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Abstract. We present XPX, a tweakable blockcipher based on a single permutation P .
On input of a tweak (t11, t12, t21, t22) ∈ T and a message m, it outputs ciphertext c =
P (m⊕∆1)⊕∆2, where ∆1 = t11k⊕t12P (k) and ∆2 = t21k⊕t22P (k). Here, the tweak space
T is required to satisfy a certain set of trivial conditions (such as (0, 0, 0, 0) 6∈ T ). We prove
that XPX with any such tweak space is a strong tweakable pseudorandom permutation.
Next, we consider the security of XPX under related-key attacks, where the adversary can
freely select a key-deriving function upon every evaluation. We prove that XPX achieves
various levels of related-key security, depending on the set of key-deriving functions and the
properties of T . For instance, if t12, t22 6= 0 and (t21, t22) 6= (0, 1) for all tweaks, XPX is
XOR-related-key secure.
XPX generalizes Even-Mansour (EM), but also Rogaway’s XEX based on EM, and tweakable
EM used in Minalpher. As such, XPX finds a wide range of applications. We show how our
results on XPX directly imply related-key security of the authenticated encryption schemes
Prøst-COPA and Minalpher, and how a straightforward adjustment to the MAC function
Chaskey and to keyed Sponges makes them provably related-key secure.

Keywords. XPX, XEX, Even-Mansour, tweakable blockcipher, related-key security, Prøst,
COPA, Minalpher, Chaskey, Keyed Sponges.

1 Introduction

Even-Mansour Blockcipher. A blockcipher E : K × {0, 1}n → {0, 1}n is a function
that is a permutation on {0, 1}n for every key k ∈ K. The simplest way of designing a
blockcipher is the Even-Mansour construction [19, 20]: it is built on top of a single n-bit
permutation P :

EMk1,k2(m) = P (m⊕ k1)⊕ k2 . (1)

See also Figure 1. In the classical indistinguishability security model, this construction
achieves security up to approximately 2n/2 queries, both for the case where the keys
are independent [19, 20] as well as for the case where k1 = k2 [18]. On the downside,
this construction clearly does not achieve security against related-key distinguishers that
may freely choose an offset δ to transform the key. Indeed, for any δ 6= 0, we have
EMk1,k2(m) = EMk1⊕δ,k2(m ⊕ δ). Recently, Farshim and Procter [21] and Cogliati and
Seurin [14] reconsidered the security of Even-Mansour in the related-key security model.
The former considered the case of k1 = k2, and derived minimal conditions on the set
of key-deriving functions such that EM is related-key secure. The latter showed that if
k1 = γ1(k) and k2 = γ2(k) for two almost perfect nonlinear permutations γ1, γ2 [34], the
construction is XOR-related-key secure. Karpman showed how to transform related-key
distinguishing attacks on EM to key recovery attacks [23].

Even though our focus is on the single-round Even-Mansour (1), we briefly elaborate
on its generalization, the iterated r ≥ 1 round Even-Mansour construction:

EM[r]k1,...,kr+1(m) = Pr(· · ·P1(m⊕ k1) · · · ⊕ kr)⊕ kr+1 ,
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where P1, . . . , Pr are n-bit permutations. It has been proved that this construction tightly
achieves O(2rn/(r+1)) security in the single-key indistinguishability model [8,12,13,25,39].
It has furthermore been analyzed in the chosen-key indifferentiability model [2, 26], and
the related-key indistinguishability model [14,21]. As our work centers around the 1-round
Even-Mansour of (1), we will not discuss these results in detail; we refer to Cogliati and
Seurin [14] for a recent and complete discussion of the state of the art.

Tweakable Blockciphers. A tweakable blockcipher Ẽ : K × T × {0, 1}n → {0, 1}n
generalizes over E by ways of an additional parameter, the tweak t ∈ T . The tweak is a
public parameter which brings additional flexibility to the cipher. In more detail, Ẽ is a
family of permutations on {0, 1}n, indexed by (k, t) ∈ K×T . Liskov et al. [29] formalized
the principle of tweakable blockciphers, and introduced two modular constructions based
on a classical blockcipher. One of their proposals is the following:

LRWk,h(t,m) = Ek(m⊕ h(t))⊕ h(t) ,

where h is a universal hash function taken from a family of hash functions H. This
construction is proven to achieve security up to 2n/2 queries. Rogaway [37] introduced
XEX: it generalizes over LRW by eliminating the universal hash function (and thus by
halving the key size) and by replacing it by an efficient tweaking mechanism based on Ek.
In more detail, he suggested the use of masking ∆ = xα1

1 · · · x
α`
` Ek(N) for some pre-defined

generators x1, . . . , x` ∈ GF(2n):

XEXk((α1, . . . , α`, N),m) = Ek(m⊕∆)⊕∆ . (2)

If the generators and the tweak space are defined such that the xα1
1 · · · x

α`
` are unique

and unequal to 1 for all tweaks, XEX achieves birthday bound security [10,31,37]. Along
with XEX, Rogaway also considered XE, its cousin which only masks the inputs to E
and achieves PRP instead of SPRP security. Here, ` is usually a small number, and the
generators and the tweak space are defined in such a way that adjusting the tweak is very
cheap. For instance, practical applications with n = 128 often take ` ≤ 3 and (x1, x2, x3) =
(2, 3, 7), and an allowed tweak space would be [1, 2n/2]× [0, 10]× [0, 10]× {0, 1}n.

Sasaki et al. [38] recently introduced the “Tweakable Even-Mansour” (TEM) for the
purpose of the Minalpher authenticated encryption scheme. TEM is a variant of XEX
with Ek replaced by a public permutation P :

TEMk((α1, . . . , α`, N),m) = P (m⊕∆)⊕∆ , (3)

where ∆ = xα1
1 · · · x

α`
`

(
k‖N ⊕ P (k‖N)

)
for some generators x1, . . . , x` ∈ GF(2n). (The

masking is in fact slightly different, but adjusted for the sake of presentation; cf. Section 6.3
for the details.)

These constructions all achieve approximately birthday bound security, and extensive
research has been performed on achieving beyond birthday bound security for tweakable
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blockciphers [27,28,30,32,36]. Because this is out of scope for this article, we will not go
into detail; we refer to Mennink [30] for a recent and complete discussion of the state of
the art.

Application of XEX and TEM. Tweakable blockciphers find a wide spectrum of appli-
cations, most importantly in the area of authenticated encryption and message authenti-
cation. For instance, XEX has been originally introduced for the authenticated encryption
scheme OCB1 and the message authentication code PMAC [37], and its idea has further-
more been adopted in 17 out of 57 initial submissions to the CAESAR [9] competition
for the design of a new authenticated encryption scheme: AEZ, CBA, COBRA, COPA,
Deoxys, ELmD, iFeed, Joltik, KIASU, Marble, OCB, OTR, POET, and SHELL are di-
rectly inspired by XE or XEX; OMD transforms XE to a random function setting; and
Minalpher uses TEM. Finally, the Prøst submission is simply a permutation P , which is
(among others) plugged into COPA and OTR in an Even-Mansour mode. We note that
OTR internally uses XE, while COPA uses XEX with N = 0 (see also Section 6.2).

Related-Key Security of XEX and TEM. XEX resists related-key attacks if the
underlying blockcipher is sufficiently related-key secure. However, this premise is not
necessarily true if Even-Mansour is plugged into XEX, as is done in Prøst-COPA and
Prøst-OTR. In fact, Dobraunig et al. [17] derived a related-key attack on Prøst-OTR. This
attack uses that the underlying XE-with-EM construction is not secure under related-key
attacks, and it ultimately led to the withdrawal of Prøst-OTR. The attack exploits the
nonce N that is used in the masking. Karpman [23] generalized the attack to a key
recovery attack. Because COPA uses XEX without nonce (hence with N = 0), the attack
of Dobraunig et al. does not seem to be directly applicable to Prøst-COPA. Nevertheless,
it is unclear whether a variant of it generalizes to Prøst-COPA.

1.1 Our Contribution

We present the tweakable blockcipher XPX. It can be seen as a generalization of TEM
as well as of XEX with integrated Even-Mansour, and due to its generality it has di-
rect implications for various schemes in literature. In more detail, XPX is a tweakable
blockcipher based on an n-bit permutation P . It has a key space {0, 1}n, a tweak space
T ⊆ ({0, 1}n)4 (see below), and a message space {0, 1}n. It is defined as

XPXk((t11, t12, t21, t22),m) = P (m⊕∆1)⊕∆2 ,

with ∆1 = t11k ⊕ t12P (k) and ∆2 = t21k ⊕ t22P (k). Note that XPX boils down to the
original Even-Mansour blockcipher by taking TEM = {(1, 0, 1, 0)}. It also generalizes XEX
based on Even-Mansour and with N = 0, by defining TXEX to be a tweak space depending
on (α1, . . . , α`) (cf. Section 3 for the details).

Valid Tweak Sets. Obviously, XPX is not secure for any possible tweak space T . For
instance, if (0, 0, 0, 0) ∈ T , the scheme is trivially insecure. Also, if (1, 0, 0, 1) ∈ T , an
attacker can easily distinguish by observing that XPXk((1, 0, 0, 1), 0) = 0. Therefore, it
makes sense to limit the tweak space in some way, and we define the notion of valid tweak
spaces. This condition eliminates the trivial cases (such as above two) and allows us to
focus on the “interesting” tweaks. We remark that TEM and TXEX are valid tweak spaces.

Single-Key Security. As a first step, we consider the security of XPX in the traditional
single-key indistinguishability setting, and we prove that if T is a valid set, then XPX
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achieves strong PRP (SPRP) security up to about 2n/2 queries. The proof is performed
in the ideal permutation model, and uses Patarin’s H-coefficient technique [35] which
has found recent adoption in, among others, generic blockcipher analysis [12–15, 30] and
security of message authentication algorithms [4, 16,33].

Related-Key Security. Next, we consider the security of XPX in the related-key setting,
where for every query, the adversary can additionally choose a function to transform the
key. We focus on the following two types of key-deriving function sets:

– Φ⊕: the set of functions that map k to k ⊕ δ, for any offset δ;
– ΦP⊕: the set of functions that map either k to k⊕ δ or P (k) to P (k)⊕ δ, for any offset
δ.

The first set, Φ⊕, has been formally introduced alongside the formal specification of
related-key security by Bellare and Kohno [5]. It is the most logical choice, given that the
maskings in XPX itself are XORed into the state. We remark that Cogliati and Seurin [14]
also use Φ⊕ in their related-key analysis of Even-Mansour. The second set, ΦP⊕, is a nat-
ural generalization of Φ⊕, noting that the masks in XPX are of the form ti1k ⊕ ti2P (k).
For the case of ΦP⊕, we assume that the underlying permutation is available for the key-
deriving functions. Albrecht et al. [1] showed how to generalize the setting of Bellare and
Kohno [5] to primitive-dependent key-deriving functions. In this work, we consider the
related-key security for XPX in a security model that is a straightforward generalization
of the models of Bellare and Kohno and Albrecht et al. to tweakable blockciphers.

For the two key-deriving sets Φ⊕ and ΦP⊕, we show that XPX achieves the following
levels of related-key security:

if T is valid, and for all tweaks: security rk

t12 6= 0 PRP Φ⊕
t12, t22 6= 0 and (t21, t22) 6= (0, 1) SPRP Φ⊕

t11, t12 6= 0 PRP ΦP⊕
t11, t12, t21, t22 6= 0 SPRP ΦP⊕

In brief, if P (k) does not drop from the masking ∆1 (resp. maskings ∆1, ∆2) the scheme
achieves PRP (resp. SPRP) related-key security under Φ⊕. To achieve related-key security
under ΦP⊕, we require that this condition holds for both k and P (k). The requirement
“(t21, t22) 6= (0, 1)” is technically equivalent to the requirement for XEX that xα1

1 · · · x
α`
` 6=

1 for all tweaks: if the conditions were violated, both schemes can be attacked in a similar
way.

1.2 Applications

XPX appears in many constructions or modes (either directly or indirectly), and our
findings have natural implications. We exemplify this for authenticated encryption and
for message authentication codes.

Firstly, Prøst-COPA is related-key secure for both key-deriving function sets Φ⊕ and
ΦP⊕. The crux behind this observation is that the XEX-with-EM evaluations in Prøst-
COPA are in fact XPX evaluations with t11, t12, t21, t22 6= 0 for all tweaks. A similar
observation can be made for Minalpher, with an additional technicality that the key k in
TEM is not of full size.

Secondly, we consider the Chaskey permutation-based MAC function by Mouha et
al. [33]. We first note that the proof of [33] is implicitly using XPX with a tweak space of
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size |T | = 3. Next, we show that if we slightly adjust Chaskey to use permuted key P (k)
instead of k, it achieves XOR-related-key security. Similar findings can be made for keyed
Sponges.

1.3 Outline

Section 2 introduces preliminary notation as well as the security models targeted in this
work. XPX is introduced in Section 3. In Section 4, the notion of valid tweak spaces
is defined and justified. XPX is analyzed for the various security models in Section 5.
We apply the results on XPX to authenticated encryption in Section 6 and to MACs in
Section 7.

2 Preliminaries

By {0, 1}n we denote the set of bit strings of length n. Let GF(2n) be the field of order
2n. We identify bit strings from {0, 1}n and finite field elements in GF(2n). This is done
by representing a string a = an−1an−2 · · · a1a0 ∈ {0, 1}n as polynomial a(x) = an−1x

n−1 +
an−2x

n−2 + · · · + a1x + a0 ∈ GF(2n) and vice versa. There is additionally a one-to-
one correspondence between [0, 2n − 1] and {0, 1}n, by considering a(2) ∈ [0, 2n − 1]. For
a, b ∈ {0, 1}n, we define addition a⊕b as addition of the polynomials a(x)+b(x) ∈ GF(2n).
Multiplication a ⊗ b is defined with respect to the irreducible polynomial f(x) used to
represent GF(2n): a(x) · b(x) mod f(x).

For integers a ≥ b ≥ 1, we denote by (a)b = a(a − 1) · · · (a − b + 1) = a!
(a−b)! the

falling factorial power. If M is some set, a
$←−M denotes the uniformly random drawing

of m from M. The size of M is denoted by |M|. By Perm(M) we denote the set of all
permutations on M.

A blockcipher E : K ×M → M is a function such that for every key k ∈ K, the
mapping Ek(·) = E(k, ·) is a permutation on M. For fixed k its inverse is denoted by
E−1
k (·). A tweakable blockcipher Ẽ is a function Ẽ : K×T ×M→M such that for every

k ∈ K and tweak t ∈ T , the mapping Ẽk(t, ·) = Ẽ(k, t, ·) is a permutation on M. Like

before, its inverse is denoted by Ẽ−1
k (·, ·). Denote by P̃erm(T ,M) the set of tweakable

permutations, i.e., the set of all families of permutations on M indexed with t ∈ T .
Note that a blockcipher is a special case of a tweakable blockcipher with |T | = 1,

and hence it suffices to restrict our analysis to tweakable blockciphers. In this work, we
target the design of a tweakable blockcipher Ẽ from an underlying permutation P , which

is modeled as a perfectly random permutation P
$←− Perm(M). In Section 2.1 we describe

the single-key security model and in Section 2.2 the related-key security model. We give a
description of Patarin’s technique for bounding distinguishing advantages in Section 2.3.

2.1 Single-Key Security Model

Consider a tweakable blockcipher Ẽ : K× T ×M→M based on a random permutation

P
$←− Perm(M). Let π̃

$←− P̃erm(T ,M) be an ideal tweakable permutation. The single-key
security of Ẽ is informally captured by a distinguisher D that has adaptive oracle access

to either (Ẽk, P ), for some secret key k
$←− K, or (π̃, P ). The distinguisher always has two-

directional access to P . It may or may not have two-directional access to the construction
oracle (Ẽk or π̃) depending on whether we consider PRP or strong PRP security. The
distinguisher is computationally unbounded, deterministic, and it never makes duplicate
queries.
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Security Definitions. More formally, we define the PRP security of Ẽ based on P as

Advprp

Ẽ
(D) =

∣∣∣Pr
[
DẼk,P± = 1

]
−Pr

[
Dπ̃,P± = 1

]∣∣∣ ,
and the strong PRP (SPRP) security of Ẽ based on P as

Advsprp

Ẽ
(D) =

∣∣∣Pr
[
DẼ

±
k ,P

±
= 1
]
−Pr

[
Dπ̃±,P± = 1

]∣∣∣ ,
where the probabilities are taken over the random selections of k

$←− K, P
$←− Perm(M),

and π̃
$←− P̃erm(T ,M). For q, r ≥ 0, we define by

Adv
(s)prp

Ẽ
(q, r) = max

D
Adv

(s)prp

Ẽ
(D)

the security of Ẽ against any single-key distinguisher D that makes q queries to the
construction oracle (Ẽk or π̃k) and r queries to the primitive oracle.

2.2 Related-Key Security Model

We generalize the security definitions of Section 2.1 to related-key security using the
theoretical framework of Bellare and Kohno [5] and Albrecht et al. [1]. The generaliza-
tion is similar to the one of Cogliati and Seurin [14] with the difference that tweakable
blockciphers are considered (and that we consider more general key-deriving functions).

Related-Key Oracle. In related-key attacks, the distinguisher may query its construc-
tion oracle not just on Ẽk, but on Ẽϕ(k) for some function ϕ chosen by the distinguisher.
This function may vary for the different construction queries, but should come from a pre-
described set. Let Φ be a set of key-deriving functions (a KDF-set). For a tweakable block-
cipher Ẽ : K×T ×M→M, we define a related-key oracle RK[Ẽ] : K×Φ×T ×M→M
as

RK[Ẽ](k, ϕ, t,m) = RK[Ẽ]k(ϕ, t,m) = Ẽϕ(k)(t,m) .

For fixed ϕ its inverse is denoted RK[Ẽ]−1
k (ϕ, t, c) = Ẽ−1

ϕ(k)(t, c). Denote by

˜RK-Perm(Φ, T ,M) the set of tweakable related-key permutations, i.e., the set of all fam-
ilies of permutations on M indexed with (ϕ, t) ∈ Φ× T .

Security Definitions. For a KDF-set Φ, we define the related-key (strong) PRP (RK-
(S)PRP) security of Ẽ based on P as

Advrk-prp

Φ,Ẽ
(D) =

∣∣∣Pr
[
DRK[Ẽ]k,P

±
= 1
]
−Pr

[
DR̃Kπ,P± = 1

]∣∣∣ ,
Advrk-sprp

Φ,Ẽ
(D) =

∣∣∣∣Pr
[
DRK[Ẽ]±k ,P

±
= 1
]
−Pr

[
DR̃Kπ

±
,P± = 1

]∣∣∣∣ ,
where the probabilities are taken over the random selections of k

$←− K, P
$←− Perm(M),

and R̃Kπ
$←− ˜RK-Perm(Φ, T ,M). For q, r ≥ 0, we define by

Adv
rk-(s)prp

Φ,Ẽ
(q, r) = max

D
Adv

rk-(s)prp

Φ,Ẽ
(D)
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the security of Ẽ against any related-key distinguisher D that makes q queries to the
construction oracle (RK[Ẽ]k or R̃Kπ) and r queries to the primitive oracle. If for some k ∈
K there exist two distinct ϕ,ϕ′ ∈ Φ such that ϕ(k) = ϕ′(k) with non-negligible probability,

R̃Kπk behaves as two independent tweakable permutations for these two key-deriving
functions but RK[Ẽ]k does not. In this case, D can easily distinguish (it corresponds to
the collision-resistance property in [5]).

Key-Deriving Functions. Note that for Φid = {ϕ : k 7→ k}, we simply have

Adv
rk-(s)prp

Φid,Ẽ
(D) = Adv

(s)prp

Ẽ
(D), and we will sometimes view single-key security as

related-key security under KDF-set Φid. Two other KDF-sets we consider in this work
are the following:

Φ⊕ = {ϕδ : k 7→ k ⊕ δ | δ ∈ K} ,
ΦP⊕ = {ϕδ,ε : k 7→ P−1(P (k)⊕ ε)⊕ δ | δ, ε ∈ K, δ = 0 ∨ ε = 0} .

(4)

We regularly simply write δ ∈ Φ⊕ to say that ϕδ ∈ Φ⊕, and similarly write (δ, ε) ∈ ΦP⊕
to say that ϕδ,ε ∈ ΦP⊕.

Note that every ϕδ ∈ Φ⊕ satisfies ϕδ = ϕδ,0 ∈ ΦP⊕, and hence Φ⊕ ⊆ ΦP⊕ by construc-
tion. The side condition “δ = 0∨ε = 0” for ΦP⊕ deserves an additional explanation. In our
scheme XPX, the in- and outputs will be masked using the values (k, P (k)). A function
ϕδ ∈ Φ⊕ (or, equivalently, ϕδ,0 ∈ ΦP⊕) transforms these values to (k ⊕ δ, P (k ⊕ δ)). The
set ΦP⊕ generalizes the strength of the attacker by also transforming P (k) under XOR.
In more detail, for any ε, ϕ0,ε ∈ ΦP⊕ transforms (k, P (k)) to (P−1(P (k) ⊕ ε), P (k) ⊕ ε).
From a theoretical point, it may be of interest to drop the side condition from ΦP⊕.
This would, however, make the security analysis of XPX much more complicated and
technically demanding.

2.3 Patarin’s Technique

We use the H-coefficient technique by Patarin [35] and Chen and Steinberger [13], and
we introduce it for our definitions of related-key security. Recall that these definitions
simplify to single-key security by using KDF-set Φid.

Let P
$←− Perm(M), and R̃Kπ

$←− P̃erm(Φ, T ,M). Let k
$←− K and Ẽ : K × T ×M →

M be a tweakable blockcipher based on P . Consider any fixed deterministic distin-
guisher D for the RK-(S)PRP security of Ẽ. It has access to either the real world

Ore = (RK[Ẽ]
(±)
k , P±) or the ideal world Oid = (R̃Kπ

(±)
, P±) and its goal is to dis-

tinguish both. Here, the distinguisher has inverse query access to the construction oracle
if and only if we are considering strong PRP security (hence the brackets around ±).
The information that D learns from the interaction with Ore/Oid is collected in a view
v. Denote by Xre (resp. Xid) the probability distribution of views when interacting with
Ore (resp. Oid). Let V be the set of all attainable views, i.e., views that occur in the ideal
world with non-zero probability.

Lemma 1 (Patarin’s Technique). Let D be a deterministic distinguisher. Consider a
partition V = Vgood ∪ Vbad of the set of attainable views. Let 0 ≤ ε ≤ 1 be such that for
all v ∈ Vgood,

Pr [Xre = v] ≥ (1− ε)Pr [Xid = v] . (5)

Then, the distinguishing advantage satisfies Adv(D) ≤ ε+ Pr [Xid ∈ Vbad].
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Fig. 3: XPX

A proof of this lemma is given in [12,13]. The idea of the technique is that only few views
are significantly more likely to appear in Oid than in Ore. In other words, the ratio (5)
is close to 1 for all but the “bad” views. Note that taking a large Vbad implies a higher
Pr [Xid ∈ Vbad], while a small Vbad implies a higher ε. The definition of what views are
“bad” is thus a tradeoff between the two terms.

Let vC = {(ϕ1, t1,m1, c1), . . . , (ϕq, tq,mq, cq)} be a view on a construction oracle. We say

that a tweakable related-key permutation R̃Kπ ∈ P̃erm(Φ, T ,M) extends vC , denoted

R̃Kπ ` vC , if R̃Kπ(ϕ, t,m) = c for each (ϕ, t,m, c) ∈ vC . Note that if Ẽ : K×T ×M→M
is a tweakable blockcipher and k ∈ K, then RK[Ẽ]k ∈ P̃erm(Φ, T ,M) and the definition
reads RK[Ẽ]k ` vC . Similarly, if vP = {(x1, y1), . . . , (xr, yr)} is a primitive view, we say
that a permutation P ∈ Perm(M) extends vP , denoted P ` vP , if P (x) = y for each
(x, y) ∈ vP .

3 XPX

Let P be any n-bit permutation. We present the tweakable blockcipher XPX that has
a key space {0, 1}n, a tweak space T ⊆ ({0, 1}n)4, and a message and ciphertext space
{0, 1}n. Formally, XPX : {0, 1}n × T × {0, 1}n → {0, 1}n is defined as

XPXk((t11, t12, t21, t22),m) = P (m⊕∆1)⊕∆2 , where ∆1 = t11k ⊕ t12P (k) ,

and ∆2 = t21k ⊕ t22P (k) .
(6)

XPX is depicted in Figure 3. The design is general in that T can (still) be any set, and
we highlight two examples.

– Even-Mansour. XPX meets the single-key Even-Mansour construction (1) by fixing
T = {(1, 0, 1, 0)}. More generally, if |T | = 1, we are simply considering an ordinary
(not a tweakable) blockcipher;

– XEX with Even-Mansour. XPX covers XEX based on Even-Mansour with N = 0
by taking

T =

{
(xα1

1 · · · x
α`
` ⊕ 1, xα1

1 · · · x
α`
` ,

(xα1
1 · · · x

α`
` ⊕ 1, xα1

1 · · · x
α`
` )

∣∣∣∣ (α1, . . . , α`) ∈ I1 × · · · × I`
}
,

where x1, . . . , x` and tweak space I1 × · · · × I` are as described in Section 1. In this
case, (α1, . . . , α`) is in fact the “real” tweak, and (t11, t12, t21, t22) is a function of
(α1, . . . , α`).
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Further applications follow in Sections 6 and 7. Obviously, XPX does not achieve security
for all choices of T ; e.g., if (1, 0, 1, 1) ∈ T , then we have

XPXk((1, 0, 1, 1), 0) = k . (7)

In Section 4, we derive a minimal set of conditions on T to make the XPX construction
meaningful. Then, in Section 5 we prove that XPX is secure in various settings, from
single-key (S)PRP security to RK-SPRP security for the key-deriving function sets of
Section 2.2.

4 Valid Tweak Sets

To eliminate trivial cases such as (7), we define a set of minimal conditions T needs to
satisfy in order for XPX to achieve a reasonable level of security. In more detail, we define
the notion of a valid tweak space T . After the definition, we present the rationale and a
proposition showing that XPX is insecure if T is invalid.

Definition 1. We say that T is valid if:

(i) For any (t11, t12, t21, t22) ∈ T we have (t11, t12) 6= (0, 0) and (t21, t22) 6= (0, 0);
(ii) For any distinct (t11, t12, t21, t22), (t′11, t

′
12, t

′
21, t

′
22) ∈ T we have (t11, t12) 6= (t′11, t

′
12)

and (t21, t22) 6= (t′21, t
′
22);

(iii) If (1, 0, t21, t22) ∈ T for some t21, t22:

(a) t21 6= 0 and t22 6= 1;
(b) For any other (t′11, t

′
12, t

′
21, t

′
22) ∈ T and b ∈ {0, 1} we have

t′11 6= t′12t21(t22 ⊕ 1)−1 ⊕ b and t′22 6= t′21t
−1
21 (t22 ⊕ 1)⊕ b ;

(c) For any distinct (t′11, t
′
12, t

′
21, t

′
22), (t′′11, t

′′
12, t

′′
21, t

′′
22) ∈ T we have

t′12 ⊕ t′′12 6= (t′11 ⊕ t′′11)t−1
21 (t22 ⊕ 1) and t′22 ⊕ t′′22 6= (t′21 ⊕ t′′21)t−1

21 (t22 ⊕ 1) ;

(iv) If (t11, t12, 0, 1) ∈ T for some t11, t12:

(a) t12 6= 0 and t11 6= 1;
(b) For any other (t′11, t

′
12, t

′
21, t

′
22) ∈ T and b ∈ {0, 1} we have

t′11 6= t′12t
−1
12 (t11 ⊕ 1)⊕ b and t′22 6= t′21t12(t11 ⊕ 1)−1 ⊕ b ;

(c) For any distinct (t′11, t
′
12, t

′
21, t

′
22), (t′′11, t

′′
12, t

′′
21, t

′′
22) ∈ T we have

t′11 ⊕ t′′11 6= (t′12 ⊕ t′′12)t−1
12 (t11 ⊕ 1) and t′21 ⊕ t′′21 6= (t′22 ⊕ t′′22)t−1

12 (t11 ⊕ 1) .

Conditions (i) and (ii) are basic requirements, in essence guaranteeing that the input
to and output of the underlying permutation P is always masked. Conditions (iii) and
(iv) are more obscure but are in fact necessary to prevent the key from being leaked.
The presence of conditions (iii-a) and (iv-a) is justified by equation (7), but even beyond
that, an evaluation XPXk((1, 0, t21, t22), 0) for some t21 6= 0 and t22 6= 1 leaks the value
t21k⊕ (t22⊕1)P (k) and additional conditions are required. In below proposition, we show
that XPX is insecure whenever T is invalid.

We remark that the second part of condition (ii) and the entire condition (iv) are
not strictly needed for PRP security and only apply to SPRP security. We nevertheless
included them for completeness.
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Proposition 1. Let n ≥ 1 and let T ⊆ ({0, 1}n)4 an invalid set. We have

Advsprp
XPX(5, 2) ≥ 1− 1/(2n − 1) .

Proof. We consider conditions (i), (ii), and (iii) separately. Condition (iv) is symmetrically
equivalent to (iii), and omitted.

Condition (i). Assume, w.l.o.g., that (0, 0, t21, t22) ∈ T for some t21, t22. For any m ∈
{0, 1}n we have XPXk((0, 0, t21, t22),m) ⊕ P (m) = t21k ⊕ t22P (k). Making these two
queries for two different messages m 6= m′ gives a collision with probability 1. For a
random π̃ this happens with probability at most 1/(2n − 1). Thus, if condition (i) is
violated, Advsprp

XPX(2, 2) ≥ 1− 1/(2n − 1).

Condition (ii). Assume, w.l.o.g., that (t11, t12, t21, t22), (t11, t12, t
′
21, t

′
22) ∈ T for some

(t21, t22) 6= (t′21, t
′
22). For any m,

XPXk((t11, t12, t21, t22),m)⊕XPXk((t11, t12, t
′
21, t

′
22),m)

= (t21 ⊕ t′21)k ⊕ (t22 ⊕ t′22)P (k) .

Making these queries for two different messages m 6= m′ gives a collision with probability
1. For a random π̃ this happens with probability at most 1/(2n − 1). Thus, if condition
(ii) is violated, Advsprp

XPX(4, 0) ≥ 1− 1/(2n − 1).

Condition (iii-a). Suppose (1, 0, t21, t22) ∈ T for some t21, t22. By construction,
XPXk((1, 0, t21, t22), 0) = t21k ⊕ (t22 ⊕ 1)P (k). If t21 = 0 or t22 = 1, this value leaks
k or P (k). By making one additional invocation of P± the other value is learned as well,
giving the distinguisher both (k, P (k)). For arbitrary m 6= 0, the distinguisher now queries
XPXk((1, 0, t21, t22),m) = c and P (m⊕k) = y and verifies whether c = y⊕t21k⊕t22P (k).
For a random π̃ this happens with probability at most 1/(2n−1). Thus, if condition (iii-a)
is violated, Advsprp

XPX(2, 2) ≥ 1− 1/(2n − 1).

Condition (iii-b). Suppose (1, 0, t21, t22) ∈ T for some t21, t22, and assume t21 6= 0 and
t22 6= 1 (otherwise, the attack of (iii-a) applies). Suppose there is a (t′11, t

′
12, t

′
21, t

′
22) ∈ T

such that t′22 = t′21t
−1
21 (t22 ⊕ 1)⊕ b for some b ∈ {0, 1}. This is without loss of generality,

as the other case is symmetric and the attack applies by reversing all queries for tweak
(t′11, t

′
12, t

′
21, t

′
22). We first consider case b = 0, case b = 1 is treated later.

For b = 0: firstly, the attacker queries XPXk((1, 0, t21, t22), 0) to receive c = t21k ⊕
(t22 ⊕ 1)P (k). Fix any c′ ∈ {0, 1}n, and query XPX−1

k ((t′11, t
′
12, t

′
21, t

′
22), c′) to receive

m′ = t′11k⊕ t′12P (k)⊕P−1(inp′) where inp′ = c′⊕ t′21k⊕ t′22P (k). Eliminating P (k) using
c gives

inp′ = c′ ⊕ t′22(t22 ⊕ 1)−1c⊕
(
t′21 ⊕ t′22(t22 ⊕ 1)−1t21

)
k = c′ ⊕ t′22(t22 ⊕ 1)−1c ,

where we use the violation of property (iii-b). Therefore,

m′ ⊕ P−1(c′ ⊕ t′22(t22 ⊕ 1)−1c) = t′11k ⊕ t′12P (k) .

This equation is independent of the choice of c′. Making these queries for two different
ciphertexts c′ 6= c′′ gives a collision with probability 1. For a random π̃ this happens
with probability at most 1/(2n − 1). Thus, if condition (iii-b) is violated with b = 0,
Advsprp

XPX(3, 2) ≥ 1− 1/(2n − 1).
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For b = 1: in this case we specifically consider c′ = t′21t
−1
21 c, and have

inp′ = t′21t
−1
21 c⊕ t

′
21k ⊕ t′22P (k)

=
(
t′21t
−1
21 (t22 ⊕ 1)⊕ t′22

)
P (k) = P (k) ,

using that c = t21k ⊕ (t22 ⊕ 1)P (k) and the violation of property (iii-b). Therefore,(
t21 t22 ⊕ 1

t′11 ⊕ 1 t′12

)(
k

P (k)

)
=

(
c
m′

)
,

If this matrix is singular, it implies that m′ = const · c with const = t−1
21 (t′11 ⊕ 1) =

(t22 ⊕ 1)−1t′12. For a random tweakable permutation this happens with probability at
most 1/2n. On the other hand, if it is non-singular, this reveals k and P (k).

For arbitrary m 6= 0, the distinguisher now queries XPXk((1, 0, t21, t22),m′′) = c′′ and
P (m′′⊕k) = y and verifies whether c′′ = y⊕ t21k⊕ t22P (k). For a random π̃ this happens
with probability at most 1/(2n − 1). Thus, if condition (iii-b) is violated with b = 1,
Advsprp

XPX(3, 1) ≥ 1− 1/(2n − 1).

Condition (iii-c). Suppose (1, 0, t21, t22) ∈ T for some t21, t22, and assume t21 6= 0
and t22 6= 1 (otherwise, the attack of (iii-a) applies). Suppose there are (t′11, t

′
12, t

′
21, t

′
22),

(t′′11, t
′′
12, t

′′
21, t

′′
22) ∈ T such that t′22 ⊕ t′′22 = (t′21 ⊕ t′′21)t−1

21 (t22 ⊕ 1). This is without loss
of generality, as the other case is symmetric and the attack applies by reversing all
queries for tweaks (t′11, t

′
12, t

′
21, t

′
22), (t′′11, t

′′
12, t

′′
21, t

′′
22). Firstly, the attacker makes queries

XPXk((1, 0, t21, t22), 0) to receive c = t21k ⊕ (t22 ⊕ 1)P (k). Now, fix any c′ ∈ {0, 1}n, and
query

– XPX−1
k ((t′11, t

′
12, t

′
21, t

′
22), c′) to receive m′ = t′11k ⊕ t′12P (k) ⊕ P−1(inp′) where inp′ =

c′ ⊕ t′21k ⊕ t′22P (k);
– XPX−1

k ((t′′11, t
′′
12, t

′′
21, t

′′
22), c′⊕(t′21⊕t′′21)t−1

21 c) to receive m′′ = t′′11k⊕t′′12P (k)⊕P−1(inp′′)
where inp′′ = c′ ⊕ (t′21 ⊕ t′′21)t−1

21 c⊕ t′′21k ⊕ t′′22P (k).

Plugging c into inp′ and inp′′ gives

inp′′ = c′ ⊕ t′21k ⊕
(
t′′22 ⊕ (t′21 ⊕ t′′21)t−1

21 (t22 ⊕ 1)
)
P (k)

= c′ ⊕ t′21k ⊕ t′22P (k) = inp′ ,

where we use the violation of property (iii-c). Therefore,

m′ ⊕m′′ = (t′11 ⊕ t′′11)k ⊕ (t′12 ⊕ t′′12)P (k) .

This equation is independent of the choice of c′. Making these queries for two different
ciphertexts c′ 6= c′′ gives a collision with probability 1. For a random π̃ this happens
with probability at most 1/(2n− 1). Thus, if condition (iii-c) is violated, Advsprp

XPX(5, 0) ≥
1− 1/(2n − 1).

Conclusion. In any case, a distinguishing attack with success probability at least 1 −
1/(2n−1) can be performed in at most 5 construction queries and 2 primitive queries. ut

5 Security of XPX

In this section, we analyze the security of XPX in various security models. We will focus
on valid T only. Theorem 1 captures all security levels for the three key-deriving function
sets of (4).
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Theorem 1. Let n ≥ 1 and let T ⊆ ({0, 1}n)4 be a valid set.

(a) We have

Advprp
XPX(q, r) ≤ Advsprp

XPX(q, r) ≤ (q + 1)2 + 2q(r + 1) + 2r

2n
.

(b) If for all (t11, t12, t21, t22) ∈ T we have t12 6= 0, then

Advrk-prp
Φ⊕,XPX(q, r) ≤

7
2q

2 + 4qr

2n − q
.

(c) If for all (t11, t12, t21, t22) ∈ T we have t12, t22 6= 0 and (t21, t22) 6= (0, 1), then

Advrk-sprp
Φ⊕,XPX(q, r) ≤

7
2q

2 + 4qr

2n
.

(d) If for all (t11, t12, t21, t22) ∈ T we have t11, t12 6= 0, then

Advrk-prp
ΦP⊕,XPX(q, r) ≤ 4q2 + 4qr

2n − q
.

(e) If for all (t11, t12, t21, t22) ∈ T we have t11, t12, t21, t22 6= 0, then

Advrk-sprp
ΦP⊕,XPX(q, r) ≤ 4q2 + 4qr

2n
.

The proof is given in Sections 5.1 to 5.3. In Appendix A, we prove that the conditions
T are minimal, meaning that the security proof cannot go through if the conditions are
omitted.

5.1 Proof of Theorem 1(a)

Note that Advprp
XPX(q, r) ≤ Advsprp

XPX(q, r) holds by construction, and we will focus on
bounding the latter. The proof is a generalization of the proofs of Even-Mansour [4, 18,
19,33], but difficulties arise due to the tweaks.

Let k
$←− {0, 1}n, P

$←− Perm({0, 1}n), and π̃
$←− P̃erm(T , {0, 1}n). Consider any fixed

deterministic distinguisher D for the SPRP security of XPX. In the real world it has access
to (XPXk, P ), and in the ideal world to (π̃, P ). It makes q construction queries which are
summarized in view v1 = {((t11, t12, t21, t22)1,m1, c1), . . . , ((t11, t12, t21, t22)q,mq, cq)}. It
additionally makes r queries to P , summarized in a view v2 = {(x1, y1), . . . , (xr, yr)}. As
D is deterministic this properly summarizes the conversation.

To suit the analysis, we generalize our oracles by providing D with extra data. How
these extra data look like, depends on whether or not T contains tweak tuple (1, 0, t̄21, t̄22)
or (t̄11, t̄12, 0, 1).1 Because of their dedicated treatment, we will always refer to these tweak
tuples with overlines. Note that, as T is valid, at most one of the two tweaks is in T , but
it may as well be that none of these is allowed.

More formally, before D’s interaction with the oracles, we reveal forward construction
query ((1, 0, t̄21, t̄22), 0, c̄) or inverse construction query ((t̄11, t̄12, 0, 1), m̄, 0), depending on
whether one of the two tweaks is in T , and store the resulting tuple in view v0. If none of
the two tweaks is in T , we simply have |v0| = 0.

1 Indeed, if (for instance) (1, 0, t̄21, t̄22) ∈ T , a construction query ((1, 0, t̄21, t̄22), 0) will reveal c̄ =
t̄21k ⊕ (t̄22 ⊕ 1)P (k) and a special analysis is needed.
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Then, after D’s interaction with its oracles but before D makes its final decision, we
reveal vk = {(k, k?)}. In the real world, k is the key used for encryption and k? = P (k). In

the ideal world, k
$←− {0, 1}n will be a randomly drawn dummy key and k? will be defined

based on k and v0. If |v0| = 0, then k?
$←− {0, 1}n. Otherwise, it is the unique2 value that

satisfies

t̄21k ⊕ (t̄22 ⊕ 1)k? = c̄ if v0 = {(1, 0, t̄21, t̄22), 0, c̄)} , or

(t̄11 ⊕ 1)k ⊕ t̄12k
? = m̄ if v0 = {((t̄11, t̄12, 0, 1), m̄, 0)} .

(8)

Clearly, these disclosures are without loss of generality as they may only help the distin-
guisher. The complete view is denoted v = (v0, v1, v2, vk). Recall that D is assumed not to
make any repeat queries, and hence v0∪ v1 and v2 do not contain any duplicate elements.
Note that vk may collide with v2, but this will be captured as a bad event.

Throughout, we consider attainable views only. Recall that a view is attainable if it
can be obtained in the ideal world. For v0∪v1, this is the case if and only if for any distinct
i, i′ such that (t11, t12, t21, t22)i = (t11, t12, t21, t22)i′ , we have mi 6= mi′ and ci 6= ci′ . For v2

the condition is equivalent: there should be no two distinct (x, y), (x′, y′) ∈ v2 such that
x = x′ or y = y′. Attainability implies for vk that k? satisfies (8) if |v0| = 1.

We say that a view v is bad if one of the following conditions holds:

BV1 : for some (x, y) ∈ v2 and (k, k?) ∈ vk:
BV1a : k = x , or

BV1b : k? = y , or

BV2 : for some ((t11, t12, t21, t22),m, c) ∈ v1, (x, y) ∈ v2 ∪ vk, and (k, k?) ∈ vk:
BV2a : m⊕ t11k ⊕ t12k

? = x , or

BV2b : c⊕ t21k ⊕ t22k
? = y , or

BV3 : for some distinct ((t11, t12, t21, t22),m, c), ((t′11, t
′
12, t

′
21, t

′
22),m′, c′) ∈ v0 ∪ v1

and (k, k?) ∈ vk:
BV3a : m⊕ t11k ⊕ t12k

? = m′ ⊕ t′11k ⊕ t′12k
? , or

BV3b : c⊕ t21k ⊕ t22k
? = c′ ⊕ t′21k ⊕ t′22k

? .

Note that every tuple in v0 ∪ v1 uniquely corresponds to an evaluation of the underlying
P , namely via (6) where vk is used as key material. The above conditions cover all cases
where two different tuples in v collide at their P evaluation. In more detail, BV1 covers
the case where vk = {(k, k?)} collides with a tuple in v2, BV2 the case where a tuple in v1

collides with a tuple in v2 ∪ vk, and BV3 the case where two tuples in v0 ∪ v1 collide with
each other. Note that two different tuples in v2 never collide (by construction), and that
the case of a tuple of v0 colliding with v2 is implicitly covered in BV1. The only remaining
case, v0 colliding with vk, is not required to be a bad event, as this is the exact way vk is
defined.

In accordance with Patarin’s technique (Lemma 1), we derive an upper bound on
Pr [Xid ∈ Vbad] in Lemma 2, and in Lemma 3 we will prove that ε = 1 works for good
views.

Lemma 2. For Theorem 1(a), we have Pr [Xid ∈ Vbad] ≤ (q+1)2+2q(r+1)+2r
2n .

2 Because T is valid, t̄21, t̄22 ⊕ 1 6= 0 in the former case and t̄11 ⊕ 1, t̄12 6= 0 in the latter.
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Proof. Consider a view v in the ideal world (π̃, P ). We will essentially compute

Pr [BV1 ∨ BV2 ∨ BV3] ≤ Pr [BV1] + Pr [BV2 | ¬BV1] + Pr [BV3] . (9)

We have k
$←− {0, 1}n. If |v0| = 0, we would also have k?

$←− {0, 1}n. If |v0| = 1, the
value k? is defined based on v0. In fact, the probability that a transcript is bad is largest
in case |v0| = 1 and we consider this case only (the derivation for |v0| = 0 is in fact a
simplification of the below one). Without loss of generality, v0 = {((t̄11, t̄12, 0, 1), m̄, 0)},
where t̄11 6= 1 and t̄12 6= 0 by validity of T . By (8), we have

k? = t̄−1
12

(
(t̄11 ⊕ 1)k ⊕ m̄

)
.

At a high level, we will prove that all bad events become a condition on k once k? gets
replaced using this equation. We will use validity of T (and more specifically point (iv))
to show that these are non-trivial conditions (i.e., k never cancels out).

Condition BV1. Condition BV1a is clearly satisfied with probability r/2n. Regarding
BV1b, we have r choices for (x, y) ∈ v2, and k is a bad key if

k = (t̄11 ⊕ 1)−1(t̄12y ⊕ m̄) ,

where we use that t̄11 6= 1. This happens with probability at most r/2n. Therefore,
Pr [BV1] ≤ 2r/2n.

Condition BV2. Consider any choice of ((t11, t12, t21, t22),m, c) ∈ v1 and (x, y) ∈ v2∪vk.
Regarding BV2a, it is set if

t11k ⊕ t12t̄
−1
12

(
(t̄11 ⊕ 1)k ⊕ m̄

)
= x⊕m.

This translates to(
t11 ⊕ t12t̄

−1
12 (t̄11 ⊕ 1)⊕ 1

)
k = m⊕ t12t̄

−1
12 m̄ if (x, y) = (k, k?) ∈ vk ,(

t11 ⊕ t12t̄
−1
12 (t̄11 ⊕ 1)

)
k = x⊕m⊕ t12t̄

−1
12 m̄ if (x, y) ∈ v2 .

Here, we use that ¬BV1 holds. Now, if (t11, t12, t21, t22) = (t̄11, t̄12, 0, 1), we necessarily have
m 6= m̄ as v does not contain any duplicate elements. Then, the key is bad with probability
0 if (x, y) = (k, k?) ∈ vk and with probability 1/2n otherwise. If (t11, t12, t21, t22) 6=
(t̄11, t̄12, 0, 1), the factor in front of k is nonzero as T is valid (condition (iv-b)), and k
satisfies this equation with probability 1/2n. Concluding, BV2a is set with probability at
most q(r + 1)/2n. Regarding BV2b, it is set if

t21k ⊕ t22t̄
−1
12

(
(t̄11 ⊕ 1)k ⊕ m̄

)
= y ⊕ c .

As before, this translates to(
t21 ⊕ (t22 ⊕ 1)t̄−1

12 (t̄11 ⊕ 1)
)
k = c⊕ (t22 ⊕ 1)t̄−1

12 m̄ if (x, y) = (k, k?) ∈ vk ,(
t21 ⊕ t22t̄

−1
12 (t̄11 ⊕ 1)

)
k = y ⊕ c⊕ t22t̄

−1
12 m̄ if (x, y) ∈ v2 .

The remainder of the analysis is the same, showing that BV2b is set with probability at
most q(r + 1)/2n. Therefore, Pr [BV2] ≤ 2q(r + 1)/2n.

Condition BV3. Consider any two distinct ((t11, t12, t21, t22),m, c),
((t′11, t

′
12, t

′
21, t

′
22),m′, c′) ∈ v0 ∪ v1. If (t11, t12, t21, t22) = (t′11, t

′
12, t

′
21, t

′
22), then necessarily
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m 6= m′ and c 6= c′ and BV3 cannot be satisfied. Otherwise, we have (t11, t12) 6= (t′11, t
′
12)

and (t21, t22) 6= (t′21, t
′
22) because of valid T . Plugging k? into the equation of BV3a gives(

t11 ⊕ t′11 ⊕ (t12 ⊕ t′12)t̄−1
12 (t̄11 ⊕ 1)

)
k = m⊕m′ ⊕ (t12 ⊕ t′12)t̄−1

12 m̄ .

As before, t11 ⊕ t′11 ⊕ (t12 ⊕ t′12)t̄−1
12 (t̄11 ⊕ 1) 6= 0: if (t11, t12) or (t′11, t

′
12) equals (t̄11, t̄12)

this is due to validity of T point (iv-b), and otherwise due to point (iv-c). Therefore, k
satisfies this equation with probability 1/2n. Thus, BV3a is set with probability at most(
q+1

2

)
/2n. Regarding BV3b, we similarly find(

t21 ⊕ t′21 ⊕ (t22 ⊕ t′22)t̄−1
12 (t̄11 ⊕ 1)

)
k = c⊕ c′ ⊕ (t22 ⊕ t′22)t̄−1

12 m̄ ,

and BV3b is set with probability at most
(
q+1

2

)
/2n. Therefore, Pr [BV3] ≤ 2

(
q+1

2

)
/2n ≤

(q + 1)2/2n.

Conclusion. Using (9), we have Pr [Xid ∈ Vbad] ≤ (q+1)2+2q(r+1)+2r
2n . This completes the

proof. ut

Lemma 3. For Theorem 1(a), we have Pr [Xre = v] ≥ Pr [Xid = v] for any good tran-
script v ∈ Vgood.

Proof. For the computation of Pr [Xre = v] and Pr [Xid = v], it suffices to compute the
fraction of oracles that could result in view v. Recall that we assume that D never makes
redundant queries, and particularly that v0∪ v1 consists of |v0|+ q distinct oracle queries.

In the real world, k will always be a randomly drawn key. The tuples v0 ∪ v1 are
construction evaluations and the tuples v1 ∪ vk are direct permutation evaluations. If
|v0| = 0, all of these tuples define a unique P -evaluation, q+r+1 in total. This is because
of the fact that we consider good transcripts. If |v0| = 1, the P -evaluations by v0 and vk
are the same, but apart from that all tuples define unique P -evaluations. So also in this
case, we have q + r + 1 P -evaluations. Therefore,

Pr [Xre = v] = Pr
[
k′

$←− {0, 1}n : k′ = k
]
·

Pr
[
P

$←− Perm(M) : XPXP
k ` v0 ∪ v1 ∧ P ` v2 ∪ vk

]
=

1

2n
· 1

(2n)q+r+1

.

For the analysis in the ideal world, we group the tuples in v0 ∪ v1 according to the tweak
value. Formally, for t = (t11, t12, t21, t22) ∈ T , we define

#t = |{(t,m, c) ∈ v0 ∪ v1 | m, c ∈ {0, 1}n}| .

The computation of Pr [Xid = v] now differs depending on whether |v0| = 0 or |v0| = 1.
If |v0| = 0:

Pr [Xid = v ∧ |v0| = 0] = Pr
[
k′, k?′

$←− {0, 1}n : k′ = k ∧ k?′ = k?
]
·

Pr
[
π̃

$←− P̃erm(T ,M) : π̃ ` v1

]
·

Pr
[
P

$←− Perm(M) : P ` v2

]
=

1

22n
· 1∏

t (2n)#t

· 1

(2n)r
, where

∑
t #t = q .
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If |v0| = 1:

Pr [Xid = v ∧ |v0| = 1] = Pr
[
k′

$←− {0, 1}n : k′ = k
]
·

Pr
[
π̃

$←− P̃erm(T ,M) : π̃ ` v0 ∪ v1

]
·

Pr
[
P

$←− Perm(M) : P ` v2

]
=

1

2n
· 1∏

t (2n)#t

· 1

(2n)r
, where

∑
t #t = q + 1 .

In either case,

Pr [Xid = v] ≤ 1

2n
· 1∏

t (2n)#t

· 1

(2n)r
, where

∑
t #t = q + 1

≤ 1

2n
· 1

(2n)q+r+1

= Pr [Xre = v] ,

where we use that (a)b1(a)b2 ≥ (a)b1+b2
. This completes the proof. ut

5.2 Proof of Theorem 1(b) and 1(c)

The analyses for Advrk-prp
Φ⊕,XPX(q, r) and Advrk-sprp

Φ⊕,XPX(q, r) are fairly similar. The definition
of the views, as well as the analysis for good transcripts, is the same for both. The only
fundamental differences arise at the analysis of bad events, where in the former case we
can use that t12 6= 0 and that the c-values in v1 are always random (as D only makes
forward queries), and in the latter case we can use that both t12 6= 0 and t22 6= 0, and
furthermore that (t21, t22) 6= (0, 1). Therefore, we discuss the proofs of Theorem 1(b) and
Theorem 1(c) in one go and only fork at the analysis of bad events. The proofs are a
generalization of the proof of Section 5.1, where the adversary can now make related-key
queries.

Let k
$←− {0, 1}n, P

$←− Perm({0, 1}n), and R̃Kπ
$←− ˜RK-Perm(Φ⊕, T ,M). Consider

any fixed deterministic distinguisher D for the RK-(S)PRP security of XPX. In the real

world it has access to (RK[Ẽ]k, P ), and in the ideal world to (R̃Kπ, P ). It makes q con-
struction queries which are summarized in view v1 = {(δ1, (t11, t12, t21, t22)1,m1, c1), . . . ,
(δq, (t11, t12, t21, t22)q,mq, cq)} (the key-deriving functions are represented by their offsets
δ1, . . . , δq). It additionally makes r queries to P , summarized in a view v2 = {(x1, y1), . . . ,
(xr, yr)}. As D is deterministic this properly summarizes the conversation. Note that if
D is a PRP distinguisher, the construction queries are all in forward direction, while if it
is an SPRP distinguisher, all queries may be in both directions. This does not influence
the definition of the view.

As in previous proof, we reveal some additional information to the distinguisher. Note
that, as t12 6= 0, no tweak of the form (1, 0, t̄21, t̄22) exists. In the case of Theorem 1(c), we
have that (t21, t22) 6= (0, 1) for all tweaks, hence also no tweak of the form (t̄11, t̄12, 0, 1).
In the case of Theorem 1(b), such a tweak may exist, but there is no need for a special
treatment, as we consider PRP security (see also the discussion before the proof of Propo-
sition 1, where it is explained that condition (iv) is not strictly needed for PRP security
but only for SPRP security). In either case, there is no need to disclose additional queries
before D’s interaction with the oracles (and the notion of v0 does not carry over from the
proof of Theorem 1(a)).
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After D’s interaction with its oracles but before D makes its final decision, we reveal
the secret key along with additional key material corresponding to the evaluations of
P (k⊕δi). Formally, let {ε1, . . . , εs} be a minimal set such that it includes 0 (w.l.o.g. ε1 = 0)
as well as δ1, . . . , δq. After D’s interaction we reveal

vk = {(kε1 , k?ε1), . . . , (kεs , k
?
εs)} .

In the real world, we define kεi = k ⊕ εi and k?εi = P (k ⊕ εi) for i = 1, . . . , s, where k is

the key used for encryption. In the ideal world, k
$←− {0, 1}n will be a randomly drawn

dummy key and we define kεi = k ⊕ εi as before. Also k?εi
$←− {0, 1}n for i = 1, . . . , s will

be dummy keys.
The complete view is denoted v = (v1, v2, vk). Recall that D is assumed not to make

any repeat queries, and hence v1 and v2 do not contain any duplicate elements. Note that
vk may contain collisions or may collide with v2, but this will be captured as a bad event.
As before, we only consider attainable views, which can be obtained in the ideal world.

We say that a view v is bad if one of the following conditions holds:

BV1 : for some (x, y) ∈ v2 and (kδ, k
?
δ ) ∈ vk:

BV1a : kδ = x , or

BV1b : k?δ = y , or

BV2 : for some (δ, (t11, t12, t21, t22),m, c) ∈ v1, (x, y) ∈ v2 ∪ vk, and (kδ, k
?
δ ) ∈ vk:

BV2a : m⊕ t11kδ ⊕ t12k
?
δ = x , or

BV2b : c⊕ t21kδ ⊕ t22k
?
δ = y , or

BV3 : for some distinct (δ, (t11, t12, t21, t22),m, c), (δ′, (t′11, t
′
12, t

′
21, t

′
22),m′, c′) ∈ v1

and (kδ, k
?
δ ), (kδ′ , k

?
δ′) ∈ vk:

BV3a : m⊕ t11kδ ⊕ t12k
?
δ = m′ ⊕ t′11kδ′ ⊕ t′12k

?
δ′ , or

BV3b : c⊕ t21kδ ⊕ t22k
?
δ = c′ ⊕ t′21kδ′ ⊕ t′22k

?
δ′ , or

BV4 : for some distinct (kδ, k
?
δ ), (kδ′ , k

?
δ′) ∈ vk: k?δ = k?δ′ .

The cases BV1,BV2,BV3 are direct generalizations of the bad events of Section 5.1. New is
BV4, which considers the case where two different tuples in vk collide. Note that different
tuples in vk never collide at the input, because the input values are k ⊕ ε1, . . . , k ⊕ εs,
where εi 6= εj for any i, j ∈ {1, . . . , s}.

In accordance with Patarin’s technique (Lemma 1), we derive an upper bound on
Pr [Xid ∈ Vbad] for the case of Theorem 1(b) in Lemma 4 and for the case of Theorem 1(c)
in Lemma 5. In Lemma 6 we will prove that ε = 1 works for good views (the same analysis
applies to both cases (b) and (c)). The proofs are then completed by noting that s ≤ q.

Lemma 4. For Theorem 1(b), we have Pr [Xid ∈ Vbad] ≤ q2+2q(r+s)+2rs+s2/2
2n−q .

Proof. The proof generalizes the one of Lemma 2. The most important difference is that
now vk may contain more than one tuple, where the distinguisher may effectively deter-
mine the differences between the input values. For the bound on bad views for Theo-
rem 1(b), we know that D may only make forward construction queries, hence the c’s in
v1 will always be randomly drawn.

Consider a view v in the ideal world (R̃Kπ, P ). We will essentially compute

Pr [BV1 ∨ BV2 ∨ BV3 ∨ BV4] ≤ Pr [BV1] + Pr [BV4] +

Pr [BV2 | ¬(BV1 ∨ BV4)] +

Pr [BV3 | ¬BV4] .

(10)
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We have k
$←− {0, 1}n with kεi = k ⊕ εi for i = 1, . . . , s, and additionally k?εi

$←− {0, 1}n
for i = 1, . . . , s. We will again show that all bad events have a non-trivial k or k?εi , or a
non-trivial c.

Condition BV1. Consider any choice of (x, y) ∈ v2 and (kδ, k
?
δ ) ∈ vk. It satisfies BV1a

with probability 1/2n, noting that kδ = k⊕δ. It also clearly satisfies BV1b with probability

1/2n, as k?δ
$←− {0, 1}n. Therefore, Pr [BV1] ≤ 2rs/2n.

Condition BV4. Consider any two distinct (kδ, k
?
δ ), (kδ′ , k

?
δ′) ∈ vk. These satisfy k?δ = k?δ′

with probability 1/2n. Therefore, Pr [BV4] ≤
(
s
2

)
/2n ≤ s2/2n+1.

Condition BV2. Consider any choice of (δ, (t11, t12, t21, t22),m, c) ∈ v1 and (x, y) ∈
v2 ∪ vk. This fixes the corresponding tuple (kδ, k

?
δ ) ∈ vk. Regarding BV2a, it is set if

m⊕ t11kδ ⊕ t12k
?
δ = x .

Regardless of whether (x, y) ∈ vk, as t12 6= 0 we always have a non-trivial term k?δ . This
equation is thus satisfied with probability 1/2n. Event BV2b is a bit more technical. The
condition is satisfied if

c⊕ t21kδ ⊕ t22k
?
δ = y .

If (x, y) = (kδ, k
?
δ ) ∈ vk and additionally (t21, t22) = (0, 1), the equation translates to

c = 0. As we consider PRP security where the c-values are always randomly generated,
this happens with probability at most 1/(2n−q). In any other case, because ¬(BV1∨BV4)
holds and that (t21, t22) 6= (0, 0) by validity of T point (i), there is always a non-trivial
k- or k?δ -term involved, and the equation is satisfied with probability 1/2n. Therefore,
Pr [BV2 | ¬(BV1 ∨ BV4)] ≤ 2q(r + s)/(2n − q).

Condition BV3. Consider any two distinct (δ, (t11, t12, t21, t22),m, c),
(δ′, (t′11, t

′
12, t

′
21, t

′
22),m′, c′) ∈ v1. These fix the corresponding tuples (kδ, k

?
δ ), (kδ′ , k

?
δ′) ∈ vk.

– If (δ, (t11, t12, t21, t22)) = (δ′, (t′11, t
′
12, t

′
21, t

′
22)), then m 6= m′ and c 6= c′ by attainability

of v, and BV3 is not satisfied by construction;
– If (t11, t12, t21, t22) 6= (t′11, t

′
12, t

′
21, t

′
22), condition BV3a translates to

(t11 ⊕ t′11)k ⊕ t12k
?
δ ⊕ t′12k

?
δ′ = m⊕m′ ⊕ t11δ ⊕ t′11δ

′ .

As (t11, t12) 6= (t′11, t
′
12) by validity of T point (ii), this equation always contains a k,

k?δ , or k?δ′ , and is satisfied with probability 1/2n. The analysis of BV3b is equivalent;
– If (t11, t12, t21, t22) = (t′11, t

′
12, t

′
21, t

′
22) but δ 6= δ′, then the conditions translate to

BV3a : t12(k?δ ⊕ k?δ′) = m⊕m′ ⊕ t11(δ ⊕ δ′) ,
BV3b : t22(k?δ ⊕ k?δ′) = c⊕ c′ ⊕ t21(δ ⊕ δ′) .

For BV3a, using that t12 6= 0 and ¬BV4, the equation is satisfied with probability 1/2n.
For BV3b, note that t22 may be 0, but c and c′ are randomly generated and satisfy the
equation with probability at most 1/(2n − q).

Therefore, Pr [BV3 | ¬BV4] ≤ 2
(
q
2

)
/(2n − q) ≤ q2/(2n − q).

Conclusion. Using (10), we have Pr [Xid ∈ Vbad] ≤ q2+2q(r+s)+2rs+s2/2
2n−q . This completes

the proof. ut
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Lemma 5. For Theorem 1(c), we have Pr [Xid ∈ Vbad] ≤ q2+2q(r+s)+2rs+s2/2
2n .

Proof. The proof follows the one of Lemma 4 with the only differences at BV2 and BV3.
In more detail, we cannot rely on the randomness of the c-values, but we can use that
t22 6= 0 and (t21, t22) 6= (0, 1). For BV1 and BV4 the analysis is identical and we find that
Pr [BV1] ≤ 2rs/2n and Pr [BV4] ≤ s2/2n+1.

Condition BV2. For BV2a the analysis is identical. For BV2b, the condition is satisfied if

c⊕ t21kδ ⊕ t22k
?
δ = y .

If (x, y) = (kδ, k
?
δ ) ∈ vk, then we use the fact that (t21, t22) 6= (0, 1) to observe that

the equation always contains a k or a k?δ and is satisfied with probability 1/2n. In any
other case, the analysis of Lemma 4 carries over. We find that Pr [BV2 | ¬(BV1 ∨ BV4)] ≤
2q(r + s)/2n.

Condition BV3. For BV3a the analysis is identical. For BV3b, the analysis is also identical
except for the case where (t11, t12, t21, t22) = (t′11, t

′
12, t

′
21, t

′
22) but δ 6= δ′. In this case, BV3b

translates to

t22(k?δ ⊕ k?δ′) = c⊕ c′ ⊕ t21(δ ⊕ δ′) .

Now, using that t22 6= 0, this equation is satisfied with probability 1/2n. Therefore,
Pr [BV3 | ¬BV4] ≤ 2

(
q
2

)
/2n ≤ q2/2n.

Conclusion. We have Pr [Xid ∈ Vbad] ≤ q2+2q(r+s)+2rs+s2/2
2n . This completes the proof.

ut

Lemma 6. For Theorem 1(b) and Theorem 1(c), we have Pr [Xre = v] ≥ Pr [Xid = v]
for any good transcript v ∈ Vgood.

Proof. The proof is a straightforward generalization of the one of Lemma 3, with the
simplification that v0 does not exist. In the real world v now corresponds to q + r + s
unique P -evaluations (where s is the number of elements in vk), and in the ideal world

the tuples in v1 are now grouped according to (offset,tweak). Indeed, R̃Kπ behaves like a
random permutation for every different (offset,tweak)-combination.

More formally, in the real world k will always be a randomly drawn key. All tuples in
v1 ∪ v2 ∪ vk correspond to unique P -evaluations, q + r + s in total. Therefore,

Pr [Xre = v] = Pr
[
k′

$←− {0, 1}n : k′ = k
]
·

Pr
[
P

$←− Perm(M) : XPXP
k ` v1 ∧ P ` v2 ∪ vk

]
=

1

2n
· 1

(2n)q+r+s
.

For the analysis in the ideal world, we group the tuples in v1 according to the (offset,tweak)
value. Formally, for (δ, t) ∈ {0, 1}n × T , we define

#δ,t = |{(δ, t,m, c) ∈ v1 | m, c ∈ {0, 1}n}| .
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We compute Pr [Xid = v] as follows:

Pr [Xid = v] = Pr
[
k′, k?ε1

′, . . . , k?εs
′ $←− {0, 1}n : k′ = k ∧ k?εi

′ = k?εi

]
·

Pr
[
R̃Kπ

$←− ˜RK-Perm(Φ⊕, T ,M) : R̃Kπ ` v1

]
·

Pr
[
P

$←− Perm(M) : P ` v2

]
=

1

2(s+1)n
· 1∏

δ,t (2n)#δ,t

· 1

(2n)r
, where

∑
δ,t #δ,t = q .

As before,

Pr [Xid = v] ≤ 1

2(s+1)n
· 1

(2n)q
· 1

(2n)r

≤ 1

2n
· 1

(2n)q+r+s

= Pr [Xre = v] ,

where we use that (a)b1(a)b2 ≥ (a)b1+b2
. This completes the proof. ut

5.3 Proof of Theorem 1(d) and 1(e)

The analyses for Advrk-prp
ΦP⊕,XPX(q, r) and Advrk-sprp

ΦP⊕,XPX(q, r) are again fairly similar to each
other, the only fundamental differences arising at the analysis of bad events. In more
detail, in the former case we can use that t11, t12 6= 0 and that the c-values in v1 are
always random (as D only makes forward queries), and in the latter case we can use
that t11, t12, t21, t22 6= 0 for all tweak tuples in T . Therefore, we discuss the proofs of
Theorem 1(d) and Theorem 1(e) in one go and only fork at the analysis of bad events.
The proofs are a generalization of the proofs of Section 5.2, where the adversary can now
choose among more key-deriving functions.

Let k
$←− {0, 1}n, P

$←− Perm({0, 1}n), and R̃Kπ
$←− ˜RK-Perm(ΦP⊕, T ,M). Consider any

fixed deterministic distinguisher D for the RK-(S)PRP security of XPX. In the real world

it has access to (RK[Ẽ]k, P ), and in the ideal world to (R̃Kπ, P ). It makes q construction
queries which are summarized in view

v1 = {((δ1, δ2)1, (t11, t12, t21, t22)1,m1, c1), . . . , ((δ1, δ2)q, (t11, t12, t21, t22)q,mq, cq)} .

Indeed, all queries are made under key-deriving functions of the form ϕδ1,δ2 where δ1 =
0∨ δ2 = 0. It additionally makes r queries to P , summarized in a view v2 = {(x1, y1), . . . ,
(xr, yr)}. As D is deterministic this properly summarizes the conversation. Note that if
D is a PRP distinguisher, the construction queries are all in forward direction, while if it
is an SPRP distinguisher, all queries may be in both directions. This does not influence
the definition of the view.

To suit further analysis, we assume that the tuples in v1 are sorted depending on the
key-deriving function that is used. Given that v1 is an unordered set, this is without loss
of generality. In more detail, assume D made q0 queries for key-deriving function ϕ0,0,
q1 queries for key-deriving functions of the form ϕδ,0 with δ > 0, and q2 queries for key-
deriving functions of the form ϕ0,δ with δ > 0. Then, we assume v1 to be sorted in such
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a way that

(δ1, δ2)i =


(0, 0) for i = 1, . . . , q0 ,

(δ1,i, 0) > (0, 0) for i = q0 + 1, . . . , q0 + q1 ,

(0, δ2,i) > (0, 0) for i = q0 + q1 + 1, . . . , q0 + q1 + q2 ,

where q0 + q1 + q2 = q.
We again reveal some additional information to the distinguisher. As in Section 5.2,

there is no need to disclose information prior to the interaction. After D’s interaction
with its oracles but before D makes its final decision, we reveal the secret key k and
the corresponding P (k), along with additional key material corresponding the tuples
(ϕ(δ1,δ2)i(k), P (ϕ(δ1,δ2)i(k))) for i = 1, . . . , q. Formally, let {ε1, . . . , εs1} be a minimal set
that it includes δ1,q0+1, . . . , δ1,q0+q1 , and let {η, . . . , ηs2} be a minimal set that it includes
δ2,q0+q1+1, . . . , δ2,q0+q1+q2 . After D’s interaction we reveal vk = (vk,0, vk,1, vk,2), where

vk,0 = {(k, k?)} ,
vk,1 = {(kε1 , k?ε1), . . . , (kεs1 , k

?
εs1

)} ,

vk,2 = {(k??η1 , k
?
η1), . . . , (k??ηs2

, k?ηs2
)} .

We define s = 1 + s1 + s2. The sets vk,0 and vk,1 are as usual, but vk,2 will be defined
slightly differently. In the real world, k is the key used for encryption, and k? = P (k). The
tuples in vk,1 are defined as (kεi , k

?
εi) = (k⊕ εi, P (k⊕ εi)). The tuples in vk,2 are defined as

(k??ηi , k
?
ηi) = (P−1(k? ⊕ ηi), k? ⊕ ηi).3 In the ideal world, k, k?

$←− {0, 1}n will be randomly
drawn dummy keys, and we define kεi = k ⊕ εi and k?ηi = k? ⊕ ηi as before. The values

k?εi
$←− {0, 1}n for i = 1, . . . , s1 and k??ηi for i = 1, . . . , s2 will be dummy keys.

The complete view is denoted v = (v1, v2, vk). Recall that D is assumed not to make
any repeat queries, and hence v1 and v2 do not contain any duplicate elements. Note that
vk may contain collisions or may collide with v2, but this will be captured as a bad event.
As before, we only consider attainable views, which can be obtained in the ideal world.

For the sake of the discussion of the bad events, we will introduce an alternative,
unified, notation for tuples in vk. In more detail, for any offset (δ1, δ2) that appears in v1,
we define

(kδ1,δ2 , lδ1,δ2) =


(k, k?) ∈ vk,0 if δ1 = δ2 = 0 ,

(kδ1 , k
?
δ1

) ∈ vk,1 if δ1 6= 0 ,

(k??δ2 , k
?
δ2

) ∈ vk,2 if δ2 6= 0 .

(11)

Now, we say that a view v is bad if one of the following conditions holds:

BV1 : for some (x, y) ∈ v2 and (kδ1,δ2 , lδ1,δ2) ∈ vk:
BV1a : kδ1,δ2 = x , or

BV1b : lδ1,δ2 = y , or

BV2 : for some ((δ1, δ2), (t11, t12, t21, t22),m, c) ∈ v1, (x, y) ∈ v2 ∪ vk,
and (kδ1,δ2 , lδ1,δ2) ∈ vk:

BV2a : m⊕ t11kδ1,δ2 ⊕ t12lδ1,δ2 = x , or

BV2b : c⊕ t21kδ1,δ2 ⊕ t22lδ1,δ2 = y , or

3 Note that the number of ?’s refers to the number of P -evaluations that are needed to compute the
value from k. For instance, k?ε1 = P (k ⊕ ε1), k?η1 = P (k)⊕ η1, and k??η1 = P−1(P (k)⊕ η1).
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BV3 : for some distinct ((δ1, δ2), (t11, t12, t21, t22),m, c),

((δ′1, δ
′
2), (t′11, t

′
12, t

′
21, t

′
22),m′, c′) ∈ v1

and (kδ1,δ2 , lδ1,δ2), (kδ′1,δ′2 , lδ′1,δ′2) ∈ vk:
BV3a : m⊕ t11kδ1,δ2 ⊕ t12lδ1,δ2 = m′ ⊕ t′11kδ′1,δ′2 ⊕ t

′
12lδ′1,δ′2 , or

BV3b : c⊕ t21kδ1,δ2 ⊕ t22lδ1,δ2 = c′ ⊕ t′21kδ′1,δ′2 ⊕ t
′
22lδ′1,δ′2 , or

BV4 : for some distinct (kδ1,δ2 , lδ1,δ2), (kδ′1,δ′2 , lδ′1,δ′2) ∈ vk:
BV4a : kδ1,δ2 = kδ′1,δ′2 , or

BV4b : lδ1,δ2 = lδ′1,δ′2 .

Note that these cases directly generalize the bad events of Section 5.2, using the gener-
alized description of tuples in vk. The only change appears in BV4, where now different
tuples in vk may collide both at the input and output.

In accordance with Patarin’s technique (Lemma 1), we derive an upper bound on
Pr [Xid ∈ Vbad] for the case of Theorem 1(d) in Lemma 7 and for the case of Theorem 1(e)
in Lemma 8. In Lemma 9 we will prove that ε = 1 works for good views (the same analysis
applies to both cases (d) and (e)). The proofs are then completed by noting that s ≤ q.

Lemma 7. For Theorem 1(d), we have Pr [Xid ∈ Vbad] ≤ q2+2q(r+s)+2rs+s2

2n−q .

Proof. The proof is similar to the one of Lemma 4, the most significant changes appear in
the analysis of BV4. However, subtle changes arise for the other events too, because the
distinguisher may choose to either XOR k with an offset (resulting in vk,1) or P (k) with
an offset (resulting in vk,2). Recall that t11, t12 6= 0 and that D may only make forward
construction queries, hence the c’s in v1 will always be randomly drawn.

We again bound Pr [Xid ∈ Vbad] using (10). We have k, k?
$←− {0, 1}n, and additionally

k?εi
$←− {0, 1}n for i = 1, . . . , s1 and k??ηi

$←− {0, 1}n for i = 1, . . . , s2. We will show that all
bad events have one of these keys or a value c as non-trivial term.

Condition BV1. Consider any choice of (x, y) ∈ v2 and (kδ1,δ2 , lδ1,δ2) ∈ vk. By construc-
tion, (kδ1,δ2 , lδ1,δ2) equals either of {(k, k?), (k ⊕ δ1, k

?
δ1

), (k??δ2 , k
? ⊕ δ2)} (cf. (11)), where

k, k??δ2 , k
?, k?δ1

$←− {0, 1}n. Thus, both BV1a and BV1b are satisfied with probability 1/2n.
Therefore, Pr [BV1] ≤ 2rs/2n.

Condition BV4. Consider any two distinct (kδ1,δ2 , lδ1,δ2), (kδ′1,δ′2 , lδ′1,δ′2) ∈ vk. If δ2 = δ′2 =
0 we are clearly back at the case of Lemma 4, and BV4 is set with probability 1/2n. The
case where δ1 = δ′1 = 0 is symmetrically equivalent. Remains the case where (w.l.o.g.)
δ1 > 0 and δ′2 > 0. We particularly have δ2, δ

′
1 = 0, and

(kδ1,δ2 , lδ1,δ2) = (k ⊕ δ1, k
?
δ1) , (kδ′1,δ′2 , lδ′1,δ′2) = (k??δ′2

, k? ⊕ δ2′) , (12)

where k, k?δ1 , k
??
δ′2
, k?

$←− {0, 1}n. In this case, BV4 is satisfied with probability at most 2/2n.

Therefore, considering all cases, Pr [BV4] ≤ 2
(
s
2

)
/2n ≤ s2/2n.

Condition BV2. Consider any choice of ((δ1, δ2), (t11, t12, t21, t22),m, c) ∈ v1 and (x, y) ∈
v2 ∪ vk. This fixes the corresponding tuple (kδ1,δ2 , lδ1,δ2) ∈ vk. Regarding BV2a, it is set if

m⊕ t11kδ1,δ2 ⊕ t12lδ1,δ2 = x .
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Regardless of whether (x, y) ∈ vk, as t12 6= 0 we always have a non-trivial term lδ1,δ2 ∈
{k?, k?δ1 , k

? ⊕ δ2}. This equation is thus satisfied with probability 1/2n. Event BV2b is a
bit more technical. The condition is satisfied if

c⊕ t21kδ1,δ2 ⊕ t22lδ1,δ2 = y .

If (x, y) ∈ vk, we require that c equals t21kδ1,δ2 ⊕ t22lδ1,δ2 ⊕ y, which happens with prob-
ability at most 1/(2n − q). In any other case, if (x, y) ∈ v2, because ¬(BV1 ∨ BV4)
holds and that (t21, t22) 6= (0, 0) by validity of T point (i), there is always a non-
trivial key-term involved, and the equation is satisfied with probability 1/2n. Therefore,
Pr [BV2 | ¬(BV1 ∨ BV4)] ≤ 2q(r + s)/(2n − q).

Condition BV3. Consider any two distinct ((δ1, δ2), (t11, t12, t21, t22),m, c),
((δ′1, δ

′
2), (t′11, t

′
12, t

′
21, t

′
22),m′, c′) ∈ v1. These fix the corresponding tuples (kδ1,δ2 , lδ1,δ2),

(kδ′1,δ′2 , lδ′1,δ′2) ∈ vk. If δ2 = δ′2 = 0 we are clearly back at the case of Lemma 4, and
the case where δ1 = δ′1 = 0 is symmetrically equivalent (the derivation in this case
uses that t11 6= 0). Remains the case where (w.l.o.g.) δ1 > 0 and δ′2 > 0. We par-

ticularly have δ2, δ
′
1 = 0, and the keys satisfy (12) where k, k?δ1 , k

??
δ′2
, k?

$←− {0, 1}n. As

(t11, t12), (t′11, t
′
12), (t21, t22), (t′21, t

′
22) 6= (0, 0) by validity of T point (i), BV3 always con-

tains one of these four key values, and both BV3a and BV3b are satisfied with probability
1/2n. Therefore, considering all cases, Pr [BV3 | ¬BV4] ≤ 2

(
q
2

)
/(2n − q) ≤ q2/(2n − q).

Conclusion. Using (10), we have Pr [Xid ∈ Vbad] ≤ q2+2q(r+s)+2rs+s2

2n−q . This completes
the proof. ut

Lemma 8. For Theorem 1(e), we have Pr [Xid ∈ Vbad] ≤ q2+2q(r+s)+2rs+s2

2n .

Proof. The proof follows the one of Lemma 7 with the only differences at BV2 and BV3.
In more detail, we cannot rely on the randomness of the c-values, but we can use that
t21, t22 6= 0. For BV1 and BV4 the analysis is identical and we find that Pr [BV1] ≤ 2rs/2n

and Pr [BV4] ≤ s2/2n.

Condition BV2. For BV2a the analysis is identical. For BV2b, the condition is satisfied if

m⊕ t21kδ1,δ2 ⊕ t22lδ1,δ2 = y .

Regardless of whether (x, y) ∈ vk, as t21 6= 0 we always have a non-trivial term kδ1,δ2 ∈
{k, k ⊕ δ1, k

??
δ2
}. This equation is thus satisfied with probability 1/2n. We find that

Pr [BV2 | ¬(BV1 ∨ BV4)] ≤ 2q(r + s)/2n.

Condition BV3. For BV3 the analysis is identical, with the difference that for BV3b we
now rely on both Lemma 4 and Lemma 5. In more detail, for the case where
(t11, t12, t21, t22) = (t′11, t

′
12, t

′
21, t

′
22) but δ 6= δ′, we use the reasoning of Lemma 5 for

both the case δ2 = δ′2 = 0 (using that t21 6= 0) and the case δ1 = δ′1 = 0 (using that
t22 6= 0). The remainder of the proof remains unchanged. Therefore, Pr [BV3 | ¬BV4] ≤
2
(
q
2

)
/2n ≤ q2/2n.

Conclusion. Using (10), we have Pr [Xid ∈ Vbad] ≤ q2+2q(r+s)+2rs+s2/2
2n . This completes

the proof. ut

Lemma 9. For Theorem 1(d) and Theorem 1(e), we have Pr [Xre = v] ≥ Pr [Xid = v]
for any good transcript v ∈ Vgood.
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Proof. The proof of Lemma 6 carries over directly, with the difference that now vk contains
1+s1 +s2 = s tuples. In more detail, the computation of Pr [Xre = v] is exactly the same.
In the ideal world, we have

Pr [Xid = v] = Pr

[
k′, k?′, k?ε1

′, . . . , k?εs1
′, k??η1

′, . . . , k??ηs2
′ $←− {0, 1}n :

k′ = k ∧ k?′ = k? ∧ k?εi
′ = k?εi ∧ k

??
ηi
′ = k??ηi

]
·

Pr
[
R̃Kπ

$←− ˜RK-Perm(ΦP⊕, T ,M) : R̃Kπ ` v1

]
·

Pr
[
P

$←− Perm(M) : P ` v2

]
=

1

2(s+1)n
· 1∏

(δ1,δ2),t (2n)#(δ1,δ2),t

· 1

(2n)r
, where

∑
(δ1,δ2),t #(δ1,δ2),t = q ,

where #(δ1,δ2),t is defined similarly as before. We obtain Pr [Xre = v] ≥ Pr [Xid = v]. ut

6 Application to Authenticated Encryption

We will show how XPX applies to the Prøst-COPA [3,24] and Minalpher [38] authenticated
encryption schemes. Before doing so, we briefly discuss the security model.

6.1 Security Model

Authenticated encryption covers the case where both privacy and authenticity of data is
required. In more detail, an authenticated encryption scheme consists of an encryption
function Enc and a decryption function Dec. Enc gets as input a key, nonce, associated
data, and message, and outputs a ciphertext and a tag. Dec gets as input a key, nonce,
associated data, ciphertext, and tag, and it either outputs a message (if the authentication
is correct) or a dedicated ⊥ symbol.

Let AE = (Enc,Dec) be an authenticated encryption scheme, and let P be an idealized
primitive upon which AE is based (optional, for instance a blockcipher or permutation).
Let k be a randomly drawn key. Let $ be a function with the same interface as Ek, but
that returns fresh and random answers to every query. Let ⊥ be a function that outputs
⊥ on every query. We define the privacy of AE based on P as

Advpriv
AE (D) =

∣∣∣Pr
[
DEnck,P± = 1

]
−Pr

[
D$,P± = 1

]∣∣∣ ,
and the authenticity of AE based on P as

Advauth
AE (D) =

∣∣∣Pr
[
DEnck,Deck,P± = 1

]
−Pr

[
DEnck,⊥,P± = 1

]∣∣∣ .
In both definitions, some conditions on D may apply (such as the nonce-respecting con-
dition). For q, `, σ, r ≥ 0, we define by

Adv
priv/auth
AE (q, `, σ, r) = max

D
Adv

priv/auth
AE (D)

the security of AE against any distinguisher D that makes q queries to the construction
oracle, each of length at most ` and of total size σ, and r queries to the primitive oracle.

So far, the model is in the single-key setting, But it generalizes to related-key security
straightforwardly (the way Section 2.2 generalizes Section 2.1). We denote the correspond-
ing related-key security definitions by

Adv
rk-priv/auth
Φ,AE (D) and Adv

rk-priv/auth
Φ,AE (q, `, σ, r) ,

where Φ is some key-deriving function set.
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Fig. 4: COPA for integral data. Here, L = Ek(0).

6.2 Prøst-COPA

COPA is an authenticated encryption scheme by Andreeva et al. [3]. COPA for integral
message is depicted in Figure 4 (we refer to [3] for the general case). At its core, it is
using a blockcipher E in XEX mode (2) with masks ∆ = 2α3β7γEk(0), where (α, β, γ) is
the tweak coming from tweak space {0, . . . , `}× {0, . . . , 5}× {0, 1}\{(0, 0, 0)} = TCOPA.4

Before discussing the related-key security of COPA, we quickly revisit the original
security proof at a high level. Consider an attacker against COPA that has resources
(q, `, σ, r). As a first step, all XEX evaluations in COPA are replaced with a random

tweakable permutation π̃
$←− P̃erm(TCOPA, {0, 1}n). This step costs us Advsprp

XEX(2(σ+q), r).
Next, COPA with ideal tweakable permutation is proven to achieve privacy up to bound

Apriv(q, `, σ) = σ2

2n + (`+2)(q−1)2

2n and authenticity up to bound Aauth(q, `, σ) = (σ+q)2

2n +
(`+2)(q−1)2

2n + 2q
2n . Thus:

Adv
priv/auth
COPA (q, `, σ, r) ≤ Advsprp

XEX(2(σ + q), r) +Apriv/auth(q, `, σ) .

The step towards RK-security of COPA is quite straightforward, noting that an attacker
against COPA with ideal tweakable related-key permutation has no benefit over an at-
tacker against COPA with ideal tweakable (non-related-key) permutation.

Theorem 2 (RK-security of COPA). Let Φ be any KDF-set. We have

Adv
rk-priv/auth
Φ,COPA (q, `, σ, r) ≤ Advrk-sprp

Φ,XEX(2(σ + q), r) +Apriv/auth(q, `, σ) .

Proof. Consider an attacker against COPA that has resources (q, `, σ, r). As a first step, all
XEX evaluations in COPA are replaced with a random tweakable related-key permutation

R̃Kπ
$←− ˜RK-Perm(Φ, TCOPA, {0, 1}n). This step costs Advrk-sprp

Φ,XEX(2(σ+ q), r). It remains to

consider COPA with R̃Kπ. However, as R̃Kπ instantiates an ideal permutation for every
different related-key function, every new related-key function instantiates a completely
independent instance of COPA. Formally, assume the adversary queries COPA for s dif-
ferent key-deriving functions, ϕ1, . . . , ϕs, where ϕi is used with total resources (qi, `i, σi).
These all instantiate independent versions of COPA, contributing Apriv/auth(qi, `i, σi) to

4 The fact that (0, 0, 0) 6∈ TCOPA is important, cf. Rogaway [37] and Minematsu [31] who describe an
attack on XEX if (0, 0, 0) were permitted.
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the bound, totaling to

s∑
i=1

Apriv/auth(qi, `i, σi) ≤ Apriv/auth(q, `, σ) ,

which completes the proof. ut

Prøst-COPA [24], in turn, uses the Prøst permutation in Even-Mansour mode. In other
words, Prøst-COPA does not simply use XEX, but XPX with tweak space

TPrøst =

{
(2α3β7γ ⊕ 1, 2α3β7γ ,
(2α3β7γ ⊕ 1, 2α3β7γ)

∣∣∣∣ (α, β, γ) ∈ TCOPA

}
. (13)

Taking any of the KDF-sets Φ ∈ {Φ⊕, ΦP⊕} of (4), we find:

Corollary 1 (RK-security of Prøst-COPA). For Φ being Φ⊕ or ΦP⊕ of (4), we have

Adv
rk-priv/auth
Φ,Prøst-COPA(q, `, σ, r) ≤ 16(σ + q)2 + 8(σ + q)r

2n
+Apriv/auth(q, `, σ) .

Proof. The proof of Theorem 2 generalizes to Prøst-COPA straightforwardly, where
Advrk-sprp

Φ,XEX(2(σ + q), r) gets replaced with Advrk-sprp
Φ,XPX(2(σ + q), r). This XPX is instan-

tiated using tweak space TPrøst of (13), which is valid and satisfies t11, t12, t21, t22 6= 0
for any (t11, t12, t21, t22) ∈ TPrøst (note that (α, β, γ) = (0, 0, 0) is excluded). Therefore,
Theorem 1(c) applies for Φ = Φ⊕ and Theorem 1(e) for Φ = ΦP⊕. In the worst case, we
find that

Advrk-sprp
Φ,XPX(2(σ + q), r) ≤ 16(σ + q)2 + 8(σ + q)r

2n
,

completing the proof. ut

Note that if Prøst-COPA were not to use Prøst permutation in Even-Mansour mode, but
if it simply had E = P , then the resulting XPX construction would have tweak space

TPrøst′ =
{

(0, 2α3β7γ , 0, 2α3β7γ) | (α, β, γ) ∈ TCOPA

}
.

This tweak space does not satisfy the conditions of Theorem 1(e) and we can only argue
the related-key security of Prøst-COPA under Φ⊕.

6.3 Minalpher

Minalpher is an authenticated encryption scheme by Sasaki et al. [38]. At its core, it is
using tweakable Even-Mansour TEM of (3): an evaluation of an n-bit permutation with
masks5 ∆ = 2α3β

(
k‖flag‖N ⊕ P (k‖flag‖N)

)
, where (α, β, flag, N) is the tweak coming

from tweak space(
{0, . . . , `}×{0, 1, 2}

)
\{(0, 0)}×{flagm, flagad, flagmac}×{0, 1}n/2−s = TMinalpher .

Here, the key k is of size n/2 bits, the flag of size s bits, and the nonce N of size n/2− s
bits.

5 The original specification uses a generator y instead of 2.
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The authors prove, among others, that Advsprp
TEM(q, r) ≤ O((q+r)2/2n+(q+r)/2n/2).

The extra term O((q + r)/2n/2) is new compared to Theorem 1(a), and is caused by the
shorter key size. A bit of thought reveals that, because the tweaks flag‖N are concatenated
to k instead of XORed with k, the results of Theorem 1(b-e) generalize to TEM. Here,
again, the specific key length needs to be taken into account. In [38], the designers prove
that if the underlying TEM is sufficiently strong, Minalpher is a secure authenticated
encryption scheme. In a similar fashion as Theorem 2 and Corollary 1, a generalization
of Theorem 1(b-e) can be used to argue the related-key security of Minalpher.

7 Application to MAC

Various novel MAC functions, such as the keyed Sponges [4, 6, 11, 22] and Chaskey [33],
consist of a sequential application of a permutation, where the key is used to mask the
state. We discuss an application of the analysis of XPX to Chaskey in detail, and explain
how similar reasoning applies to keyed Sponges. We first briefly discuss the security model.

7.1 Security Model

A MAC function is expected to guarantee authenticity. However, we consider a different
security model, namely PRF security. More formally, let MAC be a MAC function that
gets as input a key and message, and outputs a tag. Let P be an idealized primitive
upon which MAC is based (optional, for instance a blockcipher or permutation). Let k
be a randomly drawn key. Let $ be a function with the same interface as MAC, but that
returns fresh and random answers to every query. We define the PRF security of MAC
based on P as

Advprf
MAC(D) =

∣∣∣Pr
[
DMACk,P± = 1

]
−Pr

[
D$,P± = 1

]∣∣∣ .
For q, `, σ, r ≥ 0, we define by

Advprf
MAC(q, `, σ, r) = max

D
Advprf

MAC(D)

the security of MAC against any distinguisher D that makes q queries to the construction
oracle, each of length at most ` and of total size σ, and r queries to the primitive oracle.

As before, the definition generalizes to related-key security straightforwardly, and we
denote the corresponding related-key security definitions by

Advrk-prf
Φ,MAC(D) and Advrk-prf

Φ,MAC(q, `, σ, r) ,

where Φ is some key-deriving function set.

7.2 Chaskey

Chaskey is a permutation-based MAC function by Mouha et al. [33]. We consider a small
adjustment, called Chaskey′, that processes the initialized state with an evaluation of the
permutation. Chaskey and Chaskey′ without final truncation are depicted in Figure 5.

Mouha et al. [33] proved the security of Chaskey (without the first evaluation of P ).
It consists of the idea that XORing the key k twice in-between every two consecutive P
evaluations gives a blockcipher-based Chaskey using Even-Mansour constructions m 7→
P (m⊕ k)⊕ k, m 7→ P (m⊕ 3k)⊕ 2k, and m 7→ P (m⊕ 5k)⊕ 4k. The security of Chaskey
boils down to the advantage of a distinguisher in distinguishing these three constructions
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1 Chaskey

0

k 2k2kM1 M2 Md

TPPP P

0

k M1 M2

TPPP P

Md10
∗ 4k4k

Fig. 5: Chaskey′ for integral messages (top) and fractional messages (bottom). The dashed
P ’s are absent in the original Chaskey.

from three ideal permutations, an advantage the authors dub the “3PRP” security. This
3PRP security is effectively equivalent to the PRP security of XPX with tweak space
{(1, 0, 1, 0), (3, 0, 2, 0), (5, 0, 4, 0)} = TChaskey, and we find:6

Advprf
Chaskey(q, `, σ, r) ≤ Advprp

XPX(σ, r) +
2σ2

2n
.

Now, for Chaskey′, The idea is to XOR P (k)⊕P (k) everywhere in-between two consecutive
P evaluations except for the first two. In this case, Chaskey′ would simply be using XPX
with tweak space

{(0, 1, 0, 1), (2, 1, 2, 0), (4, 1, 4, 0)} = TChaskey′ .

Note that TChaskey′ satisfies the conditions of Theorem 1(b). Similarly to Theorem 2 and
Corollary 1, we directly obtain:

Corollary 2 (RK-security of Chaskey′). For Φ⊕ of (4), we have

Advrk-prf
Φ⊕,Chaskey′

(q, `, σ, r) ≤
7
2σ

2 + 4σr

2n − σ
+

2σ2

2n
.

7.3 Keyed Sponge

Following [6, 11], Andreeva et al. [4] formalized two Sponges: the inner-keyed Sponge
and the outer-keyed Sponge. Gaži et al. [22] generalized these results (among others)
to full-state absorption. This construction, to some extent, resembles the Donkey Sponge
construction [7]. In a similar fashion as the analysis of Section 7.2, the inner-keyed Sponge
[4] and the Donkey Sponge [7] can be adjusted to achieve related-key security.
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6 The authors of [33] effectively consider MAC security instead of PRF security, but the analysis carries
over.
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A Minimality of the Conditions of Theorem 1

We show that the conditions we put on T in Theorem 1 are minimal, in the sense that
XPX can be broken if the conditions are omitted. For the validity condition on T , this is
already justified by Proposition 1. Below proposition considers the remaining conditions
on T put by parts (b)-(e) of Theorem 1.

Proposition 2. Let n ≥ 1 and let T ⊆ ({0, 1}n)4 a valid set.

(b) If (t11, 0, t21, t22) ∈ T for some t11, t21, t22, then

Advrk-prp
Φ⊕,XPX(4, 0) ≥ 1− 1/(2n − 1) .

(c) If (t11, t12, t21, 0) ∈ T or (t11, t12, 0, 1) ∈ T for some t11, t12, t21, then

Advrk-sprp
Φ⊕,XPX(4, 0) ≥ 1− 1/(2n − 1) .

(d) If (0, t12, t21, t22) ∈ T for some t12, t21, t22, then

Advrk-prp
ΦP⊕,XPX(4, 0) ≥ 1− 1/(2n − 1) .

(e) If (t11, t12, 0, t22) ∈ T for some t11, t12, t22, then

Advrk-sprp
ΦP⊕,XPX(4, 0) ≥ 1− 1/(2n − 1) .

Proof. We consider the four cases separately.

Case (b). Suppose (t11, 0, t21, t22) ∈ T for some t11, t21, t22. Fix any δ 6= δ′ and any
m ∈ {0, 1}n. The attacker makes the following queries:

– XPXk(δ, (t11, 0, t21, t22),m) to receive c = t21(k ⊕ δ) ⊕ t22P (k ⊕ δ) ⊕ P (inp) where
inp = m⊕ t11(k ⊕ δ);

– XPXk(δ
′, (t11, 0, t21, t22),m⊕t11(δ⊕δ′)) to receive c′ = t21(k⊕δ′)⊕t22P (k⊕δ′)⊕P (inp′)

where inp′ = m⊕ t11(δ ⊕ δ′)⊕ t11(k ⊕ δ′).
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By construction, inp′ = inp, and thus

c⊕ c′ = t21(δ ⊕ δ′)⊕ t22

(
P (k ⊕ δ)⊕ P (k ⊕ δ′)

)
.

This equation is independent of the choice of m. Making these queries for two different
messages m 6= m′ gives a collision with probability 1. For a random R̃Kπ this happens
with probability at most 1/(2n − 1). Thus, Advrk-prp

Φ⊕,XPX(4, 0) ≥ 1− 1/(2n − 1).

Case (c). If (t11, t12, t21, 0) ∈ T for some t11, t12, t21 the attack is the inverse of the one
for case (b). Now, suppose (t11, t12, 0, 1) ∈ T for some t11, t12. The attacker makes the
following queries:

– XPX−1
k (0, (t11, t12, 0, 1), 0) to receive m = (t11 ⊕ 1)k ⊕ t12P (k);

– XPXk(0, (t11, t12, 0, 1),m⊕ δ) for δ 6= 0 to receive

cδ = P (k)⊕ P (m⊕ δ ⊕ t11k ⊕ t12P (k))

= P (k)⊕ P (k ⊕ δ) .

Now, fix any m′ and query

– XPXk(δ, (t11, t12, 0, 1),m′) to receive c′ = P (m′⊕ t11(k⊕ δ)⊕ t12P (k⊕ δ))⊕P (k⊕ δ);
– XPXk(0, (t11, t12, 0, 1),m′ ⊕ t11δ ⊕ t12cδ) to receive c′′ = P (m′ ⊕ t11δ ⊕ t12cδ ⊕ t11k ⊕
t12P (k))⊕ P (k).

These queries satisfy c′ ⊕ c′′ = cδ. For a random R̃Kπ this happens with probability at
most 1/(2n − 1). Thus, Advrk-sprp

Φ⊕,XPX(4, 0) ≥ 1− 1/(2n − 1).

Case (d). Suppose (0, t12, t21, t22) ∈ T for some t12, t21, t22. Fix any δ 6= δ′ and any
m ∈ {0, 1}n. The attacker makes the following queries:

– XPXk((0, δ), (0, t12, t21, t22),m) to receive c = t21P
−1(P (k)⊕δ)⊕t22(P (k)⊕δ)⊕P (inp)

where inp = m⊕ t12(P (k)⊕ δ);
– XPXk((0, δ

′), (0, t12, t21, t22),m ⊕ t12(δ ⊕ δ′)) to receive c′ = t21P
−1(P (k) ⊕ δ′) ⊕

t22(P (k)⊕ δ′)⊕ P (inp′) where inp′ = m⊕ t12(δ ⊕ δ′)⊕ t12(P (k)⊕ δ′).

By construction, inp′ = inp, and thus

c⊕ c′ = t21

(
P−1(P (k)⊕ δ)⊕ P−1(P (k)⊕ δ′)

)
⊕ t22(δ ⊕ δ′) .

This equation is independent of the choice of m. Making these queries for two different
messages m 6= m′ gives a collision with probability 1. For a random R̃Kπ this happens
with probability at most 1/(2n − 1). Thus, Advrk-prp

ΦP⊕,XPX(4, 0) ≥ 1− 1/(2n − 1).

Case (e). The attack is the inverse of the one for case (d). ut
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