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Abstract Block cipher is in vogue due to its require-

ment for integrity, confidentiality and authentication.

Differential and Linear cryptanalysis are the basic tech-

niques on block cipher and till today many cryptana-

lytic attacks are developed based on these. Each variant

of these have different methods to find distinguisher and

based on the distinguisher, the method to recover key.

This paper illustrates the steps to find distinguisher and

steps to recover key of all variants of differential and lin-

ear attacks developed till today. This is advantageous

to cryptanalyst and cryptographer to apply various at-

tacks simultaneously on any crypto algorithm.
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1 Introduction

Block cipher is one of the cryptographic techniques which

are used for integrity, confidentiality and authentica-

tion mechanism. Designing a cipher which is secure

and immune to all present day attacks is a challenging

task. Cryptanalyst has to find statistical and algebraic

technique based on mathematical weakness in design

with the aim to recover the secret key. Cryptanalytic

method consists of analyzing mathematical properties

of encryption algorithms with the aim to find the dis-

tinguishers which distinguishes the output distribution
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of cryptographic algorithms from uniform distribution.

Based on this property one finds the distinguisher which

distinguishes it from randomness and exploits this to

find the key. Attack is said to be theoretically success-

ful if cryptanalyst breaks the cipher with less key com-

plexity than exhaustive search. It may not be practi-

cally feasible to break with lesser key complexity than

exhaustive search. But lesser key complexity than brute

force attack shows that the cipher design has some flaws

or weakness which can be exploited in future with ad-

vent of new attacks.

There are various types of cryptanalytic attacks; based

on the attackers access such as ciphertext only attack,

known plaintext attack or attacker access to encryption

system to generate chosen plaintext and its ciphertext

or decryption process to generate plaintexts of chosen

ciphertexts. The success of attack can be measured us-

ing number of plaintext-ciphertext pairs or operations

required to recover secret key or partial key. When for

the attack the number of operations required is less

than 2n where n is size of secret key, the cipher is said

to be broken.

Biham and Shamir [1][2] proposed the basic differential

cryptanalytic technique based on DES, which is proba-

bilistic chosen plaintext attack. Many modifications and

extensions have been proposed and analyzed to improve

the attacks on various crypto algorithms. In 1993 Bi-

ham [3] proposed new types of cryptanalytic attacks

using related key. In 1994, Lars Knudsen[4] proposed

truncated differential which predicts only part of the

difference in a pair of texts after each round of encryp-

tion. In same year he proposed higher order differential

based on the concept of higher order derivatives. Knud-

sen and Wagner [5] in 1997 proposed integral cryptanal-

ysis where some part of plaintext is kept constant and

rest part is varied with all possibilities. In 1998 Eli Bi-
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ham, Alex Biryukov, and Adi Shamir used impossible

differential to break IDEA and Skipjack block ciphers

[6] by exploiting differentials that never occurs. In 1999

Boomerang attack was developed by Wagner [7] which

states, attack is possible even if no differentials with

high or low probability is present for whole cipher. This

attack was modified and named as Rectangle attack [8]

in 2001. Related Key attack can be combined with other

variants of differential cryptanalysis where knowledge of

difference in keys may allow to attack more number of

rounds [9].

Linear cryptanalysis was developed by Matsui [10] in

1993 to exploit linear approximation with high proba-

bility i.e. greater than 1
2 . Zero correlation is a variant

of linear cryptanalysis developed by Bogdanov and Rij-

men [11] which tries to construct atleast one non trivial

linear hull with no linear trail i.e. with correlation C ex-

actly zero. This attack is countermeasure of impossible

differential attack.

To attack a cipher using integral, impossible or zero

correlation attack details of S-Box is not required as it

is independent of the choice of S-Box. Choosing another

S-Box for a cipher will result in almost same cryptan-

alytic results. Fig. 1 illustrates the different types of

attacks developed till today.

Fig. 1 Types of Cryptanalytic Attacks

Differential and Linear cryptanalysis or its variants have

been applied on almost all the block ciphers developed

till today. The fig. 2 shows various differential and lin-

ear based attacks which are developed and their com-

binations. Block cipher which is resistant to one attack

can be attacked by its variants or some combinations of

variants. To ease the process of applying these attacks

to check resistance to present day cryptanalytic attacks,

the simplified steps of each attack are described in next

sections.

Fig. 2 Variants of Cryptanalysis

The basic differential cryptanalytic technique is explained

in section II and the steps to find distinguisher and

steps to recover key for each variant of differential crypt-

analysis is explained in section 3. In section 4 linear

cryptanalysis is illustrated and the steps to find dis-

tinguisher and steps to recover key for the latest vari-

ant of linear cryptanalysis is explained in section 5. We

conclude in section 6 by describing unification of these

attacks and how this work is advantageous to the crypt-

analyst.

2 Differential Cryptanalysis

In differential cryptanalysis, one attacks by exploiting

the fact that for some fixed plaintext difference ∆P =

P ⊕ P ′, certain differences in the ciphertext ∆C =

C ⊕ C ′ appear more often than one would expect for

secured design and this high probability of occurrence

is used to find secret key, where P and P ′ are two plain-

texts and C and C ′ are corresponding ciphertexts. To

apply differential cryptanalysis, one needs to find the

high probability of differentials in each S-Box used in

block cipher based on Substitution Permutation Net-

work (SPN) and then find products of high probabilities

of differential of S-boxes which lead the given plaintext

difference ∆P = P ⊕ P ′ to the ciphertext difference

∆C = C ⊕ C ′. So in order to determine the differ-

ential characteristic, Difference distribution tables are

constructed for each S-Box for input difference ∆X and

output difference ∆Y . Due to the weakness in S-Box

(nxm), we may get high probabilities of difference pair

(∆X,∆Y ) instead of 1
2n

as in the case of ideal S-Box,

which is not achievable. All difference pairs of input X

and output Y of an S-Box can be examined and the high

probabilities of input output pairs (∆X,∆Y ) of each

S-Boxes are traversed and combined from first round

to second last round treating S-Boxes as independent.
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Once the differential characteristic for second last round

with a suitably large enough probability pD is discov-

ered, it is easy to attack cipher to recover some bits of

last round subkey by ex-oring all the possible combina-

tions of all influenced nonzero difference bits TPS (Tar-

get Partial Subkeys) entering last round with the ci-

phertext and running one round backwards through S-

boxes. The number of chosen plaintext-ciphertext pairs

required for attack will be 1/pD.

Differential cryptanalysis is divided into two steps: i)

Finding the Distinguisher and ii) Steps for Key Recov-

ery.

i) Finding the Distinguisher

1. Difference distribution table is constructed for each

S-Box (nxm) which contains the number of occur-

rences of corresponding output difference ∆Y for

each given input difference ∆X.

2. Find the probability of the each value of input out-

put difference by dividing it by 2n (number of input

bits)

3. Mark S-box difference pairs from round to round

so that the nonzero output difference bits from one

round correspond to the nonzero input difference

bits of the next round with highest probability. There-

fore traversing the active S-Box (i.e. non-zero dif-

ferential with high probability) difference pair from

first round till second last round of the cipher. The

highest probabilities of input output pairs of active

S-boxes are multiplied, to get the differential proba-

bility pD till second last round of the cipher [10].

4. So the differential probability pD is the distinguisher

During the cryptanalysis process, many pairs of plain-

texts for which ∆P will be encrypted. With high prob-

ability, the differential characteristic ∆C will occur. We

term such pairs for (∆P,∆C) as right pairs. Plaintext

difference pairs for which the characteristic does not oc-

cur are referred to as wrong pairs.

ii) Steps for Key Recovery

1. Generate N plaintext/ciphertext pairs with given

∆P .

2. If kr(TPS) is l − bit. There are 2l possibilities. For

each TPS value (say TPS*) do the following

i Set count=0

ii For each Ciphertext(i) for i = 1toN do

the partial decryption

(a) Ciphertext(i)⊕ TPS∗
(b) Run backward through S-boxes

to obtain bits into the last

round

(c) Check the input difference to

the final round determined by

partial decryption is the same

as expected from the differ-

ential characteristic

(d) If same, increment count

The partial subkey value with largest count is con-

sidered for each TPS*

3. Obtain a table of partial subkey values and corre-

sponding prob = count/N .

4. If probability (prob) as calculated in step 3 is equal

to pD (as expected)⇒ Correct TPS is determined

For fast implementation, discard those wrong cipher-

text pairs of which zeros do not appear in appropriate

subblock of the ciphertext difference.

3 Variants Of Differential Cryptanalysis

In this section variants of differential cryptanalysis are

described by illustrating the steps to formulate the dis-

tinguisher and steps to recover key.

3.1 Truncated Differential Cryptanalysis

In case of differential cryptanalysis, one exploits the

probability of fixed plaintext difference of two plain-

texts that produces the predicted Ciphertext difference

of the respective ciphertexts, but in case of truncated

differential, instead of getting the exact differential in

plaintext and Ciphertext, one exploits the probability

of subset of plaintext differences and subset of predicted

Ciphertext differences [12]. Wherever the value in the

difference is not as predicted in Differential cryptanaly-

sis we denote by ′?′ (don’t care), So the predicted prob-

ability of truncated differential increases the number of

plaintext and Ciphertext pairs to be counted in the dis-

tinguisher, which in turn increases the probability of

recovering the key [13]. The attack is as follows:

i)Finding the Distinguisher

1. Let ∆Pα be the subset of non trivial difference ∆P

of two inputs to encryption function f : GF (2n) →
GF (2n) upto r rounds, for which only fraction of

output difference ∆C i.e. ∆Cδ occurs after r rounds.

The truncated differentials ∆Pα → ∆Cδ
2. Let T be a table of size 2n which is initialized to zero

for all entries.

3. For all possible value of input x, x ∈ GF (2n), com-

pute the table T by putting 1 at position f(x) ⊕
f(x⊕∆Pα), which gives truncated output ∆Cδ cor-

responding truncated input ∆Pα, i.e. T [f(x)+f(x+

∆Pα)] = 1. Therefore all possible output differen-

tials corresponding to the truncated differential are

marked and known.
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ii)Steps for Key Recovery

In order to recover last round key kr, if we get truncated

differentials and table T values of function f of r round

1. Generate N pair of plaintext P, P ′ and their corre-

sponding ciphertext C,C ′ respectively.

2. For all possible value of the last round key kr, do the

following:

i Decrypt one round backwards C,C ′ us-

ing kr, and obtain the intermediate ci-

phertexts M,M ′

3. For all possible value of the second last round key,

kr − 1 do the following:

i Calculate t1 = f(M+kr−1), t2 = f(M ′+

kr − 1)

ii If T [t1 + t2 +M +M ′] > 0, then pair of

keys kr − 1 and kr are right keys. Here,

we are measuring if the truncated differ-

ential was seen.

4. By repeating the attack N number of times only one

unique pair of keys kr − 1 and kr, the right key will

be suggested. Then output the values of kr − 1 and

kr.

5. Output the subkeys for last and second last round

kr and kr − 1 respectively.

3.2 Impossible Differential Cryptanalysis

Biham et.al. in 1998 developed variant of a truncated

differential cryptanalysis called impossible differential

cryptanalysis [14][15][16] by formulating distinguisher

based on the fact that certain differentials never occur

(i.e. the differentials with zero probability). It can be

applied to the cipher, whose non-linear round function

is bijective. To apply impossible differential attack, we

need to find impossible differential pair (α 9 δ) which

can be used as distinguisher the differential α can be

∆P the difference of two plaintext P and P ′ or it can

be the difference of two inputs N and N ′ after encryp-

tion of x rounds of P and P ′ and the differential δ can

be ∆C the difference of two ciphertext C and C ′ or

it can be the difference of two outputs M and M ′ af-

ter decryption of y rounds of C and C ′. The difference

α after r1 + r2 rounds produces the output difference

δ. An impossible differential with miss in middle tech-

nique works as a distinguisher to rule out the incorrect

keys, where miss in middle technique uses combination

of two differentials both of which hold with probabil-

ity one and do not meet in middle i.e. for r1 rounds

of partial encryption α becomes β and for partial de-

cryption of r2 rounds δ becomes γ (see Fig 3). If β 6= γ

the difference α9 δ after r1 + r2 rounds of encryption

is impossible because α → β 6= γ ← δ and (α, δ) is

called impossible differential pair. We eliminate or dis-

card keys for which impossible differential characteristic

β 6= γ holds for the subkey of that key.

Fig. 3 Miss in Middle

i)Finding the Distinguisher

To obtain impossible differentials (α9 δ)

1. Obtain the input differential α = N ⊕ N ′, encrypt

N,N ′ by r1 rounds to obtain differential β of the

outputs i.e. Pr(α→ β) = 1

2. For the differential δ = M ⊕ M ′, decrypt M,M ′

by r2 rounds to obtain values with differential γ i.e.

Pr(δ → γ) = 1.

3. If β 6= γ then α9 δ is impossible

4. Repeat above 4 steps for different values (α, δ) to ob-

tain a set ID i.e. ID = (α1, δ1), (α2, δ2), . . . , (αn, δn).

ii)Filtering and Key Elimination

For each key, obtain subkey after x rounds and y rounds.

Do the following to rule out the invalid subkeys

1. For input-output pairs (N,M) and (N ′,M ′). Check
N ⊕N ′ = α and M ⊕M ′ = δ i.e. (α, δ) ∈ ID

2. Find the differential β of the values after encrypting

N and N ′ by r1 round

3. Find differential γ of the value after decryptingM,M ′

by r2 rounds

4. Check β 6= γ then subkey is invalid.

5. Rejecting the invalid keys, the total key space is re-

duced.

3.3 Integral Cryptanalysis

In 1997, Daemen, Knudsen and Rijmen published new

block cipher called SQUARE, and later discovered an

attack on it and named as Square Attack which could

not be able to attack large number of rounds. This

attack was later on named as Saturation Attack. Fi-

nally in 2002, Knudsen and Wagner came up with many

improvements and modifications by combining differ-

ent techniques and named it as Integral Cryptanaly-
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sis[17]. Block ciphers which uses bijective components

are prone to integral cryptanalysis. The integral is de-

fined as
∫
R =

∑
B∈RB, where B = b1, b2. . . , bn is a

state vector where each bi ∈ GF (2n). R is a multiset of

state vectors. In integral ′n′ represents the number of

words in the plaintext and ciphertext, for example in

AES the state vector is of 16 words each of 8 bits. In this

attack, attacker tries to predict the values in the inte-

gral after certain number of rounds of encryption. The

following properties can be observed in output of cipher

rounds which play an important role to construct ba-

sic model of integral distinguisher to distinguish several

rounds of block cipher from random permutation.

(a) All ith words are equal i.e. bi = c for all B ∈ R,

denoted by symbol ′C ′ Where c ∈ GF (2n), are some

fixed values (constants).

(b) All ith words are different bi : B ∈ R = GF (2n), de-

noted by symbol ′A′.

(c) All ith words sum to certain value predicted in ad-

vance
⊕

B∈R bi = c′, denoted by symbol ′S′ (bal-

anced) Where c′ ∈ GF (2n), are some fixed values

(constants)

(d) The sum of words that cannot be predicted i.e. no

information can be derived are denoted by symbol

‘?′

Fig. 4 Integral Attack

i) Finding the Distinguisher

1. Choose an input multiset R which consists of 2n cho-

sen plaintexts which have above property such that

plaintext with some certain words being A and rest

of the words being C. e.g. P = (CCCC;CCCC), P ′ =

(ACCC;CCCC).

2. Encrypt the multiset, after a few rounds r1 of en-

cryption check if all the sum (usually exclusive-or)

at some word is zero (balanced) i.e. some bytes of

output will have state ′S′ (balanced) with proba-

bility one which works as a distinguisher that can

distinguish few rounds of cipher from random per-

mutation, see fig. 4.

3. Thus by changing the position of ′A′ in chosen plain-

text we can obtain different distinguisher.

ii) Steps for Key Recovery

1. Obtain all the possible combination of subkey kr
(TPS).

2. Do the partial decryptions (for r2 rounds) upto the

output of integral distinguisher.

3. If decryption gives exclusive-or sum of the states as

zero i.e. balanced, store that subkey.

Otherwise, repeat the steps for other possible sub-

keys.

4. Repeat step 1-3 number of times for all multiset,

subkey with maximum count is the correct subkey.

3.4 Higher Order Differential Cryptanalysis

Knudsen introduced higher order differential cryptanal-

ysis based on the concept of higher order derivative pro-

posed by Lai [18] that are applicable to those ciphers

that can be expressed by multivariable Boolean func-

tions with low degree [19].

The derivative of function f : GF (2n) → GF (2m) at

the point a is ∆af(x) = f(x + a) − f(x) where a ∈
GF (2n). For ith derivative of f at the point (a1, a2, .., ai) ∈
GF (2n) is defined as∆

(i)
a1,...,aif(x) = ∆ai(∆

(i−1)
a1,...,ai−1)f(x),

where ∆
(i−1)
a1,. . . ,ai−1f(x) is the (i−1)th derivative of f at

(a1, a2, . . . , ai−1), the 0th derivative of f is defined to be

f(x) itself, also deg(∆af(x)) 6 deg(f(x))− 1. For any

x ∈ GF (2n), let L[a1, . . . , ai] be the list of all 2i possible

combinations of a1, . . . , ai [20]. Then ∆
(i)
a1,. . . ,aif(x) =⊕

v∈L[a1,. . . ,.ai] f(x ⊕ v) If ai is linearly independent

of (a1, . . . , ai − 1), then ∆
(i)
a1,. . . ,aif(x) = 0. In iter-

ated block cipher of block size n and r rounds, Attack

is possible, when we know the total degree deg(f) of

the output of the (r − 1)th round. To attack (r − 1)

rounds of cipher, we find the order of (r−1) rounds for

which derivative ∆a1,a2,. . . ,ar−1f(x) = c(constant)∀x ∈
GF (2n) i.e. independent of round keys k1, k2, . . . , kr−1.

The steps to find the order are given in[21]. The attack

is based on the property that the dth derivative of a

multivariate polynomials f with degree d is a constant

and (d+ 1)th derivative is zero.

i)Finding the Distinguisher

1. Randomly choose a plaintext P ∈ GF (2n)

2. Encrypt plaintexts P⊕v,∀v ∈ L[a1, . . . , ai] to obtain

their corresponding ciphertexts cv.

3. Compute
⊕

v∈L[a1,. . . ,ai] f(x⊕ v)

4. If
⊕

v∈L[a1,. . . ,ai] f(x⊕v) = c(constant)∀x ∈ GF (2n),

for (r−1) round with any round keys k1, k2, . . . , kr−1.This

will work as a distinguisher to recover the key.

ii)Steps for Key Recovery
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1. Generate N plaintext randomly. For each plaintext

P , do the following

2. For all the possible combination of last round in-

fluenced bits kr(TPS), if kr is l-bits, there are 2l

possibilities for each kr value, for each value of TPS

(say TPS*) Do the following

i Decrypt all ciphertexts cv one round

backwards using TPS*

ii The value of TPS* for which⊕
v∈L[a1,. . . ,ai] f

−1
kr

(cv) becomes

constant ∀v ∈ L[a1, . . . , ai], store that

TPS* value in a table T and reject

TPS* if⊕
v∈L[a1,. . . ,ai] f

−1
kr
cv,∀v ∈ L[a1, . . . , ai]

is not constant.

3. Repeat the step 2 for N plaintexts and the key in

the table T with highest probability is the correct

last round key. Output that key kr.

Higher order cryptanalysis can be applied to maximum

5 feistel rounds of cipher i.e. cannot defeat ciphers with

large or more than 6 rounds.

3.5 Boomerang Differential Attack

In 1999, Boomerang was developed by Wagner which

states that even if there is no differential with either

high or low probability for whole cipher, it may still be

vulnerable to Boomerang attack. It is an adaptive cho-

sen plaintext/Ciphertext attack in which attacker finds

two short differentials with high probabilities instead of

one whole differential with low probability.
The block cipher encryption E : (0, 1)

n
X(0, 1)

k
= (0, 1)

n

is decomposed into two halves E = E0 ◦ E1 where E0

represents first half and E1 represents second half. Dif-

ferential characteristic for E0 is α → β with proba-

bility p and for E−11 the differential characteristic is

δ → γ with probability q. In boomerang attack, to find

all plaintexts sharing a desired difference that depends

on the choice of the differential is the distinguisher [22].

i) Finding the Distinguisher

1. The attacker randomly chooses two plaintexts P, P ′

and computes α = P ′ ⊕ P
2. Encrypt P and P ′ by E0 to obtain middle cipher-

text M = E0(P ) and M ′ = E0(P ′) and further en-

crypt for E1 to obtain ciphertext C = E1(M), C ′ =

E1(M ′).

3. Obtain new ciphertexts D,D′ from ciphertexts C,C ′

with difference δ i.e. D = C⊕δ and D′ = C ′⊕δ such

that when we decrypt C,C ′ by E−11 and D,D′ by

E−11 we get the difference γ i.e. E−11 (C)⊕E−11 (D) =

E−11 (C ′)⊕ E−11 (D′) = γ

Fig. 5 Structure of Boomerang Attack

4. Decrypt these CiphertextD andD′ for E−11 partially

to get N,N ′ and further decrypt it for E−10 to get O

and O′ i.e. O = E−10 (N) and O′ = E−10 (N ′).

5. Finally for each pair (O,O′) check whether O and

O′ differ by same differential α i.e. O ⊕ O′ = α. If

this condition is satisfied, it means it has formed a

right quartet (P, P ′, O,O′). If so, store the quartet.

6. Repeat these steps with other set of plaintext to find

other pairs that form right quartets and store it in

a table (Boomerang distinguisher).

ii) Steps of Key Recovery

1. From set of boomerang distinguisher, for each ob-

tained right quartets (P, P ′, O,O′)

2. Find all possible values for nonzero influenced dif-

ference bits entering last round (TPS).

3. For all the possible values TPS (kr) i.e. if kr is l-

bits, there are 2l possibilities for each kr value, Do

the following

i Set count=0

ii Encrypt (P, P ′, O,O′) and obtain the cor-

responding ciphertext quartet (C,C ′, D,D′)

respectively

iii Then do the one round partial decryp-

tion dk under key kr
(a) C = dkr (C), C

′
= dkr (C ′)

andD = dkr (D), D
′

= dkr (D′)

(b) Check the difference by par-

tial decryption C ⊕ C
′

and

D ⊕ D
′

is the same as ex-

pected from the differential

characteristic.
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(c) If difference is same in both

the pairs then increment the

count

4. Value of TPS which has maximum count for right

quartet is correct TPS and output that value.

3.6 Rectangle Attack

Boomerang uses adaptive chosen plaintext/ciphertext

due to which many of the ciphers that were developed

through the years cannot be attacked by boomerang

distinguishers and key recovery attack cannot be ap-

plied, which led to the development of its chosen plain-

text variant called amplified attack [23]. This was later

modified and named as rectangle attack. The Rectangle

attack is divided into two steps: 1) Finding the distin-

guisher 2) Key Recovery (same as Boomerang) [24]

i) Finding the Distinguisher

1. The attacker randomly chooses two plaintext pairs

(P, P ′), (O,O′) with same difference α such that α =

P ′ ⊕ P and α = O′ ⊕O.

2. Encrypt (P, P ′) and (O,O′) to obtain middle cipher-

texts i.e. M = E0(P ) and M ′ = E0(P ′) and N =

E0(O) and N ′ = E0(O′), we are interested in the

cases where M ⊕M ′ = β,N ⊕N ′ = β and M ⊕N =

γ, which leads to M ′⊕N ′ = (M ⊕β)⊕ (N ⊕β) = γ.

3. We receive two pairs (M ⊕NandM ′⊕N ′) each with

the difference γ. When encrypting (M,M ′), (N,N ′)

by E1, i.e. C = E1(M), C ′ = E1(M ′) and D =

E1(N), D′ = E1(N ′) then in some of the cases γ

becomes δ. And we look for those cases where both

difference become C ⊕D = δ and C ′ ⊕D′ = δ after

E1. The quartet satisfying these differential require-

ments forms a right quartet.

4. Repeat these steps to find the pairs that form right

quartets (P, P ′, O,O′) and save it in a table (distin-

guisher).

ii) Steps of Key Recovery

1. From set of distinguisher, for each obtained right

quartet (P, P ′, O,O′)

2. Find all possible values for nonzero influenced dif-

ference bits entering last round (TPS).

3. For all the possible values TPS (kr) i.e. if kr is l-

bits, there are 2l possibilities for each kr value, Do

the following for each right quartet,

i Set count=0

ii Do the partial decryption by one round.

iii Check the input difference by partial decryption

is the same as expected from the differential

characteristic.

iv If same, increment count for that TPS.

4. TPS which has maximum count value for right quar-

tet that is correct and output that value.

3.7 Related Key Attack

In key schedule algorithm of block cipher, if the re-

lations between pairs of keys in different rounds exist

then all the subkeys can be shifted one round backward

and a new set of subkeys can be obtained, these key re-

lations can be used to attack the block ciphers. The

attack where keys are unknown, but relation is known

to the attacker is called chosen key attacks. The attacks

are not dependent on number of rounds of a cipher [25].

The Chosen Key Attacks

Several plaintexts are encrypted by these related keys.

After encryption the corresponding ciphertexts are ob-

tained under these related keys which have some rela-

tion between them, this relation is used by attacker to

find both the keys. Chosen Key attack can be further

divided into

• Chosen Key Known Plaintext Attack

• Chosen Key Chosen Plaintext Attack

In chosen key known plaintext attack, attacker exploits

only relation between the keys and in chosen key chosen

plaintext attack, the relation between keys and plain-

text are exploited by the attacker. The process of re-

covering the keys is almost same in both cases.

i) Steps for Key Recovery

1. The attacker chooses such a plaintext pair P and

P ∗ such that right half of P equals the left of P ∗ i.e.

PR = P ∗L.

2. P is encrypted with key K and result of encryption

of P is obtained before next round which may be the

same as P ∗ encrypted with key K∗ after first round.

3. For plaintexts P and P ∗ corresponding ciphertext C

and C∗ is obtained after encryption after all rounds

and if these ciphertexts satisfies the relation CL =

C∗R, then it has high probability to find expected pair

(by birthday paradox).

4. If attacker find such pairs then P, P ∗, C, C∗ andK,K∗

can be used to recover secret key bits with less trails

than brute force attack.

For chosen plaintext attack 2
n
4 Chosen plaintexts are

required and for known plaintext attack 2
n
2 known plain-

texts are required.

4 Linear Cryptanalysis

Matsui in 1993 developed linear attack to attack DES

by exploiting linear approximation with high probabil-

ity of input and second last round output of DES cipher

by known plaintext approach. In this attack linear ex-

pression of u bits of input and v bits of output which

holds high or low probability is exploited to find the key.

The bias probability (ε = |pL− 1
2 |) is amount it deviates
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from probability 1
2 where pL is the probability of hold-

ing the linear expression. The higher the magnitude of

the bias |pL− 1
2 |, poorer the randomization ability of the

0 cipher and weak is the system, so with fewer known

plaintext this attack can be applied. If PL >
1
2 expres-

sion Xi1⊕Xi2⊕Xi3 . . .⊕Xiu⊕Yi1⊕Yi2⊕Yi3 . . .⊕Yv = 0

between u input bits and v output bits of second last

round is called linear approximation and if pL < 1
2 it

is called affine approximation. Distinguisher for the at-

tack is the bias probability of holding the linear attack

of plaintext bits and the second last round of cipher;

following are the steps to find distinguisher of SPN ci-

pher with r rounds.

i) Finding the Distinguisher

1. Generate the linear approximation table of order

2nx2m for each S-Box of size nxm by

i Form a table for each nxm S-Box where

the elements of the table represent the

number coincides between linear relation

a.x = a1x1 ⊕ a2x2 ⊕ . . . ⊕ anxn of input

and the linear relation b.y = b1y1⊕b2y2⊕
. . . ⊕ bmym of the output where a, b rep-

resents n andm bit numbers respectively

for 0 ≤ a ≤ 2n−1 and 0 ≤ b ≤ 2m−1. In

a table the binary value of a1a2a3. . . an
(a1 the MSB) represents row no, the bi-

nary value of b1b2b3. . . bm(b1 the MSB)

represents column no.

ii Calculate the coincidence probability pL
by dividing the elements of linear ap-

proximation table by 2n(number of in-

put bits).

iii Calculate the bias probability e for each

high coincidence probability pL of each

S-Box for each round by using formula

ε = |pL − 1
2 |.

2. Mark the linear trail for the whole cipher by con-

sidering those elements of S-Boxes with highest bias

probability e in each round till second last round.

3. Calculate the expected bias probability pD of hold-

ing the linear expression between input and the last

round cipher by using pilling up lemma, considering

all S-Boxes as independent. For each round function

the linear expression which hold with high coinci-

dence probability and calculate bias probability by

subtracting from 1
2 and combine this linear expres-

sion with next round linear expression with high-

est coincidence probability and go on calculating εi
for each round and at last probability of pD(x1 ⊕
x2 ⊕ . . . ⊕ xn = 0) = 1

2 + 2k−1
∏
i=1tok εi where

ε1,2. . . k = 2k−1
∏
i=1tok ε.

ii) Steps to Recover Key

1. Generate N plaintext/ciphertext pairs

2. If TPS is l-bit. There are 2l possibilities

3. For each TPS value (say TPS*) do the following

i Set count=0

ii For each ciphertext(i) for i = 1 to N do

the partial decryption

(a) ciphertext(i)⊕ TPS*

(b) Run backward through S-boxes

to obtain bits into the last

round

(c) XOR the Bits of plaintext (i)

with XOR of the bits obtained

in step (b)

(d) If expression in (c) is zero

(e) Increment count

iii |Bias| = |count–N2 |
4. Obtain a Table of partial subkey values and corre-

sponding |Bias|
5. If |Bias| = 0⇒ IncorrectTPS

If |Bias| ≈ Expectedvalue⇒ CorrectTPS

5 Variants Of Linear Cryptanalysis

5.1 Zero Correlation Linear Cryptanalysis

Zero correlation linear cryptanalysis was proposed by

Bogdanov and Rijmen for an iterative block cipher is

a counterpart of impossible differential cryptanalysis.

This attack exploits the linear approximation a→ b of

the cryptographic function f of the cipher of r rounds

where a and b are input sum and output sum selection

pattern. The probability p =
(
Pr
x

)
(ax = bf(x)) for lin-

ear approximation a → b over all input x is exactly 1
2

which amounts to correlation C zero because C = 2p−1

with a 6= 0, b 6= 0. The linear approximation a → b for

an iterative block cipher from fixed input a to fixed

output b is called a Linear Hull which contains all pos-

sible sequences of linear approximation. These set of

sequences are called Linear Trails [26]. See fig 5, where

fi is the function of ith round and ui’s are intermediate

values.

Fig. 6 Linear Trail

According to pilling up lemma, the total correlation

contribution CU over a cipher of a linear trail U is a

computed by identifying strong linear approximation

trail by concatenating approximations from round to
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round and calculated by doing product of these correla-

tion for all rounds and is defined as CU =
∏r
i=1 C

fi
ui−1,ui

,

where Cfiui−1,ui
is correlation for each intermediate value

ui−1 → ui. For a linear hull a → b, total correlation

over a cipher is computed by summing the correlation

contribution CU of all its possible linear trails U .

C =
∑

U=u0=a,u1,u2,. . . ,ur=b

CU

To construct zero correlation (C = 0) linear hull, input

a and output b is selected in such a way that no linear

trail exists with non-zero correlation contribution CU
i.e. if correlation contribution CU = 0 for each linear

trail, then correlation over the entire iterative cipher

is exactly zero, C = 0 and it is denoted by a 9 b.

For correlation contribution to be zero CU = 0 for

each trail, construct each trail with at least one inter-

mediate Cfiui−1,ui
linear approximation ui−1 → ui over

the rounds to be zero since the product of all corre-

lation values with intermediate zero correlation value

will result in zero correlation C=0 for this linear hull.

If Cfiui−1,ui
= 0 for a linear trail U , the pair of selection

pattern ui−1 and ui for a trail is called incompatible.

If even one zero correlation linear hull (distinguisher)

exists, the cipher can be attacked.

Fig. 7 Zero correlation Linear Cryptanalysis Structure

The basic steps for constructing an attack on ciphers

are

i)Finding the Distinguisher

1. Choose plaintext and ciphertext pairs with fixed un-

known key K.

2. Construct linear distinguisher with correlation zero

C(a 9 b) = 0 by using miss in middle technique.

This can be done by encrypting fixed input a to ob-

tain output β for r1 rounds of cipher, decrypting

fixed output b to obtain γ for r2 rounds of cipher.

3. Obtain the partial trails with non zero correlation

contribution. If both the partial trails do not match

in middle β 6= γ, this contradiction ensures the cor-

relation zero therefore r1+r2 rounds must be a zero-

correlation linear hull i.e. C = 0. Thus correlation of

linear hull is exactly zero and linear distinguisher

(a, b) is obtained.

ii) Steps to Recover Key

1. Obtain all the possible combination of subkey kr
(TPS) to compute encryption and decryption.

2. For each possible subkey, partially encrypt each plain-

text (for r1 rounds) and partial decrypt each ci-

phertext (for r2 rounds) upto the input and output

boundaries of the distinguisher (zero correlation lin-

ear approximation boundaries)

3. Evaluate the correlation for partial encryption de-

cryption of all linear approximations for each possi-

ble subkey by counting number of times ax⊕bf(x) =

0

4. If the correlation C is 0, the subkey guess is correct

We evaluate the correlation for distinct linear hulls to

reduce the error probability.

6 Conclusion

Cryptographers as well as cryptanalysts all over the

world have been applying the latest attacks to already

published or newly designed crypto algorithm. To de-

sign a highly secure block ciphers which are immune

to the present day attacks, one needs to analyze the

possibility of any weakness in the design which can be

exploited by all the variants of differential and linear

attacks. The steps described in this paper, to find the

distinguisher and to recover the key of each cryptana-

lytic attack will be of great help to cryptanalyst. With

the advent of High Performance Computing(HPC) and

Distributed computing, these attacks will make crypt-

analysis efficient. All the attacks described in this paper

can be applied on SPN, feistel and generalized feistel

structure with the additional condition that the round

function should be bijective for impossible, integral and

zero correlation. The following Table 1 consolidates the

ciphers which have been attacked by variants of linear

and differential cryptanalysis till today.

The proposed work, helps to apply simultaneously all

the variants of differential attacks to a block ciphers.

These steps of finding distinguisher and steps to re-

cover key eases the task of cryptanalysts to apply the

attack on cipher simultaneously. The steps of key re-

covery described in this paper on the latest zero corre-
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Table 1 List of Attacks and ciphers

lation attack which is a variant of linear cryptanalysis

will also help to check the weakness in the design. Our

futurist work is to apply these attacks on various algo-

rithms and to do comparison on basis of time and data

complexity.

References

1. E. Biham, A. Shamir, “Differential Cryptanalysis of DES-
like Cryptosystems,” Journal of Cryptology, Vols.4, no.1,
pp. 3-72 (1991).

2. E. Biham, A. Shamir, Differential Cryptanalysis of the
Data Encryption Standard, Springer Verlag (1993).

3. E. Biham, ”New Types of Cryptanalytic Attacks Using
Related Keys,” Journal of Cryptology, vol. 7, no. No. 4,
p. 229–246, Springer-Verlag (1994).

4. L. Knudsen, ”Truncated and higher order differentials,”
in In B.Preneel,editor, FSE, LNCS 1008, pp.196-211,
Springer-verlag (1995).

5. L. Knudsen, D. Wagner, “Integral Cryptanalysis (Ex-
tended Abstract),” in FSE 2002, LNCS 2365, pp.
112–127, Springer-Verlag (2002).

6. E. Biham, A. Biryukov, A. Shamir, “Cryptanalysis of
Skipjack Reduced to 31 Rounds using Impossible Differ-
entials,” in Advances in Cryptology: EUROCRYPT’99
LNCS 1592, pp. 12-23, Springer Verlag (1999).

7. D. Wagner, ”The Boomerang Attack,” in Fast Soft-
ware Encryption, FSE’99 (L. R.Knudsen, ed.) Springer-
Verlag, vol. 1636 of Lecture Notes in Computer Science,
p. 156–170 (1999).

8. E. Biham, O. Dunkelman, N. Keller, ”The Rectan-
gle Attack - Rectangling the Serpent,” EUROCRYPT
2001 LNCS,, vol. 2045, pp. 340-357, Springer, Heidelberg
(2001).

9. E. Biham, O. Dunkelman, N. Keller, ”Related-Key
Boomerang and Rectangle Attacks.,” EUROCRYPT
2005, LNCS, vol. 3494, pp. 507-525, Springer, Heidelberg,
(2005).

10. Howard M. Heys, A Tutorial on Linear and Differential
Cryptanalysis.

11. A. Bogdanov, V. Rijmen, “Zero Correlation Linear
Cryptanalysis of Block Ciphers,” IACR Eprint Archive
Report 2011/123, March (2011).

12. C. Swenson, Modern Cryptanalysis: Techniques and Ad-
vanced Code Breaking, Indianapolis: Wiley Publishing
(2008).

13. Lars R. Knudsen, Matthew J.B. Robshaw, The Block Ci-
pher Companion, Springer-Verlag (2011).

14. Y. Liu, D. Gu, Z. Liu, Wei Li, “Impossible Differential At-
tacks on Reduced Round LBlock,” in ISPEC 2012, LNCS
7232, pp. 97–108, 2012, Springer-Verlag Berlin Heidel-
berg (2012).

15. C. Boura, M. Naya-Plasencia, V. Suder, “Scrutinizing
and Improving Impossible Differential Attacks: Appli-
cations to CLEFIA, Camellia, LBlock and Simon” Asi-
acrypt 2014, LNCS Volume 8873, 2014, pp 179-199,
Springer-Verlg (2014).

16. R. Li1, B. Sun1 and C. Li, ”Impossible Dif-
ferential Cryptanalysis of SPN Ciphers,”
https://eprint.iacr.org/2010/307.pdf (2010).

17. Y. Yeom, “Integral Cryptanalysis and Higher Order Dif-
ferential Attack,” in Trends in Mathematics, Information
Center for Mathematical Sciences, Volume 8, Number 1,
June, Pages 101-118 (2005).

18. M. Duan, X. Lai, ”Higher Order Differential Cryptanal-
ysis Framework and its Applications,” in International
Conference on Information Science and Technology, Nan-
jing, Jiangsu, China, March 26-28, (2011).

19. M. Duan, X. Lai, Mohan Yang, X. Sun, B. Zhu, “Dis-
tinguishing Properties of Higher Order Derivatives of
Boolean Functions,” in IEEE Transactions on Informa-
tion Theory, Jul (2010).

20. A. Canteaut, M.Videau, “Degree of Composition of
Highly Nonlinear Functions and Applications to Higher
Order Differential Cryptanalysis,” in L.R. Knudsen
(Ed.): EUROCRYPT 2002, LNCS 2332, pp. 518–533,
2002, Springer-Verlag (2002).

21. Francois-Xavier Standaert, Gilles Piret, Jean-
Jacques Quisquater, “Cryptananlysis of Block
Ciphers: A Survey,” UCL, Groupe Crypto,
http://www.dice.ucl.ac.be/crypto/, Belgium (2003).

22. E. Biham, O. Dunkelman, N. Keller, ”New Results and
boomerang and rectangle attack,” in Proceeding of Fast
Software Encryption, LNCS 2365, pp 1-16 Springer verlag
(2002).

23. J. Kelsey, T. Kohno, B. Schneier, Amplified Boomerang
Attacks Against Reduced-Round MARS and Serpent,
New York : FSE 2000, pp. 75–93, Springer-Verlag (2000).

24. E. Fleischmann, M. Gorski, S. Lucks, ”Attack-
ing Reduced Rounds of the ARIA Block Cipher,”
https://eprint.iacr.org/2009/334.pdf, Germany (2009).

25. E. Biham, “New Types of Cryptanalytic Attacks Using
Related Keys,” Journal of Cryptology, , vol. 7, no. No. 4,
p. 229–246, Springer-Verlag (1994).

26. A. Bogdanov and V. Rijmen, “Linear hulls with corre-
lation zero and linear cryptanalysis of block ciphers,”
Designs, Codes and Cryptography, vol. 70 , no. 3, pp.
369-383, March (2014) .


