
The Norwegian Internet Voting Protocol: A new
Instantiation

Kristian Gjøsteen and Anders Smedstuen Lund

Department of Mathematical Sciences, NTNU
{kristag,andelund}@math.ntnu.no

Abstract

The Norwegian government ran trials of internet remote voting during the 2011
municipal elections and the 2013 parliamentary elections. From a simplified version
of the voting protocol used there, the essential cryptographic operations of the voting
protocol has been put together into a cryptosystem in which one can build the voting
protocol on top of.

This paper proposes a new instantiation of the underlying cryptosystem, im-
proving our confidence in the security of the cryptosystem. The new instantiation is
mostly similar to a previously defined instantiation, but allows parts of the security
proof to be significantly improved.
Keywords: electronic voting protocols, Decision Diffie-Hellman, zero-knowledge.

1 Introduction
During the 2011 municipal elections and the 2013 parliamentary elections in Norway,
trials of internet remote voting were conducted. The cryptographic protocol used was
design by the Spanish company Scytl, with contributions from Gjøsteen [4, 5].

Gjøsteen [5] abstracted the essential cryptographical operations into a cryptosystem
with a set of security notions. He presented an instantiation of this cryptosystem, with
corresponding security proofs. In one of the proofs a technical obstruction occurs, based
on the fact that the non-interactive version of the Schnorr proof of knowledge for discrete
logarithms is not a proof of knowledge. Shoup and Gennaro [6] solved a similar problem,
and it turns out the same approach can be used to solve the obstruction Gjøsteen ran
into.

Our contribution We describe a new instantiation of the cryptographic protocol
satisfying Gjøsteen’s requirements for functionality and security, but where the security
proof avoids the technical obstruction encountered by Gjøsteen. The new cryptosystem
uses the same encryption and transformation methods as Gjøsteen, and is based on the
same group structure. The main change is that instead of using a Schnorr proof to

1



“prove knowledge” of the decryption of a ciphertext, the techniques from Shoup and
Gennaro [6] are used to achieve the same effect.

Our cryptosystem therefore has a better security proof, at the expense of a minor
increase in computational cost. Our cryptosystem is essentially as practical and efficient
as Gjøsteen’s cryptosystem.

Overview of the paper We start by describing the group structure the cryptosystem
is built on in Section 2. We also discuss certain problems related to the group structure,
among them the Decision Diffie-Hellman problem.

Then we discuss certain zero knowledge proofs in Section 3. They are needed to
prove the security requirements of the system, and are different versions of the equality
of discrete logarithms problem in the group described in Section 2.

In Section 4 we describe the cryptosystem, along with the set of security notions,
defined in [5]. We continue by giving a new instantiation of the cryptosystem, and then
anlyse the security of this new instantiation proving that it satisfies the security notions
stated.

Lastly we compare the computational complexity of the two instantiations in Sec-
tion 5.

Note that we do not discuss the Norwegian Internet Voting protocol, since the de-
scription and analysis in [5] apply even when we replace the instantiation in that paper
with our novel instantiation.

2 The Underlying Group Structure
To build the cryptosystem (and the voting protocol on top of it), we need some structure
on the group we are going to use. We will briefly describe some of the structure here.
Gjøsteen [5] has a more detailed description of the group structure.

2.1 The Group Structure

Let q be a prime such that p = 2q + 1 is a prime. The group G we are going to use is
the group of quadratic residues modulo p, and we let g be a generator of the group G.
G has order q.

We also define the set O = {1, l1, l2, . . . , lL}, where l1, . . . , lL are the group elements
of G corresponding to the L smallest primes that are quadratic residues modulo p.

2.2 Decision Diffie-Hellman

We need to describe certain computational problems related to the group G. First we
describe the Decision Diffie-Hellman problem (DDH) and two related problems. The
Decision Diffie-Hellman problem can be described as follows:

2



Decision Diffie-Hellman. Given (g0, g1) ∈ G × G (where at least g1 is sampled at
random), decide if (x0, x1) ∈ G ×G was sampled uniformly from the set {(gs0, gs1) | 0 ≤
s ≤ q} or uniformly from G×G.

It has been proven in e.g. [1, 3] that the Decision Diffie-Hellman problem is equivalent
to the following problem:

L-DDH. Given (g0, . . . , gL) ∈ GL+1 (where at least g1, . . . , gL is sampled at random),
decide if (x0, . . . , xL) ∈ GL+1 was sampled uniformly from the set {(gs0, . . . , gsL) | 0 ≤
s ≤ q} or uniformly from GL+1.

We will need to use a problem related to the Decision Diffie-Hellman problem. In
this problem, one gets up to n challenges and are supposed to figure out from which of
the sets described in the L-DDH problem the challenges are sampled from. We present
the problem formally:

n-L-DDH. Given (g0, . . . , gL) ∈ GL+1 (where at least g1, . . . , gL is sampled at random),
and up to n tuples (xi0, . . . , xiL) ∈ GL+1, decide if these n tuples were sampled uniformly
from the set {(gs0, . . . , gsL) | 0 ≤ s ≤ q} or uniformly from GL+1.

2.3 Subgroup Generated by Small Primes

Now we describe a problem related to the Decision Diffie-Hellman problem, where
g1, . . . , gL is replaced by the elements l1, . . . , lL discussed earlier. This gives us the
following problem, which we call the Subgroup Generated by Small Primes (SGSP)
problem:

Subgroup Generated by Small Primes. Let the prime p be chosen at random from
an appropriate range, and let the generator g be chosen at random. Determine the
group elements l1, . . . , lL as above. The problem is to decide if (x0, . . . , xL) ∈ GL+1 was
sampled uniformly from the set {(gs0, ls1, . . . , lsL) | 0 ≤ s ≤ q} or uniformy from GL+1.

We also define the many challenges version of the SGSP problem:

L-SGSP. Let p be chosen at random from an appropriate range, and let g be a generator
chosen at random. Define the group elements l1, . . . , lL as above. Given up to n tuples
(xi0, . . . , xiL) ∈ GL+1, the problem is to decide if these n tuples were sampled uniformly
from the set {(gs, ls1, . . . , lsL) | 0 ≤ s ≤ q} or uniformly from GL+1.

3 Non-interactive Zero Knowledge Proofs
When analyzing the protocol later in this paper, we will need to force the adversary
to do certain computations correctly. Certain non-interactive zero knowledge (NIZK)
proofs will help us achieve this. We describe them here.

3



3.1 Equality of Discrete Logarithms

When encrypting, we want to make sure that the voter’s computer, P , computes cor-
rectly. It turns out that it will suffice to prove that two elements have the same discrete
logarithm relative to distinct generators of the group G.

The proof is between a prover and a verifier. Both the prover and the verifier are
given some auxillary information aux, two generators g and ḡ and two group elements x
and x̄. The prover is given t as private input. The prover’s algorithm generates a proof
πE , and the verifer’s algorithm takes the proof and the public input and produces 0 or
1.

The prover’s and the verifier’s algorithms are denoted by

πE ← PI
eqdl(aux, t; g, ḡ;x, x̄), and

0 or 1← VI
eqdl(aux; g, ḡ;x, x̄;πE).

We require completness, that is, any proof generated by an honest P must be accepted
by V.

Instantiation We sketch a fairly standard way of making such a proof [6]. The proof
takes the form of a three-way protocol between the prover and the verifier.

Step I The prover first chooses a random number u ∈ Zq, and computes α1 = gu and
α2 = ḡu. The prover sends (α1, α2) to the verifier.

Step II The verifier chooses a random challenge e ∈ Zq and sends to the prover.

Step III The prover computes ν = u− et mod q, and sends ν to the verifier.

Verification The verifier accepts if and only if

α1 = gνxe and α2 = ḡν x̄e.

Applying the Fiat-Shamir heuristic [2] we make it a non-interactive proof. We use a
hash function H1 : {0, 1}∗ ×G6 → {1, 2, . . . , 2τ} evaluated as

e← H1(aux, g, ḡ, x, x̄, α1, α2),

to get a non-interactive proof. The proof is πE = (e, ν). The proof is accepted if and
only if

e = H1(aux, g, ḡ, x, x̄, gνxe, ḡν x̄e)

The cost of generating a proof is two full exponentiations, and the cost of verifying a
proof is two full exponentiations (roughly of size log2 q) and two small exponentiations
(roughly of size τ).

4



Security analysis We require two properties from the proofs given in this section.
The proofs must be zero knowledge and it must be hard to generate valid proofs when
the discrete logarithms are not equal.

First, we prove that the protocol is special honest-verifier zero knowledge. Given any
challenge e, we can choose a random ν and compute

α1 = gνxe and α2 = ḡν x̄e,

with x and x̄ as above, to get α1 and α2 with the same distributions as in the real proof.
We denote this sampling by

ν ← SimI
eqdl(aux, g, ḡ, x, x̄, e).

The Fiat-Shamir heuristic gives us a non-interactive zero knowledge proof from the
simulation above. To generate a proof, first choose a random e, use SimI

eqdl and then
reprogram the H1 oracle appropriately.

It is now time to look at the soundness of the instantiation, that is we give a bound
for the probability that the adversary has of being able to fake a proof for the logarithms
being equal when the simulator follows the instantiation given in this section. The bound
is given in the following theorem:

Theorem 3.1. Take any algorithm that outputs a proof πE = (e, ν), a bit string aux,
a integer t, and group elements g, ḡ, x and x̄ such that logg x 6= logḡ x̄. If the algorithm
uses at most η queries to the random oracle H1, then the probability that

VI
eqdl(aux; g, ḡ;x, x̄;πE) = 1

is at most (η + 1)2−τ+1.

To prove the theorem we need the following lemma from [6]:

Lemma 3.2. Let G be a group of prime order q, and let g and ḡ be generators of G.
Suppose t and ∆ are integers, and ḡ, x, x̄, α1 and α2 are group elements such that x = gt

and x̄ = ḡtḡ∆.
Then if ∆ 6= 0 and e is an integer choosen uniformly at random from a set with 2τ

elements, the probability that there exists a integer ν such that

α1x
−e = gν and α2x̄

−e = ḡν

is at most 2−τ .

Proof of Theorem 3.1. If the algorithm has not queried the H1 at the relevant point, the
proof verifies with probability 2−τ .

By Lemma 3.2, every time the algorithm queries H1 with some input for which he
cannot already create a forged proof, the probability that the resulting hash value will
allow an attacker to create a forged proof is at most 2−τ .

We now have at most (η + 1) events, each with a probability at most 2−τ . The
probability that at least one of them then happens is bounded by (η + 1)2−τ .

5



3.2 Two More Proofs for Equality of Discrete Logarithms

We will also need two other equality of discrete logarithms proofs. One that proves that
several group elements are raised to the same power as a certain element, and one that
proves that several elements has been correctly raised to distinct powers.

Both proofs are between a prover and a verifier. The prover’s and the verifier’s
algorithms are respectively

πT I ← PII
eqdl(aux, g, γ, s;x,w1, w2, . . . , wk; x̌, w̌1, w̌2, . . . , w̌k), and

0 or 1← VII
eqdl(aux, g, γ;x,w1, w2, . . . , wk; x̌, w̌1, w̌2, . . . , w̌k;πT I).

and

πT II ← PIII
eqdl(aux, g, y21, y22, . . . , y2k, a21, a22, . . . , a2k;

x̌; ŵ1, ŵ2, . . . , ŵk), and
0 or 1← VIII

eqdl(aux, g, y21, y22, . . . , y2k; x̌; ŵ1, ŵ2, . . . , ŵk;πT II).

Where the public input to both players is the input described for the verifer’s algorithm,
and the private input to the prover is the additional input described in the prover’s
algorithm.

In both cases we require completness, that is, any proof generated by an honest P
must be accepted by V.

Instantiation Instantiations of both proof systems, with corresponding security anal-
ysis, are given in [5].

4 The Cryptosystem
We now present our instantiation of the cryptosystem described in [5], along with the
corresponding security proof, which is the main contribution of this paper.

For completeness’ sake, we must also include the definition of the cryptosystem from
[5] along with the security notions. Sections 4.1, 4.2 and 4.3 are thus more or less
identical to material found in [5], but contain only material relevant for this paper.

4.1 Preliminaries

Let I be a set of identities, M a set of messages and O ⊆ M a set of options, one of
which is the null option denoted by 1O. A ballot is a k-tuple of options. We denote
options by v and a ballot (v1, v2, . . . , vk) by ~v.

Let C be a set of pre-codes, one of which is the null pre-code denoted by 1C . We
shall have a set S of pre-code maps from M to C such that for every s ∈ S, s(1O) = 1C .
We also need a set of commitments to pre-code maps, one commitment for each map.

We will extend pre-code maps to apply to k-tuples of messages ~m = (m1,m2, . . . ,mk)
in the obvious way: s(~m) = (s(m1), . . . , s(mk)) ∈ Ck.

6



4.2 Definition

Our cryptosystem consists of six algorithms and one protocol:

• A key generation algorithm K that outputs a public key ek, a decryption key dk1,
a transformation key dk2 and a pre-code decryption key dk3.

• A pre-code map generation algorithm S that on input of a public key ek and an
identity V outputs a pre-code map s and a commitment γ to that map.

• An encryption algorithm E that on input of an encryption key ek, an identity V ∈ I
and a message sequence ~m ∈Mk outputs a ciphertext c.

• A deterministic extraction algorithm X that on input of a ciphertext c outputs a
naked ciphertext c̄ or the special symbol ⊥.

• A transformation algorithm T that on input of a transformation key dk2, an iden-
tity V ∈ I, a pre-code map s and a ciphertext c outputs a pre-code ciphertext č or
the special symbol ⊥.

• A deterministic pre-code decryption algorithm DR that on input of a pre-code
decryption key dk3, an identity V ∈ I, a pre-code map commitment γ, a ciphertext
c and a pre-code ciphertext č outputs a sequence of pre-codes ~ρ ∈ Ck.

• A decryption protocol ΠDP between a prover and a verifier. The common input is a
public key ek and a sequence of naked ciphertexts c̄1, . . . , c̄k. The prover’s private
input is a decryption key dk1. The number of protocol rounds is independent of
both public and private input. The prover and the verifier output either ⊥ or a
sequence of messages ~m1, . . . , ~mk.

In addition, we require one more algorithm that is only used to define security re-
quirements.

• A decryption algorithm D that on input of a decryption key dk1, and identity V ∈ I
and a ciphertext outputs a message sequence ~m ∈Mk or the special symbol ⊥.

For the cryptosystem to be useful, it must guarantee correct decryption of cipher-
texts and transformed ciphertexts. This is captured in the following completeness re-
quirements:

C1. For any message and any identity, encryption followed by decryption should return
the original message, unchanged.
For any keys ek, dk1 output by K, any message ~m and any identity V

Pr[D(ek, dk1, E(ek, V, ~m)) = ~m] = 1.

C2. For any sequence of messages, encrypting, extracting and then running the decryp-
tion protocol should faithfully reproduce the messages, up to the action of the order
map.

7



C3. Transformation of a ciphertext should apply the given pre-code map to the content
of the ciphertext.
For any ~m ∈Mk and any V ∈ I, if the following actions happen:

(ek, dk1, dk2, dk3)← K; (s, γ)← S(ek, V );
c← E(ek, V, ~m); č← T (dk2, V, s, c);
~ρ← DR(dk3, V, γ, c, č).

Then č 6= ⊥ and ~ρ = s(~m).

4.3 Security Requirements

With this cryptosystem follows a set of fairly natural security notions. For completeness
we describe the relevant security notions here inn full, while the other security notions
are only described briefly. All security notions are fully described in [5].

D-Privacy Naked ciphertexts should not be correlatable to identities.
For any V ∈ I and ~m ∈Mk, if the following actions happen:

(ek, dk1, dk2, dk3)← K; c← E(ek, V, ~m); c̄← X (c).

Then the distribution of c̄ should be independent of V .

B-Privacy An adversary that knows the transformation key should not be able to say
anything about the content of any ciphertexts he sees. We play the following game
between a simulator and an adversary, and the probability that the adversary wins
should be close to 1/2.
A simulator samples b← {0, 1} and computes (ek, dk1, dk2, dk3)← K.
The adversary gets ek and dk2, and sends the simulator a sequence of challenge
messages ~m0

1, . . . , ~m
0
n, one by one, along with identities V1, . . . , Vn.

When the simulator gets {(~m0
i , Vi)}, it, for 1 ≤ i ≤ n, samples a random message

~m1
i and computes ci ← E(ek, Vi, ~mb

i). The ciphertexts c1, . . . , cn are sent to the
adversary.
At any time, the adversary may submit tuples (V, c, č, s, γ) to the simulator. First,
the simulator verifies that the s matches γ, and then computes ~m ← D(dk1, V, c)
and ~ρ ← DR(dk3, V, γ, c, č). If either decryption fails, ⊥ is returned to the adver-
sary. If (V, c) = (Vi, ci) for some i, 1 is returned to the adversary. Otherwise ~ρ is
returned to the adversary.
Finally, the adversary outputs b′ ∈ {0, 1} and wins if b = b′.

R-Privacy An adversary that controls the pre-code decryption key and sees many trans-
formed encryptions of valid ballots from Ok should not be able to say anything non-
trivial about the content of those encryptions. We play the following game between

8



a simulator and an adversary, and the probability that the adversary wins should
be close to 1/2.
A simulator samples b← {0, 1}, a random permutation π1 on O and sets π0 to be
the identity map on O. It computes the keys (ek, dk1, dk2, dk3) ← K, and sends
ek and dk3 to the adversary. The adversary chooses a challenge identity V , and
sends it to the simulator. The simulator computes (s, γ) ← S(ek, V ) and sends γ
to the adversary.
The adversary then submits a sequence of ballots ~v1, . . . , ~vn from Ok, one by one.
The simulator computes ci ← E(ek, V, πb(~vi)), či ← T (dk2, V, s, ci) and sends
(ci, či) to the adversary.
Finally, the adversary outputs b′ ∈ {0, 1} and wins if b = b′.

A-Privacy An adversary that runs the verifier part of the decryption protocol should
not be able to correlate ciphertexts with decryptions.

B-Integrity An adversary that knows all the key material, and chooses the per-voter key
material, should not be able to create an identity, a ciphertext and a transformed
ciphertext such that the transformed ciphertext decryption is inconsistent with the
decryption of the ciphertext. We play the following game between a simulator and
an adversary, and the probability that the adversary wins should be close to 0.
A simulator computes (ek, dk1, dk2, dk3)← K, and sends (ek, dk1,
dk2, dk3) to the adversary. The adversary then produces a tuple (V, s, γ, c, č) which
he sends to the simulator. The simulator computes ~m← D(dk1,
V, c) and ~ρ← DR(dk3, V, γ, c, č).
The adversary wins if ~ρ 6= ⊥ and either ~m = ⊥, or s(~m) 6= ~ρ.

D-Integrity An adversary that runs the prover’s part of the protocol ΠDP should not
be able to tamper with the decryption.

4.4 Instantiation

We now present the new instantiation. It is uses ideas presented in [6], but is otherwise
similar to the instantiation given in [5]. Let k be the number of options on a ballot.

• The key generation algorithm K chooses ai1, ai2, . . . , aik ∈R Z∗q , i ∈ {1, 2}. Then it
computes, for 1 ≤ j ≤ k, a3j = a2j +a1j (mod q). Further compute, for 1 ≤ j ≤ k,
y1j = ga1j , y2j = ga2j and y3j = ga3j . Lastly we choose a random generator
ḡ ∈ G. The keys are ek = (g, ḡ, {y1i}1≤i≤k, {y2i}1≤i≤k, {y3i}1≤i≤k), dk1 =

∑k
i=1 a1i,

dk2 = (a21, a22, . . . , a2k) and dk3 = (a31, a32, . . . , a3k).

• The pre-code map generation algorithm S takes as input ek, V . It chooses s ∈R
{1, . . . , q − 1}, and computes γ = gs.
It then outputs (s, γ).

9



• The encryption algorithm E takes as input ek, V,~v ∈ Mk. It chooses t ∈R Zq and
computes x = gt, x̄ = ḡt and wi = yt1ivi, for 1 ≤ i ≤ k, and then computes

πE = PI
eqdl(V ||x||w1||w2|| . . . ||wk, g, t; g, ḡ;x, x̄).

It outpus the ciphertext c = (V, x, x̄, w1, w2, . . . , wk, πE).

• The deterministic extraction algorithm X takes as input c. It verifies πE and
computes w̄ = w1 · w2 · · ·wk.
It outputs c̄ = (x, w̄).

• The transformation algorithm T takes as input dk2, V, s, c. It verifies πE , computes
x̌ = xs, ŵi = x̌a2i and w̌i = wsi , for 1 ≤ i ≤ k, and generate proofs

πT I ← PII
eqdl(c, g, s;x,w1, w2, . . . , wk; x̌, w̌1, w̌2, . . . , w̌k),

πT II ← PIII
eqdl(c, g, ŵ; a21, a22, . . . , a2k; ŵ1, ŵ2, . . . , ŵk).

It outputs č = (x̌, ŵ1, ŵ2, . . . , ŵk, w̌1, w̌2, . . . , w̌k, πT I, πT II).

• The pre-code decryption algorithm DR takes as input dk3, V, γ, c, č. It verifies the
proofs πE , πT I and πT II, and, if accepted, computes ρi = w̌iŵix̌

−a3i(= vsi ), for
1 ≤ i ≤ k.
It outputs ~ρ = (ρ1, ρ2, . . . , ρk).

• The decryption protocol ΠDP is not described in this paper because the focus of
the paper is on the ballot submission part of the e-voting system.

• The decryption algorithm D takes as input dk1, V, c. It verifies πE , and computes
mi = wix

−a1i , for 1 ≤ i ≤ k.
It outputs (m1,m2, . . . ,mk).
Remark: Here we must have dk1 = (a11, a12, . . . , a1k) instead of dk1 =

∑k
i=1 a1i.

4.5 Security Proof

We now show that the instantiation given satisfies the requested completeness and se-
curity requirements. We will start with the completeness requirements. It is clear by
inspection that the first Completeness requirement C1 holds. Since we have not described
a decryption protocol ΠDP, we are not able to prove Completeness requirement C2.

C3 Completeness

The zero-knowledge proofs are in this case complete, and ElGamal is homomorphic.
Hence the following equation proves that this requirement is fullfiled:

ρi = w̌iŵx̌
−a3i = wsi x̌

a2ix−sa3i = (wxa2i−a3i)s = (wix−a1i)s = vsi .

10



After proving the completeness requirements we now prove our instantiation fullfills
the required security notions. Again, since we do not have a decryption protocol, we are
unable to prove A-privacy or D-integrity.

D-Privacy

The identity V is not used in the creation of (w1, w2, . . . , wk) or x, hence the distribution
of the ciphertext c̄ is independent of V .

B-Privacy

We prove the following lemma giving a bound for the advantage an adversary can get
against B-privacy:

Lemma 4.1. If Decision Diffie-Hellman is (T, εDDH)-hard and T < 2τ/2 − 1, then any
adversary against B-privacy using time at most T has advantage at most Tnq +2−τ/2+2 +
k2−τ + kεDDH .

We prove the lemma by giving a sequence of games, and for every two consecutive
games bounding the probability of an adversary distinguishing between the two games.
In the final game we end up in a situation where we obviously achieveB-privacy, therefore
by suming up the bounds we get a bound for the advantage of an adversary against B-
privacy.

Game 1 The first game is identical to the game between a simulator and an adversary
used to define B-privacy. We assume the game requires time at most T and that the
simulator receives at most n challenge ciphertexts.

For game i, we define the event Ei as the event that the adversary correctly guesses
the bit b. The advantage of the adversary is then

ε = |Pr[E1]− 1/2|.

Game 2 We make two changes for Game 2. The first change is that the simulator now
remembers the ballot encrypted when encrypting honestly generated ballots. Secondly,
we now use the SimI

eqdl (described in Section 3.1) to fake the proofs for logg x = logḡ x̄,
and reprogram the random oracle accordingly.

The adversary can only notice these changes if the reprogramming of the random
oracle fails. This happens if the oracle has been queried with the same input before the
reprogramming attempt. There are at most n reprogramming attempts, and at most T
random oracle queries. At each query, a random integer from Zq is chosen, and hence the
probabiltiy that any one reprogramming attempt fails is bounded above by T

q . Therefore
we see that

|Pr[E2]− Pr[E1]| ≤ Tn

q
.

11



Game 3 Now, when the simulator decrypts adversarially generated ciphertexts, in
addition to producing ~ρ and ~m, he computes ρ′i = ms

i , for 1 ≤ i ≤ k. Instead of
returning ~ρ, he returns ~ρ′.

The only way the adversary can notice this is if ρi 6= ρ′i for some i, which will only
happen if either πT I or πT II are forgeries.

The probability of this happening is bounded above by the probability that the
adversary is able to forge one or both proofs for one decryption query. This is the same
situation as for B-integrity, and from [5] we get that

|Pr[E3]− Pr[E2]| ≤ 2−τ/2+2.

Game 4 Now we stop computing with the secret keys a31, . . . , a3k. Nothing the ad-
versary sees is dependent on computations where these keys are used, hence the changes
are not observable. Therefore

Pr[E4] = Pr[E3].

We want to start to randomize the votes before encryption. To do this we need the
following lemma:

Lemma 4.2. Consider Game 4 modified such that when encrypting, we let either the
i − 1 first coordinates or the i first coordinates of each challenge vote ~v be random
group elements. If there are n challenge votes ~v = (v1, v2, . . . , vk), the advantage of any
adversary using time at most T trying to decide whether i−1 or i coordinates are random
is at most (T + 1)2−τ+1 + εDDH .

Proof. We prove the lemma by making a sequence of games, and giving bounds for the
probability an adversary has in distinguishing between each two consecutive games.

Game i This game is the same as Game 4 described before the lemma, but when
encrypting each challenge vote ~v, v1, . . . , vi−1 is replaced by random group elements.
Hence w1, . . . , wi−1 are encryptions of random group elements for each challenge vote ~v.

Game ii In the key generation phase, we change the generation of one group element.
Now we generate ḡ by picking a random number r ∈ Z∗q and computing ḡ = yr1i. We
observe that now x̄1/r = ḡt/r = y

tr/r
1i = yt1i.

Notice that y1i is never the identity, and since any element except the identity in G
is a generator, ḡ has the same distribution as before. So we have

Pr[Eii] = Pr[Ei].

Game iii Now, for adversarially generated ciphertexts we decrypt ci by using the
observation made in the previous game. That is, we compute mi = wix̄

−1/r. For all
1 ≤ j ≤ k, j 6= i, we decrypt cj as before.

This change can only be noticed if the adversary is able to fake at least one proof
of logg x = logḡ x̄. The adversary can make at most T queries to the random oracle, so

12



by Theorem 3.1 the probability of faking at least one such proof is (T + 1)2−τ+1, which
means that

|Pr[Eiii]− Pr[Eii]| = (T + 1)2−τ+1.

Game iv In this game we let y1i be randomly generated from G, and we don’t generate
a1i. Let ~ζ = (g, ḡ, y11, y12, . . . , y1k). After the key generation we sample a random
tuple (z0, z̄0, z1, . . . , zk) from the subgroup generated by ~ζ. When encrypting a honestly
generated ballot, we sample an additional random number t′ from Zq, and encrypt by
x = gtzt

′
0 , x̄ = ḡtz̄t

′
0 and wj = yt1jz

t′
j mj , 1 ≤ j ≤ k.

This change cannot be observed by the adversary, since the distribution of the ele-
ments still are the same. Therefore we get that

Pr[Eiv] = Pr[Eiii].

Game v Let ~ζ ′ be the (k+2)-tuple that is the same as ~ζ, except that the ith coordinate
is replaced by a random element from G. Now, after the key generation, we sample the
tuple (z0, z̄0, z1, . . . , zk) from the subgroup generated by ~ζ and ~ζ ′.

The only difference between this and the previous game, is the distribution of the
zi-values. We are now able to make a distinguisher that will give an advantage on the
Decision Diffie-Hellman problem with (g, y1i) as base, if we have an adversary that has
an advantage in distinguishing between this and the previous game. The distinguisher
(which we omit) proves the following lemma:

Lemma 4.3. If the Decision Diffie-Hellman is (T, εDDH)-hard, then

|Pr[Ev]− Pr[Eiv]| ≤ εDDH .

Game vi In this game we let mi be a random element from G, instead of the real mi.
We generate ḡ and y1i as in Game i. Also we go back to encrypting as we do in Game i.

The encryption wi in Game v is just a random group element. Since mi is a random
element from G in this game, wi will still be a random element from G. Therefore the
change of mi cannot be noticed. Clearly all other changes are indistinguishable for the
adversary, so

Pr[Evi] = Pr[Ev].

Analysis After Game vi we are in the situtation of Game i with coordinate i of all
challenge votes randomised. Lemma 4.2 now follows from the triangle inequality.

Game 5 We now randomize all the coordinates in every vote ~v.
We randomize the coordinates one by one, applying Lemma 4.2 each time, always

keeping already randomised coordinates still randomised. From the lemma we get that

|Pr[E5]− Pr[E4]| ≤ k((T + 1)2−τ+1 + εDDH).

13



Analysis After Game 5 the ciphertexts no longer contains any information about the
ballot, and hence the adversary cannot decide which ballot was encrypted.

The triangle inequality gives us that

ε = |Pr[E1]− 1/2| ≤ Tn

q
+ 2−τ/2+2 + k(T + 1)2−τ+1 + kεDDH .

R-Privacy

The proof that the instantiation given in this article achieves R-privacy is similar to the
proof given in [5]. The only difference is in the three first games. The details of the
three first games in our case are given in Appendix A.

B-Integrity

The pre-code decryption algorithm verifies that πE accepts, hence it cannot be the case
that c does not decrypt while č decrypts.

It is a reasonable assumption to assume that the number of random oracle queries an
algorithm makes is bounded by the time T the algorithm uses to execute. Now the only
way the adversary can win, is if he has faked at least one of the proofs πT I and πT II. If
T < 2τ/2 − 1, then by Proposition 1 and 2 in [5] the proofs πT I and πT II can be forged
with probability at most 2−τ/2+1 and 2−τ/2+1, respectively. Hence the probability that
ρi 6= vsi for any i is at most 2−τ/2+1 + 2−τ/2+1 = 2−τ/2+2.

5 Comparison
In this section we compare the computational complexity of this instantiation with the
instantiation described by Gjøsteen in [5]. We distinguish between full exponentiations
and small exponentiations, the small exponentiations are used in the equality of discrete
logarithms proofs. Let N be the number of voters in the election, k the maximum
number of options any one ballot can have and ntot the number of votes given by all
voters.

We first present the number of exponentiations for the instantiation given in Gjøs-
teens paper:

Full exponentiations small exponentiations
E : (k + 2) (per vote)
X : N N
T : (2k + 7)ntot (k + 2)ntot
DR: (k + 5)ntot (4k + 7)ntot

Secondly, for the instantiation presented in Section 4, we have the following number
of exponentiations:

14



Full exponentiations small exponentiations
E : (k + 4) (per vote)
X : 2N 2N
T : (2k + 8)ntot (k + 3)ntot
DR: (k + 6)ntot (4k + 8)ntot

When discussing this we will divide into what happens during and after the election,
and into what the voter’s computer P does and what the central system does.

During the election we run the encryption algorithm E on the voter’s computer.
The transformation algorithm T and the pre-code decryption algorithm DR runs on the
central system, and will be considered together.

After the election we need to run the extraction algorithm X to get the naked ci-
phertexts that are sent for decryption.

The computational complexity after the election increases with a factor of 2. This
small increase in complexity after the election should not be of any concern, especially
since this will not be noticed by the voters using the system. Furthermore, since the
ballot box has essentially verified these proofs as part of the transformation algorithm,
there’s little need to verify them again as part of the extraction algorithm. Which means
that this increase in complexity only affects the auditor.

We now look at the change in computational complexity during the election. This
is also the most important phase, since it is during this phase the voters will use and
notice how well the system works. We see that for the encryption algorithm, we have a
increase by two exponentiations per vote given. Since each vote is given on a distinct
computer, this is the interesting number for the encryption algorithm. This increase is
not very significant, and should not be very noticable for a voter.

The most crucial part of the system when looking at the computational complexity is
the combined complexity of the transformation algorithm T and the pre-code decryption
algorithm DR that does the task of receiving the votes from the computer of the different
voters and transforming them into pre-codes that again can be turned into receipt codes.

From the above tables one sees that the increase in complexity is for each of the
algorithms by 2ntot full exponentiations and 2ntot small exponentiations, which gives
a total increase of 4ntot full exponentiations and 4ntot small exponentiations for both
of them combined. It is important to take in the factor of ntot since many votes from
different voters (on different computers) can be submitted simultanously. However, the
increase is minor compared to the total workload.

6 Conclusion
We have described the cryptosystem underlying the Norwegian Internet voting protocol,
and given a new instantiation for it together with a security analysis of the instantiation.
The new instantiation solves the technical problem with the proof of knowledge for the
encryption exponent encountered in the instantiation given in [5].

After describing the instantiation and its security analysis we also analysed the com-
putational complexity of the new instantiation. The computational complexity increases

15



with this new instantiation, but also has increased security, as mentioned above. The
system in our opinion will still be practical and quite effective with the new instantiation.

References
[1] Ivan Damgård, Kasper Dupont, and Michael Østergaard Pedersen. Unclonable

group identification. In Advances in Cryptology-EUROCRYPT 2006, pages 555–572.
Springer, 2006.

[2] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identifi-
cation and signature problems. In Advances in Cryptology - CRYPTO ’86, Santa
Barbara, California, USA, 1986, Proceedings, pages 186–194, 1986.

[3] Kristian Gjøsteen. A latency-free election scheme. In Topics in Cryptology - CT-RSA
2008, The Cryptographers’ Track at the RSA Conference 2008, San Francisco, CA,
USA, April 8-11, 2008. Proceedings, pages 425–436, 2008.

[4] Kristian Gjøsteen. Analysis of an internet voting protocol. Cryptology ePrint
Archive, Report 2010/380, 2010. http://eprint.iacr.org/.

[5] Kristian Gjøsteen. The Norwegian internet voting protocol. Cryptology ePrint
Archive, Report 2013/473, 2013. http://eprint.iacr.org/.

[6] Victor Shoup and Rosario Gennaro. Securing threshold cryptosystems against chosen
ciphertext attack. J. Cryptology, 15(2):75–96, 2002.

A R-privacy
We prove that the same bound as Gjøsteen gave in [5] for the advantage of an adversary
against R-privacy also is achieved with our instantiation. The following theorem was
stated in the article by Gjøsteen:

Lemma A.1. If the SGSP problem and the DDH problem is, respectively (T, εSGSP )-
hard and (T, εDDH)-hard, then any adversary against R-privacy using at most N voter
identities and time at most T has advantage at most

ε ≤ 3ntotT
q

+ LεSGSP +Nq−L + kεDDH ,

To prove the lemma we do the following sequence of indistinguishable games:

Game 1 In the first game, everything is as in the game for R-privacy. We assume the
game requires time at most T and the adversary submits at most ntot ballots.

The advantage of the adversary is given as

ε = |Pr[E1]− 1/2|.

16



Game 2 In this game, every proof that we have to generate is faked. We do this by
using the simulators given in Section 3 and then reprograming the oracles appropriately.

The adversary cannot notice this change unless a reprograming attempt fails. That
happens if the oracle has already be queried at the point that the simulator tries to
reprogram. It is reasonable to assume that the number of queries to the random oracle is
bounded by the time T , and each reprograming attempt involves a group element chosen
uniformly at random. Therefore the probability that a single reprograming attempt fails
is bounded by T/q. Since there are at most 3ntot reprogramming attempts, we have that

|Pr[E2]− Pr[E1]| = 3ntotT
q

.

Game 3 In the key generation phase, we generate a pick a random number u, and
generate ḡ as ḡ = gu. Also we from now one always compute x̄ as x̄ = xu (= ḡt).

Since g is a generator, ḡ will have the same distribution as earlier. Also, x̄ still is
computed correctly, hence these changes are indistinguishable and

Pr[E3] = Pr[E2]

We are now in the same position as before Game 3 in the proof for R-privacy in [5].
The same set of games as Gjøsteen applies in Game 3 to Game 8 can be applied here,
and thus we achieve the same bound for R-privacy as Gjøsteen, as proposed.

17


