Trinocchio: Privacy-Friendly Outsourcing by
Distributed Verifiable Computation

Berry Schoenmakers, Meilof Veeningen, and Niels de Vreede

Eindhoven University of Technology

Abstract. Verifiable computation allows a client to outsource computa-
tions to a worker with a cryptographic proof of correctness of the result
that can be verified faster than performing the computation. Recently,
the Pinocchio system achieved faster verification than computation in
practice for the first time. Unfortunately, Pinocchio and other efficient
verifiable computation systems require the client to disclose the inputs to
the worker, which is undesirable for sensitive inputs. To solve this prob-
lem, we propose Trinocchio: a system that distributes Pinocchio to three
(or more) workers, that each individually do not learn which inputs they
are computing on. Each worker essentially performs the work for a single
Pinocchio proof; verification by the client remains the same. Moreover,
we extend Trinocchio to enable joint computation with multiple mutu-
ally distrusting inputters and outputters and still very fast verification.
We show the feasibility of our approach by analysing the performance of
an implementation in two case studies.

Keywords: verifiable computation, quadratic arithmetic programs, pri-
vacy, multiparty computation, certificate validation

1 Introduction

Recent cryptographic advances are starting to make verifiable computation more
and more practical. The goal of verifiable computation is to allow a client to out-
source a computation to a worker and cryptographically verify the result with less
effort than performing the computation itself. Based on recent ground-breaking
ideas [Grol10,GGPR13], Pinocchio [PHGR13] was the first implemented system
to achieve this for some realistic computations. Recent works have improved
the state-of-the-art in verifiable computation, e.g., by considering better ways to
specify computations [BSCGT13], or adding access control [AJCC15].

However, one feature not yet available in practical verifiable computation is
privacy, meaning that the worker should not learn the inputs that it is computing
on. This feature would enable a client to save time by outsourcing computations,
even if the inputs of those computations are so sensitive that it does not want
to disclose them to the worker. Also, it would allow verifiable computation to
be used in settings where multiple clients do not trust the worker or each other,
but still want to perform a joint computation over their respective inputs and
be sure of the correctness of the result.

While privacy was already defined in the first paper on verifiable computation
[GGP10], it has not been shown so far how it is efficiently achieved. Indeed, con-
structions in the single-worker setting rely on inefficient cryptographic primitives
like fully homomorphic encryption [GGP10,FGP14] and functional encryption
[GKP™13]. This is not surprising: indeed, even without guaranteeing correctness,
letting a single worker perform a computation on inputs it does not know would
intuitively seem to require some form of fully homomorphic encryption.

However, by outsourcing a computation to multiple workers, it is possible
to guarantee privacy (if not all workers are corrupted) and correctness. Indeed,
[ACG™14] presents a verifiable computation protocol combining privacy and cor-
rectness; but unfortunately, it guarantees neither privacy nor correctness if all
workers are corrupted; and it places a much higher burden on the workers than,
e.g., [PHGR13]. Alternatively, one can draw from work in multiparty compu-
tation: while this field usually considers the setting in which all parties engage
in an interactive protocol, recent works [BDO14,SV15a,SV15b] have also con-
sidered outsourcing scenarios. In these works, correctness is always guaranteed;
privacy only up to some threshold of number of corruptions. This is the best to
be expected, because privacy and correctness if all workers are corrupted implies
privacy and correctness in the single-worker scenario, which as noted is impracti-
cal. However, with these existing multiparty computation constructions, we lose
the most appealing feature of verifiable computation: namely, that computations
can be verified very quickly, even in time independent from the computation size.

This leads to the central question of this paper: can we perform verifiable
computation with the correctness and performance guarantees of [PHGR13], but
while also getting privacy against corrupted workers?

We answer this question in the affirmative by presenting Trinocchio. Trinoc-
chio uses [PHGR13]-style proofs, but distributes the computation of these proofs
to, e.g., three workers such that no single worker learns anything about the in-
puts. The client essentially gets a normal Pinocchio proof, so we keep Pinocchio’s
correctness guarantees and fast verification. Moreover, the distribution of the
proof is such that each individual worker performs essentially the same work as
a normal Pinocchio prover in the non-distributed setting.

Trinocchio works not only in the single-client setting, but also in settings
with multiple distrusting input and result parties. In the single-client scenario,
for some computations we protect privacy even against (a limited number of)
malicious workers; in the multi-client scenario, we only fully protect privacy
against semi-honest workers. This is a realistic attacker model; in particular, it
means that side channel attacks on individual workers are ineffective because
each individual worker’s communication and computation are completely inde-
pendent from the sensitive inputs. Also, by offering privacy, Trinocchio might
enable verifiable computation on sensitive information for which external pro-
cessing is otherwise forbidden. We demonstrate the feasibility of our approach
by implementing two case studies: we demonstrate Trinocchio’s low overhead
by repeating one of [PHGR13]’s case studies, and we use Trinocchio to improve
both worker and client overhead in verifiable linear programming [SV15a].

Outline We first recap the Pinocchio protocol for verifiable computation based
on quadratic arithmetic programs (Section 2). We then show how Trinocchio
distributes the proof computation of Pinocchio in the single-client scenario, and
define and prove security of the construction (Section 3). We generalise Trinoc-
chio to the setting with multiple, mutually distrusting inputters and outputters
(Section 4). Finally, we demonstrate the feasibility of Trinocchio by analysing
its performance in two case studies: computing a multivariate polynomial eval-
uation and proving optimality of a linear programming solution (Section 5). We
finish with a discussion and conclusions (Section 6).

2 Verifiable Computation from QAPs

In this section, we discuss the protocol for verifiable computation based on
quadratic arithmetic programs from [GGPR13,PHGR13].

2.1 Modelling Computations as Quadratic Arithmetic Programs

A quadratic arithmetic program, or QAP, is a way of encoding arithmetic cir-
cuits, and some more general computations, over a prime order field F of size q.
It is given by a collection of polynomials over F.

Definition 1 ([PHGR13]). A quadratic arithmetic program Q over a field F
is a tuple Q = ({vi}r_o, {wi}r_ o, {yi}r o, 1), with v, wi, y;,t € Flz] polynomials
of degree degv;,degw;,degy; < degt = d. The polynomial t is called the target
polynomial. The size of the QAP is k; the degree is the degree d of t.

In the remainder, for ease of notation, we adopt the convention that xy = 1.

Definition 2. Let Q = ({v;},{w;},{yi},t) be a QAP. A tuple (z1,...,2x) s a
solution of @ if t divides (Zf:o Ti0;) - (Z?:o Tw;) — (Ef:o x;y;) € Flx].

In case t splits, i.e., t = (x—aq)-...-(x—a,), a QAP can be seen as a collection
of rank-1 quadratic equations for (z1,...,x); that is, equations v - w — y with
v,w,y € Flzy,...,x] of degree at most one. Namely, (z1,...,2) is a solution

of Q if t divides (>, z;v;) - (3, xiws) — (3, iyi), which means exactly that, for
every o, (3, zivi(ay))- (D2, miwi(oy)) — (32, x4vi(ay)) = 0: that is, each o gives
a rank-1 quadratic equation in variables (z1,...,xx). Conversely, a collection of
d such equations (recall g = 1)

(vé'x0+...+v£~xk)-(wg-xo—i—...—i—wi-xk)—(yg-xo—i—...—i—yi-xk)

can be turned into a QAP by selecting d distinct elements oy, . .., aq in F, setting
target polynomial t = (x — o) - ... (r — ag), and defining vy to be the unique
polynomial of degree smaller than d for which vy(c;) = v{, etcetera.

A QAP is said to compute a function (z41,...,Zi4m) = f(z1,...,2;) if the
remaining xz; give a solution exactly if the function is correctly evaluated.

Definition 3 ([PHGR13]). Let Q = ({vi}, {wi}, {v:i},t) be a QAP, and let
f:FL — F™ be a function. We say that Q computes f if (T41,...,Tipm) =
flz1,...,z) & 3 (X14ms1,- .-, Tk) such that (zq,...,x) is a solution of Q.

For any function f given by an arithmetic circuit, we can easily construct
a QAP that computes the function f. Indeed, we can describe an arithmetic
circuit as a series of rank-1 quadratic equations by letting each multiplication
gate become one equation. Apart from circuits containing just addition and
multiplication gates, we can also express circuits with some other kinds of gates
directly as QAPs. For instance, [PHGR13] defines a “split gate” that converts
a number a into its k-bit decomposition ay, ..., ar with equations a = a; + 2 -
azs+...+2Vap,a0-(1—ay)) =0, ..., ap- (1 —ap)=0.

2.2 Proving Correctness of Computations

If QAP Q = ({vi},{w;},{yi},t) computes a function f, then a prover can
prove that (x;41,...,214m) = f(21,...,2;) by proving knowledge of values
(i4m+1,-- -, x) such that (z1,...,2y) is a solution of Q, i.e., t divides (>, z;v;)-
(>, miw;) — (32, wy;). [PHGRI13] gives a construction of a proof system which
does exactly this. The proof system assumes discrete logarithm groups G1, G5, G3
with a pairing e : Gy X Ga — G5 for which the (4d+4)-PDH, d-PKE and (8d+8)-
SDH assumptions [PHGR13] hold, with d the degree of the QAP. Moreover, the
proof is in the common reference string (CRS) model: the CRS consists of an
evaluation key used to produce the proof, and a werification key used to verify
it. Both are public, i.e., provers can know the verification key and vice versa.

To prove that ¢ divides p = (3, xv;) - (32, zswi) — (32, xiys), the prover
computes quotient polynomial h = p/t and basically provides evaluations “in
the exponent” of h, (3°, z;v;), (3, xiw;), and (>, x;y;) in an unknown point s
that can be verified using the pairing. More precisely, given generators g; of G
and go of Gy (written additively) and polynomial f € Flz], let us write (f); for
g1 f(s) and (f)a for go - f(s). The evaluation key in the CRS, generated using
random s, Gy, Quy, Oy, B, T, Ty Ty = Ty = Ty € F, is:

<7nvvi>1a <rvavvi>1v <Twwi>27 <’rwawwi>17 <’ryyi>1a <ryayyi>17
(roBvs + T Bwi + 1y Byi)1s (7)1

where ¢ ranges over 0,l+m+1,l+m+2,...,k and j runs from 0 to the degree
of t. The proof contains the following elements:

(Vimid)1 = 2_;(rovi)1 - @i, (0 Vimid)1 = 2_; (rowvi)1 - T4,
(Wmid)2 = > (Twwi)2 - Ti, (0wWhid)1 = 2; (Fwuwwi)1 - @i,
(Ymia)1 = 25 (rywi)1 - @i, (oy¥mia)1 = 32, (ryoyyi)s - @i,
(Z)1 = >, (rofvi + rowfw; + ryByi)1 - xy, (H)1 = Zj<5j>1 “hy,

where 7 ranges over 0, +m + 1,1 +m+2,...,k, and h; are the coefficients of
polynomial h = p/t.

(1)

To verify that ¢ divides (3, zv;)- (3, zsws) — (D2, #iy;) and hence (241, ...,
Zi4m) = f(x1,...,x;), a verifier uses the following verification key from the CRS:

()2, (aw)2, ()2, (B)1, (B)2, (rovi)1, (Twwi)2, (ryyi)1, (ryt)2,

where ¢ ranges over 1,2, ...,l+m. Given the verification key, a proof, and values
Z1,-..,Ti+m, the verifier proceeds as follows. First, it checks that

e((Vinia)1, (w)2)
e({aw)1, (Wmia)2)
€(<Ymid>17 <0‘y>2)

({cw Vimia)1, (1)2);
(e Whnia)1, (1)2); (2)
e({ayYmia)1, (1)2) :

e
e

intuitively, under the d-PKE assumption, these checks guarantee that the prover
must have constructed (Vinia)1, (Wmid)2, and (Yimia)1 using the elements from
the evaluation key. It then checks that

e((Vinia)1 + (Ymia)1, (B)2) - e({B)1, (Wiia)2) = e({Z)1, (1)2) : (3)

under the PDH assumption, this guarantees that the same coefficients x; were
used in (Vinid)1, (Wmid)2, and (Yiia)1. Finally, the verifier computes evaluations
(V)1 of Zf:o x;0; as (Vinid)1 +Zi:1n<rvvi)1 x5 (W)a of Zf:o x;w; as (Wiid)2+
Ei:ln (ryw;)a-x;; and (Y)q of Zf:o Ty as (Ymid>1+2i71n (ryyi)1-x;, and verifies
that

e((V)1, (W)2) - e((Y)1, (1)2) ™" = e({(H)1, (ryt)2) : (4)

under the (8d + 8)-SDH assumption, this guarantees that, for the polynomial h
encoded by (H)1, t-h= (>, zv;) - (>, miw;) — (3, iy;) holds.!

Theorem 1 ([GGPR13], informal). Given QAP Q = ({v;}, {w;},{v:},t)
and values x1,...,Zi4m, the above is a non-interactive argument of knowledge
of (Xi4ma1,---, k) such that (x1,...,xx) is a solution of Q.

2.3 Making the Proof Zero-Knowledge

The above proof can be turned into a zero-knowledge proof, that reveals noth-
ing about the values of (2j4m+1,...,2) other than that ¢ divides (3, x;v;) -
(>, mqw;) — (3, xsy;) for some h, by performing randomisation. Namely, in-
stead of proving that t-h = (>, z;v;) - (O, xswi) — (D, x:y:), we prove that
t-h=(Q,xvi+0,-1)- (3, xyw; + 0w - t) — (D, xiyi + 0y - t) with &y, 8y, 6, ran-
dom from F. Precisely, the evaluation key needs to contain additional elements:

<Tvt>17 <rvavt>1a <rwt>27 <7“w04wt>1, <Tyt>1a <Tyayt>1a <rvﬁt>1a <Tw5t>1v <7nyﬁt>1» <t>1'

! We remark that, as shown in [PHGR13], a verifier who has generated the evaluation
and verification keys, can use the randomness from the generation process to save
several of the above pairing checks. We do not consider this optimisation here.

Compared to the original proof, we let

Vi)t = (Vmia)t + (rot)1 - 0u, (@ Via)1 = (@ Vigia)1 + (rvawt)s - 6o,
<ernid>2 = (Whid)2 + (rwt)2 * 0w, <aer/nid>1 = (@ Wmia)1 + <rwawt>1 “ 0w,
(Yiia)t = (Ymia)1 + (ryt)1 - 6y, {ayViiia)t = (g Ymia)1 + (ryayt)s - by,
(Z')1 = (Z)1+ (roBth - 65 + (ruBt)r - 0w + (ry)1 - 8y, (H')1 = 32 (s7)1 - by,

with },{j the coefficients of h+d,wo+ -, dp i Wi+ 0u,Vo+ D ; Ouwi-Vi+0y 0w -t —Jy.
Verification remains exactly the same.

Theorem 2 ([GGPR13], informal). Given QAP Q = ({v;}, {w;},{v:},t)
and values x1,...,Zi4m, the above is a non-interactive zero-knowledge argument
of knowledge of (xj4m+1,--.,2k) such that (z1,...,xzx) is a solution of Q.

2.4 From Arguments of Knowledge to Verifiable Computation

In [PHGR13], the above argument of knowledge is used to construct a public
verifiable computation scheme. In such a scheme, a client outsources the compu-
tation of a function f to a worker, obtaining cryptographic guarantees that the
result it gets from the worker is correct. It is defined as follows:

Definition 4 ([PHGR13]). A public verifiable computation scheme VC con-
sists of three polynomial-time algorithms (KeyGen, Compute, Verify):

— (EKy; VKy) + KeyGen(f,1%): a probabilistic key generation algorithm that
takes as argument a function f : B — F™ and a security parameter X,
outputting a public evaluation key EK; and verification key VK;

— (y;m) < Compute(EKy; z): a probabilistic worker algorithm that takes input
x € F! and outputs y = f(x) € F* and a proof 7 of its correctness

— {0,1} <« Verify(VKy;x;y;7): a deterministic verification algorithm that
outputs 1 if y = f(x), 0 otherwise.

To outsource the computation of f, a client runs KeyGen and provides EK to
the worker. When it needs f(x), it provides « to the worker, who runs Compute
and provides the result y = f(«) and proof 7 to the client. The client accepts y
if Verify succeeds. We require that worker cannot provide incorrect proofs even
if it knows VK, which makes this verifiable computation scheme “public”’. In
fact, a trusted party could for once and for all perform KeyGen and publish
(EK¢, VKy); any client who trusts this party can then use the published VK¢
to verify computations. (Trusting this party is needed: the random values used
in KeyGen are a trapdoor with which the generator of the keys can produce false
proofs.) A public verifiable computation scheme should satisfy correctness and
security. Correctness means that honest workers produce accepting proofs:

Definition 5 ([PHGR13]). A public verifiable computation scheme VC is called
correct if, for all f:F' — F™ and x € F:
if (EKy; VK;) < KeyGen(f,1%); (y; 1) + Compute(EK;; x),
then Verify(VKy; x;y; m) = 1.

Security means that corrupt workers cannot convince clients of wrong results:

Definition 6 ([PHGR13]). 4 public verifiable computation scheme VC is called
secure if, for any f : F' — F™ and probabilistic polynomial time adversary A:

Pr[(EKy, VKy) < KeyGen(f,1Y); (@;y; 7) < A(EKf; VK;) :
y # f(x) A Verify(VKy;x;y;m) = 1] = negl()).

Given a QAP @ that computes a function f, the argument of knowledge from
Section 2.2 directly gives a public verifiable computation scheme known as Pinoc-
chio [PHGR13]: KeyGen is the computation of the evaluation and verification
keys for @; Compute computes (241, - .-, Titm) = f(@1,. -, 1), (Titmt1,-- -, Tk)
such that (x1,...,2) is a solution of @, and proof (1); and Verify are the checks
(2-4) for this proof.

Theorem 3 (Pinocchio [PHGR13], informal). Let QAP Q be of degree d.
Then the above construction is a secure and correct public verifiable computation
scheme under the d-PKE, (4d + 4)-PDH, and (8d + 8)-SDH assumptions.

3 Distributing the Prover Computation

Although the above public verifiable computation scheme guarantees that the
client gets a correct result, it does not in any way protect the client’s sensitive
inputs against a curious worker. In this section, we remedy this by showing that
the worker computation can be distributed between multiple workers with little
overhead, in such a way that no single worker learns anything about the inputs
or outputs to the computation.

3.1 Definitions

First, we adapt the definition of a public verifiable computation scheme to
the distributed setting. In the original definition, after the one-time key setup
KeyGen, a client would simply provide the function input to the worker, who
would run Compute, giving a result that was checked with Verify.

In the distributed setting, we replace the single worker by a set of n workers,
who perform Compute by executing an interactive protocol. Because no single
worker should see the function input, we cannot have the function input as
argument for Compute; instead, the client runs a Distribute algorithm that gives
“representations” ¢ that the client supplies to the respective workers, which they
use as their input for Compute. Similarly, the worker’s output of Compute are
“representations” o of the function output and proof. The client uses a Combine
algorithm to determine the function output and proof from o; and finally uses
Verify to verify that the function output is correct:

Definition 7. An n-party public verifiable computation scheme VC = (KeyGen,
Distribute, Compute, Combine, Verify) consists of four polynomial-time algorithms
KeyGen, Distribute, Combine, and Verify, and an n-party protocol Compute:

— (EK;; VKy) <+ KeyGen(f,1%): a probabilistic key generation algorithm that
takes as argument a function f : F' — F™ and a security parameter X,
outputting a public evaluation key EKy and verification key VKj

— ¢ < Distribute(VKy;x): a probabilistic input distribution algorithm that
takes input x and outputs a length-n list of representations © of the input
for the respective workers

— 0 < Compute(EKy;4): a probabilistic worker protocol between n workers
such that each worker j has input EK¢,1; and output o;

— (y;m) < Combine(VKy;0): a deterministic output combination algorithm
that takes the outputs o of the workers and combines them into function
output y € F™ and proof

— {0,1} < Verify(VKy;x;y;m): the deterministic verification algorithm out-
puts 1 if y = f(x), 0 otherwise.

For the purposes of this paper, the protocol o <— Compute(EK; %) is a collection
of n polynomial time algorithms that communicate over secure, private channels;
each algorithm has as input EK; and 4; and produces output o;. We denote by
Execcompute, 4 (EK ;%) the result of executing this protocol with adversary A
acting on behalf of a fixed set of corrupted parties. Depending on the adversary
model, A may act semi-honestly, i.e., it sticks to the protocol, or maliciously,
i.e., it can communicate whatever it wants. Apart from the corrupted workers’
inputs, A also has access to VK. The output of Execcompute, 4 consists of a vector
o of outputs of the n workers (L for corrupted workers); and a special value
a output by the adversary. Execcompute(EK f;i) denotes a protocol execution
without adversary.

As in the non-distributed case, an m-party public verifiable computation
scheme should satisfy correctness and security. Correctness states that if a com-
putation is outsourced without any adversary, then it will succeed:

Definition 8. An n-party public verifiable computation scheme VC is called cor-
rect if, for all f : F' — F™ and x € F':
if (EKy; VKf) < KeyGen(f, 1*); 4 < Distribute(VK;;x);
0 < Ezeccompute(EKf;1); (y; m) < Combine(VK; 0),
then Verify(VK a;y;m) = 1.

Security states that a verifying proof implies a correct function result. We
require that it holds regardless of which workers the adversary corrupts:

Definition 9. An n-party public verifiable computation scheme VC is called se-
cure if, for all f : F* — F™ and any probabilistic polynomial time adversary A
controlling any number of workers:
Pr[(EK;, VK;) < KeyGen(f,1%);
x < A(EKy, VKy);1 < Distribute(VKy;);
(0;a) < Ezeccompute, A(EKy;1); (y; m) < Combine(VKy;o0) :
y # f(x) N Verify(VKy;x;y;m) = 1] = negl()).

The new “privacy” property for n-party public verifiable computation means
that an adversary controlling a certain number of workers learns nothing about
the inputs of the client. We define this by means of an experiment, in which
the adversary first chooses two sets of inputs x°, x', and then based on his
involvement in Compute has to decide which of them was used. Privacy means
that the adversary in this game has only a negligible advantage. We say that
a scheme is 0-passively private if privacy holds with respect to a semi-honest
adversary A controlling up to 6 workers; and 0-actively private if privacy even
holds with respect to an active adversary that corrupts up to 6 workers:

Definition 10. An n-party public verifiable computation scheme VC is called
§-passively private (resp. f-actively private) if, for all f : F* — F™ and any
probabilistic polynomial time adversary A semi-honestly (resp. actively) control-
ling at most 0 parties:

| Pr[(EK;, VKy) < KeyGen(f,1%); (2°; &) + A(EK;; VK});
ber {0,1};4 < Distribute(VK/; x°); (0;a) + Ezeccompute, A(EK ;%)
b=a]—1/2|=negl()).

3.2 Construction

We now present Trinocchio, an n-party public verifiable computation scheme
that combines correctness, security (regardless of corruptions) and privacy against
at most 6 semi-honest workers, where n = 260+ 1. Trinocchio in effect distributes
the proof computation of Pinocchio; the number of workers to obtain privacy
against one semi-honest worker is three, hence its name.

To distribute the Pinocchio computation, Trinocchio employs multiparty
computation techniques based on Shamir secret sharing [BGWS8S8]. Recall that
in (6,n) Shamir secret sharing, a party shares a secret s among n parties so
that € 4+ 1 parties are needed to reconstruct s. It does this by taking a random
degree-< 6 polynomial p(z) = apx? 4 ... + ax + s with s as constant term and
giving p(i) to party 4. Since p(x) is of degree at most 6, p(0) is completely in-
dependent from any 6 shares but can be easily computed from any 6 + 1 shares
by Lagrange interpolation. We denote such a sharing as [s]. Note that Shamir-
sharing can also be done “in the exponent”, e.g., [(a)1] denotes a Shamir sharing
of (a); € Gy from which (a); can be computed using Lagrange interpolation in
G.

Shamir secret sharing is linear, i.e., [a + b] = [a] + [b] and [aa] = afa] can
be computed locally. When computing the product of [a] and [b], each party
i can locally multiply its points p,(¢) and py(¢) on the random polynomials p,
and pp. Because the product polynomial has degree at most 26, this is a (26, n)
sharing, which we write as [a - b] (note that reconstructing the secret requires
n = 260 + 1 parties). Moreover, the distribution of the shares of [a - b] is not
independent from the values of a and b, so when revealed, these shares reveal
information about a and b. Hence, in multiparty computation, [a - 8] is typically
converted back into a random (6, n) sharing [a - b] using an interactive protocol

Algorithm 1 Trinocchio’s Compute algorithm

1: > S ={au,...,aq} denotes the list of roots of the target polynomial of the QAP
2: > T ={B,...,Ba4} denotes a list of distinct points different from S

3: function Compute(EK; = {(ryv:)1}s, ..., {{s)1};; 1], - -, [2])

£ ([l [od) < f(@@],- .. [o])

5 [w] « {2, vilay) - [ei]}s5 [V] + FFT5 (v); [v] <~ FFT7(V)

6: [w] + {3, wilay) - [z:]}s; [W] « FFT5! (w); [w'] + FFT7(W)
7.
8

[y] < {32, vi(ey) - [il}s; [Y] FFT5 (9); [y'] « FFT7(Y)
c [P = {05 [w] = TwiD)/8(8)) Y55 [H] + FFTH([R)
9: [(Vinia)1] <= D>, (rovi)1 - [@i]

10: [(aUVmid>1ﬂ — Zi(ruauvih . [[CL‘ZH

1 [(Whia)2] = 22, (rwwi)z - [zi]

12: [{tw Wmia)1] D= (rwawws)1 - [2:]

130 [(Ymia)1] < 32 (ryyi)r - [2]

14: [{oyYimia)1] Ei<ryayyi>l <[]

15: [{Z21] < 32 (roBui + rwBwi + 1y Byi)1 - [2:]

16: [(H)i]=>,(s")1 - [Hy]
17: return ([zi1], ..., [Ziem]; [{(Viia)1]s [{@o Vmia) 1], [{Wmid)2], [{0w Wmida)1],
18: [(Ymia)1], [{oy Ymia)a], [{Z2)1], [{(H)1])

due to [GRRI8]. Interactive protocols for many other tasks such as comparing
two shared value also exist (see, e.g., [dH12]).

In more detail, Trinocchio’s KeyGen and Verify are the same as Pinocchio’s.
To perform Pinocchio’s Compute in a distributed way, secret sharing is used.

(1,...,%y) < Distribute(VK;z1,. .., x;) computes secret sharings [z1], . .., [z]:
i; are the shares for the jth party. For Compute, each worker takes as input
EK; and its shares of [z1],...,[x;], and returns shares ([zi1],..., [Zitm]

and [(Viia)1], [{wVimia)i], [{Wmia)e], [{cwWmia)1ls [(Ymia)i]s [{oyYmia)1],
[{Z)1], [(H)1]) of the Pinocchio proof. Finally, Combine applies Lagrange in-
terpolation to the shares [z;41],..., [Zi+m] to obtain computation result y =
(141, -+, Z14m) and on the shares [(Viia)1], - -, [(H)1]) to obtain Pinocchio
pI‘OOf ™= (<Vmid>1a ey <H>1)

Trinocchio’s Compute protocol is shown in more detail as Algorithm 1. The
first step is to compute function output (z;41,...,Z14m) = f(x1,...,2;) and
values (Zi4m41,---,Tk) such that (x1,...,x) is a solution of the QAP (line 4).
This is done using normal multiparty computation protocols based on secret
sharing. If function f is represented by an arithmetic circuit, then it is evaluated
using local addition and scalar multiplication, and the multiplication protocol
from [GRR98]. If f is represented by a circuit using more complicated gates, then
specific protocols may be used: e.g., the split gate discussed in Section 2.1 can
be evaluated using multiparty bit decomposition protocols [ST06]. Any protocol
can be used as long as it guarantees privacy, i.e., the view of any 6 workers is
statistically independent from the values represented by the shares.

The next task is to compute, in secret-shared form, the coefficients of the
polynomial h = ((3°, zsvs) - (O, xiws) — (O, zivi))/t € Fla] that we need for
proof element (H);. In theory, this computation could be performed by first

computing shares of the coefficients of (3, z;v;) - (32, zsws) — (32, #iyi), and
then dividing by ¢, which can be done locally using traditional polynomial long
division. However, this scales quadratically in the degree of the QAP and hence
leads to unacceptable performance. Hence, we take the approach based on fast
Fourier transforms (FFTs) from [BSCG™13], and adapt it to the distributed
setting. Given a list & = {wy,...,wq} of distinct points in F, we denote by
P = FFTs(p) the transformation from coefficients p of a polynomial p of degree
at most d — 1 to evaluations p(w1),...,p(wy) in the points in S. We denote by
p= FFT;I(P) the inverse transformation, i.e., from evaluations to coefficients.
Deferring specifics to later, we mention now that the FFT is a linear transforma-
tion that, for some S, can be performed locally on secret shares in O(d - log d).

With FFTs available, we can compute the coefficients of h by evaluating h
in d distinct points and applying FFT™!. Note that we can efficiently compute
evaluations v of v = (3, xjv;), w of w = (3, xyw;), and y of y = (3, xiy;)
in the zeros {wy,...,wq} of the target polynomial. Namely, the values vy (w;),
wy (w;), yr(w;) are simply the coefficients of the quadratic equations represented
by the QAP, most of which are zero, so these sums have much fewer than k
elements (if this were not the case, then evaluating v, w, and y would take an
unacceptable O(d-k)). Unfortunately, we cannot use these evaluations directly to
obtain evaluations of h, because this requires division by the target polynomial,
which is zero in exactly these points w;. Hence, after determining v, w, and y,
we first use the inverse FFT to determine the coefficients V., W, and Y of v,
w, and y, and then again the FFT to compute the evaluations v, w’, and y’ of
v, w, and y in another set of points T = {2y, ..., 2} (lines 5-7). Now, we can
compute evaluations b’ of h in T using h(£2;) = (v(£2;) - w(2;) — y(£2,))/t(£2;).
This requires a multiplication of (0, n)-secret shares of v(£2;) and w(f2;), hence
the result is a (26, n)-sharing. Finally, the inverse FFT gives us a (26, n)-sharing
of the coefficients H of h (line 8).

Given secret, shares of the values of x; and coefficients of h, it is straightfor-
ward to compute secret shares of the Pinocchio proof. Indeed, (Vinia)1, - -, (H)1
are all computed as linear combinations of elements in the evaluation key, so
shares of these proof elements can be computed locally (lines 9-16), and finally
returned by the respective workers (lines 17-18).

Note that, compared to Pinocchio, our client needs to carry out slightly more
work. Namely, our client needs to produce secret shares of the inputs and recom-
bine secret shares of the outputs; and it needs to recombine the Pinocchio proof.
However, according to the micro-benchmarks from [PHGR13], this overhead is
small. For each input and output, Verify includes three exponentiations, whereas
Combine involves four additions and two multiplications; when using [PHGR13]’s
techniques, this adds at most a 3% overhead. Recombining the Pinocchio proof
involves 15 exponentiations at around half the cost of a single pairing. Alterna-
tively, it is possible to let one of the workers perform the Pinocchio recombining
step by using the distributed zero-knowledge variant of Pinocchio from Sec-
tion 2.3 and the techniques from Section 4. In this case, the only overhead for

the client is the secret-sharing of the inputs and zero-knowledge randomness,
and recombining the outputs.

Parameters for Efficient FFTs To obtain efficient FF'Ts, we use the approach of
[BSCG13]. There, it is noted that the operation P = FFTs(p) and its inverse
can be efficiently implemented if S = {w,w?,...,w? = 1} is a set of powers
of a primitive dth root of unity, where d is a power of two. (We can always
demand that QAPs have degree d = 2* for some k by adding dummy equations.)
Moreover, [BSCG'13] presents a pair of groups G, G, of order ¢ such that F,
has a primitive 23°th root of unity (and hence also primitive 2¥th roots of unity
for any k < 30) as well as an efficiently computable pairing e : G; x Gy — Gs3.
Finally, [BSCG*13] remarks that for 7 = {nw,nw?,...,nw? = n}, operations
FFTTF1 and FFT}1 can easily be reduced to FFTs and FFTgl, respectively. In
our implementation, we use exactly these suggested parameters.

3.3 Security of Trinocchio

It is easy to see that correctness and security of Trinocchio both follow from
the corresponding properties of Pinocchio; for details, see the appendix. Trinoc-
chio’s privacy depends on the the protocol being used to compute f in line 4
of Algorithm 1. A multiparty computation protocol is called (statistically or
computationally) 0-private [Can98] if it correctly computes f and leaks no infor-
mation whenever at most 6 workers are passively corrupted. If such a protocol
is used to compute f, then Trinocchio is #-passively private.

Theorem 4. Let n = 20 + 1, and suppose that a 6-private n-party protocol is
used to compute function f in line 4 of Algorithm 1. Then Trinocchio is an n-
party public verifiable computation scheme that is correct, secure, and 0-passively
private assuming d-PKE, (4d+4)-PDH and (8d+8)-SDH with d the QAP degree.

Moreover, if the protocol used to compute f also does not leak information
in the event of an active attack, then Trinocchio satisfies privacy against active
attackers. Namely, let us call a multiparty computation protocol 8-actively pri-
vate if it does not leak any information to an active attacker controlling up to
6 workers. For instance, the protocol from [GRR98] satisfies this notion as the
attacker only learns # many shares of any value.

Theorem 5. Let n = 20 + 1, and suppose that a 0-actively private n-party
protocol is used to compute f in line 4 of Algorithm 1. Then Trinocchio is an n-
party public verifiable computation scheme that is correct, secure, and 0-actively

private assuming d-PKE, (4d+4)-PDH and (8d+8)-SDH with d the QAP degree.

The two theorems follow easily from the respective properties of the multi-
party computation protocol used; see the appendix. Theorem 5 crucially relies
on the workers not learning whether the client accepts the proof. If the workers
would learn whether the client obtained a validating proof, then, by manipulat-
ing proof construction, they could learn whether a modified version of the tuple
(21,...,2) is a solution of the QAP used, so corrupted workers could learn one
chosen bit of information about the inputs (cf. [MF06]).

4 Handling Mutually Distrusting In- and Outputters

We now consider the scenario in which various parties wish to obtain the results
of a computation applied to input held by other parties, who are willing to
enable the computation, but not to divulge their private input values. There are
some significant changes between this scenario and the single-client scenario. In
particular, we need to extend Pinocchio to allow verification not based on the
actual input/output values (indeed, no party sees all of them) but on some kind
of representation that does not reveal them. Moreover, we need to use the zero-
knowledge variant of Pinocchio (Section 2.3), and we need to make sure that
input parties choose their inputs independently from each other.

The parties obtaining the results are collectively referred to as the result
parties R = {R1,...,Rm}. Similarly, the parties providing their input to the
computation are called input parties Z = {Z1,...,Z;}. We implement this sce-
nario by outsourcing the computation to workers W = {W;, ..., W, }. Note that
these sets of parties may be mutually disjoint, but are not required to be so.

4.1 Security Model

Because the multiple client scenario involves several different kinds of parties
with respect to which we have to guarantee different security properties, security
in this scenario is best defined using the ideal/real paradigm [Can98]. Indeed, this
scenario can be seen as a generalisation of the usual scenario of secure multiparty
computation, for which the ideal/real paradigm is the traditional technique used
to define security.

The idea of the ideal/real paradigm is to define security by demanding that
the outputs of the result parties and adversary in a protocol execution are dis-
tributed indistinguishable from those in an ideal world, in which the function
is computed by an incorruptible third party. The information that this trusted
party sends to the result parties and adversary determines under what conditions
properties like correctness, privacy, and privacy hold. Note that in the multiple
client scenario, an additionally relevant property is “input independence”: i.e.,
we wish to ensure that input parties choose their inputs independently from
others. (For instance, if Zo would be able to set its input to “Z;’s input + 17
then this would not break privacy, but it is still undesirable.)

Exec denotes the probability distribution of real protocol executions. Let IT
be a protocol between parties ZU W U R, i.e., a collection of polynomial time
algorithms that communicate over secure, private channels. Let A be a security
parameter. Given i € F', let Execir,4(A;2) be the result of executing protocol
IT with probabilistic polynomial-time adversary A adversary acting on behalf of
a fixed set C C ZUW U R of corrupted parties, of which A C C' are actively
corrupted. Each honest input party Z; receives input ¢;, and the adversary re-
ceives the inputs of corrupted input parties; the honest parties and adversary
then execute the protocol. Execyy _4(A;¢) consists of a vector o of the outputs of
the result parties (L for corrupted result parties) and a special value a output
by the adversary. To model access to trusted information, such as the evaluation

and verification keys, we will allow parties to call certain trusted n-party func-
tions g1, . .., g; that are always evaluated correctly. An execution in this so-called

(91,--.,9;5)-hybrid model [Can98,CDNO1] is denoted Execgu”’gl)()\;i).
Similarly, Ideal denotes the probability distribution of ideal protocol execu-
tions. Let 4 € F, let I be an algorithm giving the code of trusted party 7, and
let S be a probabilistic polynomial-time adversary acting on behalf of a fixed
set C C ZUWUR of corrupted parties, of which A C C' are actively corrupted.
Then Ideal; s(A; %) denotes the result of the following execution: honest input
parties each send their input to 7 ; honest result parties receive their result from
T and output this; the adversary S gets the input of corrupted input parties, can
send arbitrary values on behalf of actively corrupted input parties, and receives
the results of corrupted result parties. The trusted party 7 executes the code
of I; hence, this code determines the security guarantees modelled by the ideal
execution. The result of Ideal; s();¢) is a vector o of the result parties’ outputs
(L for corrupted result parties) and a special value a output by the adversary.
Our objective is to offer unconditional correctness of the computation results,
but, as before, whether privacy can be guaranteed depends on which parties are
corrupted and the level of corruption. In particular, as in the previous section,
we will carry out the actual computation by means of a 6-private secure thresh-
old n-party computation protocol. Such a protocol guarantees privacy as long
as no worker is actively corrupt, and fewer than 6 worker are passively corrupt.
As a consequence, we will achieve privacy under the same conditions. General-
ising Definition 10, we say that protocols in this scenario that provide privacy
against 6 passively secure workers are -passively secure. The corresponding ideal
functionality Ig.pve, which we explain below, is given in Algorithm 2.

Definition 11. Protocol IT between partiesT = {Zy,..., i}, W = {Wy,..., Wy},
and R = {R1,..., R} is called a G-passively secure n-party public verifiable
computation protocol in the (gi,...,g;)-hybrid model if, for all probabilistic
polynomial time adversaries A corrupting set C C ZUWUTR of parties and ac-
tively corrupting A C C, there exists a polynomial-time adversary S such that,
for all i € F:

Brecdy9) (A 4) ~ Idealy, . s(\;3),

where =~ denotes computational indistinguishability in security parameter .

If no trusted gy, . .., gj-calls are needed, we simply call the protocol a #-passively
secure n-party public verifiable computation protocol. #-actively secure proto-
cols, that also protect privacy against active attackers, are defined analogously.

We now discuss the ideal-world algorithm 4. for 6-passively secure n-party
public verifiable computation (Algorithm 2). The algorithm first retrieves the
inputs from the respective parties (for corrupted input parties, the adversary
controls what is sent). We guarantee privacy under some conditions: only if
these conditions are not met, then the adversary receives the inputs (line 3—
4). Furthermore, actively corrupt input parties are able to abort the protocol
entirely, preventing all result parties from obtaining their outcome (represented
in line 6), whereas actively corrupt workers are able to choose which result parties

Algorithm 2 Iy : 6-passively secure n-party public verifiable computation
1: function Igevc(4;C)
2: for each input party i € Z, receive input x; from 1
if > 1 actively corrupt or > 0 passively corrupt workers then
send all inputs @ to the adversary S

3

4

5: if any entry of « is equal to L then

6: set r « L%

T else

8 compute r < f(x)

9: if any worker is actively corrupt then

10: receive a subset of result parties F' C R from the adversary S
11: for each result party i € F, set r; < L

12: for each result party ¢ € R, send its result r; to 4

obtain their outcome and which do not (represented in step 11). However, if the
protocol is not aborted, then the results are guaranteed to be correct (line 8),
capturing the correctness and security properties of the protocol. Finally, note
that the corrupt input parties have to provide their inputs before possibly seeing
the honest parties’ inputs (line 2); hence, independence of inputs is assured, even
in the situation when privacy is not.

For ease of notation, we model that each input party provides a single input,
and each result party receives a single output. Both our ideal functionality and
our protocol are easily adapted to the more general case. Note that, to fully
capture the notion of outsourced computation, we would also want to express
that input and result parties only need to act at the beginning and the end of
the protocol. However, because this is not a security property, it unfortunately
cannot be captured by the ideal functionality.

4.2 Primitives

In addition to multiparty computation based on (6, n) secret sharing as described
in Section 3.2, our multi-client variant of Trinocchio uses several other primitives.

Mixed Commitment Scheme We use a commitment scheme, which allows a
party to commit to a certain value, without revealing that value to other parties,
but, when at a later time this value is revealed, the other parties can be certain
that the revealed value is equal to original committed to value. Each party has its
own public commitment key k£ and a commitment to a value v using randomness
r is denoted Commit (v; 7). Because, given explicit randomness, the commitment
algorithm is deterministic, the commitment can be opened by simply revealing
(v,7). Then any party can verify the commitment by simply recomputing it.

In particular, we use a so-called “mixed commitment scheme” [DN02]. In
such a scheme, commitment keys can be generated in two ways. First, they can
be generated such that the scheme is perfectly binding and computationally

hiding, and a trapdoor exists with which the committed value can be extracted.
Second, they can be generated such that the scheme is perfectly hiding and
computationally binding, and a trapdoor exists with which commitments can be
opened to any value. Moreover, the keys generated in the two ways should be
computationally indistinguishable. In our protocol, commitment keys of the first,
i.e., perfectly binding, kind are generated for all input parties by a trusted party
(and the trapdoor thrown away), which we model by a hybrid call kq, ...,k +
ComGen. (In the simulator used for the security proof, commitment keys of the
first kind are generated for corrupted input parties and commitment keys of the
second kind are generated for honest input parties, with the trapdoors used when
simulating the adversary.) Mixed commitments can be instantiated efficiently,
e.g., using Paillier encryption [DN02].

Bulletin Board To ensure agreement between the parties about the inputs for
the computation, we use a bulletin board. Through this bulletin board, parties
can publish messages which can then be retrieved by any other party. Messages
on the bulletin board are authenticated. We denote a party posting a message m
as Post(m). (We consider the bulletin board part of the execution model, but it
can also be seen as a hybrid call.) For convenience, we do not state when a party
retrieves information from the bulletin board; instead, we assume that all parties
have access at any time to all information that has been posted. We understand
a bulletin board to be a somewhat more powerful primitive than a broadcast
channel in that even after the completion of our protocol, any party can access
the bulletin board and retrieve all information posted during the protocol.

4.3 Multi-Client Proofs and Keys

Our multi-client Trinocchio proofs are a generalisation of the zero-knowledge
variant of Pinocchio from Section 2.3 with modified evaluation and verification
keys. Recall that in Pinocchio, the proof terms (Vinid)1, (@ Vmid)1, (Wmid)2,
(0 Winid)1, (Ymid)1, {@yYmia)1, and (Z)1 encode circuit values zjymy1, - - ., Tk;
in the zero-knowledge variant, these terms are randomised so that they do not
reveal any information about ;4 41, ..., zg. In the multi-client case, addition-
ally, the inputs of all input parties and the outputs of all result parties need to
be encoded such that no other party learns any information about them. There-
fore, we extend the proof with blocks of the above seven terms for each input
and result party, which are constructed in the same way as the 7 proof terms
above. Although some result parties could share a block of output values, for
simplicity we assign each result party its own block in the protocol.

To produce a block containing values «, a party first samples three random
field values ¢,, 0., and ¢, and then executes the ProofBlock procedure given in
Algorithm 3. The BK argument to this algorithm is the block key; the subset
of the evaluation key terms specific to a single proof block. Because each input
party should only provide its own input values and should not affect the values
contributed by other parties, each proof block must be restricted to a subset of

Algorithm 3 The ProofBlock algorithm

1: function ProofBlock(BK; x; dv, dw, 0y)

2: (V)1 4= (rot)160 + > (rovi)i@i; (V)1 = (roowt)10y + Y, (roawvi)12;

(W)a = (rwt)20w + 3 (Twwi)ads; (W1 = (rowauwt) 18, + Do (rwawwi)12
(V)1 < (ryt)10y + 30 (ryyi)ims; (V)1 < (ryayt)1dy + 30, (ryayyi) 1

(Z)1 = (roft) 100 + (ruwBt)10w + (ryBt)10y + 3, (10 fvi + T fwi + 1y Byi)12;
return ((V)1, (V')1, (W)2, (W1, (Y)1, (Y')1,(Z2)1)

Algorithm 4 The CheckBlock algorithm
1: function CheckBlock(BV; (V)1, (V')1, (W)a, (W')1, (Y)1, (Y"1, (Z)1)

20 if e((V)1, {aw)2) = e((V')1, (1)2)

3: Ae({aw)1, (W)2) = e((W)1, (1)2)

4: Ne((Y)1, (ay)2) = e((Y')1,(1)2)

5: Ne({Z)1,(1)2) = e((V)1 + (Y)1, (B)2)e((B)1, (W)2) then
6: return T

7: else

8: return |

the wires. This is achieved by modifying Pinocchio’s key generation procedure
such that, instead of a sampling a single value 3, one such value, 3;, is sampled for
each proof block j and the terms (r,8;v; + ryBw; + 7,0;y:)1 are only included
for wires indices ¢ belonging to block j. That is, the jth block key is

BKj = {<7“v%‘>1, <7"v04v%‘>17 <7“wwi>2, <Twawwi>1a <Tyyi>1a <ryayyi>1a
(roBivi + rwBjwi + 1y Biyi) 1, (roBit) 1, (TwBit)1, (ryBit)1},

with ¢ ranging over the indices of wires in the block. Note that the ProofBlock al-
gorithm only performs linear operations on its «, d,, d,, and ¢, inputs. Therefore
this procedure does not have to be modified to compute on secret shares.

A Trinocchio proof in the multi-client setting now consists of one block
Q; = ((Vid1,...,{Z;)1) for each input and output party, one block Quniq =
((Vinid)1, - -+ {Zmia)1) of internal wire values, and Pinocchio’s (H); element.
Verification of such a proof consists of checking correctness of each block, and
checking correctness of (H);. The validity of a proof block can be verified using
the CheckBlock procedure defined in Algorithm 4. Compared to the Pinocchio
verification key, our verification key contains “block verification keys” BV; (i.e.,
elements (5;)1 and (B;)2) for each block instead of just (8): and (5)2. Apart
from the relations inspected by CheckBlock, one other relation is needed to ver-
ify a Pinocchio proof: the divisibility check of Equation (4). In the protocol,
the procedure that verifies this relation will be called CheckDiv. We denote the
modified setup of the evaluation and verification keys by hybrid call KeyGen.

4.4 The Protocol

We now present our multi-client Trinocchio protocol. Like in the security model,
we assume that each input party provides only a single input and each output

party receives only a single output; that is, each block from Section 4.3 consists
of only one wire. It should be clear from Section 4.3 how this can be generalised.

Our protocol is shown as Algorithm 5. The protocol starts with hybrid calls to
obtain the trusted commitment keys and Trinocchio evaluation and verification
keys (lines 2-3). The remainder of the protocol consists of an input phase (lines 4—
16), in which the input parties provide their inputs to the workers; a computation
phase, in which the workers compute the function and Pinocchio proof (lines 17—
31); and a result phase, in which the result parties obtain the output from the
workers and verify its correctness (lines 32-41).

Input Phase In the input phase, each inputter provides its input to the workers.
Compared to the single-client case, in which the inputter simply provided secret
shares of its inputs, we need to take several additional steps. Namely, we need
each inputter to provide a block for its inputs that other parties can use to verify
the proof; and we need to guarantee input independence, namely, that inputters
cannot choose their inputs depending on those of others.

To achieve these goals, we proceed as follows. First, each input party com-
putes a block for its input (line 5). Having each input party post its block on
the bulletin board would break input independence (in effect, it binds the in-
putters who provide the blocks first). We circumvent this by letting each input
party post a commitment to its block first (line 6). After all commitments have
been posted, the input parties post the openings to the commitments, i.e., the
blocks and commitment randomness (line 7). (This guarantees input indepen-
dence because in the security proof, the inputs of the honest parties can still be
changed after the corrupted parties provide their inputs.) After this, the validity
of the commitments (line 9) and blocks (line 10) are checked; if any input party
provided incorrect information, the computation is aborted.

After the input blocks have been posted and checked, the inputs are provided
to the workers in in the form of (26,n) shares (line 11). The shared information
is both input [z;] and block randomness [0, ;], [0w,i], [0y,:]: the workers need this
latter information to compute the proof’s (H); element. Note that we use (20, n)
shares: because n = 260 + 1, the shares of all workers recombine to a unique
value and we do not need to worry about inputters handing out inconsistent
shares. The workers check that the shares correspond to the broadcast block
by computing additive shares of the block, posting them, and checking if their
Shamir recombination (denoted by Combine) matches the value on the bulletin
board (lines 13-15). Finally, the (260, n)-shares are converted into (6, n)-shares
(each worker (6,n)-shares its share and applies recombination a la [GRR98])
used for the remainder of the computation (line 16).

Computation Phase In the computation phase, the workers compute function f,
and produce a Pinocchio proof that this computation was performed correctly.
The computation of f (line 17) and coefficients H’ of the polynomial h = (v-w—
y)/t (lines 18-21) are the same as in the single-client case. To generate the proof
block for the internal wires, the workers first generate shared random values
[0v,mia]l, [0w,midl, [0y,mia] (line 22): for instance, by letting each party share a

random value or using pseudo-random secret sharing. They then call ProofBlock
to produce the block using the shared wires and randomness (line 23). The blocks
for the result parties are generated in the same way (lines 24-26). The coefficients
of the randomised quotient polynomial H are computed from H’ analogously
to Section 2.3; note that this requires computing overall randomness 0y, dy, 9y
that is the sum of the randomness from all blocks in the proof. This gives (26, n)
shares [(H)1] of proof element (H); (line 30)

Having computed shares of all proof elements, the workers now post these
shares on the bulletin board so that everybody can combine them to obtain the
full proof. Note that the shares of individual workers might statistically depend
on information that we do not want to reveal such as internal circuit wires. To
avoid any problems because of this, the workers first re-randomise their proof
elements by adding a new random sharing of zero; for instance, obtained by
letting each worker share zero or using pseudo-random zero sharing (line 31).

Output Phase In the output phase, the result parties obtain their computation
results, and verify then with respect to the information on the bulletin board.
First, the result parties obtain secret shares of their output values, and the
randomness used in their proof blocks (line 32). Then, they combine the values
from the bulletin board into a full multi-client Pinocchio proof (lines 34-36),
and verify this proof (lines 37-38). Finally, they recombine their output values
(line 39), check if the secret shares of their output values correspond to the
posted proof block (line 40), and output the computation result (line 41).

Theorem 6. The Trinocchio protocol is a 0-passively secure n-party public ver-
ifiable computation protocol, n = 26 + 1, in the (ComGen, KeyGen)-hybrid model
assuming d-PKE, (4d + 4)-PDH and (8d + 8)-SDH with d the QAP degree.

The proof of this Theorem (in the appendix) uses two simulators: one when
privacy and correctness are guaranteed (i.e., with at most 6 passively corrupted
input parties), and another when only correctness is guaranteed. In the former
case, we obtain privacy by simulating the multiparty computation of the proof
with respect to the adversary without using honest inputs. In the latter case,
we run the protocol together with the adversary: if this gives a fake Pinocchio
proof, then one of the underlying problems can be broken.

5 Performance and Application to Certificate Validation

In this section, we show that our approach indeed adds privacy to verifiable com-
putation with little overhead. We demonstrate this in two case studies. First,
we take the “MultiVar Poly” application from [PHGR13], and show that using
Trinocchio, this computation can be outsourced in a private and correct way
at essentially the same cost as letting three workers each perform the Pinoc-
chio computation. Second, we show that, using Trinocchio, the performance of
“verification by validation” due to [SV15a] can be considerably improved: in
particular, we improve the client’s performance by several orders of magnitude.

Algorithm 5 Trinocchio: n-party public verifiable computation

— = =
o2

13:
14:
15:

16:

17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

33

34:
35:
36:
37:
38:
39:
40:
41:

> Input parties Z have z;, result parties R output (zit1,-..,Zi+m) = f(z1,...,21)
parties i € Z do (k1,...,kn) + ComGen()
parties i e ZUWUTR do (EK = ({BK;}i,...),VK = ({BVi}s,...)) + KeyGen()
parties i € 7 do > input phase
(51,,7;, 51071', (Syﬁl) €ER]Fs; Qz < ProofBIock(BKi; Xi5 (51,’7;, 5w,i7 (5%7;)
sample commitment randomness p;; ¢; < Commity, (Qs; pi); Post(c;)
Post(Q:, pi)
for all j € 7\ {i} do
if c; # Commity; (Qj; p;) then abort the protocol

if CheckBlock(BV;;Q;) = L then abort the protocol
create (20, n)-shares ([x;], [0v,i], [0w,i], [0y,:]) and distribute to the workers

: parties W do
for alli € 7 do
[Q;] + ProofBlock(BK; [z:]; [0v,i], [0w,i]s [0y.:]); Post([Q:])
if Combine([Q:]) # Q; then abort the protocol
convert (26, n) shares ([z;], [0v,i], [0w,i], [0y,:]) to (8,n) shares ([x],...)

(Tzig], - - -5 [zx]) < f([z], - - - [=:]) > computation phase
[v] < {32, vi(w;) - [#:]}5; [V] < FFTg' (v); [v'] < FFT7(V)
[w] {3 wiw)) - [&:]}s; [W] FFT 5" (w); [w'] + FFT7(W)
[yl < {2, vi(w;) - [z:]}5; [Y] < FFT5 (y); [y'] + FFT1(Y)
(0] {([v5] - [w)] = [y5])/t(2;)}5; [H'] + FFTZ([R])
([8v,mials [Ow,mia], [0y,mia]) €r F?
HQmid]] < PrOOfB|0Ck(BKmid; [[:Cl+1]], ey [[.’L'k]], [[&;,midﬂ, [[(sw7midﬂ, [[6y,mid]])
for all i € R do
([60,i]; [0w.i], [64,:]) €r F
[[Qz]] < ProofBIock(BKi; II.CEZ]], Hdﬂyiﬂ, [5747»7«']]7 [[(5%2]])
[0u] < [0v,mia] + ZieIuR[‘sv,i]
[0w] <= [0w,mid] + D i czum [Ow,i]
[6y] < [0y, mia] + ZiEIUR[(Syﬂ'] _
(H] « [H']+ [6,)IW] + [0][V + [6:1[6]T — [6,]; [(H)1] = >7_(s")1[H}]
Post([Qmia] + [0]); Post([{(H)1] + [0]); for all i € R do Post([Q:] + [0])
for all i € R do send ([x:], [0v,:]; [0w,:], [0y,:]) to res. party ¢ > output phase
: parties i € R do
for all j € R do Q; < Combine([Q;])
Q + Combine([Qmia]) + ZjeIuR Q);
(H)1 + Combine([(H)1])
if CheckBlock(BViid; Qmia) = L V 37 : CheckBlock(BV;;Q;) = LV
CheckDiv(VK;Q; (H)1) = L then output L and abort protocol
(T4, 0v,iy Ow,iy 0y,i) < Combine([z:], [0v,i], [0w,:]; [0y,:])
if Q; # ProofBlock(BKj; i; 0v,s, 0w,i, 0y,;) then output L and abort protocol

output z;

In our experiments, one client outsources the computation to three work-

ers. In particular, we use multiparty computation based on (1,3) Shamir secret

sharing. As discussed in Sections 3.3 and 4.1, this guarantees privacy against one
passively corrupted worker, or, in the single-client case with a -actively private
multiparty computation protocol, against one actively corrupted worker. We did
not implement the multiple client scenario; this would add small overhead for
the workers, with verification effort growing linearly in he number of input and
result parties but remaining small and independent from the computation size.
To simulate a realistic outsourcing scenario, we distribute computations between
three Amazon EC2 “m3.medium” instances? around the world: one in Oregon,
United States; one in Ireland; and one in Tokyo, Japan. Multiparty computation
requires secure and private channels: these are implemented using SSL.

5.1 Case Study: Multivariate Polynomial Evaluation

In [PHGR13], Pinocchio performance numbers are presented showing that, for
some applications, Pinocchio verification is faster than native execution. One of
these applications, “MultiVar Poly”, is the evaluation of a constant multivariate
polynomial on five inputs of degree 8 (“medium”) or 10 (“large”). In this case
study, we use Trinocchio to add privacy to this outsourcing scenario.

We have made an implementation® of Trinocchio’s Compute algorithm (Algo-
rithm 1) that is split into two parts. The first part performs the evaluation of the
function f (line 4), given as an arithmetic circuit, using the secret sharing imple-
mentation of VIFF%. (We use the arithmetic circuit produced by the Pinocchio
compiler, hence f is exactly the same as in [PHGR13].) Note that, because f is
an arithmetic circuit, this step does not leak any information against actively
corrupted workers. Hence, in the single-client outsourcing scenario of Section 3,
we achieve privacy against one actively corrupted worker. The second part is a
completely new implementation of the remainder of Trinocchio using [Mit13]’s
implementation® of the discrete logarithm groups and pairings from [BSCG*13].

Table 1 shows the performance numbers of running this application in the
cloud with Trinocchio. Significantly, evaluating the function f using passively
secure multiparty computation (i.e., line 4 of Compute) is more than twenty
times cheaper than computing the Pinocchio proof (i.e., lines 5-16 of Comp).
Moreover, we see that computing the Pinocchio proof in the distributed setting
takes around the same time (per party) as in the non-distributed setting. Indeed,
this is what we expect because the computation that takes place is exactly the
same as in the non-distributed setting, except that it happens to take place on
shares rather than the actual values itself. Hence, according to these numbers,
the cost of privacy is essentially that the computation is outsourced to three
different workers, that each have to perform the same work as one worker in the
non-private setting. Finally, as expected, verification time completely vanishes
compared to computation time.

2 Running Intel Xeon E5-2670 v2 Ivy Bridge with 4 GB SSD and 3.75 GiB RAM
3 Implementation available at <removed_for_blind_review>

* In particular, the TUeVIFF variant (http://www.win.tue.nl/~berry/TUeVIFF/)
5 See https://github.com/herumi/ate-pairing

mult|Pinoc.|Dist f Dist © Trinoc.|Verif.
MultiVar Poly, Medium| 203428|2102 96 2092 2187 0.04
MultiVar Poly, Large 571046(6458 275 6427 6702 0.05
Table 1. Performance of multivariate polynomial evaluation with Trinocchio: number
of multiplications in f; time for single-worker proof; time per party for computing f
and proof, and total; and verification time (all times in seconds)

Our performance numbers should be interpreted as estimates. Our Pinocchio
performance is around 8-9 times worse than in [PHGR13]; but on the other
hand, we could not use their proprietary elliptic curve and pairing implemen-
tations; and we did not spend much time optimising performance. Note that,
as expected, our Pinocchio and Trinocchio implementations have approximately
the same running time. If Trinocchio would be based on Pinocchio’s code base,
we would expect the same. Moreover, apart from combining the proofs from
different workers, the verification routines of Pinocchio and Trinocchio are ex-
actly the same, so achieving faster verification than native computation as in
[PHGR13] should be possible with Trinocchio as well. We also note that VIFF
is not known for its speed, so replacing VIFF with a different multiparty com-
putation framework should considerably speed up the computation of f.

5.2 Speeding Up Verification by Validation

In [SV15a], the idea is proposed to speed up verifiable outsourcing by exploit-
ing the fact that, to see if a solution to a computation is correct, it is often
not necessary to consider the whole circuit. Specifically, instead of proving that
y = f(x), workers prove that ¢(x,a,y) holds for some predicate ¢ and “cer-
tificate” a. [SV15a] proposes to use ElGamal encryptions and zero-knowledge
proofs to prove ¢(x,a,y). This gives feasible performance, although the over-
head compared to just computing f is still quite large. We now show that using
Trinocchio both reduces the worker effort and dwarfs the client effort.

Specifically, [SV15a] presents a case study in linear programming. Given a
matrix A € Z™*"™ and vectors b € Z™, ¢ € Z", linear programming asks to find
vector € Z™ and quotient ¢ such that ¢ > 0; > 0; A-x < ¢-b, and (¢c-x)/q
is minimal. (In multiparty computation, Z is embedded into a sufficiently large
field F.) To solve this problem, heavy iterative algorithms such as the simplex
algorithm are needed; but given the so-called “dual solution” p € Z™ it is easy
to verify that x is optimal by checking that ¢ > 0;p-b=c-x; A-x < q-b;
x >0; A-p<gq-c and p < 0. This criterion can be formulated as a set of
polynomial equations [SV15al, and, in fact, as a QAP, by formulating checks like
g > 0 in terms of bit decompositions, e.g., ¢ — 1 =ag+a; -2+ as -22 +... and
ap-(1—ag)=1,a1-(1—ay)=0, and so on.

We have adapted the simplex LP solver from [SV15a]% to work over the field
we need for our discrete logarithm and pairing groups; and then used Trinocchio’s

5 Taken from http://meilof.home.fmf.nl/

LP size|blp #it|Comp Cert Proof Total|Ver

5x5 31 4 89 4 8 102|0.07

20x20 40 9 289 23 52 364/0.07

48x70 34 25| 1080 61 172 1314/0.07

48x70 65 48| 2702 119 268 3090(0.07

103x150| 61 62| 5415 308 713 6436(0.07

288x202| 93 176| 48781 1257 2479 52516|0.06
Table 2. Performance of verifiable linear programming by validation with Trinocchio:
bitlength of solution numbers, number of simplex iterations, time for computation,
certificate computation, proof, and total; and verification time (all times in seconds)

Compute to produce the proof that the computed LP solution is optimal. Our
performance numbers are shown in Table 2. As shown, producing the Pinocchio
proof is only a small percentage of the total distributed computation, ranging
from 5% to 13% of total computation time. (The percentage decreases with prob-
lem size. Asymptotically, the time needed to evaluate f is O(m-n-(I+1)), with
m X n the dimensions of the LP, I the number of iterations and [the bitlength
needed during the computation; proof time is O(Imn - loglmn).) Verification is
very fast, and in particular much faster than evaluating the simplex algorithm
with VIFF’s local execution mechanism (which takes 78s on the biggest LP).

Comparing our Trinocchio approach to the ElGamal-based proofs of [SV15a],
our proofs are not only much faster to verify, but also faster to produce. For
verification, [SV15a] report times that are two-thirds of proof time, where our
verification time is almost constant (for our problem sizes, the dominant factor is
the computation of the constantly many pairings) and also asymptotically much
better, since it only depends linearly on the sum of the LP dimensions, and
not at all on the bitlength. Concerning proof production, our measured times
are comparable (even slightly better), but the circumstances are not. Namely,
while [SV15a]’s experiments use machines comparable to ours, they measure local
communication whereas we measure communication in the cloud. Since [SV15a]’s
proof production requires significant communication, their running time in the
cloud should be higher than reported in [SV15a]. (Although we could not verify
this latter claim, we did find that running [SV15a]’s LP solver in the cloud is
around four times slower than in [SV15a], which is probably for the same reason.)
On the other hand, [SV15a]’s proof production has slightly better asymptotics:
theirs has O(Inm) running time compared to our O(Inm - logimn).

6 Discussion and Conclusion

In this paper, we have presented Trinocchio, a system that adds privacy to the
Pinocchio verifiable computation scheme essentially at the cost of replicating the
Pinocchio proof production algorithm at three (or more) servers. Trinocchio has
the same correctness and security guarantees as Pinocchio; distributing the com-
putation between 20+ 1 workers gives privacy if at most 6 of them are corrupted.

We have shown in two case studies that the overhead is indeed small, and that
applying Trinocchio leads to performance improvements for the “verifiability by
certificate validation” paradigm of [SV15a).

As far as we are aware, our work is the first to deliver efficient verifiable
computation (i.e., with cryptographic guarantees of correctness and practical
verification times independent of the computation size) with privacy guaran-
tees. As discussed, existing verifiable computation constructions in the single-
worker setting [GGP10,GKP'13,FGP14] use very expensive cryptography, while
multiple-worker efforts to provide privacy [ACGT14] do not guarantee correct-
ness if all workers are corrupted. In contrast, existing works from the area of
multiparty computation [BDO14,SV15b,SV15a] deliver privacy and correctness
guarantees, but have much less efficient verification.

A major limitation of Pinocchio-based approaches is that they assume trusted
set-up of the (function-dependent) evaluation and verification keys. In the single-
client setting, the client could perform this set-up itself, but in the multiple-client
setting, it is less clear who should do this. In particular, whoever has generated
the evaluation and verification keys can use the values used during key generation
as a trapdoor to generate proofs of false statements. Even though key generation
can likely be distributed using the same techniques we use to distribute proof
production, it remains the case that all generating parties together know this
trapdoor. Unfortunately, this seems inherent to the Pinocchio approach.

Our work is a first step towards privacy-friendly verifiable computation, and
we see many promising directions for future work. Recent work in verifiable
computation has extended the Pinocchio approach by making it easier to specify
computations [BSCGT13], and by adding access control functionality [AJCC15].
In future work, it would be interesting to see how these kind of techniques can
be used in the Trinocchio setting. Also, recent work has focused on applying
verifiable computation on large amounts of data held by the server (and possi-
bly signed by a third party) [CTV15]; assessing the impact of distributing the
computation (in particular when aggregating information from databases from
several parties) in this scenario is also an important future direction. Finally, it
would also be interesting to base Trinocchio on the (much faster) Pinocchio code-
base [PHGR13] and more efficient multiparty computation implementations, and
see what kind of performance improvements can be achieved.

References

[ACG'14] P. Ananth, N. Chandran, V. Goyal, B. Kanukurthi, and R. Ostrovsky.
Achieving Privacy in Verifiable Computation with Multiple Servers - With-
out FHE and without Pre-processing. In Proceedings of PKC, 2014.

[AJCC15] J. Alderman, C. Janson, C. Cid, and J. Crampton. Access Control in
Publicly Verifiable Outsourced Computation. In Proc. ASIACCS, 2015.

[BDO14] C. Baum, I. Damgard, and C. Orlandi. Publicly Auditable Secure Multi-
Party Computation. In Proceedings of SCN, 2014.

[BGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness Theorems
for Non-cryptographic Fault-tolerant Distributed Computation. In Pro-
ceedings of STOC, 1988.

[BSCG'13] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza. SNARKs

[Can98]
[CDNO1]
[CTV15]

[dH12]

[DN02]

[FGP14]

[GGP10]

[GGPR13)]

[GKP*13]

[Grol0]

[GRROS]

[MF06]

[Mit13]

[PHGR13]
[STO6]

[SV15a]

[SV15b]

for C: Verifying Program Executions Succinctly and in Zero Knowledge.
In Proceedings of CRYPTO. 2013.

R. Canetti. Security and Composition of Multi-party Cryptographic Pro-
tocols. Journal of Cryptology, 13:2000, 1998.

R. Cramer, I. Damgard, and J. Nielsen. Multiparty Computation from
Threshold Homomorphic Encryption. In Proc. EUROCRYPT. 2001.

A. Chiesa, E. Tromer, and M. Virza. Cluster Computing in Zero Knowl-
edge. In Proceedings of EUROCRYPT, 2015.

S. de Hoogh. Design of large scale applications of secure multiparty com-
putation: secure linear programming. PhD thesis, Eindhoven University of
Technology, 2012.

I. Damgard and J. B. Nielsen. Perfect Hiding and Perfect Binding Univer-
sally Composable Commitment Schemes with Constant Expansion Factor.
In Proceedings of CRYPTO, 2002.

D. Fiore, R. Gennaro, and V. Pastro. Efficiently Verifiable Computation
on Encrypted Data. In Proceedings of CCS, 2014.

R. Gennaro, C. Gentry, and B. Parno. Non-interactive Verifiable Comput-
ing: Outsourcing Computation to Untrusted Workers. In Proceedings of
CRYPTO, 2010.

R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic Span
Programs and Succinct NIZKs without PCPs. In Proceedings of EURO-
CRYPT. 2013.

S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zel-
dovich. Reusable garbled circuits and succinct functional encryption. In
Proceedings of STOC, 2013.

J. Groth. Short Pairing-Based Non-interactive Zero-Knowledge Argu-
ments. In Proceedings of ASIACRYPT, 2010.

R. Gennaro, M. O. Rabin, and T. Rabin. Simplified VSS and Fact-Track
Multiparty Computations with Applications to Threshold Cryptography.
In Proceedings of PODC, 1998.

P. Mohassel and M. K. Franklin. Efficiency Tradeoffs for Malicious Two-
Party Computation. In Proceedings of PKC, 2006.

S. Mitsunari. A Fast Implementation of the Optimal Ate Pairing over
BN curve on Intel Haswell Processor. Cryptology ePrint Archive, Report
2013/362, 2013. http://eprint.iacr.org/.

B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinocchio: Nearly Prac-
tical Verifiable Computation. In Proceedings of S€P, 2013.

B. Schoenmakers and P. Tuyls. Efficient Binary Conversion for Paillier
Encrypted Values. In Proceedings of EUROCRYPT, 2006.

B. Schoenmakers and M. Veeningen. Guaranteeing Correctness in Privacy-
Friendly Outsourcing by Certificate Validation. Cryptology ePrint Archive,
Report 2015/339, 2015. http://eprint.iacr.org/.

B. Schoenmakers and M. Veeningen. Universally Verifiable Multiparty
Computation from Threshold Homomorphic Cryptosystems. In Proceed-
ings of ACNS, 2015. http://eprint.iacr.org/2015/058.

A Security in Single-Client Case

In this section, we discuss the correctness, security, and privacy properties of
Trinocchio in the single-client case (Section 3).

For correctness of Trinocchio in the single-client case, note that together,
the sequence of steps © < Distribute(VKy; x); 0 < Execcompute (EK ;1) (y;7) <
Combine(VKy;0) by construction gives the same result as the step (y;m)
Compute(EKy;) from Pinocchio, hence correctness of Pinocchio directly im-
plies correctness of Trinocchio. For security, suppose that Trinocchio’s steps
x — A(EKy, VKy); ¢ < Distribute(VKy; x);(0;a) < Execcompute,a(EKy;%);
(y;m) < Combine(VKy; 0) would lead to an incorrect proof being accepted.
Note that none of these steps use any information that is not available to the
Pinocchio attacker, hence performing the above steps gives an attacker breaking
the security of Pinocchio.

Trinocchio’s privacy depends on the the protocol being used to compute f in
line 4 of Algorithm 1. A multiparty computation protocol is called (statistically
or computationally) 0-private [Can98] if it correctly computes f and leaks no
information whenever at most 6 workers are passively corrupted. If such a pro-
tocol is used to compute f, then Trinocchio is f-passively private. To see this,
note that in the experiment of Definition 10, the attacker learns EKy and VK¢
(which do not depend on the bit b) and the information it gets from perform-
ing a multiparty computation of f: namely, the shares of the inputs as output
by Distribute(VKy, x®) and its part of the protocol transcript of line 4 of Algo-
rithm 1. However, if the protocol is O-private, then this information from the
b=0and b =1 cases is (statistically or computationally) indistinguishable with
respect to the A, hence the attacker cannot distinguish b = 0 and b = 1 with
non-negligible probability. Hence the Theorem from Section 3 follows:

Theorem 4. Let n = 20 + 1, and suppose that a 0-private n-party protocol is
used to compute function f in line 4 of Algorithm 1. Then Trinocchio is an n-
party public verifiable computation scheme that is correct, secure, and 6-passively
private assuming d-PKE, (4d+4)-PDH and (8d+8)-SDH with d the QAP degree.

Moreover, if the protocol used to compute f also does not leak information
in the event of an active attack, then Trinocchio satisfies privacy against active
attackers. Namely, let us call a multiparty computation protocol 0-actively pri-
vate if it does not leak any information to an active attacker controlling up to
6 workers.” For instance, the protocol from [GRR98] satisfies this notion as the
attacker only learns # many shares of any value. Of course, the attacker might
arbitrarily interfere with the computation, but as long as he does not learn any
result of the computation, this does not give him any information. By the same
reasoning as above, the other theorem from Section 3 follows:

7 Note that this definition only makes sense if a single party both delivers the inputs
and obtains the result. If a computation is passively secure but actively private,
then actively corrupted workers can still arbitrarily manipulate the outcome of the
computation. In particular, if they can do this in a controlled way, then the outcome
of the computation is in effect the result of applying a different function on the
inputs. A result party can learn this different output — but, if this party also delivers
the input, then this is not a problem. The definition then means that the workers
should learn no information about this different output.

Theorem 5. Let n = 20 + 1, and suppose that a 0-actively private n-party
protocol is used to compute f in line 4 of Algorithm 1. Then Trinocchio is an n-
party public verifiable computation scheme that is correct, secure, and 0-actively

private assuming d-PKE, (4d+4)-PDH and (8d+8)-SDH with d the QAP degree.

B Security in Multi-Client Case

In this section we will prove Theorem 6, i.e., we show that our multi-client
Trinocchio protocol (Algorithm 5) is secure according to the security definition
given by our ideal functionality. To prove this theorem, we need to show that
there exists an ideal-world simulator for every real-world adversary. Recall that
our ideal functionality offers unconditional correctness of the protocol outcome;
privacy, however, can only be guaranteed if no workers are actively corrupt and
less than 6 are passively corrupt. Because these two situations are very different,
we prove the theorem by distinguishing these private and correct cases, and we
will give separate simulators and prove their correctness for each case by two
lemmas. The theorem directly follows from these two lemmas.

B.1 Correct

The simulator Scoprect We use to prove our protocol secure when privacy is not
guaranteed, i.e., more than the threshold workers are passively corrupt or any
worker is actively corrupt, is given in Algorithm 6. We now prove that it works
in this situation.

Lemma 1. For all probabilistic polynomial time adversaries A corrupting any
number of input and result parties, and actively corrupting at least one or pas-
sively corrupting over 6 computation parties, and for all x € F':

ExeCTrinocchio,A(A; .’1}) ~ Ideal]g,pw,s)‘; :1:)

correct (

where /= denotes computational indistinguishability in security parameter .

To prove this lemma, we will start from the Exec distribution and introduce
increasingly modified distributions YAD;, each indistinguishable from the next,
to finally show that ExeCTiinocchio,4(A; &) is computationally indistinguishable
from Idealr, .. S.omee: (A;). The simulator operates by simulating the protocol
with respect to the given adversaery A, and finally returning whatever value
the simulated adversary A returned. The lines in the simulator are labelled to
explain which parts of the simulator mimic the real protocol, which are needed
to interact with the ideal functionality, and which modifications are introduced
and explained by the various YAD distributions.

The real protocol is aborted at several places if certain conditions are met.
Note that this is always in response to checks on information on the bulletin
board that anybody can perform, hence all protocol parties agree on whether
the protocol is aborted. If the simulator follows the protocol and the protocol

is aborted, the simulator sends L to the ideal functionality on behalf of any
corrupt input party whose input had not been sent yet, and proceeds to send
F = R, disregarding any messages it receives from the ideal functionality. It
also complete the simulation of A4 to obtain its output. This ensures that the
distribution Ideal is well-defined in case the protocol is aborted.

At various points, the simulator is instructed to terminate the simulation.
This is not the same as aborting the simulated protocol. The simulation will be
terminated whenever the simulator fails at some computation which is not part
of the real protocol, but which is needed to achieve some security property, such
as mimicking the real protocol. To terminate the simulation will mean that the
output of the adversary in the ideal case will not be consistent with the output
in the real case, i.e., it will signal an adversary that it is in fact operating in
the ideal case. To show that the termination of the simulation does not enable
the distinction between Exec and Ideal, we will show below that each of the
conditions which lead to termination of the simulated protocol can only occur
with negligible probability.

We now present the increasingly modified distributions YAD;, every time
showing indistinguishability between consequitive distributions.

YAD; The distribution YAD; is the Exec distribution, where the set-up of the
protocol is modified such that the commitment keys for the corrupt input parties
are generated to be perfectly hiding instead of perfectly binding, and the sim-
ulator keeps the trapdoors. This distribution is computationally indistinguish-
able from ExecCTrinocchio, 4 (A;) based on the property of the mixed commitment
scheme that the two kinds of commitment keys are indistinguishable.

YAD> For the distribution YADs, the protocol is further modified by producing
commitments to 0 instead of the input proof blocks on behalf of the honest input
parties. When the commitments are opened later in the protocol, the openings
to correct proof blocks are created using the trapdoor information. Additionally,
the proof blocks produced by corrupt input parties are extracted from their
commitments, although the extracted blocks are not used any further at this
stage.

Indistinguishability between YAD, and YAD; follows directly from the indis-
tinguishability property of the commitment scheme. The commitment scheme
also guarantees that commitments produced by the adversary can only be opened
to the extracted proof block, i.e., that Ql = Q; for corrupt input parties 1.

YAD3 For distribution YADg3, we will again modify the set-up of the protocol,
but this time of the evaluation and verification keys. This happens analogously
to [PHGRI13)’s security proof. Instead of sampling s, v, Qw, @y, Tv, Tw, Bmid
and the §; for 1 < ¢ <[+ m uniformly at random and generating the keys from
these values, the set-up proceeds as follows.

Algorithm 6 The correct case simulator Scorrect

9:
10:
11:
12:
13:
14:
15:
16:

17:

18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

31:

32:

33:
34:

1
2
3
4
5:
6
7
8

for all i € 7 do
if ¢ € C then generate perfectly binding comm. key k;, keep trapdoor > YAD;
else generate perfectly hiding commitment key k;, keep trapdoor > YAD;
: generate modified (EK = {{BK;}i,...},VK = {{BV:}s,...}) as in YAD3 > YAD3
whenever the adversary queries ComGen, return (k1, ..., ki)
: whenever the adversary queries KeyGen, return (EK,V K)
: on behalf of honest parties i € Z do
sample commitment randomness p;, > YAD2
¢i < Commity, (0; p}) > YAD2
Post(c;) > Exec
for allie ZNC do
extract QZ from ¢; using trapdoor > YAD2
if CheckBlock(BVi; Q,) = L then
x;— L > YAD2
else
use the d-PKE extractor on QZ to obtain field elements dy,i, dw,i and dy,;

and polynomials V;(z), W;(z) and Yi(x) of degree at most d — 1; if the extractor

fails, terminate the simulation > YAD4

set x; such that Vi(z) = zyvi(x), Wi(z) = zyw;(x) and Yi(z) = ziyi(x); if

this is not possible, terminate the simulation > YADs

send z; to the ideal functionality on behalf of corrupt input party ¢ > Ideal

receive x from the ideal functionality > Ideal
on behalf of honest parties i € Z do

(0v,550w,i, 0y,i) ER F3 > Exec

Q; <+ ProofBlock(BK; i; 0u,i, Ow,is 0y,i) > Exec

create p; such that ¢; = Commity, (Qjs; p;) using trapdoor > YAD

simulate lines 7 through 39 of the real protocol on behalf of honest parties > Exec

F+0 > Ideal
for alli € R\ C do

if Q; # ProofBlock(BK;; Ti; 0v,i, 0w,is 0y,;) then

F «+— FU{i} > Ideal

for all Q" € {Qmia} U{Qi}iernc U{Qi}icr do

use the d-PKE extractor on Q' to obtain field elements §;, &;, and §;, and
polynomials V'(x), W’(z) and Y’ (z) of degree at most d — 1; if the extractor fails,
terminate the simulation > YAD4

set the corresponding entries in @ such that V'(z) = Y, zvi(x), W'(z) =
>, miwi(z) and Y’ (z) = 3, ziyi(x), where i ranges over the indices corresponding
to the block Q' belongs to; if this is not possible, terminate simulation > YADs

if t(x) 1 (O, zivi(2)) (3o, miws(x)) — >, ziyi(r) then terminate sim. > YADsg
Send F' to the ideal functionality > Ideal
Return the output of the simulated aversary

For a given QAP of degree d, set ¢ + 4d + 4, then sample s €g F. Next, set

chal « {<1>1, <S>1, <82>17 ey <Sq>1, <8q+2>1, ey <S2q>1
<1>2, <S>2, <52>2, ceey <Sq>2, <Sq+2>2, ey <82q>2}.

From this point onwards, the value s will not be used directly to compute the
keys. Instead, any key element derived from s will be generated from chal. This
restriction will be necessary to complete the security proof later.

Randomly draw o, o, oy, i, and 7. Also draw a random polynomial
Xmid(2) of degree at most 3d + 3 such that ymia(x) is of degree at most 3d + 3
and Ymia () - (7] v;(z) + 7l 291w (z) + 7/ r! 2242y, (x)) has a zero coefficient in
front of x39+3 for all internal wire indices i, and Ymia(2)t(z), Xmia(z)z?1t(x)
and ymia(2)2242t(x) have a zero coefficient in front of x3?3 as well. Such
polynomials exist by Lemma 10 of [GGPRI13]. Similarly, for each input and
output wire 1 <14 <[+ m, draw random polynomial x;(z) such that x;(z) is of
degree at most 3d + 3 and x;(z) - (r/vp(z) + r! 2@y, (z) + vl 222y, (2)),
xi(2)t(x), xi(z)z () and x;(z)z?4+2t(x) have a zero coefficient in front of
3043

Now, we will generate the evaluation and verification keys as if we had used
the following

ry = 1) st
0 2d42

Tw = T8

ry = 1),s%3

Bmid = SXmid(S)
Bi = sxi(s),

where ¢ ranges from 1 to [+ m. Because we are not allowed to inspect the
value of s directly, we cannot compute these values explicitly. However, we can
compute the evaluation and verification key elements from chal. Because r,,
Ty and various (3’s are still distributed uniformly, and r, = r, - ry, still holds,
the distribution of the keys is statistically indistinguishable from keys generated
using the real key generation algorithm.

YAD, Distribution YAD, is produced in the same manner as YAD3, except that
the d-PKE extractor is run on the adversarially generated proof blocks that
satisfy the CheckBlock predicate. If the extractor fails then the simulation is
terminated. Because the d-PKE assumption states that the probability of failure
is negligible, YAD, will be statistically indistinguishable from YADg3. Therefore
an adversary cannot cause the simulation to fail with better than negligible
probability in an attempt to distinguish Exec from Ideal and the use of the
d-PKE extractor on lines 16 and 30 is justified.

YAD5 In addition to extracting the contents of all proof blocks, to produce
distribution YADs we will also attempt to retrieve the & values that constitute

the extracted V(z), W(z) and Y (x) polynomials. If no @ exists such that V(z) =
Yo rivi(x), W(x) =, zyw;(x) and Y(x) = Y, z;y:(x), then the simulation is
terminated. We will show that an adversary that successfully causes this failure,
i.e., with higher than negligible probability, can break the ¢g-PDH assumption,
as in the security proof of [PHGR13].

Suppose an adversary manages to produce a proof block @, corresponding to
block verification key BK for which CheckBlock(V K; Q) holds and V (), W (x)
and Y (x), as well as d,, d,, and J, are successfully extracted, but no x exists
satisfying V(z) = >, zjvi(x), W(z) = Y, vywi(x) and Y(x) = >, z;y;(x). Let
(Z)1 be the final element of Q. Then we can write (Z); as a polynomial) &’
evaluated at s “in the exponent”:

<Z>1*<rvﬂt>15v + <Twﬂt>15w + <Tyﬂt>15y
=D (roBuj +ruwfuwj + ryByshiz;

J
= (sx(s) - (r, sV () + 70,82 T2W (s) + 1, s T2Y (5)))

= <Z &z

By Lemma 10 of [GGPR13], the coefficient &1 for 297! is non-zero with high
probability. We can then compute

(s = €71 - ((Z)1 = (roBt)10y + (rwBt) 10w + (ryBt)16, — Z&(SZM)

using only information in the evaluation key.

Recall from YADj3 that the very first step in generating this distribution is to
create a ¢-PDH challenge for some secret value s and in the rest of the process
any information derived from s is computed based on this challenge. If instead
of generating the challenge ourselves, we consider it a given, then the procedure
for generating YADs together with an adversary that successfully causes failure
can as a whole be viewed as an algorithm that breaks the ¢-PDH assumption.

This justifies the extraction of all wire values from proof blocks on lines 17
and 31 of Scorrect -

YADg Distribution YADg is generated as YADs5, except that if the divisibility
check CheckDiv succeeds, we use the wire values obtained in the normal course
of the protocol together with the wire values extracted in YADs5 to test whether
t(z) truly divides p(z) = (Zf:o xivi(x))(Zfzo xwi(z)) — Zf:o x;y;(x). If this is
not the case then the simulation is terminated. We will show that the probability
of an adversary forcing this failure is negligible, as an algorithm that successfully
manages to cause such a failure can be used to break the 2¢-SDH assumption,
closely following the security proof of [PHGR13].

Let V(z) = Zf:o xvi(x), W(z) = Zf:o x;wi(z), and Y(z) = Zf:o 2y ().
Suppose that t(x) does not divide p(z) = V()W (z) — Y (z). Let r be a root of

t(z) but not of p(z) and let T(x) = t(z)/(x — r). Let d(z) = ged(t(z), p(z))
and a(x) and b(x) be polynomials of degree at most 2d — 1 and d — 1 re-
spectively such that a(z)t(z) + b(z)p(x) = d(x). Set A(x) = a(x)T(z)/d(x)
and B(x) = b(x)T(x)/d(x). These polynomials have no denominator since d(x)
divides T'(x). Then A(z)t(z) + B(z)p(x) = T'(z). Dividing by t(x), we have
A(x) + B(z)p(z)/t(x) — 1/(x — r). Note that (H); = (p/t)1. We can now eval-
uate (A); and (B)2 using terms in the evaluation key. From these we can solve
e((A)r, (2)e((H)1, (B) = e({L)1, (1)) /=),

Note that the ¢-PDH challenge can be considered an incomplete 2¢-SDH
challenge. If, as with YADs5, we again do not generate the challenge ourselves, but
consider it a given, the algorithm for generating YADg, along with an adversary
that successfully causes failure can be viewed as an algorithm which break the
2¢-SDH assumption.

Ideal Through the distributions YAD; to YADg, we have argued that the distri-
bution of the adversary’s interactions with real protocol parties are indistinguish-
able from its simulation by YAD;. At the same time, the outputs of the honest
result parties in each YAD; are still according to the protocol. Comparing YADg
to Ideals, .. S.omee (A;), We see that the adversary’s output is unchanged, but
now honest result parties get the value computed by the trusted party instead
of the value from the simulated protocol. However, note that if the simulation
in YADg is not terminated, then the vector x is in fact a solution to the QAP
corresponding to inputs supplied to the trusted party. Hence, because the QAP
computes f, the values from x that are output as computation result in YADg
are in fact the output of f on the inputs supplied to the trusted party. Hence
also the outputs of the honest result parties in YADg and Ideal are the same.

From Exec to Ideal Overall, the sequence of distributions shows that the real-
and ideal-world executions of the protocol are computationally indistinguishable,
hence the lemma follows.

B.2 Private

The simulator Sprivate for the private case is given in Algorithm 7. We show that
it works in situations when privacy is guaranteed:

Lemma 2. For all probabilistic polynomial time adversaries A corrupting any
number of input and result parties, and passively corrupting at most 8 computa-
tion parties, and for all x € F!:

ErecTinocchio A (A) = Idealr,. .. 5, mu (A T)

private
where =~ denotes computational indistinguishability in security parameter .

The simulator mostly runs the actual protocol, using zero inputs on behalf
of honest parties. However, it needs to provide the inputs of the corrupted in-
put parties to the trusted party, and make sure that corrupted result parties

Algorithm 7 The private case simulator Sprivate

1: Generate real commitment keys ki,...,k, as in the protocol; when A makes a
hybrid call to ComGen, return ki,...,kn,

2: Generate evaluation key FK and verification key V K, keep trapdoor s; when A
makes a hybrid call to KeyGen, return (EK, VK)

3: forallieZ\Cdoz; + 0

4: Simulate lines 5 to 32 of the real protocol on behalf of honest input parties and
workers. If the protocol aborts, send L to the ideal functionality on behalf of corrupt
input parties and abort the simulated protocol

5: for allie ZNC do

6: x; < Combine([z;])

T Send x; to the ideal functionality on behalf of corrupt input party 4

8: for allie RNC do

9: Receive result #; from the ideal functionality

(Svyi — Combine([[év,i]])

Ow,i < Combine([dw,:])
12: 0y,i Combine([dy.:])

Sv,i — Ov,i + (T — fz)?((;))

14: (5w71‘ — 510,1' + (:L‘Z — i‘z)u;’(i;)

15: Sy’i — 5%1' + (J}Z — i’i)%i((:))

16: Create shares ([2:], [0v,:], [0w.i], [05,:]) such that they are consistent with the

shares of ([#:], [0v,:]], [0w,:], [0y,:]) held by corrupt computation parties

17: Send ([&:], [6v,i], [0w.i], [0y.:]) to result party i

18: Return the output of the simulated aversary

obtain the result from the trusted party. For the corrupted inputs, note that
the simulator controls at least # + 1 computation parties, hence it knows enough
shares of the inputs of corrupted input parties to determine them and send them
to the trusted party (lines 5-7). In order to manipulate the corrupted results,
the simulator simulates normal Trinocchio key generation with respect to the
adversary, but keeps trapdoor s (line 2). It can then use s to make sure that the
proof block that was generated for the adversary during the protocol run indeed
opens to the output value for the result party that the simulator gets from the
trusted party (lines 10-17).

To see that the Exec and Ideal distributions are the same, first note that
because the workers are all semi-honest, the outputs of the result parties in
Exec are always correct, and hence the same as in Ideal. Hence, we only have to
worry about the observations made by the adversary.

Now, note that the simulator at no point uses, or even has access to, the
honest input parties’ private values. Since the simulator follows the real protocol
specification up to line 32, the adversary cannot detect any deviations from the
real protocol, other than might be caused by the fact that the input values for
the honest parties do not match the distribution of real input values. However,
the privacy properties of the underlying secure multiparty computation proto-

col imply that no data exchanged during the computation protocol reveals any
information about the input or intermediate wire values. Moreover, the commit-
ment scheme is used as in the protocol, so does not give the adversary chance of
distinguishing the real and ideal world.

The only other information that the adversary learns, are the information
that is opened in the multipary computation protocol, i.e., the shares of the proof
blocks (Q) and divisibility check term ({(H)1). First, note that these shares reveal
nothing more than the proof blocks and divisibility check term themselves, as
these shares are freshly randomised using a zero sharing before they are revealed.

Now consider what the adversary learns from the proof blocks and divisibility
check term. As observed in [GGPR13], the first, third and fifth elements of a
proof block, (V)1, (W), and (Y);, are uniformly distributed if the §,, d,, and J,
used to compute those are uniformly distributed as well. This holds regardless
of which value x is used. Furthermore, once these three elements are known,
the remaining four elements are fixed due to the verification relations. Because
all of the proof blocks generated in the protocol are produce using randomly
chosen values for §,, d,, and d,, it holds that all proof blocks in the protocol are
distributed uniformly randomly and do not reveal any information about the
values they are composed from.

We conclude that the adversary sees no information that allows it to distin-
guish the real and ideal worlds, hence the lemma follows.

