this property, we can improve the time complxity for calculating the
correlations. At first, we guess one bit of k, e.g. k0. Then we split the x into two sets and compute the
correlations in each set. At last, we compose the correlations according to the keys guessed.

– GUESS k0 and SPLIT the x into two sets
• For the x with x0 = k0, initialize a counter T0 and set T0 = V [0||x0] + V [1||x0]
• For the x with x0 = k0⊕1, initialize a counter T1 and set T1 = V [0||x0]−V [1||x0] (Linear compression)
• COMBINATION B(y) = T0 + (−1)k1T1 (k1 is a related bit)

So in total, it needs 2(1 + 1 + 2) = 23 additions to compute the correlations for all the k, which improves
the time complexity compared to the straight-forward method. Although there are 2 bits of k involved in
the attack, we guess only one bit and make some computations while another bit is just involved in the final
combination. This can be viewed as that we reduce the number of key bits guessed from 2 to 1. Morever,
this technique adapts to some complicated Boolean functions and more key (or equivalent key) bits can be
reduced significantly. Some cases have been discussed in Appendix A.

4 Linear Cryptanalysis on Simon

In this section, we will give the improved procedure of linear attack on Simon using existing linear hull
distinguishers for all versions of Simon
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Table 3. Linear Hulls for Simon

Versions Input Active Bits Output Active Bits ALH #Rounds Ref.
Simon32/K Xi

L,6 Xi+13
R,14 2−31.69 13 [6]

Xi
L,5 Xi+13

R,13 2−30.19 13 [7]
Xi

L,0 Xi+14
L,8 , Xi+14

R,6 2−32.56 14 [6]
Simon48/K Xi

L,7, X
i
L,11, X

i
L,19, X

i
R,9, X

i
R,17 Xi+15

L,5 , Xi+15
R,3 , Xi+15

R,7 , Xi+15
R,11 , X

i+15
R,19 2−44.11 15 [6]

Xi
L,6, X

i
L,14, X

i
L,18, X

i
L,22, X

i
R,16 Xi+15

L,4 , Xi+15
L,20 , X

i+15
R,6 , Xi+15

R,18 , X
i+15
R,20 , X

i+15
R,22 2−42.28 15 [7]

Xi
L,1, X

i
L,5, X

i
L,21, X

i
R,23 Xi+16

L,1 , Xi+16
L,5 , Xi+16

R,23 2−44.92 16 [12]
Simon64/K Xi

L,20, X
i
L,24, X

i
R,22 Xi+21

L,22 , X
i+21
R,20 , X

i+21
R,24 2−62.53 21 [6]

Xi
L,6 Xi+21

L,0 , Xi+21
R,2 , Xi+21

R,6 , Xi+21
R,30 2−60.72 21 [7]

Xi
L,3, X

i
L,27, X

i
L,31, X

i
R,29 Xi+22

L,3 , Xi+22
R,1 , Xi+22

R,2 2−63.83 22 [7]
Simon96/K Xi

L,2, X
i
L,34, X

i
L,38, X

i
L,42, X

i
R,36 Xi+30

L,2 , Xi+30
L,42 , X

i+30
L,46 , X

i+30
R,0 , Xi+30

R,40 2−94.2 30 [6]
Simon128/K Xi

L,2, X
i
L,58, X

i
L,62, X

i
R,60 Xi+41

L,60 , X
i+41
R,0 , Xi+41

R,2 , Xi+41
R,58 , X

i+41
R,62 2−126.6 41 [6]

4.1 Linear Hulls of Simon

Some linear hulls have been proposed recently in [6, 7, 12], and they are displayed in Table 3. Abdelraheem
et al. [6] took advantage of the connection between linear- and differential- characteristics for Simon and
transformed the differential characteristics proposed in [8,10] to linear characteristics directly. Similarly, dif-
ferentials can be transformed to the linear hulls. Also, they found a new 14-round linear hull for Simon32/64,
by constructing squared correlation matrix to compute the average squared correlation. Shi et al. [7] searched
the linear characteristics with same input and output masks using the Mixed-integer Linear Programming
modelling, which was investigated to search the differential characteristics for bit-oriented block cipher [11]
and then extended to search the linear characteristics (hull) later [12].

Similar to the rotational property of integral distinguishers and zero-correlation linear hull shown in [16],
more linear hulls can be constructed as follows.

Property 1. Assume that Xi
L,j00

, . . . , Xi
L,j0t0

, Xi
R,j10

, . . . , Xi
R,j1t1

→ Xi+r
L,j20

, . . . , Xi+r
L,j2t2

, Xi+r
R,j30

, . . . , Xi+r
R,j3t3

is a r-

round linear hull with potential ε̄2 for Simon2n, where j0
0 , . . . , j

0
t0 , j

1
0 , . . . , j

1
t1 , j

2
0 , . . . , j

2
t2 , j

3
0 , . . . , j

3
t3 ∈ {0, . . . , n−

1}. Then for any 0 ≤ s ≤ n− 1, let jp∗q = (jpq + s) mod n, for p = 0, . . . , 3, q = 0, . . . , tp and the potential of
the r-round linear hull Xi

L,j0∗0
, . . . , Xi

L,j0∗t0
, Xi

R,j1∗0
, . . . , Xi

R,j1∗t1
→ Xi+r

L,j2∗0
, . . . , Xi+r

L,j2∗t2
, Xi+r

R,j3∗0
, . . . , Xi+r

R,j3∗t3
is also

ε̄2.

Observe the two 13-round linear hulls of Simon32 in Table 3 and we can find they are in fact the rotations
of same linear hull. The potential of Xi

L,6 → Xi+13
L,14 is estimated as 2−31.69 in [6] while that of Xi

L,5 → Xi+13
L,13

is estimated as 2−30.19 in [7]. The difference may come from the different search methods and different linear
trails found. In the following attack, the potential of the two linear hulls is thought to be 2−30.19.

4.2 Improved Key Recovery Attack on Simon32/64

We exploit the 13-round linear hull proposed in [7] to make key recovery attack on round-reduced Simon32.
The linear hull is

Xi
L,5 → Xi+13

R,13

with potential ε̄2 = 2−30.19. We mount a key recovery attack on 21-round Simon32/64 by adding four
rounds before and appending four rounds after the distinguisher. Here let P = Xi−4 be the plaintext and
C = Xi+17 be the corresponding ciphertext. Suppose the key bits involved in the first four rounds are KP

and those in the last four rounds are KC . Then Xi
L,5 is a function of P and KP , Xi

L,5 = E(P,KP ). Similarly,
Xi+13
R,13 = D(C,KC) is a function of C and KC . Let S be the set of N plaintext-ciphertext pairs obtained,

the empirical correlation under some key KP ,KC is

c̄KP ,KC
=

1

N

∑
P,C∈S

(−1)E(P,KP )⊕D(C,KC).
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Table 4. 4 rounds before Xi
L,5 for Simon32

x0 Xi−4
L,13 ⊕ (Xi−4

L,14&Xi−4
L,7 )⊕Xi−4

R,15 ⊕Xi−4
L,1 ⊕Xi−4

L,5 k0 Ki−4
15 ⊕Ki−3

1 ⊕Ki−3
5 ⊕Ki−2

3 ⊕Ki−1
5

x1 Xi−4
L,14 ⊕ (Xi−4

L,15&Xi−4
L,8 )⊕Xi−4

R,0 k1 Ki−4
0

x2 Xi−4
L,7 ⊕ (Xi−4

L,8 &Xi−4
L,1 )⊕Xi−4

R,9 k2 Ki−4
9

x3 Xi−4
L,2 ⊕ (Xi−4

L,3 &Xi−4
L,12)⊕Xi−4

R,4 k3 Ki−4
4

x4 Xi−4
L,11 ⊕ (Xi−4

L,12&Xi−4
L,5 )⊕Xi−4

R,13 k4 Ki−4
13

x5 Xi−4
L,14 ⊕ (Xi−4

L,15&Xi−4
L,8 )⊕Xi−4

R,0 ⊕Xi−4
L,2 k5 Ki−4

0 ⊕Ki−3
2

x6 Xi−4
L,15 ⊕ (Xi−4

L,0 &Xi−4
L,9 )⊕Xi−4

R,1 k6 Ki−4
1

x7 Xi−4
L,8 ⊕ (Xi−4

L,9 &Xi−4
L,2 )⊕Xi−4

R,10 k7 Ki−4
10

x8 Xi−4
L,7 ⊕ (Xi−4

L,8 &Xi−4
L,1 )⊕Xi−4

R,9 ⊕Xi−4
L,11 k8 Ki−4

9 ⊕Ki−3
11

x9 Xi−4
L,1 ⊕ (Xi−4

L,2 &Xi−4
L,11)⊕Xi−4

R,3 k9 Ki−4
3

x10 Xi−4
L,14 ⊕ (Xi−4

L,15&Xi−4
L,8 )⊕Xi−4

R,0 ⊕ (Xi−4
L,3 &Xi−4

L,12)⊕Xi−4
R,4 k10 Ki−4

0 ⊕Ki−3
2 ⊕Ki−4

4 ⊕Ki−2
4

x11 Xi−4
L,15 ⊕ (Xi−4

L,0 &Xi−4
L,9 )⊕Xi−4

R,1 ⊕Xi−4
L,3 k11 Ki−4

1 ⊕Ki−3
3

x12 Xi−4
L,0 ⊕ (Xi−4

L,1 &Xi−4
L,10)⊕Xi−4

R,2 k12 Ki−4
2

x13 Xi−4
L,9 ⊕ (Xi−4

L,10&Xi−4
L,3 )⊕Xi−4

R,11 k13 Ki−4
11

x14 Xi−4
L,8 ⊕ (Xi−4

L,9 &Xi−4
L,2 )⊕Xi−4

R,10 ⊕Xi−4
L,12 k14 Ki−4

10 ⊕Ki−3
12

x15 Xi−4
L,7 ⊕ (Xi−4

L,8 &Xi−4
L,1 )⊕Xi−4

R,9 ⊕ (Xi−4
L,12&Xi−4

L,5 )⊕Xi−4
R,13 k15 Ki−4

9 ⊕Ki−3
11 ⊕Ki−4

13 ⊕Ki−2
13

x16 Xi−4
L,1 ⊕ (Xi−4

L,2 &Xi−4
L,11)⊕Xi−4

R,3 ⊕Xi−4
L,5 k16 Ki−4

3 ⊕Ki−3
5

Notice: x10 = x3 ⊕ x5, x15 = x4 ⊕ x8

Table 5. 4 rounds after Xi+13
R,13 for Simon32

x0 Xi+17
R,5 ⊕ (Xi+17

R,6 &Xi+17
R,15 )⊕Xi+17

L,7 ⊕Xi+17
R,9 ⊕Xi+17

R,13 k0 Ki+16
7 ⊕Ki+15

9 ⊕Ki+15
13 ⊕Ki+14

11 ⊕Ki+13
13

x1 Xi+17
R,6 ⊕ (Xi+17

R,7 &Xi+17
R,0 )⊕Xi+17

L,8 k1 Ki+16
8

x2 Xi+17
R,15 ⊕ (Xi+17

R,0 &Xi+17
R,9 )⊕Xi+17

L,1 k2 Ki+16
1

x3 Xi+17
R,10 ⊕ (Xi+17

R,11&Xi+17
R,4 )⊕Xi+17

L,12 k3 Ki+16
12

x4 Xi+17
R,3 ⊕ (Xi+17

R,4 &Xi+17
R,13 )⊕Xi+17

L,5 k4 Ki+16
5

x5 Xi+17
R,6 ⊕ (Xi+17

R,7 &Xi+17
R,0 )⊕Xi+17

L,8 ⊕Xi+17
R,10 k5 Ki+16

8 ⊕Ki+15
10

x6 Xi+17
R,7 ⊕ (Xi+17

R,8 &Xi+17
R,1 )⊕Xi+17

L,9 k6 Ki+16
9

x7 Xi+17
R,0 ⊕ (Xi+17

R,1 &Xi+17
R,10 )⊕Xi+17

L,2 k7 Ki+16
2

x8 Xi+17
R,15 ⊕ (Xi+17

R,0 &Xi+17
R,9 )⊕Xi+17

L,1 ⊕Xi+17
R,3 k8 Ki+16

1 ⊕Ki+15
3

x9 Xi+17
R,9 ⊕ (Xi+17

R,10&Xi+17
R,3 )⊕Xi+17

L,11 k9 Ki+16
11

x10 Xi+17
R,6 ⊕ (Xi+17

R,7 &Xi+17
R,0 )⊕Xi+17

L,8 ⊕ (Xi+17
R,11&Xi+17

R,4 )⊕Xi+17
L,12 k10 Ki+16

8 ⊕Ki+15
10 ⊕Ki+16

12 ⊕Ki+14
12

x11 Xi+17
R,7 ⊕ (Xi+17

R,8 &Xi+17
R,1 )⊕Xi+17

L,9 ⊕Xi+17
R,11 k11 Ki+16

9 ⊕Ki+15
11

x12 Xi+17
R,8 ⊕ (Xi+17

R,9 &Xi+17
R,2 )⊕Xi+17

L,10 k12 Ki+16
10

x13 Xi+17
R,1 ⊕ (Xi+17

R,2 &Xi+17
R,11 )⊕Xi+17

L,3 k13 Ki+16
3

x14 Xi+17
R,0 ⊕ (Xi+17

R,1 &Xi+17
R,10 )⊕Xi+17

L,2 ⊕Xi+17
R,4 k14 Ki+16

2 ⊕Ki+15
4

x15 Xi+17
R,15 ⊕ (Xi+17

R,0 &Xi+17
R,9 )⊕Xi+17

L,1 ⊕ (Xi+17
R,4 &Xi+17

R,13 )⊕Xi+17
L,5 k15 Ki+16

1 ⊕Ki+15
3 ⊕Ki+16

5 ⊕Ki+14
5

x16 Xi+17
R,9 ⊕ (Xi+17

R,10&Xi+17
R,3 )⊕Xi+17

L,11 ⊕Xi+17
R,13 k16 Ki+16

11 ⊕Ki+15
13

Notice: x10 = x3 ⊕ x5, x15 = x4 ⊕ x8

In a further step, Xi
L,5 can be represented as

f(x, k) = x0 ⊕ k0 ⊕ ((x1 ⊕ k1)&(x2 ⊕ k2))⊕ ((x3 ⊕ k3)&(x4 ⊕ k4))⊕
[(x5 ⊕ k5 ⊕ ((x6 ⊕ k6)&(x7 ⊕ k7)))&(x8 ⊕ k8 ⊕ ((x9 ⊕ k9)&(x7 ⊕ k7)))]⊕
{(x10 ⊕ k10 ⊕ ((x6 ⊕ k6)&(x7 ⊕ k7))⊕
[(x11 ⊕ k11 ⊕ ((x12 ⊕ k12)&(x13 ⊕ k13)))&(x14 ⊕ k14 ⊕ ((x3 ⊕ k3)&(x13 ⊕ k13)))])&

(x15 ⊕ k15 ⊕ ((x7 ⊕ k7)&(x9 ⊕ k9))⊕
[(x14 ⊕ k14 ⊕ ((x13 ⊕ k13)&(x3 ⊕ k3)))&(x16 ⊕ k16 ⊕ ((x3 ⊕ k3)&(x4 ⊕ k4)))])}

where the representation of x and k are 17-bit value shown in Table 4. With the same way, Xi+13
R,13 can also

be represented as f(x, k) where the corresponding x and k are described in Table 5. To distinguish them,
let xP , kP be the x, k described in Table 4 and xC , kC be the x, k described in Table 5. The N plaintext-
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ciphertext pairs in S can be compressed into a counter vector V [xP , xC ], which stores the number of xP , xC .
Then there is

c̄kP ,kC =
1

N

∑
xP ,xC

(−1)f(xP ,kP )⊕f(xC ,kC)V [xP , xC ].

Notice that f(x, k) is linear with x0⊕k0. According to the linear compression technique, the 0-th bit of xP and
xC could be compressed initially. Suppose that x′P is the 16-bit value of xP without the 0-th bit (same rep-
resentations for x′C , k

′
P , k

′
C). Initialize a new counter vector V1[x′P , x

′
C ] =

∑
xP,0,xC,0

(−1)xP,0⊕xC,0V [xP , xC ].
Then the correlation becomes

c̄k′P ,k′C =
1

N

∑
x′P ,x

′
C

(−1)f
′(x′P ,k

′
P )⊕f ′(x′C ,k

′
C)V1[x′P , x

′
C ] =

1

N

∑
x′C

(−1)f
′(x′C ,k

′
C)

∑
x′P

(−1)f
′(x′P ,k

′
P )V1[x′P , x

′
C ],

where f ′ is part of f , i.e. f(x, k) = x0 ⊕ k0 ⊕ f ′(x′, k′), x′ = (x1, . . . , x16), k′ = (k1, . . . , k16).
So we can guess k′P (16-bit) at first and compress the plaintexts into a counter. Then guess k′C (16-

bit) to decrypt the appending rounds, to achieve the final correlations. In the following, we introduce the
attack procedure in the forward rounds in detail. And the procedure to compute

∑
x′P

(−1)f
′(x′P ,k

′
P )V1[x′P , x

′
C ]

for some x′C is same with the procedure to compute Bk
′
(y) with counter vector V ′[x′] (here V ′[x′] =

V1[x′, x′C ] when x′C takes some const value) and Boolean function f ′. Morever, there are relations that
x10 = x3⊕x5, x15 = x4⊕x8 in Table 4,5, which means there are only 14 independent bits for x′ (x′P or x′C).

Compute Bk′
(y) with counter vector V ′[x′] and Boolean function f ′. (For simplicity, we define

this procedure as Procedure A.) Although x′ is a 16-bit value, there are only 214 possible values for x′ as
explained above. We use the guess, split and combination technique to decrease the time complexity to
compute Bk

′
(y) with counter vector V ′[x′] and Boolean function y = f ′, for 216 key vaules k′.

1. Guess k1, k3, k7 and split the plaintexts into 8 sets according to the value (x1⊕ k1, x3⊕ k3, x7⊕ k7). The
simplification for f ′(x′, k′) after guessing some keys are shown in Table 6. The representation of fij are

Table 6. Simplification for f ′(x′, k′) after guessing k1, k3, k7

Guess x1 ⊕ k1, x3 ⊕ k3, x7 ⊕ k7 f ′ Related Bit

k1, k3, k7

0,0,0 f00
0,0,1 f01
0,1,0 f10 k4
0,1,1 f11 k4
1,0,0 f00 k2
1,0,1 f01 k2
1,1,0 f10 k2,4
1,1,1 f11 k2,4

as follows,

f00 =((x5 ⊕ k5)&(x8 ⊕ k8))⊕ {(x10 ⊕ k10 ⊕ [(x11 ⊕ k11 ⊕ ((x12 ⊕ k12)&(x13 ⊕ k13)))&(x14 ⊕ k14)])

&(x15 ⊕ k15 ⊕ [(x14 ⊕ k14)&(x16 ⊕ k16)])},
f01 =((x5,6 ⊕ k5,6)&(x8,9 ⊕ k8,9))⊕ {(x6,10 ⊕ k6,10 ⊕ [(x11 ⊕ k11 ⊕ ((x12 ⊕ k12)&(x13 ⊕ k13)))&(x14 ⊕ k14)])

&(x9,15 ⊕ k9,15 ⊕ [(x14 ⊕ k14)&(x16 ⊕ k16)])},
f10 =((x5 ⊕ k5)&(x8 ⊕ k8))⊕ {(x10 ⊕ k10 ⊕ [(x11 ⊕ k11 ⊕ ((x12 ⊕ k12)&(x13 ⊕ k13)))&(x13,14 ⊕ k13,14)])

&(x15 ⊕ k15 ⊕ [(x13,14 ⊕ k13,14)&(x4,16 ⊕ k4,16)])},
f11 =((x5,6 ⊕ k5,6)&(x8,9 ⊕ k8,9))⊕ {(x6,10 ⊕ k6,10 ⊕ [(x11 ⊕ k11 ⊕ ((x12 ⊕ k12)&(x13 ⊕ k13)))&(x13,14 ⊕ k13,14)])

&(x9,15 ⊕ k9,15 ⊕ [(x13,14 ⊕ k13,14)&(x4,16 ⊕ k4,16)])}.
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The counter vectors for x′ can be compressed in a further step according to the new representations of
f ′. For example, if (x1 ⊕ k1, x3 ⊕ k3, x7 ⊕ k7) = (0, 0, 0), f ′ will be equal to the formula f00, which is
independent of x2, x4, x6, x9. So we compress the corresponding counters into a new counter V000, and

V000[x5, x8, x10 − x16] =
∑

x1=k1,x3=k3,x7=k7,x2∈F2,x4∈F2,x6∈F2,x9∈F2

V ′[x′].

Notice x10 = x3 ⊕ x5, so there are 8 independent x bits for x5, x8, x10 − x16. Notice x15 = x4 ⊕ x8, for
some fixed value of x5, x8, x10 − x16, there are 7 times addition in above equation. So generating this
new counter vectror needs 28 × 7 additions.
We give another example to illustrate the situations with related key bit. If (x1 ⊕ k1, x3 ⊕ k3, x7 ⊕ k7) =
(1, 0, 0), there is f ′ = (x2 ⊕ k2) ⊕ f00. Notice in this subset, f ′ is linear with x2 ⊕ k2 and x2 can be
compressed into the new counters with related key k2. So the new counter vector V100 is as follows,

V100[x5, x8, x10 − x16] =
∑

x1=k1⊕1,x3=k3,x7=k7,x2∈F2,x4∈F2,x6∈F2,x9∈F2

(−1)x2V ′[x′].

Also, there are 8 independent x bits for x5, x8, x10−x16. For each fixed x5, x8, x10−x16, the new counter
can be obtained with 7 additions according to above equation.
The procedures to generate the new counter vectors for other cases are similar as that of case (x1 ⊕
k1, x3 ⊕ k3, x7 ⊕ k7) = (0, 0, 0) or (1, 0, 0). Morever, the time complexity to split the plaintexts and
construct new counter vectors is same for each case. Observing the four functions f00, f01, f10 and f11,
we know that they are with same form. In the following step, we explain the attack procedure of case
(x1 ⊕ k1, x3 ⊕ k3, x7 ⊕ k7) = (0, 0, 0) in detail and the others can be obtained in the same way.
Note that, there are 9 subkey bits in each function of f00, f01, f10 and f11 after guessing k1, k3, k7. So
this can be viewed as that 3 + 9 = 12 subkey bits are involved in the attack while there are 16 subkey
bits are involved initially in f ′. In the following, the number of key bits can be reduced in a further step.

2. For f00, guess k5, k14 and split the plaintexts into 4 sets according to the value (x5 ⊕ k5, x14 ⊕ k14). The
simplification for f00 after guessing some keys are shown in Table 7.

Table 7. Simplification for f00 after guessing k5, k14

Guess Value f00 Related key bit

k5, k14

0,0 (x10 ⊕ k10)&(x15 ⊕ k15)
0,1 (x10,11 ⊕ k10,11 ⊕ ((x12 ⊕ k12)&(x13 ⊕ k13)))&(x15,16 ⊕ k15,16)
1,0 (x10 ⊕ k10)&(x15 ⊕ k15) k8
1,1 (x10,11 ⊕ k10,11 ⊕ ((x12 ⊕ k12)&(x13 ⊕ k13)))&(x15,16 ⊕ k15,16) k8

The time complexity of computing the counters’ value Bk5,k8,k10−k16(y) with counter vector V000 and
function f00 is as follows:
(a) Guess k5, k14 and split the states into four parts

i. (x5 ⊕ k5, x14 ⊕ k14) = (0, 0)
A. New counter vector V 00

000[x10, x15] =
∑
x5=k5,x14=k14

V000[x5, x8, x10−x16] needs : 2×(25−1) =

26 − 2 additions. (Notice that x10 is fixed here since the dependence between x5 and x10.)
B. PartialBk10,k1500 (y) with new function and vector V 00

000: If k10 = x10,B
k10,k15
00 (y) = V 00

000[x10, 0]+

V 00
000[x10, 1]; if k10 = x10⊕1, Bk10,k1500 (y) = (−1)k15(V 00

000[x10, 0]−V 00
000[x10, 1]).So in total there

are no more than 22 additions.
ii. (x5 ⊕ k5, x14 ⊕ k14) = (0, 1)

A. New counter vector V 01
000[x10,11, x12, x13, x15,16] =

∑
x5=k5,x14=k14⊕1 V000[x5, x8, x10 − x16]

needs : 24 × (22 − 1) = 26 − 24 additions.
B. Partial Bk10,11,k12,k13,k15,1601 (y) with new function and vector V 01

000: 25.64 additions (See f5 in
Appendix A)

iii. (x5 ⊕ k5, x14 ⊕ k14) = (1, 0)
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A. New counter vector V 10
000[x10, x15] =

∑
x5=k5⊕1,x14=k14

(−1)x8V000[x5, x8, x10 − x16] needs :
2× (25 − 1) = 26 − 2 additions. (Notice that x10 is fixed here since the dependence between
x5 and x10.)

B. Partial Bk10,k1510 (y) with new function and vector V 10
000: 22 additions (same with case (0, 0)).

iv. (x5 ⊕ k5, x14 ⊕ k14) = (1, 1)
A. New counter vector V 11

000[x10,11, x12, x13, x15,16] =
∑
x5=k5,x14=k14⊕1(−1)x8V000[x5, x8, x10 −

x16] needs : 24 × (22 − 1) = 26 − 24 additions.
B. Partial Bk10,11,k12,k13,k15,1611 (y) with new function and vector V 11

000: 25.64 additions (See f5 in
Appendix A)

(b) For each of 29 keys involved in f00, partial Bk5,k8,k10−k16(y) with function y = f00 and counter vector
V000 under key guess k5, k14 is

Bk5,k8,k10−k16(y) = Bk10,k1500 (y)+B
k10,11,k12,k13,k15,16
01 (y)+(−1)k8(Bk10,k1510 (y)+B

k10,11,k12,k13,k15,16
01 (y)).

We can addBk10,k1500 (y) andBk10,11,k12,k13,k15,1601 (y) at first, then addBk10,k1510 (y) andBk10,11,k12,k13,k15,1601 (y),
at last add the two parts according the index value and k8. The combination phase needs 26+26+27 =
28 additions in total when k5, k14 are fixed.

(c) In total, there are
22 × ((26 − 2 + 22 + 26 − 24 + 25.64)× 2 + 28) ≈ 211.19

additions to compute Bk5,k8,k10−k16(y) for all 29 possible key values. Note that, about 1 subkey bit is
guessed in the first (or third) step of step 2a. In the second (or forth) step of step 2a, 1.5 subkey bits
are guessed on average. So, although there are 9 subkey bits in total, only 2+(1+1+1.5+1.5)/4=3.25
bits on average are guessed with dynamic key-guessing technique.

3. The time of computing Bk
′
(y) with counter vector V ′[x′] and Boolean function f ′ is shown in Table 8.

T1 denotes the time of seperation of the plaintexts according to the guessed bit of k. T2 denotes the time
of computation in the inner part. T3 is the time in the combination phase. When k1, k3, k7 are fixed, in
each case, T1 = 28 × 7 as explainted in Step 1. T2 is 211.19 as explained in Step 2. There are 13 bits for
k′ except k1, k3, k7, leading to T3 = 213 × 7. For all guesses of k1, k3, k7, the total time is about 219.46

additions.

Table 8. Time Complexity of computing Bk′(y) with counter vector V ′[x′] and Boolean function f ′

Guess x1 ⊕ k1, x3 ⊕ k3, x7 ⊕ k7 f ′ Related Bit Time
T1 T2 T3

k1, k3, k7

0,0,0 f00 28 × 7 211.19

213 × 7

0,0,1 f01 28 × 7 211.19

0,1,0 f10 k4 28 × 7 211.19

0,1,1 f11 k4 28 × 7 211.19

1,0,0 f00 k2 28 × 7 211.19

1,0,1 f01 k2 28 × 7 211.19

1,1,0 f10 k2,4 28 × 7 211.19

1,1,1 f11 k2,4 28 × 7 211.19

Total Time ((28 × 7 + 211.19)× 8 + 213 × 7)× 23 = 219.46

In Step 1, 3 key bits are guessed and the plaintexts are splitted into 8 situations. For each situation, 3.25
key bits are guessed as explained above. So on average, about 3 + 3.25 = 6.25 subkey bits are guessed in this
procedure, while there are 16 subkey bits involved.

21-round attack on Simon32/64. Adding four rounds and appending four rounds after the 13-round
linear hull distinguisher, we give the 21-round linear attack on Simon32/64. The linear hull holds with
potential ε̄2 = 2−30.19. We set N = 2ε̄−2 = 231.19 and advantage a = 8. The success probability would be
0.477 according to Theorem 1. There are 32 subkey bits involved in this attack. With our attack method,
only about 6.25 + 6.25 = 12.5 bits are guessed on average, which reduces the number of key bits greatly.
Attack:
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1. Compress the N plaintext-ciphertext pairs into the counter vector V1[x′P , x
′
C ] of size 214+14.

2. For each of 214 x′C

(a) Call Procedure A. Store the counters according to x′C and k′P
3. For each k′P of 216 possible values.

(a) Call procedure A. Store the counters according to k′P and k′C .

4. The keys with counter values ranked in the largest 232−8 = 224 values would be the right subkey
candidates. Exploiting the key schedule and guessing some other bits, use two plaintex-ciphertext pairs
to check the right key.

Time: (1)N = 231.19 times compression (2) 214 × 219.46 = 233.46 additions. (3)216 × 219.46 = 235.46 additions.
So the time to compute the empirical bias for the subkeys involved is about 235.84 while that given in [6]
with similar linear hull is 263.69. The time is improved significantly. Step (4) is to recovery the master key,
which needs 264−8 = 256 21-round encryptions. However, [6] does not give this step.

22-round attack on Simon32/64. Add one more round before the 21-round attack, we can attack
22-round of Simon32/64. There are 13 active key bits involved in round i − 5, which is κ1 = (Ki−5

0 −
Ki−5

3 ,Ki−5
5 ,Ki−5

7 −Ki−5
12 ,Ki−5

14 ,Ki−5
15 ), to obtain the x represented in Table 4.

Attack:

1. Guess each of 213 κ1

(a) Encrypt the plaintexts by one round.
(b) Do as the first three steps in the 21-round attack

2. The keys with counter values ranked in the largest 232+13−8 = 237 values would be the right subkey
candidates. Exploiting the key schedule and guessing some other bits, use two plaintex-ciphertext pairs
to check the right key.

Time: (1.a)213 × N = 244.19 one-round encryptions. (1.b) 213 × 235.84 = 248.84 additions. (2) Exhaustive
phase needs about 264−8 = 256 22-round encryptions.

23-round attack on Simon32/64. Add one more round before and one round after the 21-round attack,
we can attack 23-round of SIMON32/64. There are 13 active key bits involved in round i + 17, which is
κ2 = (Ki+17

0 −Ki+17
3 ,Ki+17

5 ,Ki+17
7 −Ki+17

12 ,Ki+17
14 ,Ki+17

15 ), to obtain the x represented in Table 5.
Attack:

1. Guess each of 213+13 κ1||κ2

(a) Encrypt the plaintexts by one round and decrypt the ciphertexts by one round.
(b) Do as the first three steps in the 21-round attack

2. The keys with counter values ranked in the largest 232+26−8 = 250 values would be the right subkey
candidates. Exploiting the key schedule and guessing some other bits, use two plaintex-ciphertext pairs
to check the right key.

Time: (1.a)226 × N = 257.19 two-round encryptions. (1.b) 226 × 235.84 = 261.84 additions. (2) Exhaustive
phase needs about 264−8 = 256 23-round encryptions.

4.3 Improved Key Recovery Attack on Other Variants of Simon

The improved attack on Simon32/64 is given above. The similar procedure can be applied to the other
variants of Simon using some linear hulls given in Table 3. See Appendix B for more details.

12



4.4 Multiple Linear Hull Attack on Simon

Combining multiple linear cryptanalysis [19] and linear hull together, one can make multiple linear hull
attack with improved data complexity. Our attack technique can be used in the multiple linear hull attack
of Simon well. According to the rotational property, Property 1, of Simon, lots of linear hulls with high
potential can be found. For example, the two 13-round linear hulls for Simon32 in Table 3 are rotations of
same linear hull.

Suppose that the time to compute the bias for one linear hull is T1 and data complexity is N . If m linear
hulls with same bias are used in the multiple linear hull attack, the data complexity would be decreased to
N/m. But the time complexity would increase to mT1 + 2K, where K is the size of the independent key bits
involved in all m linear hull attacks. For example, there are 32 independent key bits involved in the 21-round
attack of Simon32 with linear hull Xi

L,5 → Xi+13
R,13 . The data complexity is 231.19 known plaintext-ciphertext

pairs and the time needs about 235.84 additions to get the bias. When another linear hull Xi
L,6 → Xi+13

R,14

is taken in to make a multiple linear hull attack, the data size will decrease to 230.19. There are also 32
independent key bits involved in this linear hull attack. But, the total independent key size of both linear
hulls is 48. So the time to compute the bias for the multiple linear hull attack with above two linear hulls
needs about 236.84 additions and 248 combinations.

5 Conclusion

In this paper, we gave improved linear attack on all versions of Simon family with dynamic key-guessing
technique. By establishing the boolean function of parity bit in the linear hull distinguisher and reducing
the function accroding the property of AND operation, we decrease the number of key bits involved in
the attack and decrease the attack complexity in a further step. As a result, we can attack 23-round Si-
mon32/64, 24-round Simon48/72, 25-round Simon48/96, 30-round Simon64/96, 31-round Simon64/128,
37-round Simon96/96, 38-round Simon96/144, 49-round Simon128/128, 51-round Simon128/192 and 53-
round Simon128/256. The differential attack in [14] and our linear hull attack are bit-level cryptanalysis
results, which propose more efficient and precise security estimation results on Simon. The cryptanalysis
results imply that the security of Simon family does not shake.
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A Time complexity in some situations

In this section, we give the time complexities of computing the counters Bk(y) for some simple functions of
y = f(x, k). This would be the deepest layer’s operation in the linear attack to Simon. Notice in the following,
’Guess’ denotes the bits guessed at first. The second column xi ⊕ ki denotes the value of xi which is used
in the splitting phase. The third column denotes the new representation of the target function according to
the value of xi ⊕ ki. ’RB’ is the related bit (defined in Section 3). T1 denotes the time of seperation of the
plaintexts according to the guessed bit of k. T2 denotes the time of computation in the inner part. T3 is the
time in the combination phase. Total Time is the final time complexity, which is twice of the sum of all T1, T2

and T3. Notice that T1, T2 and T3 represent the number of addition operations. For simplicity, we denote f∗
the function with same form of f . For example, if f1 = (x0 ⊕ k0)&(x1 ⊕ k1) and f ′1 = (x0 ⊕ k0)&(x3 ⊕ k3),
we say f ′1 is with form f1∗. The calculation of B(y) for the functions with same form have same procedures
and time complexties.

1. f1 = (x0 ⊕ k0)&(x1 ⊕ k1)

Guess x0 ⊕ k0 f1 RB T1 T2 T3

k0
0 0 1 21 0 k1 1

Total Time 2× (1 + 1 + 2) = 23

2. f2 = ((x0 ⊕ k0)⊕ ((x1 ⊕ k1)&(x2 ⊕ k2)))&((x3 ⊕ k3)⊕ ((x1 ⊕ k1)&(x4 ⊕ k4)))

Guess x1 ⊕ k1 f2 RB T1 T2 T3

k1
0 f1∗ 22 × 3 23

24

1 f1∗ 22 × 3 23

Total Time 2× ((22 × 3 + 23)× 2 + 24) = 26.46

3. f3 = ((x0 ⊕ k0)&(x1 ⊕ k1))⊕ ((x2 ⊕ k2)⊕ ((x3 ⊕ k3)&(x4 ⊕ k4)))&((x5 ⊕ k5)⊕ ((x3 ⊕ k3)&(x6 ⊕ k6)))

Guess x0 ⊕ k0 f3 RB T1 T2 T3

k0
0 f2∗ 25 × 1 26.46

26

1 f2∗ k1 25 × 1 26.46

Total Time 2× ((25 × 1 + 26.46)× 2 + 26) = 29.25

4. f4 = (x0 ⊕ k0)⊕ (x1 ⊕ k1)&(x2 ⊕ k2)
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Guess x0 f4 RB T1 T2 T3

f1∗ k0 22 × 1 23 23

Total Time 22 + 23 + 23 = 24.32

5. f5 = (x0 ⊕ k0)&((x1 ⊕ k1)⊕ (x2 ⊕ k2)&(x3 ⊕ k3))

Guess x0 ⊕ k0 f5 RB T1 T2 T3

k0
0 0 23 − 1

23

1 f4∗ 24.32

Total Time 2× (23 − 1 + 24.32 + 23) = 25.64

6. f6 = ((x0 ⊕ k0)&(x1 ⊕ k1))⊕ ((x2 ⊕ k2)⊕ ((x3 ⊕ k3)&(x1 ⊕ k1)))&((x4 ⊕ k4)⊕ ((x3 ⊕ k3)&(x5 ⊕ k5)))

Guess x1 ⊕ k1 f6 RB T1 T2 T3

k1
0 f5∗ 24 × 1 25.64

25

1 f5∗ k0 24 × 1 25.64

Total Time 2× ((24 + 25.64)× 2 + 25) = 28.36

7. f7 = [x0⊕k0⊕((x1⊕k1)&(x2⊕k2))⊕((x3⊕k3⊕((x4⊕k4)&(x5⊕k5)))&(x6⊕k6⊕((x5⊕k5)&(x7⊕k7))))]&
[x8⊕k8⊕((x2⊕k2)&(x9⊕k9))⊕((x6⊕k6⊕((x5⊕k5)&(x7⊕k7)))&(x10⊕k10⊕((x7⊕k7)&(x11⊕k11))))]

Guess x2 ⊕ k2, x5 ⊕ k5, x7 ⊕ k7 f7 RB T1 T2 T3

k2, k5, k7

0,0,0 f2∗ 25 × (24 − 1) 26.46

29 × 7

0,0,1 f2∗ 25 × (24 − 1) 26.46

0,1,0 f2∗ 25 × (24 − 1) 26.46

0,1,1 f2∗ 25 × (24 − 1) 26.46

1,0,0 f2∗ 25 × (24 − 1) 26.46

1,0,1 f2∗ 25 × (24 − 1) 26.46

1,1,0 f2∗ 25 × (24 − 1) 26.46

1,1,1 f2∗ 25 × (24 − 1) 26.46

Total Time 23 × ((25 × (24 − 1) + 26.46)× 8 + 29 × 7) = 215.99

8. f8 = f7 ⊕ ((x12 ⊕ k12 ⊕ ((x1 ⊕ k1)&(x2 ⊕ k2)))&(x13 ⊕ k13 ⊕ ((x2 ⊕ k2)&(x9 ⊕ k9))))

Guess x2 ⊕ k2, x5 ⊕ k5, x7 ⊕ k7 f8 RB T1 T2 T3

k2, k5, k7

0,0,0 f3∗ 27 × (24 − 1) 29.25

211 × 7

0,0,1 f3∗ 27 × (24 − 1) 29.25

0,1,0 f3∗ 27 × (24 − 1) 29.25

0,1,1 f3∗ 27 × (24 − 1) 29.25

1,0,0 f3∗ 27 × (24 − 1) 29.25

1,0,1 f3∗ 27 × (24 − 1) 29.25

1,1,0 f3∗ 27 × (24 − 1) 29.25

1,1,1 f3∗ 27 × (24 − 1) 29.25

Total Time 23 × ((27 × (24 − 1) + 29.25)× 8 + 211 × 7) = 218.08

Case 1 gives the time complexity when y = f(x, k) = (x0 ⊕ k0)&(x1 ⊕ k1). We explain Case 2 in detail
and the others are similar. f2 is a function of 5-bit value x and k. Suppose V [x] denotes the number of x.
After k1 is guessed, the representation of f2 will be simplified for x1 = k1 and x1 = k1 ⊕ 1. If x1 = k1, there
is f2 = f0

2 = (x0⊕k0)&(x3⊕k3) which is with form f1∗. Initialize a new counter vector V0[x0] where x0 is of
2-bit. Set V0[x0] =

∑
x0=x0

0,x3=x0
1,x1=k1

V [x]. There are three additions for each x0 and in total T1 = 22 × 3.
If x1 = k1 ⊕ 1, there is f2 = f1

2 = (x0,2 ⊕ k0,2)&(x3,4 ⊕ k3,4) which is also with form f1∗. Similarly, initialize
a new counter vector V1[x1] where x1 is of 2-bit. Set V1[x1] =

∑
x0,2=x1

0,x3,4=x1
1,x1=k1⊕1 V [x]. There are three

additions for each x1 and in total T1 = 22 × 3. The function in the inner part is with form f1∗ for both
situations and it is easy to know T2 = 23 according to Case 1. Let Bk0,k30 (y) be the B(y) with counter
vector V0 and function f0

2 for k0, k3. Let B
k0,2,k3,4
1 (y) be the B(y) with counter vector V1 and function f1

2

for k0,2, k3,4. When k1 is fixed, B(y) for k is Bk0,k30 (y) + B
k0,2,k3,4
1 (y). Since there are 4 independent bits of
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k when k1 is fixed, leading to T3 = 24, which is the complexity of combination. In total, the time is twice of
(22 + 23) + 24, since there are two possible guesses for k1.

The related bit (RB) is generated in linear compression. For example in Case 3, when x0 ⊕ k0 = 1, f3

is linear with x1 ⊕ k1. As explained in Section 3, x1 is compressed and k1 becomes a related bit. In Case
4, linear compression is done before any key guess, leading to the compression of bit x0 and generation of
related bit k0.

B Improved Linear Attacks on Simon48, Simon64, Simon96, Simon128

B.1 Linear Attack on Simon48/K

The linear hull we used to attack Simon48/K is

Xi
L,1 ⊕Xi

L,5 ⊕Xi
L,21 ⊕Xi

R,23 → Xi+16
L,1 ⊕X

i+16
L,5 ⊕X

i+16
R,23

which is proposed in [12], with potential ε̄2 = 2−44.92.

Table 9. 3 rounds before Xi
L,1 ⊕Xi

L,5 ⊕Xi
L,21 ⊕Xi

R,23 for Simon48

x0
Xi−3

L,15 ⊕Xi−3
R,17 ⊕ (Xi−3

L,16&Xi−3
L,9 )⊕Xi−3

R,5⊕ k0
Ki−2

3 ⊕Ki−3
17 ⊕Ki−2

19 ⊕Ki−1
1

(Xi−3
L,4 &Xi−3

L,21)⊕Xi−3
R,21 ⊕ (Xi−3

L,20&Xi−3
L,13) ⊕Ki−3

5 ⊕Ki−3
21 ⊕Ki−1

5 ⊕Ki−1
21

x1 Xi−3
L,0 ⊕Xi−3

R,2 ⊕ (Xi−3
L,1 &Xi−3

L,18) k1 Ki−3
2

x2 Xi−3
L,17 ⊕Xi−3

R,19 ⊕ (Xi−3
L,18&Xi−3

L,11) k2 Ki−3
19

x3 Xi−3
L,16 ⊕Xi−3

R,18 ⊕ (Xi−3
L,17&Xi−3

L,10) k3 Ki−3
18

x4 Xi−3
L,9 ⊕Xi−3

R,11 ⊕ (Xi−3
L,10&Xi−3

L,3 ) k4 Ki−3
11

x5 Xi−3
L,20 ⊕Xi−3

R,22 ⊕ (Xi−3
L,21&Xi−3

L,14)⊕Xi−3
L,0 k5 Ki−3

22 ⊕Ki−2
0

x6 Xi−3
L,21 ⊕Xi−3

R,23 ⊕ (Xi−3
L,22&Xi−3

L,15) k6 Ki−3
23

x7 Xi−3
L,14 ⊕Xi−3

R,16 ⊕ (Xi−3
L,15&Xi−3

L,8 ) k7 Ki−3
16

x8 Xi−3
L,13 ⊕Xi−3

R,15 ⊕ (Xi−3
L,14&Xi−3

L,7 )⊕Xi−3
L,17 k8 Ki−3

15 ⊕Ki−2
17

x9 Xi−3
L,7 ⊕Xi−3

R,9 ⊕ (Xi−3
L,8 &Xi−3

L,1 ) k9 Ki−3
9

x10 Xi−3
L,0 ⊕Xi−3

R,2 ⊕ (Xi−3
L,1 &Xi−3

L,18)⊕Xi−3
L,4 k10 Ki−3

2 ⊕Ki−2
4

x11 Xi−3
L,1 ⊕Xi−3

R,3 ⊕ (Xi−3
L,2 &Xi−3

L,19) k11 Ki−3
3

x12 Xi−3
L,18 ⊕Xi−3

R,20 ⊕ (Xi−3
L,19&Xi−3

L,12) k12 Ki−3
20

x13 Xi−3
L,17 ⊕Xi−3

R,19 ⊕ (Xi−3
L,18&Xi−3

L,11)⊕Xi−3
L,21 k13 Ki−3

19 ⊕Ki−2
21

x14 Xi−3
L,11 ⊕Xi−3

R,13 ⊕ (Xi−3
L,12&Xi−3

L,5 ) k14 Ki−3
13

x15 Xi−3
L,16 ⊕Xi−3

R,18 ⊕ (Xi−3
L,17&Xi−3

L,10)⊕Xi−3
L,20 k15 Ki−3

18 ⊕Ki−2
20

x16 Xi−3
L,10 ⊕Xi−3

R,12 ⊕ (Xi−3
L,11&Xi−3

L,4 ) k16 Ki−3
12

x17 Xi−3
L,9 ⊕Xi−3

R,11 ⊕ (Xi−3
L,10&Xi−3

L,3 )⊕Xi−3
L,13 k17 Ki−3

11 ⊕Ki−2
13

x18 Xi−3
L,3 ⊕Xi−3

R,5 ⊕ (Xi−3
L,4 &Xi−3

L,21) k18 Ki−3
5

Similar to the attack on Simon32, at first we give the procedure to compress the plaintexts, then the pro-
cedure to compress the ciphertexts. Add 3 rounds before the distinguisher. According to the representations
for x, k in Table 9, Xi

L,1 ⊕Xi
L,5 ⊕Xi

L,21 ⊕Xi
R,23 can be represented as

x0 ⊕ k0 ⊕ ((x1 ⊕ k1)&(x2 ⊕ k2))⊕ ((x3 ⊕ k3)&(x4 ⊕ k4))⊕
((x5 ⊕ k5 ⊕ ((x6 ⊕ k6)&(x7 ⊕ k7)))&(x8 ⊕ k8 ⊕ ((x7 ⊕ k7)&(x9 ⊕ k9))))⊕
((x10 ⊕ k10 ⊕ ((x11 ⊕ k11)&(x12 ⊕ k12)))&(x13 ⊕ k13 ⊕ ((x12 ⊕ k12)&(x14 ⊕ k14))))⊕
((x15 ⊕ k15 ⊕ ((x2 ⊕ k2)&(x16 ⊕ k16)))&(x17 ⊕ k17 ⊕ ((x16 ⊕ k16)&(x18 ⊕ k18))))

Compress the plaintexts: (Procedure Simon48-Head) At first compress the data samples into a counter
vertor V [x1 − x18], then DO

1. For each x3 − x14
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(a) Guess the keys related to x1−x2, x15−x18 and compress x1−x2, x15−x18 as the Case f6 in Appendix
A. There are 6-bit keys (k1− k2, k15− k18) to store, and the time is about 28.36. So here the memory
is about 26 × 212 counters, and the total time is about 212 × 28.36 = 220.36.

2. For each key k1 − k2, k15 − k18

(a) For each x10 − x14

i. Guess the keys related to x3 − x9 and compress x3 − x9 as Case f3 in Appendix A. There are
7-bit keys (k3 − k9) to store, and the time is about 29.25. So here the memory is about 26+7 × 25

counters, and the total time is about 26+5 × 29.25 = 220.25.

3. For each key k1 − k9, k15 − k18

(a) Guess the keys related to x10−x14 and compress x10−x14 as Case f2 in Appendix A. There are 5-bit
keys (k10 − k14) to store, and the time is about 26.46. So here the memory is about 213+5 counters,
and the total time is about 213 × 26.46 = 219.46.

4. Total time is 220.36 + 220.25 + 219.46 = 221.66 additions. Memory is about O(218).

Table 10. 4 rounds after Xi+16
L,1 ⊕Xi+16

L,5 ⊕Xi+16
R,23 for Simon48

x0

Xi+20
R,3 ⊕Xi+20

L,5 ⊕ (Xi+20
R,4 &Xi+20

R,21 )⊕Xi+20
R,3 ⊕Xi+20

R,15 ⊕Xi+20
L,17

k0

Ki+19
1 ⊕Ki+17

1 ⊕Ki+16
23

⊕(Xi+20
R,16&Xi+20

R,9 )⊕Xi+20
L,21 ⊕ (Xi+20

R,20&Xi+20
R,13 ) Ki+19

1 ⊕Ki+19
5 ⊕Ki+18

3 ⊕Ki+17
5

Ki+19
17 ⊕Ki+19

21 ⊕Ki+18
19 ⊕Ki+17

21

x1 Xi+20
R,16 ⊕Xi+20

L,18 ⊕ (Xi+20
R,17&Xi+20

R,10 ) k1 Ki+19
18

x2 Xi+20
R,9 ⊕Xi+20

L,11 ⊕ (Xi+20
R,10&Xi+20

R,3 ) k2 Ki+19
11

x3 Xi+20
R,0 ⊕Xi+20

L,2 ⊕ (Xi+20
R,1 &Xi+20

R,18 ) k3 Ki+19
2

x4 Xi+20
R,17 ⊕Xi+20

L,19 ⊕ (Xi+20
R,18&Xi+20

R,11 ) k4 Ki+19
19

x5 Xi+20
R,20 ⊕Xi+20

L,22 ⊕ (Xi+20
R,21&Xi+20

R,14 )⊕Xi+20
R,0 k5 Ki+19

22 ⊕Ki+18
0

x6 Xi+20
R,21 ⊕Xi+20

L,23 ⊕ (Xi+20
R,22&Xi+20

R,15 ) k6 Ki+19
23

x7 Xi+20
R,14 ⊕Xi+20

L,16 ⊕ (Xi+20
R,15&Xi+20

R,8 ) k7 Ki+19
16

x8 Xi+20
R,13 ⊕Xi+20

L,15 ⊕ (Xi+20
R,14&Xi+20

R,7 )⊕Xi+20
R,17 k8 Ki+19

15 ⊕Ki+18
17

x9 Xi+20
R,7 ⊕Xi+20

L,9 ⊕ (Xi+20
R,8 &Xi+20

R,1 ) k9 Ki+19
9

x10 Xi+20
R,0 ⊕Xi+20

L,2 ⊕ (Xi+20
R,1 &Xi+20

R,18 )⊕Xi+20
R,4 k10 Ki+19

2 ⊕Ki+18
4

x11 Xi+20
R,1 ⊕Xi+20

L,3 ⊕ (Xi+20
R,2 &Xi+20

R,19 ) k11 Ki+19
3

x12 Xi+20
R,18 ⊕Xi+20

L,20 ⊕ (Xi+20
R,19&Xi+20

R,12 ) k12 Ki+19
20

x13 Xi+20
R,11 ⊕Xi+20

L,13 ⊕ (Xi+20
R,12&Xi+20

R,5 )⊕Xi+20
R,21 k13 Ki+19

19 ⊕Ki+18
21

x14 Xi+20
R,11 ⊕Xi+20

L,13 ⊕ (Xi+20
R,12&Xi+20

R,5 ) k14 Ki+19
13

x15 Xi+20
R,16 ⊕Xi+20

L,18 ⊕ (Xi+20
R,17&Xi+20

R,10 )⊕Xi+20
R,20 k15 Ki+19

18 ⊕Ki+18
20

x16 Xi+20
R,10 ⊕Xi+20

L,12 ⊕ (Xi+20
R,11&Xi+20

R,4 ) k16 Ki+19
12

x17 Xi+20
R,9 ⊕Xi+20

L,11 ⊕ (Xi+20
R,10&Xi+20

R,3 )⊕Xi+20
R,13 k17 Ki+19

11 ⊕Ki+18
13

x18 Xi+20
R,3 ⊕Xi+20

L,5 ⊕ (Xi+20
R,4 &Xi+20

R,21 ) k18 Ki+19
5

x19 Xi+20
R,16 ⊕Xi+20

L,18 ⊕ (Xi+20
R,17&Xi+20

R,10 )⊕Xi+20
L,22 ⊕ (Xi+20

R,21&Xi+20
R,14 ) k19 Ki+19

18 ⊕Ki+18
20 ⊕Ki+19

22 ⊕Ki+17
22

x20 Xi+20
R,10 ⊕Xi+20

L,12 ⊕ (Xi+20
R,11&Xi+20

R,4 )⊕Xi+20
R,14 k20 Ki+19

12 ⊕Ki+18
14

x21 Xi+20
R,9 ⊕Xi+20

L,11 ⊕ (Xi+20
R,10&Xi+20

R,3 )⊕Xi+20
L,15 ⊕ (Xi+20

R,14&Xi+20
R,7 ) k21 Ki+19

11 ⊕Ki+18
13 ⊕Ki+19

15 ⊕Ki+17
15

x22 Xi+20
R,4 ⊕Xi+20

L,6 ⊕ (Xi+20
R,5 &Xi+20

R,22 ) k22 Ki+19
6

x23 Xi+20
R,3 ⊕Xi+20

L,5 ⊕ (Xi+20
R,4 &Xi+20

R,21 )⊕Xi+20
R,7 k23 Ki+19

5 ⊕Ki+18
7
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If we append four rounds at the end of the linear distinguisher, according to Table 10, Xi+16
L,1 ⊕X

i+16
L,5 ⊕

Xi+16
R,23 can be represented as

x0 ⊕ k0 ⊕ ((x1 ⊕ k1)&(x2 ⊕ k2))⊕ ((x3 ⊕ k3)&(x4 ⊕ k4))⊕
((x5 ⊕ k5 ⊕ ((x6 ⊕ k6)&(x7 ⊕ k7)))&(x8 ⊕ k8 ⊕ ((x7 ⊕ k7)&(x9 ⊕ k9)))⊕
((x10 ⊕ k10 ⊕ ((x11 ⊕ k11)&(x12 ⊕ k12)))&(x13 ⊕ k13 ⊕ ((x12 ⊕ k12)&(x14 ⊕ k14)))⊕
((x15 ⊕ k15 ⊕ ((x4 ⊕ k4)&(x16 ⊕ k16)))&(x17 ⊕ k17 ⊕ ((x16 ⊕ k16)&(x18 ⊕ k18)))⊕
{(x19 ⊕ k19 ⊕ ((x4 ⊕ k4)&(x16 ⊕ k16))⊕
((x13 ⊕ k13 ⊕ ((x12 ⊕ k12)&(x14 ⊕ k14)))&(x20 ⊕ k20 ⊕ ((x14 ⊕ k14)&(x22 ⊕ k22)))))

&

(x21 ⊕ k21 ⊕ ((x16 ⊕ k16)&(x18 ⊕ k18))⊕
((x20 ⊕ k20 ⊕ ((x14 ⊕ k14)&(x22 ⊕ k22)))&(x23 ⊕ k23 ⊕ ((x22 ⊕ k22)&(x6 ⊕ k6)))))}

Compress the ciphertexts: (Procedure Simon48-Tail) To simplify our description, we introduce the sit-
uations that the XOR for the guessed k bit and corresponding x bit is zero in Step 2 to Step 8, since the
representation of the target parity bit in another situation has same form with it. At first compress the data
samples into a counter vertor V [x1 − x23], then DO

1. For each of x3 − x23

(a) Compress x1 − x2 as Case f1 in Appendix A. There is 2-bit key (k1 − k2) to store and the time is
23. So this step needs memory 223 counters and total time is about 221 × 23 = 224.

2. Guess k4. Since x4 ⊕ k4 = 0, x3 can be compressed. The time is about 219 additions.
3. Guess k7. Since x7 ⊕ k7 = 0, x9 can be compressed. The time is about 217 additions.
4. Guess k5. Since x5 ⊕ k5 = 0, x8 can be compressed. The time is about 215 additions.
5. Guess k12. Since x12 ⊕ k12 = 0, x11 can be compressed. The time is about 213 additions.
6. Guess k22. Since x22 ⊕ k22 = 0, x14, x6 can be compressed. The time is about 210 × 3 additions.
7. Guess k16. Since x16 ⊕ k16 = 0, x18 can be compressed. The time is about 28 additions.
8. Guess k15. Since x15 ⊕ k15 = 0, x17 can be compressed. The time is about 26 additions.
9. After above guessing and split, remained bits for x and k are bit 10, 13, 19, 20, 21, 23. We can compress

them as Case f6 in Appendix A. The time is 28.36.
10. Calculate the other situations similar to that above.

Time is estimated from the inner part to outer part. Step 9 needs about T9 = 28.36 additions. In Step 8, the
two cases, x15 ⊕ k15 = 0, x15 ⊕ k15 = 1 have same time complexity and there are two possible guesses for
k15. So the total time for Step 8 and 9 is T8 = 2 × ((26 + T9) × 2 + 27) = 210.83, where 27 is the time for
combination. Similarly, the time for Step 2 to Step 9 is as follows.

Step Time
8-9 T8 = 2× ((26 + T9)× 2 + 27) = 210.83

7-9 T7 = 2× ((28 + T8)× 2 + 29) = 213.19

6-9 T6 = 2× ((210 × 3 + T7)× 2 + 212) = 215.82

5-9 T5 = 2× ((213 + T6)× 2 + 214) = 218.18

4-9 T4 = 2× ((215 + T5)× 2 + 216) = 220.47

3-9 T3 = 2× ((217 + T4)× 2 + 218) = 222.71

2-9 T2 = 2× ((219 × 3 + T3)× 2 + 220) = 224.91

So in total, the time is 224.91 × 22 + 224 ≈ 227.09. The memory is about O(223) counters.

23-round attack on Simon48/72. We add three rounds before and four rounds after the 16-round linear
distinguisher to attack 23-round Simon48/K. Suppose we use N = 8ε̄−2 = 247.92 known plaintext-ciphertext
pairs. Set advantage a = 16. The success probability would be 0.909. At first, compress the N plaintext-
ciphertext pairs to 218+23 counters according to Table 9, 10. Suppose the plaintext be compressed to xP and
ciphertext be compressed to xC .

1. For each of 223 xC
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(a) Call Procedure Simon48-Head, and store the counters according to the keys used in the forward
rounds

2. For each of 218 keys involved in the forward rounds
(a) Call Procedure Simon48-Tail, and store the counters according to the keys used in the backward

rounds
3. Rank the keys and exhaustive the candidates with the help of key schedule

Time: 1. 223 × 221.66 = 244.66 additions; 2. 218 × 227.09 = 245.09 additions. So it needs 244.66 + 245.09 = 245.89

additions to get the correlations. 3. Since the size of master key is 72, the exhaustive phase needs 272−16 = 256

23-round encryptions.

24-round attack on Simon48/72. Expand one more round before Xi−3. The key bits of Ki−4 involved
to obtain the x represented in Table 9 are κ1 = (Ki−4

0 −Ki−4
5 ,Ki−4

7 −Ki−4
22 ), in total 22 bits.

1. Guess each of 222 κ1

(a) Encrypt the N plaintexts by one round
(b) Do as first two steps of the 23-round attack

2. Rank the keys and exhaustive the candidates with the help of key schedule

Time: (1.a) 222 ×N = 269.92 one-round encryptions. (1.b) 222 × 245.89 = 267.89 additons. 2. Since the size of
master key is 72, the exhaustive phase needs 272−16 = 256 24-round encryptions.

25-round attack on Simon48/96. Expand one more round before Xi−3 and one more round after Xi+20.
The key bits of Ki+20 involved to obtain the x represented in Table 10 are κ2 = (Ki+20

0 −Ki+20
5 ,Ki+20

7 −
Ki+18

22 ), in total 22 bits.

1. Guess each of 244 κ1||κ2

(a) Encrypt the N plaintexts by one round
(b) Do as first two steps of the 23-round attack

2. Rank the keys and exhaustive the candidates with the help of key schedule

Time: (1.a) 244 ×N = 291.92 two-round encryptions. (1.b) 244 × 245.89 = 289.89 additons. 2. The exhaustive
phase needs 296−16 = 280 25-round encryptions.

B.2 Linear Attack on Simon64/K

The linear hull we used to attack Simon64/K is

Xi
L,20 ⊕Xi

L,24 ⊕Xi
R,22 → Xi+21

L,22 ⊕X
i+21
R,20 ⊕X

i+21
R,24

which is proposed in [6], with potential ε̄2 = 2−62.53.
If we add four rounds before the linear hull, accodring to Table 11, Xi

L,20 ⊕ Xi
L,24 ⊕ Xi

R,22 can be
represented as

x0 ⊕ k0 ⊕ ((x1 ⊕ k1)&(x2 ⊕ k2))⊕ ((x3 ⊕ k3)&(x4 ⊕ k4))⊕ ((x5 ⊕ k5)&(x6 ⊕ k6))⊕
((x7 ⊕ k7 ⊕ ((x6 ⊕ k6)&(x8 ⊕ k8)))&(x9 ⊕ k9 ⊕ ((x8 ⊕ k8)&(x10 ⊕ k10)))⊕
{(x11 ⊕ k11 ⊕ ((x6 ⊕ k6)&(x8 ⊕ k8))⊕
((x12 ⊕ k12 ⊕ ((x13 ⊕ k13)&(x14 ⊕ k14)))&(x15 ⊕ k15 ⊕ ((x13 ⊕ k13)&(x16 ⊕ k16))))

&

(x17 ⊕ k17 ⊕ ((x8 ⊕ k8)&(x10 ⊕ k10))⊕
((x15 ⊕ k15 ⊕ ((x13 ⊕ k13)&(x16 ⊕ k16)))&(x18 ⊕ k18 ⊕ ((x16 ⊕ k16)&(x19 ⊕ k19))))}⊕
{(x20 ⊕ k20 ⊕ ((x21 ⊕ k21)&(x22 ⊕ k22))⊕
((x23 ⊕ k23 ⊕ ((x24 ⊕ k24)&(x25 ⊕ k25)))&(x26 ⊕ k26 ⊕ ((x25 ⊕ k25)&(x27 ⊕ k27))))

&

(x28 ⊕ k28 ⊕ ((x22 ⊕ k22)&(x29 ⊕ k29))⊕
((x26 ⊕ k26 ⊕ ((x25 ⊕ k25)&(x27 ⊕ k27)))&(x30 ⊕ k30 ⊕ ((x27 ⊕ k27)&(x31 ⊕ k31))))}.
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Since x11 = x1 ⊕ x7 and x17 = x2 ⊕ x9, there are 30 independent bits for x and 32 independent bits for k.

Compress the plaintexts: (Procedure Simon64-Head) At first, compress the plaintexts into a counter
vector V [x1 − x31] using the linear compression technique. There are 229 elements for V . To simplify our
description of attack, the x6, k6 with underline above are regarded as new variables x′6, k′6.

1. For each x3 − x31

(a) Compress x1, x2. Since x1 = x7⊕x11, x2 = x9⊕x17, there is only one value for x1, x2. There is 2-bit
key to store (k1, k2), and the time is 22. So here the memory is about 229 × 22 = 231 counters and
total time is 229 × 22 = 231.

2. For each k1, k2, x5 − x31

(a) Compress x3, x4 as the Case f1 in Appendix A. There is 2-bit key to store (k3, k4), and the time is
23. So here the memory is about 229 × 22 = 231 counters and total time is 229 × 23 = 232.

3. For each k1 − k4, x6 − x31

(a) Compress x5, x
′
6. Since x′6 = x6, there is only two values for x5, x

′
6. There is 1-bit key to store (k5)

since k′6 = k6 becomes a related bit, which will be determined in the following steps. The time is 23.
So here the memory is about 230 × 21 = 231 counters and total time is 230 × 23 = 233.

4. For each k1 − k5, x20 − x31

(a) Compress x6 − x19 as Case f8 in Appendix A. There is 14-bit key to store (k6 − k19)and the time is
218.08. So here the memory is about 217 × 214 = 231 counters and total time is 217 × 218.08 = 235.08.

5. For each k1 − k19

(a) Compress x20−x31 as Case f7 in Appendix A. There is 12-bit key to store (k20−k31)and the time is
215.99. So here the memory is about 219 × 212 = 231 counters and total time is 219 × 215.99 = 234.99.

6. The total time is about 236.31 additions and memory is O(231).

Compress the ciphertexts: (Procedure Simon64-Tail) Add four rounds after the distinguisher, the rep-
resentation of Xi+21

R,20 ⊕ Xi+21
R,24 ⊕ Xi+21

L,22 is same as that of Xi
L,20 ⊕ Xi

L,24 ⊕ Xi
R,22, except that the new

representations for x and k are shown in Table 12. Compress the ciphertexts to a counter vector V [x1−x31]
at first. Then do as the compressing procedure Simon64-Head.

29-round attack on Simon64/96. We add four rounds before and after the 21-round linear distinguisher
to attack 29-round Simon64/96. Suppose we use N = 2ε̄−2 = 263.53 known plaintext-ciphertext pairs. Set
advantage a = 8. The success probability would be 0.477. At first, compress the N plaintext-ciphertext pairs
to 229+29 counters according to Table 11 and 12. Suppose the plaintext be compressed to xP and ciphertext
be compressed to xC .

1. For each of 229 xC
(a) Call Procedure Simon64-Head, and store the counters according to the keys used in the first four

rounds
2. For each of 231 keys involved in the first four rounds

(a) Call Procedure Simon64-Tail, and store the counters according to the keys used in the last four
rounds

3. Rank the keys and exhaustive the candidates with the help of key schedule

Time: 1. 229 × 236.31 = 265.31 additions; 2. 231 × 236.31 = 267.31 additions. So it needs 265.31 + 267.31 = 267.62

additions to get the bias for the subkeys. 3. The exhaustive phase needs 296−8 = 288 29-round encryptions.

30-round attack on Simon64/96. Expand one more round before Xi−4. The key bits of Ki−5 involved
to obtain the x represented in Table 11 are κ1 = (Ki−5

0 −Ki−5
2 ,Ki−5

4 −Ki−5
22 ,Ki−5

24 ,Ki−5
26 ,Ki−5

30 ,Ki−5
31 ), in

total 26 bits.

1. Guess each of 226 κ1

(a) Encrypt the N plaintexts by one round. Compress the internal states to a counter vectr of size 258.
(b) Do as first two steps of the 29-round attack

2. Rank the keys and exhaustive the candidates with the help of key schedule
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Table 11. 4 rounds before Xi
L,20 ⊕Xi

L,24 ⊕Xi
R,22 for Simon64

x0
Xi−4

L,20 ⊕Xi−4
L,16 ⊕Xi−4

L,12 ⊕ (Xi−4
L,13&Xi−4

L,6 )⊕Xi−4
R,14⊕ k0

Ki−3
20 ⊕Ki−3

16 ⊕Ki−2
18 ⊕Ki−1

20 ⊕
Xi−4

L,24 ⊕Xi−4
L,20 ⊕ (Xi−4

L,21&Xi−4
L,14)⊕Xi−4

R,22 Ki−3
24 ⊕Ki−1

24 ⊕Ki−4
14 ⊕Ki−4

22

x1 Xi−4
L,17 ⊕ (Xi−4

L,18&Xi−4
L,11)⊕Xi−4

R,19 k1 Ki−4
19

x2 Xi−4
L,10 ⊕ (Xi−4

L,11&Xi−4
L,4 )⊕Xi−4

R,12 k2 Ki−4
12

x3 Xi−4
L,13 ⊕ (Xi−4

L,14&Xi−4
L,7 )⊕Xi−4

R,15 k3 Ki−4
15

x4 Xi−4
L,6 ⊕ (Xi−4

L,7 &Xi−4
L,0 )⊕Xi−4

R,8 k4 Ki−4
8

x5 Xi−4
L,21 ⊕ (Xi−4

L,22&Xi−4
L,15)⊕Xi−4

R,23 k5 Ki−4
23

x6 Xi−4
L,14 ⊕ (Xi−4

L,15&Xi−4
L,8 )⊕Xi−4

R,16 k6 Ki−4
16

x7 Xi−4
L,17 ⊕Xi−4

L,13 ⊕ (Xi−4
L,14&Xi−4

L,7 )⊕Xi−4
R,15 k7 Ki−3

17 ⊕Ki−4
15

x8 Xi−4
L,7 ⊕ (Xi−4

L,8 &Xi−4
L,1 )⊕Xi−4

R,9 k8 Ki−4
9

x9 Xi−4
L,10 ⊕Xi−4

L,6 ⊕ (Xi−4
L,7 &Xi−4

L,0 )⊕Xi−4
R,8 k9 Ki−3

10 ⊕Ki−4
8

x10 Xi−4
L,0 ⊕ (Xi−4

L,1 &Xi−4
L,26)⊕Xi−4

R,2 k10 Ki−4
2

x11 (Xi−4
L,18&Xi−4

L,11)⊕Xi−4
R,19 ⊕Xi−4

L,13 ⊕ (Xi−4
L,14&Xi−4

L,7 )⊕Xi−4
R,15 k11 Ki−3

17 ⊕Ki−2
19 ⊕Ki−4

19 ⊕Ki−4
15

x12 Xi−4
L,18 ⊕Xi−4

L,14 ⊕ (Xi−4
L,15&Xi−4

L,8 )⊕Xi−4
R,16 k12 Ki−3

18 ⊕Ki−4
16

x13 Xi−4
L,8 ⊕ (Xi−4

L,9 &Xi−4
L,2 )⊕Xi−4

R,10 k13 Ki−4
10

x14 Xi−4
L,15 ⊕ (Xi−4

L,16&Xi−4
L,9 )⊕Xi−4

R,17 k14 Ki−4
17

x15 Xi−4
L,11 ⊕Xi−4

L,7 ⊕ (Xi−4
L,8 &Xi−4

L,1 )⊕Xi−4
R,9 k15 Ki−3

11 ⊕Ki−4
9

x16 Xi−4
L,1 ⊕ (Xi−4

L,2 &Xi−4
L,27)⊕Xi−4

R,3 k16 Ki−4
3

x17 (Xi−4
L,11&Xi−4

L,4 )⊕Xi−4
R,12 ⊕Xi−4

L,6 ⊕ (Xi−4
L,7 &Xi−4

L,0 )⊕Xi−4
R,8 k17 Ki−3

10 ⊕Ki−2
12 ⊕Ki−4

12 ⊕Ki−4
8

x18 Xi−4
L,4 ⊕Xi−4

L,0 ⊕ (Xi−4
L,1 &Xi−4

L,26)⊕Xi−4
R,2 k18 Ki−3

4 ⊕Ki−4
2

x19 Xi−4
L,26 ⊕ (Xi−4

L,27&Xi−4
L,20)⊕Xi−4

R,28 k19 Ki−4
28

x20 (Xi−4
L,22&Xi−4

L,15)⊕Xi−4
R,23 ⊕Xi−4

L,27 ⊕ (Xi−4
L,18&Xi−4

L,11)⊕Xi−4
R,19 k20 Ki−3

21 ⊕Ki−2
23 ⊕Ki−4

23 ⊕Ki−4
19

x21 Xi−4
L,18 ⊕ (Xi−4

L,19&Xi−4
L,12)⊕Xi−4

R,20 k21 Ki−4
20

x22 Xi−4
L,11 ⊕ (Xi−4

L,12&Xi−4
L,5 )⊕Xi−4

R,13 k22 Ki−4
13

x23 Xi−4
L,22 ⊕Xi−4

L,18 ⊕ (Xi−4
L,19&Xi−4

L,12)⊕Xi−4
R,20 k23 Ki−3

22 ⊕Ki−4
20

x24 Xi−4
L,19 ⊕ (Xi−4

L,20&Xi−4
L,13)⊕Xi−4

R,21 k24 Ki−4
21

x25 Xi−4
L,12 ⊕ (Xi−4

L,13&Xi−4
L,6 )⊕Xi−4

R,14 k25 Ki−4
14

x26 Xi−4
L,15 ⊕Xi−4

L,11 ⊕ (Xi−4
L,12&Xi−4

L,5 )⊕Xi−4
R,13 k26 Ki−3

15 ⊕Ki−4
13

x27 Xi−4
L,5 ⊕ (Xi−4

L,6 &Xi−4
L,31)⊕Xi−4

R,7 f7 k27 Ki−4
7

x28 (Xi−4
L,15&Xi−4

L,8 )⊕Xi−4
R,16 ⊕Xi−4

L,10 ⊕ (Xi−4
L,11&Xi−4

L,4 )⊕Xi−4
R,12 k28 Ki−3

14 ⊕Ki−2
16 ⊕Ki−4

16 ⊕Ki−4
12

x29 Xi−4
L,4 ⊕ (Xi−4

L,5 &Xi−4
L,30)⊕Xi−4

R,6 k29 Ki−4
6

x30 Xi−4
L,8 ⊕Xi−4

L,4 ⊕ (Xi−4
L,5 &Xi−4

L,30)⊕Xi−4
R,6 k30 Ki−3

8 ⊕Ki−4
6

x31 Xi−4
L,30 ⊕ (Xi−4

L,31&Xi−4
L,24)⊕Xi−4

R,0 k31 Ki−4
0

x11 = x1 ⊕ x7, x17 = x2 ⊕ x9,
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Table 12. 4 rounds after Xi+21
L,20 ⊕Xi+21

L,24 ⊕X21
R,22 for Simon64

x0
Xi+25

R,20 ⊕Xi+25
R,16 ⊕Xi+25

R,12 ⊕ (Xi+25
R,13&Xi+25

R,6 )⊕Xi+25
L,14⊕ k0

Ki+23
20 ⊕Ki+23

16 ⊕Ki+22
18 ⊕Ki+21

20 ⊕
Xi+25

R,24 ⊕Xi+25
R,20 ⊕ (Xi+25

R,21&Xi+25
R,14 )⊕Xi+25

L,22 Ki+23
24 ⊕Ki+21

24 ⊕Ki+24
14 ⊕Ki+24

22

x1 Xi+25
R,17 ⊕ (Xi+25

R,18&Xi+25
R,11 )⊕Xi+25

L,19 k1 Ki+24
19

x2 Xi+25
R,10 ⊕ (Xi+25

R,11&Xi+25
R,4 )⊕Xi+25

L,12 k2 Ki+24
12

x3 Xi+25
R,13 ⊕ (Xi+25

R,14&Xi+25
R,7 )⊕Xi+25

L,15 k3 Ki+24
15

x4 Xi+25
R,6 ⊕ (Xi+25

R,7 &Xi+25
R,0 )⊕Xi+25

L,8 k4 Ki+24
8

x5 Xi+25
R,21 ⊕ (Xi+25

R,22&Xi+25
R,15 )⊕Xi+25

L,23 k5 Ki+24
23

x6 Xi+25
R,14 ⊕ (Xi+25

R,15&Xi+25
R,8 )⊕Xi+25

L,16 k6 Ki+24
16

x7 Xi+25
R,17 ⊕Xi+25

R,13 ⊕ (Xi+25
R,14&Xi+25

R,7 )⊕Xi+25
L,15 k7 Ki+23

17 ⊕Ki+24
15

x8 Xi+25
R,7 ⊕ (Xi+25

R,8 &Xi+25
R,1 )⊕Xi+25

L,9 k8 Ki+24
9

x9 Xi+25
R,10 ⊕Xi+25

R,6 ⊕ (Xi+25
R,7 &Xi+25

R,0 )⊕Xi+25
L,8 k9 Ki+23

10 ⊕Ki+24
8

x10 Xi+25
R,0 ⊕ (Xi+25

R,1 &Xi+25
R,26 )⊕Xi+25

L,2 k10 Ki+24
2

x11 (Xi+25
R,18&Xi+25

R,11 )⊕Xi+25
L,19 ⊕Xi+25

R,13 ⊕ (Xi+25
R,14&Xi+25

R,7 )⊕Xi+25
L,15 k11 Ki+23

17 ⊕Ki+22
19 ⊕Ki+24

19 ⊕Ki+24
15

x12 Xi+25
R,18 ⊕Xi+25

R,14 ⊕ (Xi+25
R,15&Xi+25

R,8 )⊕Xi+25
L,16 k12 Ki+23

18 ⊕Ki+24
16

x13 Xi+25
R,8 ⊕ (Xi+25

R,9 &Xi+25
R,2 )⊕Xi+25

L,10 k13 Ki+24
10

x14 Xi+25
R,15 ⊕ (Xi+25

R,16&Xi+25
R,9 )⊕Xi+25

L,17 k14 Ki+24
17

x15 Xi+25
R,11 ⊕Xi+25

R,7 ⊕ (Xi+25
R,8 &Xi+25

R,1 )⊕Xi+25
L,9 k15 Ki+23

11 ⊕Ki+24
9

x16 Xi+25
R,1 ⊕ (Xi+25

R,2 &Xi+25
R,27 )⊕Xi+25

L,3 k16 Ki+24
3

x17 (Xi+25
R,11&Xi+25

R,4 )⊕Xi+25
L,12 ⊕Xi+25

R,6 ⊕ (Xi+25
R,7 &Xi+25

R,0 )⊕Xi+25
L,8 k17 Ki+23

10 ⊕Ki+22
12 ⊕Ki+24

12 ⊕Ki+24
8

x18 Xi+25
R,4 ⊕Xi+25

R,0 ⊕ (Xi+25
R,1 &Xi+25

R,26 )⊕Xi+25
L,2 k18 Ki+23

4 ⊕Ki+24
2

x19 Xi+25
R,26 ⊕ (Xi+25

R,27&Xi+25
R,20 )⊕Xi+25

L,28 k19 Ki+24
28

x20 (Xi+25
R,22&Xi+25

R,15 )⊕Xi+25
L,23 ⊕Xi+25

R,27 ⊕ (Xi+25
R,18&Xi+25

R,11 )⊕Xi+25
L,19 k20 Ki+23

21 ⊕Ki+22
23 ⊕Ki+24

23 ⊕Ki+24
19

x21 Xi+25
R,18 ⊕ (Xi+25

R,19&Xi+25
R,12 )⊕Xi+25

L,20 k21 Ki+24
20

x22 Xi+25
R,11 ⊕ (Xi+25

R,12&Xi+25
R,5 )⊕Xi+25

L,13 k22 Ki+24
13

x23 Xi+25
R,22 ⊕Xi+25

R,18 ⊕ (Xi+25
R,19&Xi+25

R,12 )⊕Xi+25
L,20 k23 Ki+23

22 ⊕Ki+24
20

x24 Xi+25
R,19 ⊕ (Xi+25

R,20&Xi+25
R,13 )⊕Xi+25

L,21 k24 Ki+24
21

x25 Xi+25
R,12 ⊕ (Xi+25

R,13&Xi+25
R,6 )⊕Xi+25

L,14 k25 Ki+24
14

x26 Xi+25
R,15 ⊕Xi+25

R,11 ⊕ (Xi+25
R,12&Xi+25

R,5 )⊕Xi+25
L,13 k26 Ki+23

15 ⊕Ki+24
13

x27 Xi+25
R,5 ⊕ (Xi+25

R,6 &Xi+25
R,31 )⊕Xi+25

L,7 k27 Ki+24
7

x28 (Xi+25
R,15&Xi+25

R,8 )⊕Xi+25
L,16 ⊕Xi+25

R,10 ⊕ (Xi+25
R,11&Xi+25

R,4 )⊕Xi+25
L,12 k28 Ki+23

14 ⊕Ki+22
16 ⊕Ki+24

16 ⊕Ki+24
12

x29 Xi+25
R,4 ⊕ (Xi+25

R,5 &Xi+25
R,30 )⊕Xi+25

L,6 k29 Ki+24
6

x30 Xi+25
R,8 ⊕Xi+25

R,4 ⊕ (Xi+25
R,5 &Xi+25

R,30 )⊕Xi+25
L,6 k30 Ki+23

8 ⊕Ki+24
6

x31 Xi+25
R,30 ⊕ (Xi+25

R,31&Xi+25
R,24 )⊕Xi+25

L,0 k31 Ki+24
0

x11 = x1 ⊕ x7, x17 = x2 ⊕ x9

Time: (1.a) 226 ×N = 289.53 one-round encryptions. (1.b) 226 × 267.62 = 293.62 additons. 2. The exhaustive
phase needs 296−8 = 288 30-round encryptions.

31-round attack on Simon64/128. Expand one more round before Xi−4 and one more round after
Xi+25. The key bits of Ki+25 involved to obtain the x represented in Table 12 are

κ2 = (Ki+25
0 −Ki+25

2 ,Ki+25
4 −Ki+25

22 ,Ki+25
24 ,Ki+25

26 ,Ki+25
30 ,Ki+25

31 ),

in total 26 bits.

1. Guess each of 252 κ1||κ2

(a) Encrypt the N plaintexts by one round and decrypt coresponding ciphertext by one round. Compress
the internal states to a counter vectr of size 258.

(b) Do as first two steps of the 29-round attack
2. Rank the keys and exhaustive the candidates with the help of key schedule

Time: (1.a) 252 ×N = 2115.53 two-round encryptions. (1.b) 252 × 267.62 = 2119.62 additons. 2.The exhaustive
phase needs 2128−8 = 2120 31-round encryptions.
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B.3 Linear Attack on Simon96/K

The linear hull used to attack Simon96/K is

Xi
L,2 ⊕Xi

L,34 ⊕Xi
L,38 ⊕Xi

L,42 ⊕Xi
R,36 → Xi+30

L,2 ⊕X
i+30
L,42 ⊕X

i+30
L,46 ⊕X

i+30
R,0 ⊕X

i+30
R,40 ,

which is proposed in [6] with potential 2−94.2.

Table 13. Add 3 rounds before Xi
L,2 ⊕Xi

L,34 ⊕Xi
L,38 ⊕Xi

L,42 ⊕Xi
R,36 for Simon96

x0

Xi−3
R,2 ⊕ (Xi−3

L,1 &Xi−3
L,42)⊕Xi−3

R,34 ⊕ (Xi−3
L,33&Xi−3

L,26)⊕Xi−3
R,42⊕

k0

Ki−3
2 ⊕Ki−3

34 ⊕Ki−3
42 ⊕Ki−2

0

(Xi−3
L,41&Xi−3

L,34)⊕Xi−3
R,46 ⊕Xi−3

L,44 ⊕ (Xi−3
L,45&Xi−3

L,38)⊕Xi−3
R,30 ⊕Ki−2

32 ⊕Ki−2
40 ⊕Ki−3

46 ⊕Ki−3
30

⊕Xi−3
L,28 ⊕ (Xi−3

L,29&Xi−3
L,22) ⊕Ki−1

2 ⊕Ki−1
34 ⊕Ki−1

38 ⊕Ki−1
42

x1 Xi−3
R,47 ⊕Xi−3

L,45 ⊕ (Xi−3
L,46&Xi−3

L,39) k1 Ki−3
47

x2 Xi−3
R,40 ⊕Xi−3

L,38 ⊕ (Xi−3
L,39&Xi−3

L,32) k2 Ki−3
40

x3 Xi−3
R,31 ⊕Xi−3

L,29 ⊕ (Xi−3
L,30&Xi−3

L,23) k3 Ki−3
31

x4 Xi−3
R,24 ⊕Xi−3

L,22 ⊕ (Xi−3
L,23&Xi−3

L,16) k4 Ki−3
24

x5 Xi−3
R,39 ⊕Xi−3

L,37 ⊕ (Xi−3
L,38&Xi−3

L,31) k5 Ki−3
39

x6 Xi−3
R,32 ⊕Xi−3

L,30 ⊕ (Xi−3
L,31&Xi−3

L,24) k6 Ki−3
32

x7 Xi−3
R,47 ⊕Xi−3

L,45 ⊕ (Xi−3
L,46&Xi−3

L,39)⊕Xi−3
L,1 k7 Ki−3

47 ⊕Ki−2
1

x8 Xi−3
R,0 ⊕Xi−3

L,46 ⊕ (Xi−3
L,47&Xi−3

L,40) k8 Ki−3
0

x9 Xi−3
R,41 ⊕Xi−3

L,39 ⊕ (Xi−3
L,40&Xi−3

L,33) k9 Ki−3
41

x10 Xi−3
R,40 ⊕Xi−3

L,38 ⊕ (Xi−3
L,39&Xi−3

L,32)⊕Xi−3
L,42 k10 Ki−3

40 ⊕Ki−2
42

x11 Xi−3
R,34 ⊕Xi−3

L,32 ⊕ (Xi−3
L,33&Xi−3

L,26) k11 Ki−3
34

x12 Xi−3
R,31 ⊕Xi−3

L,29 ⊕ (Xi−3
L,30&Xi−3

L,23)⊕Xi−3
L,33 k12 Ki−3

31 ⊕Ki−2
33

x13 Xi−3
R,25 ⊕Xi−3

L,23 ⊕ (Xi−3
L,24&Xi−3

L,17) k13 Ki−3
25

x14 Xi−3
R,24 ⊕Xi−3

L,22 ⊕ (Xi−3
L,23&Xi−3

L,16)⊕Xi−3
L,26 k14 Ki−3

24 ⊕Ki−2
26

x15 Xi−3
R,18 ⊕Xi−3

L,16 ⊕ (Xi−3
L,17&Xi−3

L,10) k15 Ki−3
18

x16 Xi−3
R,35 ⊕Xi−3

L,33 ⊕ (Xi−3
L,34&Xi−3

L,27)⊕Xi−3
L,37 k16 Ki−3

35 ⊕Ki−2
37

x17 Xi−3
R,36 ⊕Xi−3

L,34 ⊕ (Xi−3
L,35&Xi−3

L,28) k17 Ki−3
36

x18 Xi−3
R,29 ⊕Xi−3

L,27 ⊕ (Xi−3
L,28&Xi−3

L,21) k18 Ki−3
29

x19 Xi−3
R,28 ⊕Xi−3

L,26 ⊕ (Xi−3
L,27&Xi−3

L,20)⊕Xi−3
L,30 k19 Ki−3

28 ⊕Ki−2
30

x20 Xi−3
R,22 ⊕Xi−3

L,20 ⊕ (Xi−3
L,21&Xi−3

L,14) k20 Ki−3
22

x21 Xi−3
R,39 ⊕Xi−3

L,37 ⊕ (Xi−3
L,38&Xi−3

L,31)⊕Xi−3
L,41 k21 Ki−3

39 ⊕Ki−2
41

x22 Xi−3
R,33 ⊕Xi−3

L,31 ⊕ (Xi−3
L,32&Xi−3

L,25) k22 Ki−3
33

x23 Xi−3
R,32 ⊕Xi−3

L,30 ⊕ (Xi−3
L,31&Xi−3

L,24)⊕Xi−3
L,34 k23 Ki−3

32 ⊕Ki−2
34

x24 Xi−3
R,26 ⊕Xi−3

L,24 ⊕ (Xi−3
L,25&Xi−3

L,18) k24 Ki−3
26

If we add three rounds before the linear hull, according to Table 13, Xi
L,2⊕Xi

L,34⊕Xi
L,38⊕Xi

L,42⊕Xi
R,36

can be represented as

x0 ⊕ k0 ⊕ ((x1 ⊕ k1)&(x2 ⊕ k2))⊕ ((x3 ⊕ k3)&(x4 ⊕ k4))⊕ ((x5 ⊕ k5)&(x6 ⊕ k6))

⊕ ((x7 ⊕ k7 ⊕ ((x8 ⊕ k8)&(x9 ⊕ k9)))&(x10 ⊕ k10 ⊕ ((x9 ⊕ k9)&(x11 ⊕ k11))))

⊕ ((x12 ⊕ k12 ⊕ ((x6 ⊕ k6)&(x13 ⊕ k13)))&(x14 ⊕ k14 ⊕ ((x13 ⊕ k13)&(x15 ⊕ k15))))

⊕ ((x16 ⊕ k16 ⊕ ((x17 ⊕ k17)&(x18 ⊕ k18)))&(x19 ⊕ k19 ⊕ ((x18 ⊕ k18)&(x20 ⊕ k20))))

⊕ ((x21 ⊕ k21 ⊕ ((x2 ⊕ k2)&(x22 ⊕ k22)))&(x23 ⊕ k23 ⊕ ((x22 ⊕ k22)&(x24 ⊕ k24))))

Compress the plaintexts: (Procedure Simon96-Head) At first, compress the plaintexts into a counter
vector V [x1 − x24] using the linear compression technique.

1. For each x3 − x20
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(a) Compress x1, x2, x21−x24 as Case f6 in Appendix A. There is 6-bit key (k1, k2, k21−k24) to store and
time is 28.36. So here the memory is about 218×26 = 224 counters and total time is 218×28.36 = 226.36.

2. For each x3, x4, x7 − x11, x16 − x20, k1, k2, k21 − k24

(a) Compress x5, x6, x12−x15 as Case f6 in Appendix A. There is 6-bit key (k5, k6, k12−k15) to store and
time is 28.36. So here the memory is about 218×26 = 224 counters and total time is 218×28.36 = 226.36.

3. For each x16 − x20, k1, k2, k5, k6, k12 − k15, k21 − k24

(a) Compress x3, x4, x7−x11 as Case f3 in Appendix A. There is 7-bit key (k3, k4, k7−k11) to store and
time is 29.25. So here the memory is about 217×27 = 224 counters and total time is 217×29.25 = 226.25.

4. For each k1 − k15, k21 − k24

(a) Compress x16 − x20, as Case f2 in Appendix A. There is 5-bit key (k16 − k20) to store and time is
26.46. So here the memory is about 219 × 25 = 224 counters and total time is 219 × 26.46 = 225.46.

5. The total time is about 228.15 additions and memory is O(224)

If we add four rounds after the linear hull, according to Table 14, Xi+30
L,2 ⊕X

i+30
L,42 ⊕X

i+30
L,46 ⊕X

i+30
R,0 ⊕X

i+30
R,40

can be represented as

x0 ⊕ k0 ⊕ ((x1 ⊕ k1)&(x2 ⊕ k2))⊕
((x3 ⊕ k3 ⊕ ((x4 ⊕ k4)&(x5 ⊕ k5)))&(x6 ⊕ k6 ⊕ ((x5 ⊕ k5)&(x7 ⊕ k7))))⊕
((x8 ⊕ k8 ⊕ ((x9 ⊕ k9)&(x10 ⊕ k10)))&(x11 ⊕ k11 ⊕ ((x10 ⊕ k10)&(x12 ⊕ k12))))⊕
((x13 ⊕ k13 ⊕ ((x14 ⊕ k14)&(x15 ⊕ k15)))&(x16 ⊕ k16 ⊕ ((x15 ⊕ k15)&(x17 ⊕ k17))))⊕
{(x18 ⊕ k18 ⊕ ((x19 ⊕ k19)&(x20 ⊕ k20))⊕
((x21 ⊕ k21 ⊕ ((x22 ⊕ k22)&(x23 ⊕ k23)))&(x24 ⊕ k24 ⊕ ((x23 ⊕ k23)&(x25 ⊕ k25)))))&

(x26 ⊕ k26 ⊕ ((x20 ⊕ k20)&(x27 ⊕ k27))⊕
((x24 ⊕ k24 ⊕ ((x23 ⊕ k23)&(x25 ⊕ k25)))&(x28 ⊕ k28 ⊕ ((x25 ⊕ k25)&(x29 ⊕ k29)))))}⊕
{(x30 ⊕ k30 ⊕ ((x31 ⊕ k31)&(x15 ⊕ k15))⊕
((x32 ⊕ k32 ⊕ ((x20 ⊕ k20)&(x27 ⊕ k27)))&(x33 ⊕ k33 ⊕ ((x27 ⊕ k27)&(x34 ⊕ k34)))))&

(x35 ⊕ k35 ⊕ ((x15 ⊕ k15)&(x17 ⊕ k17))⊕
((x33 ⊕ k33 ⊕ ((x27 ⊕ k27)&(x34 ⊕ k34)))&(x36 ⊕ k36 ⊕ ((x34 ⊕ k34)&(x37 ⊕ k37)))))}

Compress the ciphertexts: (Procedure Simon96-Tail) At first, compress the ciphertexts into a counter
vector V [x1 − x37] using the linear compression technique. To simplify our description of attack, we regard
the x20, x27 with underline as new variables x′20, x

′
27. It is the same with k20 and k27.

1. For each x8 − x37

(a) Compress x1 − x7 as Case f3 in Appendix A. There is 7-bit key (k1 − k7) to store and time is 29.25.
So here the memory is about 230 × 27 = 237 counters and total time is 230 × 29.25 = 239.25.

2. For each x13 − x37, k1 − k7

(a) Compress x8−x12 as Case f2 in Appendix A. There is 5-bit key (k8−k12) to store and time is 26.46.
So here the memory is about 232 × 25 = 237 counters and total time is 232 × 26.46 = 238.46.

3. For each x18, x19, x
′
20, x21 − x26, x

′
27, x28, x29, k1 − k12

(a) Compress x13 − x17, x20, x27, x30 − x37 as Case f7 in Appendix A. There is 15-bit key (k13 −
k17, k20, k27, k30 − k37) to store and time is 218.08. So here the memory is about 224 × 215 = 239

counters and total time is 224 × 218.08 = 242.08.
4. For each k1 − k17, k20, k27, k30 − k37

(a) Compress x18, x19, x
′
20, x21−x26, x

′
27, x28, x29, as Case f7 in Appendix A. There is 10-bit key (k18, k19,

k21 − k26, k28, k29) to store and time is 215.99. So here the memory is about 227 × 210 = 237 counters
and total time is 227 × 215.99 = 242.99.

5. The total time is less than 243.71 additions and memory is O(239).

37-round attack on Simon96/96. We add three rounds before and four rounds after the 30-round linear
distinguisher to attack 37-round Simon96/K. Suppose we use N = 2ε̄−2 = 295.2 known plaintext-ciphertext
pairs. Set advantage a = 8. The success probability would be 0.477. At first, compress the N plaintext-
ciphertext pairs to 224+37 counters according to Table 13 and 14. Suppose the plaintext be compressed to
xP and ciphertext be compressed to xC .
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Table 14. Add 4 rounds after Xi+30
L,2 ⊕Xi+30

L,42 ⊕Xi+30
L,46 ⊕Xi+30

R,0 ⊕Xi+30
R,40 for Simon96

x0

Xi+34
R,0 ⊕Xi+34

L,2 ⊕ (Xi+34
R,1 &Xi+34

R,42 )⊕Xi+34
R,40 ⊕Xi+34

L,42⊕
k0

Ki+33
2 ⊕Ki+33

34 ⊕Ki+33
38 ⊕Ki+33

42

(Xi+34
R,41&Xi+34

R,34 )⊕Xi+34
L,38 ⊕ (Xi+34

R,37&Xi+34
R,30 )⊕Xi+34

R,32⊕ ⊕Ki+32
36 ⊕Ki+31

2 ⊕Ki+31
38

Xi+34
L,34 ⊕ (Xi+34

R,33&Xi+34
R,26 ) ⊕Ki+31

42 ⊕Ki+30
0 ⊕Ki+31

40

x1 Xi+34
R,33 ⊕Xi+34

L,35 ⊕ (Xi+34
R,34&Xi+34

R,27 ) k1 Ki+33
35

x2 Xi+34
R,26 ⊕Xi+34

L,28 ⊕ (Xi+34
R,27&Xi+34

R,20 ) k2 Ki+33
28

x3 Xi+34
R,45 ⊕Xi+34

L,47 ⊕ (Xi+34
R,46&Xi+34

R,39 )⊕Xi+34
R,1 k3 Ki+33

47 ⊕Ki+32
1

x4 Xi+34
R,46 ⊕Xi+34

L,0 ⊕ (Xi+34
R,47&Xi+34

R,40 ) k4 Ki+33
0

x5 Xi+34
R,39 ⊕Xi+34

L,41 ⊕ (Xi+34
R,40&Xi+34

R,33 ) k5 Ki+33
41

x6 Xi+34
R,38 ⊕Xi+34

L,40 ⊕ (Xi+34
R,39&Xi+34

R,32 )⊕Xi+34
R,42 k6 Ki+33

40 ⊕Ki+32
42

x7 Xi+34
R,32 ⊕Xi+34

L,34 ⊕ (Xi+34
R,33&Xi+34

R,26 ) k7 Ki+33
34

x8 Xi+34
R,37 ⊕Xi+34

L,39 ⊕ (Xi+34
R,38&Xi+34

R,31 )⊕Xi+34
R,41 k8 Ki+33

39 ⊕Ki+32
41

x9 Xi+34
R,38 ⊕Xi+34

L,40 ⊕ (Xi+34
R,39&Xi+34

R,32 ) k9 Ki+33
40

x10 Xi+34
R,31 ⊕Xi+34

L,33 ⊕ (Xi+34
R,32&Xi+34

R,25 ) k10 Ki+33
33

x11 Xi+34
R,30 ⊕Xi+34

L,32 ⊕ (Xi+34
R,31&Xi+34

R,24 )⊕Xi+34
R,34 k11 Ki+33

32 ⊕Ki+32
34

x12 Xi+34
R,24 ⊕Xi+34

L,26 ⊕ (Xi+34
R,25&Xi+34

R,18 ) k12 Ki+33
26

x13 Xi+34
R,33 ⊕Xi+34

L,35 ⊕ (Xi+34
R,34&Xi+34

R,27 )⊕Xi+34
R,37 k13 Ki+33

35 ⊕Ki+32
37

x14 Xi+34
R,34 ⊕Xi+34

L,36 ⊕ (Xi+34
R,35&Xi+34

R,28 ) k14 Ki+33
36

x15 Xi+34
R,27 ⊕Xi+34

L,29 ⊕ (Xi+34
R,28&Xi+34

R,21 ) k15 Ki+33
29

x16 Xi+34
R,26 ⊕Xi+34

L,28 ⊕ (Xi+34
R,27&Xi+34

R,20 )⊕Xi+34
R,30 k16 Ki+33

28 ⊕Ki+32
30

x17 Xi+34
R,20 ⊕Xi+34

L,22 ⊕ (Xi+34
R,21&Xi+34

R,14 ) k17 Ki+33
22

x18 Xi+34
R,41 ⊕Xi+34

L,43 ⊕ (Xi+34
R,42&Xi+34

R,35 )⊕Xi+34
L,47 ⊕ (Xi+34

R,46&Xi+34
R,39 ) k18 Ki+33

43 ⊕Ki+33
47 ⊕Ki+32

45 ⊕Ki+31
47

x19 Xi+34
R,42 ⊕Xi+34

L,44 ⊕ (Xi+34
R,43&Xi+34

R,36 ) k19 Ki+33
44

x20 Xi+34
R,35 ⊕Xi+34

L,37 ⊕ (Xi+34
R,36&Xi+34

R,29 ) k20 Ki+33
37

x21 Xi+34
R,42 ⊕Xi+34

L,44 ⊕ (Xi+34
R,43&Xi+34

R,36 )⊕Xi+34
R,46 k21 Ki+33

44 ⊕Ki+32
46

x22 Xi+34
R,43 ⊕Xi+34

L,45 ⊕ (Xi+34
R,44&Xi+34

R,37 ) k22 Ki+33
45

x23 Xi+34
R,36 ⊕Xi+34

L,38 ⊕ (Xi+34
R,37&Xi+34

R,30 ) k23 Ki+33
38

x24 Xi+34
R,35 ⊕Xi+34

L,37 ⊕ (Xi+34
R,36&Xi+34

R,29 )⊕Xi+34
R,39 k24 Ki+33

37 ⊕Ki+32
39

x25 Xi+34
R,29 ⊕Xi+34

L,31 ⊕ (Xi+34
R,30&Xi+34

R,23 ) k25 Ki+33
31

x26 Xi+34
R,34 ⊕Xi+34

L,36 ⊕ (Xi+34
R,35&Xi+34

R,28 )⊕Xi+34
L,40 ⊕ (Xi+34

R,39&Xi+34
R,32 ) k26 Ki+33

36 ⊕Ki+33
40 ⊕Ki+32

38 ⊕Ki+31
40

x27 Xi+34
R,28 ⊕Xi+34

L,30 ⊕ (Xi+34
R,29&Xi+34

R,22 ) k27 Ki+33
30

x28 Xi+34
R,28 ⊕Xi+34

L,30 ⊕ (Xi+34
R,29&Xi+34

R,22 )⊕Xi+34
R,32 k28 Ki+33

30 ⊕Ki+32
32

x29 Xi+34
R,22 ⊕Xi+34

L,24 ⊕ (Xi+34
R,23&Xi+34

R,16 ) k29 Ki+33
24

x30 Xi+34
R,33 ⊕Xi+34

L,35 ⊕ (Xi+34
R,34&Xi+34

R,27 )⊕Xi+34
L,39 ⊕ (Xi+34

R,38&Xi+34
R,31 ) k30 Ki+33

35 ⊕Ki+33
39 ⊕Ki+32

37 ⊕Ki+31
39

x31 Xi+34
R,34 ⊕Xi+34

L,36 ⊕ (Xi+34
R,35&Xi+34

R,28 ) k31 Ki+33
36

x32 Xi+34
R,34 ⊕Xi+34

L,36 ⊕ (Xi+34
R,35&Xi+34

R,28 )⊕Xi+34
R,38 k32 Ki+33

36 ⊕Ki+32
38

x33 Xi+34
R,27 ⊕Xi+34

L,29 ⊕ (Xi+34
R,28&Xi+34

R,21 )⊕Xi+34
R,31 k33 Ki+33

29 ⊕Ki+32
31

x34 Xi+34
R,21 ⊕Xi+34

L,23 ⊕ (Xi+34
R,22&Xi+34

R,15 ) k34 Ki+33
23

x35 Xi+34
R,26 ⊕Xi+34

L,28 ⊕ (Xi+34
R,27&Xi+34

R,20 )⊕Xi+34
L,32 ⊕ (Xi+34

R,31&Xi+34
R,24 ) k35 Ki+33

28 ⊕Ki+33
32 ⊕Ki+32

30 ⊕Ki+31
32

x36 Xi+34
R,20 ⊕Xi+34

L,22 ⊕ (Xi+34
R,21&Xi+34

R,14 )⊕Xi+34
R,24 k36 Ki+33

22 ⊕Ki+32
24

x37 Xi+34
R,14 ⊕Xi+34

L,16 ⊕ (Xi+34
R,15&Xi+34

R,8 ) k37 Ki+33
16
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1. For each of 237 xC
(a) Call Procedure Simon96-Head, and store the counters according to the keys used in the first three

rounds
2. For each of 224 keys involved in the first three rounds

(a) Call Procedure Simon96-Tail, and store the counters according to the keys used in the last four
rounds

3. Rank the keys and exhaustive the candidates with the help of key schedule

Time: 1. 237 × 228.15 = 265.15 additions; 2. 224 × 243.71 = 267.71 additions. So it needs 265.15 + 267.71 = 267.94

additions to get the bias for the subkeys. 3. The exhaustive phase needs 296−8 = 288 37-round encryptions.

38-round attack on Simon96/144. Expand one more round before Xi−3. The key bits of Ki−4 involved
to obtain the x represented in Table 13 are κ1 = (Ki−4

1 ,Ki−4
10 ,Ki−4

14 ,Ki−4
16 − K

i−4
18 ,Ki−4

20 − K
i−4
35 ,Ki−4

37 −
Ki−4

42 ,Ki−4
45 −K

i−4
47 ), in total 31 bits.

1. Guess each of 231 κ1

(a) Encrypt the N plaintexts by one round. Compress the internal states to a counter vectr of size 261.
(b) Do as first two steps of the 37-round attack

2. Rank the keys and exhaustive the candidates with the help of key schedule

Time: (1.a) 231 × N = 2126.2 one-round encryptions. (1.b) 231 × 267.94 = 298.94 additons. 2.The exhaustive
phase needs 2144−8 = 2136 38-round encryptions.

B.4 Linear Attack on Simon128/K

The linear hull used to attack Simon128/K is

Xi
L,2 ⊕Xi

L,58 ⊕Xi
L,62 ⊕Xi

R,60 → Xi+41
L,60 ⊕X

i+41
R,2 ⊕X

i+41
R,58 ⊕X

i+41
R,62 ,

which is proposed in [6] with popential 2−126.6.
If we add four rounds before the linear hull, according to Table 15, Xi

L,2 ⊕Xi
L,58 ⊕Xi

L,62 ⊕Xi
R,60 can be

represented as

x0 ⊕ k0 ⊕ ((x1 ⊕ k1)&(x2 ⊕ k2))⊕ ((x3 ⊕ k3)&(x4 ⊕ k4))⊕ ((x5 ⊕ k5)&(x6 ⊕ k6))⊕
((x7 ⊕ k7 ⊕ ((x8 ⊕ k8)&(x9 ⊕ k9)))&(x10 ⊕ k10 ⊕ ((x9 ⊕ k9)&(x11 ⊕ k11))))⊕
((x12 ⊕ k12 ⊕ ((x13 ⊕ k13)&(x14 ⊕ k14)))&(x15 ⊕ k15 ⊕ ((x13 ⊕ k13)&(x16 ⊕ k16))))⊕
{(x17 ⊕ k17 ⊕ ((x8 ⊕ k8)&(x9 ⊕ k9))⊕
((x18 ⊕ k18 ⊕ ((x19 ⊕ k19)&(x20 ⊕ k20)))&(x21 ⊕ k21 ⊕ ((x20 ⊕ k20)&(x22 ⊕ k22)))))&

(x23 ⊕ k23 ⊕ ((x9 ⊕ k9)&(x11 ⊕ k11))⊕
((x21 ⊕ k21 ⊕ ((x20 ⊕ k20)&(x22 ⊕ k22)))&(x24 ⊕ k24 ⊕ ((x22 ⊕ k22)&(x25 ⊕ k25)))))}⊕
{(x26 ⊕ k26 ⊕ ((x13 ⊕ k13)&(x16 ⊕ k16))⊕
((x10 ⊕ k10 ⊕ ((x9 ⊕ k9)&(x11 ⊕ k11)))&(x27 ⊕ k27 ⊕ ((x11 ⊕ k11)&(x28 ⊕ k28)))))&

(x29 ⊕ k29 ⊕ ((x13 ⊕ k13)&(x14 ⊕ k14))⊕
((x27 ⊕ k27 ⊕ ((x11 ⊕ k11)&(x28 ⊕ k28)))&(x30 ⊕ k30 ⊕ ((x28 ⊕ k28)&(x34 ⊕ k34)))))}⊕
{(x32 ⊕ k32 ⊕ ((x2 ⊕ k2)&(x33 ⊕ k33))⊕
((x34 ⊕ k34 ⊕ ((x35 ⊕ k35)&(x36 ⊕ k36)))&(x37 ⊕ k37 ⊕ ((x36 ⊕ k36)&(x38 ⊕ k38)))))&

(x39 ⊕ k39 ⊕ ((x33 ⊕ k33)&(x40 ⊕ k40))⊕
((x37 ⊕ k37 ⊕ ((x36 ⊕ k36)&(x38 ⊕ k38)))&(x41 ⊕ k41 ⊕ ((x38 ⊕ k38)&(x42 ⊕ k42)))))}

Compress the plaintexts: (Procedure Simon128-Head) At first, compress the plaintexts into a counter
vector V [x1 − x42]. In fact, there are 238 elements for vector V , since x17 = x1 ⊕ x7, x23 = x2 ⊕ x10, x26 =

26



x5 ⊕ x15 and x29 = x6 ⊕ x12. To simplify our description, we introduce the situations that the XOR for
the guessed k bit and corresponding x bit is zero in Step 2 to Step 9, since the representation of the target
parity bit in another situation has same form with it. x2, k2 with underline shown above are regarded as new
variables x′2, k′2, independent of x2, k2.

1. Guess k1, k2, k5, k6

(a) x1, x2, x5, x6 can be removed and the index value for counter vectors becomes x′2, x3, x4, x7 − x42.
There are 238 new counters and the counter values are refreshed according to ((x1⊕k1)&(x2⊕k2))⊕
((x5 ⊕ k5)&(x6 ⊕ k6)). The time is 238 × 24 = 242 simple calculations.

2. Guess k13. Since x13 ⊕ k13 = 0, x14, x16 can be compressed. The time is 235 × 3 additions.
3. Guess k9. Since x9 ⊕ k9 = 0, x8 can be compressed. The time is 233 additions.
4. Guess k20. Since x20 ⊕ k20 = 0, x19 can be compressed. The time is 231 additions.
5. Guess k22. Since x22 ⊕ k22 = 0, x25 can be compressed. The time is 229 additions.
6. Guess k28. Since x28 ⊕ k28 = 0, x11, x34 can be compressed. The time is 226 × 3 additions.
7. Guess k36. Since x36 ⊕ k36 = 0, x35 can be compressed. The time is 224 additions.
8. Guess k33. Since x33⊕ k33 = 0, x2 with underline and x40 can be compressed. The time is 222 additions.
9. Guess k38. Since x38 ⊕ k38 = 0, x42 can be compressed. The time is 220 additions.
10. After above guess and split, remained bits for x and k are bit 3,4,7,10,12,15,17,18,21,23,24,26,27,29,30,32,

34,37, 39,41. We can compress x3, x4, x17, x18, x21, x23, x24 as case f3 in Appendix A. The time is 213 ×
29.25 = 222.25. Then we compress x7, x10, x26, x27, x29, x30 as case f6 in Appendix A. The time is 214 ×
28.36 = 222.36. At last, we compress x12, x15, x32, x34, x37, x39, x41 as case f3 in Appendix A. The time is
213 × 29.25 = 222.25.

11. Calculate the other situations as above.

Time is estimated from the inner part to outer part. Step 10 needs about T10 = 223.87 additions. In Step 9,
the two cases, x38 ⊕ k38 = 0, x38 ⊕ k38 = 1 have same time complexity and there are two possible guesses
for k38. So the total time for Step 9 and 10 is T9 = 2× ((220 + T10)× 2 + 221) = 226.05, where 221 is the time
for combination. Similarly, the time for Step 2 to Step 10 is as follows.

Step Time
9-10 T9 = 2× ((220 + T10)× 2 + 221) = 226.05

8-10 T8 = 2× ((222 + T9)× 2 + 223) = 228.21

7-10 T7 = 2× ((224 + T8)× 2 + 225) = 230.36

6-10 T6 = 2× ((226 × 3 + T7)× 2 + 228) = 232.67

5-10 T5 = 2× ((229 + T6)× 2 + 230) = 234.88

4-10 T4 = 2× ((231 + T5)× 2 + 232) = 237.06

3-10 T3 = 2× ((233 + T4)× 2 + 234) = 239.22

2-10 T2 = 2× ((235 × 3 + T3)× 2 + 237) = 241.56

So in total, the time is 241.56 × 24 + 242 ≈ 245.68. The memory is about O(242) counters.

Compress the ciphertexts: (Procedure Simon128-Tail) Since the input active bits and output active
bits in the linear hull distinguisher for Simon128 are one-to-one, the representation for Xi+41

L,60 ⊕ X
i+41
R,2 ⊕

Xi+41
R,58 ⊕X

i+41
R,62 expanding four rounds (see Table 16) are same with that for Xi

L,2 ⊕Xi
L,58 ⊕Xi

L,62 ⊕Xi
R,60.

So at first compress the ciphertexts into a counter vector V [x1−x42], then do as Procedure Simon128-Head.

49-round attack on Simon128/128. We add four rounds before and after the 41-round linear hull
distinguisher to attack 49-round Simon128/K. We use N = 2ε̄−2 = 2127.6 known plaintexts. Set advantage
a = 8. The success probability would be 0.477. At first, compress the plaintext-ciphertext pairs to 238+38

counters according to Table 15 and Table 16. Suppose the plaintext be compressed to xP and ciphertext be
compressed to xC .

1. For each of 238 xC
(a) Call Procedure Simon128-Head, and store the keys used in the first four rounds

2. For each of 242 keys involved in the first four rounds
(a) Call Procedure Simon128-Tail, and store the keys used in the last four rounds
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3. Rank the keys and exhaustive the candidates with the help of key schedule.

Time: 1. 238 × 245.68 = 283.68 additions. 2. 242 × 245.68 = 287.68. So the total time to compute the bias is
283.68 + 287.68 ≈ 287.77 3. The exhaustive phase needs 2128−8 = 2120 49-round encryptions.

51-round attack on Simon128/192. We add five rounds before and after the 41-round linear hull distin-
guisher to attack 51-round Simon128/K. Compared with the 49-round attack, we expand one more round
at each side. To get the x represented in Table 15, we should know the 0, 2, 26, 30, 32− 34, 36− 63 bits (35
bits) of Xi−5

L and the 1, 34, 38, 40− 42, 44− 59, 61− 63 bits (25 bits) of Xi−5
R . Notice that the input parity

bit of the linear hull is linear with Xi−5
L,2 and this bit can be compressed at first. So we can compress the

plaintexts into one counter vector with 234+25 = 259 elements. The key bits involved in round i− 5 are the
0, 26, 30, 32−34, 36−63 (34 bits) of Ki−5. Similarly, we can compress the ciphertexts to a counter vector with
259 elements and there are 34 bits of Ki+45 involved. So, at first, we compress the the plaintext-ciphertext
pairs to a counter vector of size 259+59 = 2118.

1. Guess the 234 bits of Ki−5

(a) Encrypt the plaintexts by one round and compress the states into a counter vector of size 238+59 = 297

2. Guess the 234 bits of Ki+45

(a) Decrypt the ciphertexts by one round and compress the states into a counter vector of size 238+38 =
276

3. Do as Step 1 and 2 in the 49-round attack
4. Rank the keys and exhaustive the candidates with the help of key schedule.

Time: 1. 2118 × 234 = 2152 one-round encryptions. 2. 297 × 234+34 = 2165 one-round encryptions. 3. 268 ×
287.77 = 2155.77 additions. So the total time to compute the bias is 2152 + 2165 ≈ 2165 one-round encryptions
and 2155.77 additions, which is approximately equal to 2165 one-round encryptions. 4. The exhaustive phase
needs 2192−8 = 2184 51-round encryptions.

53-round attack on Simon128/256. We add six rounds before and after the 41-round linear hull distin-
guisher to attack 53-round Simon128/K. Compared with the 51-round attack, we expand one more round
at each side. The 1, 18, 22, 24− 26, 28− 63 bits (42 bits) of Ki−6 and Ki+45 are involved in the attack.

1. Guess the 242+42 bits of Ki−6,Ki+46 involved
(a) Encrypt the plaintexts by one round and decrypt the corresponding ciphertext by one round

2. Do as Step 1-3 in the 51-round attack
3. Rank the keys and exhaustive the candidates with the help of key schedule.

Time: 1. 2127.6×284 = 2211.6 two-round encryptions. 2. 2165×284 = 2249 one-round encryptions. So the total
time to compute the bias is about 2249 one-round encryptions. 3. Since K = 256, the exhaustive phase needs
2256−8 = 2248 53-round encryptions.
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Table 15. 4 rounds beofre Xi
L,2 ⊕Xi

L,58 ⊕Xi
L,62 ⊕Xi

R,60 for Simon128

x0 Xi−4
L,2 ⊕Xi−4

L,50 ⊕Xi−4
R,52 ⊕ (Xi−4

L,51&Xi−4
L,44)⊕Xi−4

L,54 ⊕Xi−4
L,58 k0

Ki−4
52 ⊕Ki−2

0 ⊕Ki−3
2 ⊕Ki−3

54 ⊕Ki−2
56

⊕Ki−3
58 ⊕Ki−1

2 ⊕ ki−1
58 ⊕Ki−1

62

x1 Xi−4
L,63 ⊕Xi−4

R,1 ⊕ (Xi−4
L,0 &Xi−4

L,57) k1 Ki−4
1

x2 Xi−4
L,56 ⊕Xi−4

R,58 ⊕ (Xi−4
L,57&Xi−4

L,50) k2 Ki−4
58

x3 Xi−4
L,51 ⊕Xi−4

R,53 ⊕ (Xi−4
L,52&Xi−4

L,45) k3 Ki−4
53

x4 Xi−4
L,44 ⊕Xi−4

R,46 ⊕ (Xi−4
L,45&Xi−4

L,38) k4 Ki−4
46

x5 Xi−4
L,55 ⊕Xi−4

R,57 ⊕ (Xi−4
L,56&Xi−4

L,49) k5 Ki−4
57

x6 Xi−4
L,48 ⊕Xi−4

R,50 ⊕ (Xi−4
L,49&Xi−4

L,42) k6 Ki−4
50

x7 Xi−4
L,59 ⊕Xi−4

R,61 ⊕ (Xi−4
L,60&Xi−4

L,53)⊕Xi−4
L,63 k7 Ki−4

61 ⊕Ki−3
63

x8 Xi−4
L,60 ⊕Xi−4

R,62 ⊕ (Xi−4
L,61&Xi−4

L,54) k8 Ki−4
62

x9 Xi−4
L,53 ⊕Xi−4

R,55 ⊕ (Xi−4
L,54&Xi−4

L,47) k9 Ki−4
55

x10 Xi−4
L,52 ⊕Xi−4

R,54 ⊕ (Xi−4
L,53&Xi−4

L,46)⊕Xi−4
L,56 k10 Ki−4

54 ⊕Ki−3
56

x11 Xi−4
L,46 ⊕Xi−4

R,48 ⊕ (Xi−4
L,47&Xi−4

L,40) k11 Ki−4
48

x12 Xi−4
L,44 ⊕Xi−4

R,46 ⊕ (Xi−4
L,45&Xi−4

L,38)⊕Xi−4
L,48 k12 Ki−4

46 ⊕Ki−3
48

x13 Xi−4
L,45 ⊕Xi−4

R,47 ⊕ (Xi−4
L,46&Xi−4

L,39) k13 Ki−4
47

x14 Xi−4
L,38 ⊕Xi−4

R,40 ⊕ (Xi−4
L,39&Xi−4

L,32) k14 Ki−4
40

x15 Xi−4
L,51 ⊕Xi−4

R,53 ⊕ (Xi−4
L,52&Xi−4

L,45)⊕Xi−4
L,55 k15 Ki−4

53 ⊕Ki−3
55

x16 Xi−4
L,52 ⊕Xi−4

R,54 ⊕ (Xi−4
L,53&Xi−4

L,46) k16 Ki−4
54

x17 Xi−4
L,59 ⊕Xi−4

R,61 ⊕ (Xi−4
L,60&Xi−4

L,53)⊕Xi−4
R,1 ⊕ (Xi−4

L,0 &Xi−4
L,57) k17 Ki−4

1 ⊕Ki−4
61 ⊕Ki−3

63 ⊕Ki−2
1

x18 Xi−4
L,60 ⊕Xi−4

R,62 ⊕ (Xi−4
L,61&Xi−4

L,54)⊕Xi−4
L,0 k18 Ki−4

62 ⊕Ki−3
0

x19 Xi−4
L,61 ⊕Xi−4

R,63 ⊕ (Xi−4
L,62&Xi−4

L,55) k19 Ki−4
63

x20 Xi−4
L,54 ⊕Xi−4

R,56 ⊕ (Xi−4
L,55&Xi−4

L,48) k20 Ki−4
56

x21 Xi−4
L,53 ⊕Xi−4

R,55 ⊕ (Xi−4
L,54&Xi−4

L,47)⊕Xi−4
L,57 k21 Ki−4

55 ⊕Ki−3
57

x22 Xi−4
L,47 ⊕Xi−4

R,49 ⊕ (Xi−4
L,48&Xi−4

L,41) k22 Ki−4
49

x23 Xi−4
L,52 ⊕Xi−4

R,54 ⊕ (Xi−4
L,53&Xi−4

L,46)⊕Xi−4
R,58 ⊕ (Xi−4

L,57&Xi−4
L,50) k23 Ki−4

54 ⊕Ki−4
58 ⊕Ki−3

56 ⊕Ki−2
58

x24 Xi−4
L,46 ⊕Xi−4

R,48 ⊕ (Xi−4
L,47&Xi−4

L,40)⊕XI−4
L,50 k24 Ki−4

48 ⊕Ki−3
50

x25 Xi−4
L,40 ⊕Xi−4

R,42 ⊕ (Xi−4
L,41&Xi−4

L,34) k25 Ki−4
42

x26 Xi−4
L,51 ⊕Xi−4

R,53 ⊕ (Xi−4
L,52&Xi−4

L,45)⊕Xi−4
R,57 ⊕ (Xi−4

L,56&Xi−4
L,49) k26 Ki−4

53 ⊕Ki−4
57 ⊕Ki−3

55 ⊕Ki−2
57

x27 Xi−4
L,45 ⊕Xi−4

R,47 ⊕ (Xi−4
L,46&Xi−4

L,39)⊕Xi−4
L,49 k27 Ki−4

49 ⊕Ki−3
49

x28 Xi−4
L,39 ⊕Xi−4

R,41 ⊕ (Xi−4
L,40&Xi−4

L,33) k28 Ki−4
41

x29 Xi−4
L,44 ⊕Xi−4

R,46 ⊕ (Xi−4
L,45&Xi−4

L,38)⊕Xi−4
R,50 ⊕ (Xi−4

L,49&Xi−4
L,42) k29 Ki−4

46 ⊕Ki−4
50 ⊕Ki−3

48 ⊕Ki−2
50

x30 Xi−4
L,38 ⊕Xi−4

R,40 ⊕ (Xi−4
L,39&Xi−4

L,32)⊕Xi−4
L,42 k30 Ki−4

40 ⊕Ki−3
42

x31 Xi−4
L,32 ⊕Xi−4

R,34 ⊕ (Xi−4
L,33&Xi−4

L,26) k31 Ki−4
34

x32 Xi−4
L,55 ⊕Xi−4

R,57 ⊕ (Xi−4
L,56&Xi−4

L,49) ⊕Xi−4
R,61 ⊕ (Xi−4

L,60&Xi−4
L,53) k32 Ki−4

57 ⊕Ki−4
61 ⊕Ki−3

59 ⊕Ki−2
61

x33 Xi−4
L,49 ⊕Xi−4

R,51 ⊕ (Xi−4
L,50&Xi−4

L,43) k33 Ki−4
51

x34 Xi−4
L,56 ⊕Xi−4

R,58 ⊕ (Xi−4
L,57&Xi−4

L,50)⊕Xi−4
L,60 k34 Ki−4

58 ⊕Ki−3
60

x35 Xi−4
L,57 ⊕Xi−4

R,59 ⊕ (Xi−4
L,58&Xi−4

L,51) k35 Ki−4
59

x36 Xi−4
L,50 ⊕Xi−4

R,52 ⊕ (Xi−4
L,51&Xi−4

L,44) k36 Ki−4
52

x37 Xi−4
L,49 ⊕Xi−4

R,51 ⊕ (Xi−4
L,50&Xi−4

L,43)⊕Xi−4
L,53 k37 Ki−4

51 ⊕Ki−3
53

x38 Xi−4
L,43 ⊕Xi−4

R,45 ⊕ (Xi−4
L,44&Xi−4

L,37) k38 Ki−4
45

x39 Xi−4
L,48 ⊕Xi−4

R,50 ⊕ (Xi−4
L,49&Xi−4

L,42)⊕Xi−4
R,54 ⊕ (Xi−4

L,53&Xi−4
L,46) k39 Ki−4

50 ⊕Ki−4
54 ⊕Ki−3

52 ⊕Ki−2
54

x40 Xi−4
L,42 ⊕Xi−4

R,44 ⊕ (Xi−4
L,43&Xi−4

L,36) k40 Ki−4
44

x41 Xi−4
L,42 ⊕Xi−4

R,44 ⊕ (Xi−4
L,43&Xi−4

L,36)⊕Xi−4
L,46 k41 Ki−4

44 ⊕Ki−3
46

x42 Xi−4
L,36 ⊕Xi−4

R,38 ⊕ (Xi−4
L,37&Xi−4

L,30) k42 Ki−4
38

Notice: x17 = x1 ⊕ x7, x23 = x2 ⊕ x10, x26 = x5 ⊕ x15, x29 = x6 ⊕ x12
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Table 16. 4 rounds after Xi+41
L,60 ⊕Xi+41

R,2 ⊕Xi+41
R,58 ⊕Xi+41

R,62 for Simon128

x0 Xi+44
R,2 ⊕Xi+44

R,50 ⊕Xi+44
L,52 ⊕ (Xi+44

R,51&Xi+44
R,44 )⊕Xi+44

R,54 ⊕Xi+44
R,58 k0

Ki+44
52 ⊕Ki+42

0 ⊕Ki+43
2 ⊕Ki+43

54 ⊕Ki+42
56

⊕Ki+43
58 ⊕Ki+41

2 ⊕ ki+41
58 ⊕Ki+41

62

x1 Xi+44
R,63 ⊕Xi+44

L,1 ⊕ (Xi+44
R,0 &Xi+44

R,57 ) k1 Ki+44
1

x2 Xi+44
R,56 ⊕Xi+44

L,58 ⊕ (Xi+44
R,57&Xi+44

R,50 ) k2 Ki+44
58

x3 Xi+44
R,51 ⊕Xi+44

L,53 ⊕ (Xi+44
R,52&Xi+44

R,45 ) k3 Ki+44
53

x4 Xi+44
R,44 ⊕Xi+44

L,46 ⊕ (Xi+44
R,45&Xi+44

R,38 ) k4 Ki+44
46

x5 Xi+44
R,55 ⊕Xi+44

L,57 ⊕ (Xi+44
R,56&Xi+44

R,49 ) k5 Ki+44
57

x6 Xi+44
R,48 ⊕Xi+44

L,50 ⊕ (Xi+44
R,49&Xi+44

R,42 ) k6 Ki+44
50

x7 Xi+44
R,59 ⊕Xi+44

L,61 ⊕ (Xi+44
R,60&Xi+44

R,53 )⊕Xi+44
R,63 k7 Ki+44

61 ⊕Ki+43
63

x8 Xi+44
R,60 ⊕Xi+44

L,62 ⊕ (Xi+44
R,61&Xi+44

R,54 ) k8 Ki+44
62

x9 Xi+44
R,53 ⊕Xi+44

L,55 ⊕ (Xi+44
R,54&Xi+44

R,47 ) k9 Ki+44
55

x10 Xi+44
R,52 ⊕Xi+44

L,54 ⊕ (Xi+44
R,53&Xi+44

R,46 )⊕Xi+44
R,56 k10 Ki+44

54 ⊕Ki+43
56

x11 Xi+44
R,46 ⊕Xi+44

L,48 ⊕ (Xi+44
R,47&Xi+44

R,40 ) k11 Ki+44
48

x12 Xi+44
R,44 ⊕Xi+44

L,46 ⊕ (Xi+44
R,45&Xi+44

R,38 )⊕Xi+44
R,48 k12 Ki+44

46 ⊕Ki+43
48

x13 Xi+44
R,45 ⊕Xi+44

L,47 ⊕ (Xi+44
R,46&Xi+44

R,39 ) k13 Ki+44
47

x14 Xi+44
R,38 ⊕Xi+44

L,40 ⊕ (Xi+44
R,39&Xi+44

R,32 ) k14 Ki+44
40

x15 Xi+44
R,51 ⊕Xi+44

L,53 ⊕ (Xi+44
R,52&Xi+44

R,45 )⊕Xi+44
R,55 k15 Ki+44

53 ⊕Ki+43
55

x16 Xi+44
R,52 ⊕Xi+44

L,54 ⊕ (Xi+44
R,53&Xi+44

R,46 ) k16 Ki+44
54

x17 Xi+44
R,59 ⊕Xi+44

L,61 ⊕ (Xi+44
R,60&Xi+44

R,53 )⊕Xi+44
L,1 ⊕ (Xi+44

R,0 &Xi+44
R,57 ) k17 Ki+44

1 ⊕Ki+44
61 ⊕Ki+43

63 ⊕Ki+42
1

x18 Xi+44
R,60 ⊕Xi+44

L,62 ⊕ (Xi+44
R,61&Xi+44

R,54 )⊕Xi+44
R,0 k18 Ki+44

62 ⊕Ki+43
0

x19 Xi+44
R,61 ⊕Xi+44

L,63 ⊕ (Xi+44
R,62&Xi+44

R,55 ) k19 Ki+44
63

x20 Xi+44
R,54 ⊕Xi+44

L,56 ⊕ (Xi+44
R,55&Xi+44

R,48 ) k20 Ki+44
56

x21 Xi+44
R,53 ⊕Xi+44

L,55 ⊕ (Xi+44
R,54&Xi+44

R,47 )⊕Xi+44
R,57 k21 Ki+44

55 ⊕Ki+43
57

x22 Xi+44
R,47 ⊕Xi+44

L,49 ⊕ (Xi+44
R,48&Xi+44

R,41 ) k22 Ki+44
49

x23 Xi+44
R,52 ⊕Xi+44

L,54 ⊕ (Xi+44
R,53&Xi+44

R,46 )⊕Xi+44
L,58 ⊕ (Xi+44

R,57&Xi+44
R,50 ) k23 Ki+44

54 ⊕Ki+44
58 ⊕Ki+43

56 ⊕Ki+42
58

x24 Xi+44
R,46 ⊕Xi+44

L,48 ⊕ (Xi+44
R,47&Xi+44

R,40 )⊕Xi+44
R,50 k24 Ki+44

48 ⊕Ki+43
50

x25 Xi+44
R,40 ⊕Xi+44

L,42 ⊕ (Xi+44
R,41&Xi+44

R,34 ) k25 Ki+44
42

x26 Xi+44
R,51 ⊕Xi+44

L,53 ⊕ (Xi+44
R,52&Xi+44

R,45 )⊕Xi+44
L,57 ⊕ (Xi+44

R,56&Xi+44
R,49 ) k26 Ki+44

53 ⊕Ki+44
57 ⊕Ki+43

55 ⊕Ki+42
57

x27 Xi+44
R,45 ⊕Xi+44

L,47 ⊕ (Xi+44
R,46&Xi+44

R,39 )⊕Xi+44
R,49 k27 Ki+44

49 ⊕Ki+43
49

x28 Xi+44
R,39 ⊕Xi+44

L,41 ⊕ (Xi+44
R,40&Xi+44

R,33 ) k28 Ki+44
41

x29 Xi+44
R,44 ⊕Xi+44

L,46 ⊕ (Xi+44
R,45&Xi+44

R,38 )⊕Xi+44
L,50 ⊕ (Xi+44

R,49&Xi+44
R,42 ) k29 Ki+44

46 ⊕Ki+44
50 ⊕Ki+43

48 ⊕Ki+42
50

x30 Xi+44
R,38 ⊕Xi+44

L,40 ⊕ (Xi+44
R,39&Xi+44

R,32 )⊕Xi+44
R,42 k30 Ki+44

40 ⊕Ki+43
42

x31 Xi+44
R,32 ⊕Xi+44

L,34 ⊕ (Xi+44
R,33&Xi+44

R,26 ) k31 Ki+44
34

x32 Xi+44
R,55 ⊕Xi+44

L,57 ⊕ (Xi+44
R,56&Xi+44

R,49 ) ⊕Xi+44
L,61 ⊕ (Xi+44

R,60&Xi+44
R,53 ) k32 Ki+44

57 ⊕Ki+44
61 ⊕Ki+43

59 ⊕Ki+42
61

x33 Xi+44
R,49 ⊕Xi+44

L,51 ⊕ (Xi+44
R,50&Xi+44

R,43 ) k33 Ki+44
51

x34 Xi+44
R,56 ⊕Xi+44

L,58 ⊕ (Xi+44
R,57&Xi+44

R,50 )⊕Xi+44
R,60 k34 Ki+44

58 ⊕Ki+43
60

x35 Xi+44
R,57 ⊕Xi+44

L,59 ⊕ (Xi+44
R,58&Xi+44

R,51 ) k35 Ki+44
59

x36 Xi+44
R,50 ⊕Xi+44

L,52 ⊕ (Xi+44
R,51&Xi+44

R,44 ) k36 Ki+44
52

x37 Xi+44
R,49 ⊕Xi+44

L,51 ⊕ (Xi+44
R,50&Xi+44

R,43 )⊕Xi+44
R,53 k37 Ki+44

51 ⊕Ki+43
53

x38 Xi+44
R,43 ⊕Xi+44

L,45 ⊕ (Xi+44
R,44&Xi+44

R,37 ) k38 Ki+44
45

x39 Xi+44
R,48 ⊕Xi+44

L,50 ⊕ (Xi+44
R,49&Xi+44

R,42 )⊕Xi+44
L,54 ⊕ (Xi+44

R,53&Xi+44
R,46 ) k39 Ki+44

50 ⊕Ki+44
54 ⊕Ki+43

52 ⊕Ki+42
54

x40 Xi+44
R,42 ⊕Xi+44

L,44 ⊕ (Xi+44
R,43&Xi+44

R,36 ) k40 Ki+44
44

x41 Xi+44
R,42 ⊕Xi+44

L,44 ⊕ (Xi+44
R,43&Xi+44

R,36 )⊕Xi+44
R,46 k41 Ki+44

44 ⊕Ki+43
46

x42 Xi+44
R,36 ⊕Xi+44

L,38 ⊕ (Xi+44
R,37&Xi+44

R,30 ) k42 Ki+44
38

Notice: x17 = x1 ⊕ x7, x23 = x2 ⊕ x10, x26 = x5 ⊕ x15, x29 = x6 ⊕ x12
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