
Broadcasting Intermediate Blocks as a Defense Mechanism
Against Selfish-Mine in Bitcoin

Ren Zhang
KU Leuven ESAT/COSIC, iMinds, Leuven, Belgium

Email: ren.zhang@esat.kuleuven.be

Abstract—

I. INTRODUCTION

Bitcoin [1] is a decentralized crytocurrency system
launched by a mysterious creator Satoshi Nakamoto. Its
novel and open design attracts not only a lot of users but
also much attention from academia. The core of Bitcoin’s
operation is a data structure called the blockchain, which
records all past transactions to prevent double spending.
Some participants of the Bitcoin network, called miners,
work on solving a cryptographic puzzle generated from a
set of new transactions. Each time a puzzle is solved and
recognized by the network, the set of transactions, together
with the puzzle solution constituting a block, is added to
the blockchain. The miner who solves the puzzle can claim
a block reward of new bitcoins. This incentive mechanism
encourages miners to contribute their resources to the sys-
tem, and thus protects the integrity of the blockchain. Hence
the fairness of this mechanism is essential to the security of
the system. Nakamoto’s original analysis inherently assumes
that the chance that a miner can earn the next block reward
is linear to its proportion of the computational power in the
network.

Unfortunately, this assumption has been disproved. Re-
search has shown that a malicious miner can earn more
block rewards than its share of computational power by
deploying a sybil attack to interfere with the propagation of
other miners’ blocks [2] or selectively delaying publication
of his own blocks [3]–[5].

In this paper we focus on the second attack, known as the
selfish-mine strategy. The attack exploits the following fork-
resolving policy of Bitcoin. When more than one blocks are
mined with the same preceding block and the blockchain
is forked into a tree, a miner will adopt and mine on the
longest chain, or the first block she receives when several
chains are of the same length. The competing situation is
called a block race. Eventually, all miners would convert to
the same longest chain as the main chain, and discard blocks
that are not in the main chain. A selfish miner keeps its
discovered blocks private and continues to mine on top of it,
hoping to gain a longer lead ahead of the public chain. When
the public chain approaches the private chain in length, the

selfish miner reveals her private chain to the public and
claims the block rewards. There are two situations when the
selfish miner may win a block race: (1) when competing
chains have equal length, the selfish miner can increase her
chance by having her blocks reach more miners first; (2)
the selfish miner’s chain is longer, in this case she always
wins. By causing other miners’ work to be discarded, the
expected block rewards of a selfish miner is larger than its
computational power share.

This attack has not been observed in practice. However,
it is considered to be important by many researchers, since
the attack targets the incentive mechanism of Bitcoin, which
is fundamental to Bitcoin’s security. Specifically, since the
revenue of a selfish miner rises superlinearly with its com-
putational power, rational miners would prefer to join the
selfish miner for a higher input-output ratio. This is contrary
to the conventional belief which the expected revenue of a
miner is the same despite of which pool she joins. Once
a majority pool is formed, it is capable of controlling the
entire blockchain, and the decentralized nature of Bitcoin is
damaged.

Existing defenses mainly focus on situation (1) by either
lowering the chance of other miners working on the selfish
miner’s block [4], [6] or reducing block rewards of the
winner blocks for all block races [5]. The first approach
only mitigates the attack: even when no honest miner works
on the selfish miner’s branch when situation (1) happens,
the selfish-mine strategy is still more profitable as long as
the selfish miner controls more than one third of the total
mining power. In the second approach, honest miners would
suffer some collateral damage along with the selfish miner.

In this work we propose another defense mechanism
against selfish-mine. Our defense addresses both situations
by requiring miners to publish intermediate blocks, or in-
blocks for short, blocks that are valid with slightly lower
puzzle difficulty, and mine on each others’ in-blocks. When
a fork happens, the branch with most total amount of work,
rather than the longest chain, will be adopted. The defense
is based on one key observation: although the selfish miner
may be lucky to find a longer chain than the public one, the
total amount of work of the private chain is almost certain
to be less than that of the public chain. Under our scheme, a
selfish miner needs to have almost half of the computational

power of the network to gain an unfair advantage, thus the
selfish-mine strategy is no longer a threat to the system. With
the help of some block compression methods, the additional
communication and computation overhead of our defense is
marginal. Our defense is evaluated with both formal analysis
and simulations. Finally, we discuss how broadcasting in-
blocks may help the mitigation of double-spending attacks
on unconfirmed transactions in Bitcoin.

II. BACKGROUND

A. Basics of the Bitcoin Protocol

An account in Bitcoin is actually a public/private key pair.
To receive payments, a user transfers an address, which is
the hash of a public key, to the sender. The sender can
then construct a transaction, which consists of at least one
input and one output. An input is usually an output of a
previous transaction, owned by the sender. An output is
the receiver’s address and an amount. The total amount of
inputs must be no less than the total amounts of outputs in a
transaction. The difference is called transaction fee, which
will go to the miner who includes the transaction in the
blockchain. The entire transaction must be signed by the
sender’s private key to be considered valid, so that only the
one with the corresponding private key to the address can
spend an output.

To ensure all participants have a consensus on valid
transactions, a copy of the blockchain is maintained by each
node of the Bitcoin overlay network. Each block in the chain
contains its distance from the first block, called height, the
double-hash of the preceding block, a set of transactions, and
a nonce. Information about the preceding block guarantees
that a miner has to choose which block to mine on before
she starts mining. A special coinbase transaction in the block
allocates some amount of new bitcoins to the miner herself
without any input. To construct a valid block, miners work
on finding the right nonce so that the double-hash of the
block is smaller than a certain value, called block difficulty.
The block difficulty value determines the difficulty of the
task, which is adjusted every 2016 blocks so that on average
a block is generated every ten minutes. Once a valid block is
found, the miner publishes it to the entire overlay network.
If the block ends up being in the main chain, the coinbase
output and all transaction fees in the block belong to the
miner. Miners are typically organized into pools to decrease
the variance of mining revenues.

A natural fork only happens when another block is
found before one block finishes its propagation. Hence the
occurrence of natural forks can be roughly seen as a function
of block interval and block propagation time. Nowadays a
block can reach 90% of publicly reachable nodes in around
20 seconds on average [7], which is generally considered
satisfactory. As a result, block forks happen relatively rare,
about once per 60 blocks [8]. An important fact to note
is that in the current implementation, nodes only propagate

the first block they receive in case of a block fork. Since the
competing blocks are not propagated, when a miner receives
an unseen longer branch, she cannot determine whether the
branch was kept private or none of her connected nodes
happens to receive it first.

Since Bitcoin nodes choose the longest chain by default
when a block fork happens, an attacker controls more than
50% of the computational power of the network can generate
a longer chain than that of honest miners, thus have total
control over the blockchain. The attacker can then reverse
past transactions of herself and deploy a double-spending
attack. Most existing research [2]–[6], [9], [10] follows
the assumption proposed by Nakamoto’s original paper [1]
that the majority of computational power would follow the
protocol.

By convention a transaction needs to be “buried” under
six blocks in the blockchain to be considered valid. Bitcoin
by default provides no protection against double spending on
fast payments, which do not require several blocks buried on
top of the transaction to confirm. However researchers are
still trying to increase the difficulty of such attacks [9], [10].

B. The Selfish-Mine Strategy

The idea of selectively delaying publication of blocks to
gain an unfair advantage of block rewards appears as early as
2010 in a Bitcoin forum thread [3]. The attack is given the
name “selfish-mine” and formally described and analyzed
by Eyal and Sirer in 2013 [4].

All research papers about selfish-mine are based on the
following assumptions, implicitly or explicitly:

Assumption 1. More than half of the computational power
of the network follows the honest mining strategy.

This assumption is adopted for most Bitcoin research.

Assumption 2. There is only one colluding pool of miners.

Malicious miners can achieve higher input-output ratio by
joining their forces, therefore we only consider this stronger
form of attack. We will use “the selfish miner” instead of
“the colluding pool of miners” for simplicity.

Assumption 3. The selfish miner may be able propagate
her blocks faster than honest miners, but does not have the
power to downgrade the propagation speed of other blocks.

Defending against a sybil attacker in P2P network is a
known hard problem.

Assumption 4. Once the public branch becomes strictly
longer, the selfish miner would give up her secret branch
and start mining on the public branch.

Since in that case the majority of mining power would
work on the public branch, the chance that the selfish miner
can finally surpass that branch is slim.

Algorithm 1 Selfish-Mine
on consensus

1: publicChainLen← 0
2: privateChainLen← 0
3: mine on the public branch

on my pool found a block
4: privateChainLen← privateChainLen+ 1
5: if publicChainLen = 1 and privateChainLen = 2
6: publish the entire private chain
7: goto consensus
8: else
9: keep mining on the private chain

on others found a block
10: publicChainLen← publicChainLen+ 1
11: if privateChainLen− publicChainLen < 0
12: goto consensus
13: if privateChainLen− publicChainLen = 0
14: publish the entire private chain
15: mine on the private chain
16: if privateChainLen− publicChainLen = 1
17: publish the entire private chain
18: goto consensus
19: if privateChainLen− publicChainLen > 1
20: publish the first unpublished private chain block

Algorithm 1 is a description of the selfish-mine strategy.
Generally speaking, the selfish miner keeps her blocks
private and selectively reveals some blocks to invalidate the
work of honest miners. Since the selfish miner has less
mining power than honest miners, once in a while a new
honest block will surpass the height of the private branch. At
this moment, according to Assumption 4 the selfish miner
would give up her private chain and start mining on the
public chain. We call this state a consensus and start the
strategy description here (line 1 to 3). When the selfish
miner finds a block, she usually keeps mining on top of
it (line 9) unless there is already a block race with an equal-
length public chain. In that case she publishes the block
and claims the block rewards (line 5 to 7). When a block
is found by honest miners, if the public chain is longer, the
selfish miner gives up and goes to consensus (line 11 to 12).
If the public chain length is the same with the private chain
length, the selfish miner publishes her secret chain and hopes
to win a block race (line 13 to 15). At this state the mining
power working on the selfish miner’s block depends on the
propagation speed of two competing blocks. If the next block
is mined on top of the selfish miner’s block, whether by
an honest miner or the selfish miner, the selfish miner gets
the block reward. Otherwise she loses the block race and
starts from consensus. When the lead of the private chain is
reduced to one, the selfish miner publishes her blocks (line
16 to 18). When the lead is more than two, every time an

honest miner finds a block, the selfish miner publishes one
block along with it, so that the publicly visible part of the
private chain is the same as the public chain (line 19 to 20),
until the lead is reduced to one.

The selfish miner’s expected revenue depends on two
parameters: α, the mining power share of the selfish miner,
and γ, the ratio of honest mining power that would work
on the selfish miner’s block during a block race. It can be
seen that in a block race, the mining power share working
on the selfish miner’s block is α + (1 − α)γ. In current
implementation, a selfish miner can increase her γ value by
connecting to a large number of publicly reachable nodes
to achieve a higher block propagation rate. The analysis
in [4], [5] shows that when γ = 1, the expected reward
share of the selfish miner is larger than α for any α > 0;
even when γ = 0, the selfish miner can still gain an unfair
advantage when α > 1/3. For the remainder of the paper
we use profitable threshold to denote the minimum α that
enables the selfish miner to gain an unfair advantage.

Bahack had shown that under three reasonable assump-
tions, any mining strategy that may cause other miners’
blocks to be discarded is a member of a family of strategies
stk, k = 0, 1, 2, · · · ,∞ [5]. Specifically, st0 is the honest
strategy, and st1 is the sefish-mine strategy in [4]. The author
further proved that for a given pair of α and γ, if st1 is
not more profitable than st0, no member in the family is.
Therefore it is adequate that we focus our discussion on st1.
Our defense and analysis are applicable to all members of
the family.

C. Existing Defenses

It is a consensus that when a block fork happens, nodes
should broadcast all competing valid blocks, instead of just
the first one they receive [4]–[6]. The current implementation
is to prevent DoS attack, however it is difficult to deploy
a DoS attack with valid blocks, since they are relatively
expensive to generate [8]. This modification limits the selfish
miner’s ability to interfere with the propagation of competing
blocks and enables miners to freely choose which block to
mine on. Another benefit is that blocks that are intentionally
kept secret by their finders would be identified more easily.

Eyal and Sirer proposed that when a miner learns of
competing branches of the same length, she should choose
which block to mine on uniformly at random [4]. By doing
this, γ is fixed at 1/2, and the profitable threshold becomes
1/4.

Bahack proposed a fork-punishment rule: blocks with a
competing block receive no block reward. The first miner
who incorporates a proof of the block fork in the blockchain
can get half of the forfeited block reward. Although ren-
dering the selfish-mine strategy unprofitable, this defense
requires a fundamental change on the blockchain protocol
and is not backward compatible. Besides, honest miners

would suffer from collateral damage of this defense when
natural fork happens.

Heilman suggested that each miner incorporates the latest
unforgeable timestamp issued by a trusted party into the
block she is working on [6]. The publicly accessible times-
tamp is issued periodically with a suggested interval of one
minute. When two competing blocks are received within w
seconds, a miner should prefer the block whose timestamp
is fresher. They claimed that this mechanism can raise the
profitable threshold to 32%. There are two disadvantages
of this scheme. First, introducing an extra trusted party
into the system is inconsistent with Bitcoin’s decentralized
philosophy. Second, this scheme enables a new attack: when
a block is found, a selfish miner can keep mining with
a fresher timestamp within the w-second window. Once
success, the first block would be discarded by honest miners
thus the selfish miner can again earn a higher expected
revenue than its fair mining power share [11].

The last countermeasure is brought up in a draft paper
written by Shultz [11]. It requires each solved block be
accompanied by a certain number of signatures proving that
the block is witnessed by the network before miners can
continue to work on it. Moreover, each block and each
signature needs to incorporate an unforgeable timestamp.
However, the paper does not explain how to prevent the
selfish miner from generating these signatures herself or
refusing to sign other miners’ blocks.

III. OUR DEFENSE MECHANISM

It can be seen that existing defenses only focus on the
situation that competing blocks have equal length. However,
a relatively resourceful selfish miner may abuse her luck
of finding consecutive blocks to gain an unfair advantage
even if she loses all equal-length block races (line 5 to
7 and 16 to 20 of Algorithm 1). As a result, no existing
defense can defend against a selfish miner with α > 1/3
without any collateral damage. In this part, we present a
defense mechanism that can raise the profitable threshold
to more than 1/3. Our key observation is inspired by the
GHOST rule proposed by Sompolinsky and Zohar [12]: a
selfish miner with less than half of the total mining power
may be able to generate a longer chain, however the total
amount of work of the private branch is almost certain to
be less than that of the public branch. In this section we
first describe the mining algorithm incorporated with our in-
block broadcasting mechanism and the corresponding main
chain selection policy, then discuss the computation and
communication overhead of our design and the incentives
for nodes to comply.

A. Mining and In-block Broadcasting

Definition 1. We say Q is a in-block, if Q is a valid block in
every aspect except that the double-hash of Q is not lower
than the block difficulty d, but satisfies d ≤ H(Q) < d · k,

in which H is the double-hash function, k is a predefined
parameter of the system.

Definition 2. A transaction T1 is in conflict with a block/in-
block A, if there exists a transaction T2 in A, such that T1
and T2 are two different transactions that share at least one
common input; a transaction T is new to a in-block Q, if T
is not in conflict with all blocks in the chain containing Q,
and T is not included in the chain.

Definition 3. A in-block Q is called a in-predecessor of a
block/in-block A, if they have the same preceding block, and
either of the following conditions holds: (1) there exists a
in-block B such that Q is a in-predecessor of B and B is a
in-predecessor of A; (2) after removing all transactions in
Q that are in conflict with A, the remaining transaction set
Q′ is a proper subset of that of A; besides, there exists at
least one transaction in A that is new to Q. We use Pd(A)
to denote the in-predecessor set of A known by a node.

Definition 4. From a node’s local perspective, the in-height
of a block/in-block A is defined as

hq(A) =

{
1 Pd(A) = ∅

max{hq(Q)|Q ∈ Pd(A)}+ 1 otherwise

We can see a block B, its immediate follow-up block(s),
and the in-blocks between them as a directed acyclic graph.
The system parameter k determines the expected number
of in-blocks between two blocks. Every edge of the graph
indicates a in-predecessor relation. If Q is a in-predecessor
of A, we can say with high certainty that A is mined after Q.
Our definition of in-predecessor can tolerate inconsistency in
terms of double-spending transactions, but does not tolerate
missing transactions. The in-height of a block/in-block is the
length of its longest path to the preceding block.

Our mining and in-block broadcasting algorithm is de-
scribed in Algorithm 2. Our defense requires miners to
publish in-blocks they found during mining, and include
transactions of received in-blocks in the blocks they are
working on. A in-block is valid only if it is received in-time:
a miner should delete a in-block under two conditions (line
6 to 7): (1) when we have already received one follow-up
block of the same preceding block; (2) when the in-height of
the new in-block is more than τ behind the current maximum
in-height of in-blocks with the same preceding block. The
parameter τ is a tolerance threshold of in-block propagation.
When τ = 0, as soon as a node has received a in-block of
in-height h, all later-received in-blocks mined on the same
block with in-height less than h would be rejected. Every
time a block/in-block is received, a miner should re-evaluate
which block to work on and adjust her working transaction
set to make sure her future block includes as many in-
blocks as possible (line 14 to 18). To ensure all blocks/in-
blocks that have a in-block Q as their in-predecessor must
be mined after Q, each miner can include some transactions

Algorithm 2 Mining and in-block Broadcasting
on found/received a new valid block B

1: Broadcast B to the network
2: maxQHeight(B)← 0
3: QbSet(B)← ∅
4: update mining status

on found/received a new valid in-block Q
5: BQ ← the preceding block of Q
6: if I have a valid block on top of BQ

or maxQHeight(BQ) > h(Q) + τ
7: delete Q
8: else
9: Broadcast Q to nodes connected with me

10: QbSet(BQ)← QbSet(BQ)
⋃
{Q}

11: if maxQHeight(BQ) < h(Q)
12: maxQHeight(BQ)← h(Q)

13: update mining status
on update mining status
14: B ← the block to mine on according to Algorithm 3
15: W ← my working transaction set
16: W ←W− transactions in conflict with B’s branch
17: W ←W

⋃
transactions new to W in QbSet(B)⋃

some new transactions, preferably only I know
18: mine on B with transaction set W

only known to herself or a random set of newly received
transactions when adjusting her working transaction set.

We shall see in Section III-B that when a block fork
happens, the more in-predecessors a block has, the more
likely it would be selected by miners. The rationale behind
this requirement is, when the selfish miner delays publication
of a block, some in-blocks only seen later in the network
would not be included in her block. Therefore when a
block race happens, the block mined by an honest miner
would contain more in-predecessors previously seen by the
network.

A malicious miner might generate a huge in-block so
that any block/in-block mined after it would exceed the
block size limit. Therefore the size of a in-block should be
limited according to its in-height. We omit the details of this
mechanism to simplify our description.

B. Main Chain Selection Policy

Definition 5. A block/in-block A is called a child of a block
B (B 6= A) if the chain containing A also contains B; block
B’s children set is denoted as Ch(B).

Definition 6. The weight of a block B is defined as W (B) =
|Pd(B)| + |Ch(B)| + 1, where the || symbol denotes the
number of elements in a set.

In our notation, the child relation is transitive: a child of
a child is also a child. The weight of a block is defined as
the total number of its in-predecessors, children and itself.

Algorithm 3 Choosing Which Block to Mine on
1: B ← the preceding block of the block fork
2: if ChildrenBlock(B) = ∅
3: return B and exit
4: B ← argmax

C∈ChildrenBlock(B)

W (C)

5: goto line 2

Our main chain selection rule is described in Algorithm
3. In short, when a block fork happens, a miner always
chooses the branch whose head has a larger weight value.
This is different from the current longest-chain rule, but in
line with GHOST rule. The authors of [12] have proved that
under GHOST rule, miners will eventually converge to the
same history. They have also proved that a malicious miner
with less than 50% of mining power cannot secretly create
a heavier branch. Their proof is directly applicable to our
variant. We now prove the resilience of our design against
selfish-mine.

Proposition 1. Assume that a selfish miner with mining
power share α < 0.5 finds a block B1 at time T and secretly
mines on top of it for time t before another block B2 is found
by an honest miner at T + t and a block race happens. The
probability that the selfish miner can win the block race by
publishing all her blocks and in-blocks goes to zero as t
goes to infinity.

Proof: Let us consider the weight values of two com-
peting branches when the block race happens. All public
in-blocks found before T would be in-predecessors of both
branches, thus they do not affect the comparison result. A
secret in-predecessor of B1 found by the selfish miner with
in-height hs would be rendered invalid as soon as a in-block
with in-height hs + τ + 1 is published. Therefore, after the
maximum in-height reaches hq(B1) + τ , either the selfish
miner publishes these secret in-blocks and honest blocks/in-
blocks with in-height more than hq(B1) + τ + 1 would
have them as in-predecessors, or these in-blocks would be
considered invalid. In both cases, they do not affect the
comparison result. For the remaining parts of the branches,
since the blocks and in-blocks contribute to the private chain
must be children of B1 and B1 is kept secret, the mining
power share working on the private chain is no more than
α, and that of the public chain is 1−α. Therefore according
to the law of large numbers, the probability that the selfish
miner can win the block race becomes arbitrarily low as t
grows.

Figure 1 illustrates a typical block race. All miners start
working on the same block and the selfish miner has found
two blocks before the honest miners found one. Note that a
in-block with in-height 5 is found by the selfish miner and
kept secret for a while. In this example, τ = 0, so the selfish
miner has to publish this in-block before the first in-block

time

found by honest miners
found by the selfish miner

count as weight of the public branch
count as weight of the private branch

in-block
block

direct in-predecessor

Figure 1. A typical block race. Although the selfish miner’s branch
contains more blocks, the total number of blocks and in-blocks is smaller
than that of the public branch.

with in-height 6 is broadcast to the network. The in-block
at the top-right corner is rejected by most honest miners
because it is received after the valid block. The weight value
of the public branch is 10 and that of the private branch is
8, so the private branch would not be selected by honest
miners.

C. Costs and Incentives

The additional computational cost of our design is neg-
ligible. To miners, in-blocks are merely by-products found
during mining. Adjusting working transaction set according
to newly received in-blocks would introduce a little com-
putational overhead, however for the majority of miners,
scheduling and mining are performed on different chips, if
not different devices. Therefore the influence on their mining
power is very little.

The current Bitcoin implementation transfers a block
along with all transactions within it. This is not necessary in
our scheme. A block/in-block can refer to the hash values of
its direct in-predecessors instead of repeating all transactions
when there is no conflicting transaction. The receiver can
reconstruct and verify the block/in-block in its memory
and ask for the missing in-predecessors if necessary. Note
that when τ = 0, these unseen in-predecessors would not
be counted in the weight of the following blocks. New
transactions in a block/in-block would need to be transferred
anyway. Therefore by applying this technique, the only
communication overhead of our scheme is the in-block
headers and the hash values of their direct in-predecessors.
These are only a few dozens of bytes per in-block, which is
less than the smallest transaction.

There are several incentives for nodes to publish and
relay in-blocks. First, by broadcasting a in-block, a miner
increases the weight value of its possible future block, thus
increases the chance of winning a potential block race.
Second, broadcasting in-blocks can accelerate propagation
of the next block, therefore reducing the occurrence of block
forks. The current implementation requires a node to verify a
block before broadcasting it, as a result, a major contributor
to the block propagation delay is the verification time of

new transactions within the block [8]. In-blocks would help
synchronize most transactions before the actual block is
received, therefore reducing the propagation delay of blocks.
Last but not least, as we have shown, broadcasting in-blocks
would stop selfish miners and help guarantee the fairness
of the system, which is inline with the interests of most
participants of the network.

IV. EVALUATION

A. The Selfish Miner’s Strategy

In this part we outline the selfish miner’s strategy un-
der our scheme. We assume the selfish miner can always
learn the existence of new blocks/in-blocks immediately
and broadcast her blocks/in-blocks to all nodes with no
propagation delay. In reality the selfish miner can achieve
that by connecting to all publicly reachable nodes.

When the selfish miner finds a in-block, it is in her best
interest to keep it secret before it expires, hoping that it will
only be counted in the weight of her block. Therefore such
a in-block of in-height hs will only be broadcast when the
selfish miner learns that a in-block with in-height hs+τ+1 is
found by an honest miner. Then the selfish miner broadcasts
it before the hs+τ+1 in-block reaches any other node except
its finder. When the selfish miner finds a block, she keeps
tracking the weight of her private branch and the public
branch. When the weight of the public branch reaches her
private branch, she publishes her entire branch immediately
according to Assumption 4. This is because if the next public
broadcast is a block, the public branch would be strictly
heavier than her private branch and no honest miner would
work on her branch. Any further delay on the publication
of blocks/in-blocks would lead the selfish miner to gain less
than her fair share, making the selfish-mine strategy less
profitable than following the protocol.

B. Simulation Settings

We implement a Bitcoin simulator to validate our theoret-
ical result and compare with other defense mechanisms. We
simulate 1000 honest miners with identical mining power
whose total mining power share is 1−α, and 1 selfish miner
with mining power share α. In reality the selfish miner might
be a pool and suffer from internal network delay. Each block
and in-block found by an honest miner can reach the selfish
miner immediately, and all honest miners in 30 seconds
at an even speed. This speed is an underestimation of the
reality [7] and is also in favor of the attacker. The unfair
propagation delay enables us to estimate a lower bound on
the effectiveness of our defense. This is the first simulation to
incorporate the attacker’s advantage of network propagation
in the context of selfish-mine.

C. The Effect of k and τ

D. Comparison With Other Defense Mechanisms

V. DISCUSSION

A. Mitigation of Double Spending Unconfirmed Transac-
tions

VI. CONCLUSION

ACKNOWLEDGMENT

REFERENCES

[1] S. Nakamoto. (2008) Bitcoin: A peer-to-peer electronic cash
system. [Online]. Available:
http://www.bitcoin.org/bitcoin.pdf

[2] M. Babaioff, S. Dobzinski, S. Oren, and A. Zohar, “On bitcoin
and red balloons,” in Proceedings of the 13th ACM conference
on electronic commerce. ACM, 2012, pp. 56–73.

[3] btchris, Bytecoin, mtgox, and RHorning. (2010) Mining
cartel attack. [Online]. Available:
https://bitcointalk.org/index.php?topic=2227

[4] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin
mining is vulnerable,” in Financial Cryptography and Data
Security. Springer, 2014, pp. 436–454.

[5] L. Bahack, “Theoretical bitcoin attacks with less than half
of the computational power (draft),” arXiv preprint arX-
iv:1312.7013, 2013.

[6] E. Heilman, “One weird trick to stop selfish miners: Fresh
bitcoins, a solution for the honest miner.” IACR Cryptology
ePrint Archive, vol. 2014, p. 7, 2014.

[7] Bitcoin stats - data propagation. [Online]. Available:
http://bitcoinstats.com/network/propagation/

[8] C. Decker and R. Wattenhofer, “Information propagation in
the bitcoin network,” in Peer-to-Peer Computing (P2P), IEEE
Thirteenth International Conference on, 2013.

[9] G. O. Karame, “Two bitcoins at the price of one? double-
spending attacks on fast payments in bitcoin,” in In Proc. of
Conference on Computer and Communication Security, 2012.

[10] T. Bamert, C. Decker, L. Elsen, R. Wattenhofer, and S. Wel-
ten, “Have a snack, pay with bitcoins,” in Peer-to-Peer Com-
puting (P2P), 2013 IEEE Thirteenth International Conference
on. IEEE, 2013, pp. 1–5.

[11] B. L. Shultz. (2015) Certification of witness: Mitigating
blockchain fork attacks. [Online]. Available:
http://bshultz.com/paper/Shultz Thesis.pdf

[12] Y. Sompolinsky and A. Zohar, “Secure high-rate transaction
processing in bitcoin,” Financial Cryptography and Data
Security. Springer, 2015.

