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Abstract. Ristenpart and Rogaway proposed XLS in 2007 which is a
generic method to encrypt messages with incomplete last blocks. Later
Andreeva et al., in 2013 proposed an authenticated encryption COPA
which uses XLS while processing incomplete message blocks. Following
the design of COPA, several other CAESAR candidates used the similar
approach. Surprisingly in 2014, Nandi showed a three-query distinguisher
against XLS which violates the security claim of XLS and puts a question
mark on all schemes using XLS. However, due to the interleaved nature
of encryption and decryption queries of the distinguisher, it was not
clear whether the security claims of COPA remains true or not. This
paper revisits XLS and COPA both in the direction of cryptanalysis and
provable security. Our contribution of the paper can be summarized into
following two parts:

1. Cryptanalysis: We describe two attacks - (i) a new distinguisher
against XLS and extending this attack to obtain (ii) a forging algo-
rithm with query complexity about 2n/3 against COPA where n is
the block size of the underlying blockcipher.

2. Security Proof: Due to the above attacks the main claims of XLS
(already known before) and COPA are wrong. So we revise the se-
curity analysis of both and show that (i) both XLS and COPA are
pseudorandom function or PRF up to 2n/2 queries and (ii) COPA is
integrity-secure up to 2n/3 queries (matching the query complexity
of our forging algorithm).

Keywords: XLS, COPA, Pseudorandom function, Authenticated En-
cryption, forgery, distinguisher.

1 Introduction

Domain Completion. The notion of domain extension (also popularly known
as modes of operations) arises in hash function [12, 23], pseudorandom function
(PRF) or permutation (PRP) [15, 21], message authentication code [7, 34], au-
thenticated encryption [20, 28], strong pseudorandom permutation (SPRP) [21]
etc. The goal of a domain extension is to extend a smaller domain of an underly-
ing primitive to a much larger domain [13]. In this paper, we study blockcipher
based domain extensions which construct different variants of encryption algo-
rithms over domain larger than In := {0, 1}n where n is the block size of the
underlying blockcipher. Usually, it is easy to define encryption algorithms over
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I+n := ∪∞i=1I
i
n than arbitrary bit strings {0, 1}∗. We call an encryption algorithm

full-block encryption [2, 4, 5, 18, 19, 24, 31] if its domain is I+n or I
[1..a]
n := ∪ai=1I

i
n

for some reasonably large a. An all-block encryption (or simply encryption) can
encrypt messages with incomplete blocks as well. In practice, it is always de-
sired to use all-block encryptions [1, 8, 16, 17, 22, 29, 31–33]. However, full-block
encryptions usually appear (as they are usually easier to define) during the pro-
cess of defining all-block encryptions. A method is called domain completion
for encryption if it generically converts a full-block encryption into an all-block
encryption.

Examples of Generic Domain Completion. To our best knowledge, only
two domain completions have been proposed for length-preserving encryption
as illustrated in the Fig. 1 ((1) and (2)). The oldest method, but heuristi-
cally described, is the Elastic blockcipher [9] proposed by Cook, Yung and
Keromytis (see (3) of Fig. 1). Later it has been more formally defined over
{0, 1}[n..2n] := ∪2ni=n{0, 1}i [10]. Following their paradigm (encrypt-then-mix), an
efficient, neatly defined domain completion method XLS or eXtended by Latin
Square is proposed by Ristenpart and Rogaway [27] ((1) of the Fig. 1 and see
Algorithm 1 in section 2) which can encrypt any messages of size at least n. It
requires two invocations of an n-bit blockcipher E and one invocation of a length-
preserving full-block encryption E . The second domain completion method uses
hash-counter- hash paradigm [25]. In case of authenticated encryptions (support-
ing both confidentiality and integrity) several individual methodologies, such as
tag-splitting [14]), counter-based encryption [16, 25], ciphertext stealing [30] etc.
are known. Due to the attractive performance and simplicity of XLS, it is used
to define an all-block authenticated encryption COPA [3] (see Fig. 2 in section 2)
proposed in 2013. Following the design paradigm of COPA, several other CAE-
SAR candidates1 e.g., Deoxys, Joltik and KIASU, SHELL etc., used the similar
approach.
Our Contribution. Recently, Nandi in Asiacrypt 2014 [26] showed that XLS is
not strong pseudorandom permutation as claimed by the designers. This raises
the following questions which would be answered in this paper.
– Is the attack of XLS can be extended to those encryption schemes, e.g. COPA,
which uses it?
– As the security claims of XLS becomes wrong what security guarantee can be
claimed?
– Do the security claims of COPA need to be revised?

The known distinguisher of XLS makes an encryption query followed by a
decryption and then an encryption. In the forging security game of COPA, adver-
sary can first make encryption queries and finally a decryption query to forge. It
does not get an access of encryption queries later on which is required to attack
XLS. Thus, the known attack against XLS can not be used to COPA.

1. A new distinguisher of XLS. We demonstrate an adaptive chosen plaintext-
ciphertext distinguisher (see Algorithm A0 in section 3.1) against XLS mak-

1 A competition for obtaining portfolio of secure authenticated encryptions [1].
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Fig. 1. E and E are length-preserving encryption schemes over I+n and In respectively.
P ′, C′ ∈ I∗n with |P ′| = |C′|, X,Y,C, P ∈ In and D,Q,A,B,U, V ∈ {0, 1}s, 1 ≤ s <
n. (1) XLS: mix2 : ∪n−1

s=1 {0, 1}2s → ∪
n−1
s=1 {0, 1}2s defined as mix2(AB) = (A ⊕ (A ⊕

B)≪1, B ⊕ (A ⊕ B)≪1) where ≪ a denotes a-bit left rotation. (2) Hash-Counter-
Hash Paradigm: H1 and H2 are universal hash functions which could be instantiated
by field multiplication or AES [11] with four rounds and F is a weak pseudorandom
function. (3) Elastic blockcipher: It encrypts only over {0, 1}[n..2n].

ing two encryption queries followed by one decryption query. The basic prin-
ciple of the new attack of XLS remains same. So, this new attack becomes
more suitable for applying to forging game of COPA.

2. A Forging Algorithm of COPA. The next immediate step is to see the
implication of insecurity of XLS to COPA or others in which it has been
applied. In this paper, we extend the above distinguishing attack to make
a forging algorithm A1 (see in section 3.2) on a general design paradigm
of COPA and hence to specific designs such as AES-COPA, Deoxys, Joltik,
KIASU etc. The algorithm SHELL uses a masking before it applies XLS.
However, the same algorithm can be carried out even with the presence of
masking. The algorithm makes 2n/3 encryption queries and make one forging
attempt with success probability about 1/4. This violates the security claim
proved in Asiacrypt 2013 [3].2

3. XLS has n/2-bit PRF security and COPA has n/3-bit integrity secu-
rity. The above two negative results disprove the claims for XLS and COPA.
So we need to analyze how much security guarantee can be achieved. In
Theorem 3, we show that XLS (in fact, a more general version of XLS called
GXLS) is a pseudorandom function (PRF). Using this property, the privacy

2 However, our algorithm is reduced to solving generalized birthday attack [35] for
three lists. So we do not know any algorithm which can run in time-complexity
significantly less than 2n/2. But the main security claim of [3] was proved even for
unbounded adversary and this is why the result become wrong.
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of COPA can be easily shown. In Theorem 4, the upper bound of forging ad-
vantage is shown to be about q3/2n where q is the number of queries. This
also shows the tightness of query complexity of forging security of COPA.

2 Known Results of XLS and COPA

2.1 Description of XLS and COPA

Input: M ∈ {0, 1}≥n
, Output: Z ∈ {0, 1}≥n, |Z| = |M |, Key: keys of E and E .

Algorithm XLS(M)

1 let |M | = nk + s, 0 ≤ s < n, k ≥ 1
2 if s = 0 then
3 return Z = E(M).
4 else

5 parse M = (P ′, P , Q), P ′ ∈ {0, 1}n(k−1), P ∈ {0, 1}n,
Q ∈ {0, 1}s

6 a‖A← E(P ), a ∈ {0, 1}n−s, A ∈ {0, 1}s.
7 u← a⊕ 1, (U,W )← mix2(A,Q).
8 (C ′, v‖V )← E(P ′, u‖U), v ∈ {0, 1}n−s, V ∈ {0, 1}s,
|C ′| = |P ′|.

9 b← v ⊕ 1, (B,D)← mix2(V,W ).
10 C ← E(b‖B).
11 return Z = (C ′, C,D).

Algorithm 1: The decryption algorithm XLS−1(Z) is exactly same as
the encryption algorithm except that we replace E and E by E−1 and
E−1 respectively. Here, 1 = 0n−s−11. XOR-ing with 1 is necessary to
handle variable length input.

XLS: Let E be a length-preserving encryption on I+n and E be an n-bit blockci-
pher. For |A| = |B| = s, 1 ≤ s ≤ n − 1, we define an efficiently computable
linear involution (a permutation with self-inverse): mix2(A,B) = (mix2L :=
A ⊕ (A ⊕ B)≪1, mix2R := B ⊕ (A ⊕ B)≪1) where X≪a (or X≫a) denotes
a-bit left rotation (or right rotation respectively). The algorithmic description
of XLS is described in Algorithm 1.
COPA: It is an all-block authenticated encryption expanding n-bits in ciphertext.
It first defines a full-block encryption FCOPA. As the details of the construction
of FCOPA is not required we skip the actual definition which can be found in [3].
The similar paradigm of COPA is also used for other authenticated encryptions.
We describe it as a generic domain competition of an authenticated encryption
for a message M [1..d] := (M [1], . . . ,M [d]) with |M [d]| = s as follows:

F(M) =

{
C[1..d− 1] ‖ S if s = 0 (last block is complete);

C[1..d− 1] ‖ XLS(M [d]‖S) if s > 0 (last block is incomplete);
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Fig. 2. Let F be a full-block encryption. In L.H.S. we simply apply it for full-block
messages M . R.H.S. describes the ciphertext computation for messages with incomplete
last block M [d] where 1 ≤ s = |M [d]| < n. XLS is defined over {0, 1}[n+1..2n−1].

where F(M [1..d− 1]) := C[1..d− 1] ‖ S. Here, the XLS gets only inputs of sizes
in between n + 1 and 2n − 1. The pictorial illustration of the above domain
competition is given in the Fig ??.

2.2 Security Definitions

We first briefly recall security definitions related to encryption and authenticated
encryption schemes. We define the distinguishing advantage of A distinguishing
fK from gL is defined as

Advgf (A) := |PrK [AfK = 1]− PrL[AgL = 1]|

where the two probabilities are computed under randomness of keys K and L
respectively, and random coin of A. Similarly one can define advantages for two
oracles such as fK and its inverse f−1K when fK is a permutation. An ideal
random function (or permutation) $ (or Π) returns random strings R (keeping
permutation property) for every fresh query. Whereas an ideal random source
returns uniform and independent string for every query, even repeated. We
write Advprf

f (A) := Adv$
f (A), Advprp

f (A) := AdvΠf (A) and Advsprp
f (A) :=

Adv
(Π,Π−1)
(f,f−1) (A).

Online Distinguishing Advantage. Let $ol and Πol denote online random
function and permutation respectively which behave like random keeping the
“online property” – the ith block (not the last block) of ciphertext only depends
on the first i blocks of plaintext, not on the subsequent blocks. We similarly de-
fine Advolprf

f (A), Advolprp
f (A) and Advolsprp

f (A). We define the maximum xxx-
advantage Advxxx

f (t, q, σ, `) = maxA Advxxx
f (A) where the maximum is taken

over all algorithms A which run in time t, make queries at most q with the total
number of blocks at most σ and the number of blocks in the longest query is `.
For unbounded time adversaries, Advxxx

f (q, σ, `) = Advxxx
f (∞, q, σ, `).

Integrity Security of an Authenticated Encryption. An authenticated
encryption is called secure if it is pseudorandom function as well as unforgeable,
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i.e., the authenticity advantage, defined below is negligible.

Advauth
AE (A) := Prk[AAEk → (C), C is not obtained by AE queries,AE−1k (C) 6=⊥].

2.3 Known Distinguisher of XLS

Here we briefly describe the known results for XLS and COPA. In [27], it has
been proved that XLS is strong pseudorandom permutation (SPRP). Later, in
Asiacrypt 2014 [26] Nandi showed a three-query CPCA distinguisher against XLS
which violates the designer’s claim. Now, we briefly state the distinguisher for
XLS. It first makes an encryption query (P1, Q1) and obtains a response (C1, D1)
where |P1| = |C1| = n and |Q1| = |D1| = n − 1. Then, it makes a decryption
query (C2 := C1, D2 := D1⊕1) and obtains a response (P2, Q2). Finally, it makes
an encryption query (P3 := P2, Q3 := Q2 ⊕ 1 ⊕ (Q1 ⊕Q2 ⊕ 1)≪2) and obtains
a response (C3, D3). In [26], it was shown that if the distinguisher is interacting
with XLS, D3 = Q1 ⊕ Q3 ⊕D1 holds with probability 1/2 whereas this clearly
does not hold almost with probability 1−2−n+1 for a random permutation. This
clearly leads a distinguishing attack.

2.4 Security Claims of COPA

In Asiacrypt 2013 [3], COPA has been proposed which uses XLS for processing
arbitrary length messages. Moreover, it has been shown that COPA is privacy and
authenticity secure. As the security claim of XLS becomes wrong, the security
claim of COPA is required to be revised. Note that the above attack has two levels
of adaptiveness. So the attack can not be deployed immediately into an attack
of COPA. In a privacy attack only encryption queries can be made. Whereas in
the forging attack, a forger is allowed to make first encryption queries and then
a decryption query to forge. So the security claims of COPA remains open as the
power of the distinguisher is more than a forging algorithm. Now we state main
results for COPA claimed in Asiacrypt 2013. Here, the building block FCOPA and
XLS are based on an n-bit blockcipher E.

Theorem 2 of [3].

Advoprf
COPA(t, q, σ, `) ≤ Advsprp

E (t′, 4(σ + q)) +
39(σ + q)2

2n
+

(`+ 2)(q − 1)2

2n

where σ and ` are the total and longest number of blocks among all q queries
and t denotes time complexity. Here t′ ≈ t.
Theorem 3 of [3].

Advauth
COPA(t, q, σ, `) ≤ Advsprp

E (t′, 4(σ+ q)) +
39(σ + q)2

2n
+

(`+ 2)(q − 1)2

2n
+

2q

2n
.

When we use an ideal random permutation E and consider all unbounded
adversaries (i.e., t = ∞) then Advsprp

E (∞, σ′) = 0 for all σ′. Hence the above
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theorem says that the COPA encryption algorithm FCOPA is privacy and authen-
ticity secure as long as σ � 2n/2 and E is replaced by a random permutation
Π. Here we assume the above theorems for FCOPA over full block messages as
it does not involve XLS. However, we need to re-evaluate for arbitrary length
encryption FCOPA.

3 Cryptanalysis of XLS and COPA

3.1 A Less Adaptive Distinguisher for XLS

We first describe a less adaptive distinguisher for XLS. Later we use the basic
idea of this attack of XLS to obtain a forging algorithm for COPA violating the
Theorem 3 of [3] as mentioned above. Now we describe an adversary A0 (see
Algorithm below and illustration in Fig. 3.1) which makes four queries to XLS
and its inverse having advantage about 1/2.

E

E

E

∆P = 0
∆Q = α 6= 0

mix2

mix2

Encryption Query 1 and 2

∆A = 0

∆W = α1

δ = 0 w.p. 1
2

δ = 0

∆D = β

∆B = β2

:= α⊕ α<<<1

C/C ′

E

E

E

∆D = γ := β2 ⊕ β>>>1
2

mix2

mix2

Decryption Query 1 and 2
C/C ′

∆B = β2δ = 0

∆V = 0

∆U = 0

∆W = β>>>1
2

δ = 0

∆Q = β2 ⊕ (β>>>1
2 )

(observed)

(observed w.p. 1
2
)

∆a = 0 ∗∗

∗

1

1

∆u = 0

Fig. 3. Illustration of differences present in the attack: Here |Q| = |D| = n− 1.
We observe C and C′ in the first block, and β difference in second blocks of ciphertexts.
From the definition of mix2, β2 = β ⊕ (β ⊕ α1)≫1 = α⊕ β ⊕ (α⊕ β)≫1. So if we set
γ difference in second ciphertext blocks of decryption queries such that inputs of E−1

collide whenever δ = 0 (which can happen with probability 1/2 as δ is a single bit).
So we have γ difference in the second plaintext blocks of two decryption queries which
would be clearly a test for the distinguisher.
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Distinguisher A0 for XLS with message sizes 2n− 1 (so s = n− 1).

1. query-1. It makes an encryption query (P,Q) ∈ {0, 1}n × {0, 1}n−1.
2. Let (C,D) ∈ {0, 1}n × {0, 1}n−1 be the response.
3. Fix a non-zero bit string α of size n− 1.
4. query-2. Encryption query (P,Q′ := Q⊕ α) and obtains response (C ′, D′).
5. Let β = D ⊕D′ and set γ = α⊕ β ⊕ (α⊕ β)≫2.
6. query-3. It makes a decryption query (C,D1).
7. Let (P1, Q1) be the response.
8. query-4. Decryption query (C ′, D′1 := D1⊕γ) and obtains response (P ′1, Q

′
1).

9. if Q′1 ⊕Q1 = γ returns 1, else 0.

Theorem 1. For A0 (as defined above) we have Advsprp
XLS (A0) ≈ 1

2 − 1
2n−1 .

Proof. We first note that mix2 is a linear function and so

mix2(X ⊕∆1, Y ⊕∆2)⊕mix2(X,Y ) = mix2(∆1, ∆2).

In other words, the difference of outputs of mix2 can be computed just form the
difference of inputs. In Fig. 3.1, we illustrate differences of internal variables in
the computation of query-1, 2 (in left hand side of the figure) and query-3, 4
(right hand side of the figure). By ∗ we mean the difference is not required to
be known. Now we explain why the differences are observed in the four queries.

1. Note that in the first two encryption queries ∆W := α1 = mix2R(0, α) =
α⊕ α≪1 since there is zero difference in outputs of the first call of E.

2. Let ∆B := β2 be the differences of the first n− 1 bits of second call of mix2
in the first two encryption queries. Since mix2 is an involution, we can solve
β2 easily from the equation α1 = mix2R(β2, β) = (β2 ⊕ β)≪1 ⊕ β. So,

β2 = (α1 ⊕ β)≫1 ⊕ β
= (α⊕ β)⊕ (α⊕ β)≫1.

3. Let δ = ∆b which is a single bit. Thus, Pr[δ = 0] = 1/2.
4. In the decryption queries we give same pair of first ciphertext blocks, namely
C and C ′, and so we would get β2 difference after we invoke first E−1 call
of decryption queries.

5. As the difference of the second ciphertext block is chosen as γ := β2⊕β≫1
2 ,

we have mix2(β2, γ) = (0n−1, β≫1
2 ). Given that δ = 0, we have a collision

on the first E−1 calls for decryption queries. So we have ∆U = 0 in the
decryption queries.

6. Finally, the difference in second plaintext blocks of decryption query is
mix2R(0,mix2R(β2, γ)) = mix2R(0, β≫1

2 ) = γ.

Thus, with probability 1/2, Q1 ⊕ Q′1 = γ, i.e., Pr[AXLS,XLS−1

0 = 1] = 1/2.

WhenA0 is interacting with random permutation P and its inverse P−1, Pr[AP,P−1

0 =
1] ≈ 21−n. So we are done. ut
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Remark 1 (We need three queries instead of four). One can clearly drop the third
query (i.e., the first decryption query) by setting D1 = D and so the response
(P1, Q1) = (P,Q) is known from the first encryption query. We exploit this while
extend this attack to COPA.

3.2 Forging Algorithm of COPA

In this section, we demonstrate a forgery algorithm against COPA and all other
similar candidates of authenticated encryptions (e.g., Deoxys, Joltik, KIASU,
SHELL3). We do not need any weakness on FCOPA and hence it can be any strong
authenticated encryption or random online injective function. The algorithm
makes q ≈ 2n/3 queries.

Forgery Algorithm A1 for Authenticated Encryption F .

1. queries Mi ∈ {0, 1}n and response (Ci, t
′
i‖Qi) where |t′i| = 1, 1 ≤ i ≤ q.

2. Find b (assume b = 0), |I| = |{i : t′i = b}| ≥ q/2. I = I1 t I2, |I1| = |I2|.
3. queries (Mi,m), i ∈ I, m ∈ {0, 1}n−1 and responses ((Ci, Di), Ti).
4. Find i ∈ I1, j ∈ I2, k ∈ I s.t.

Qk = (Di +Qi)
≪2 +Qj + (Dj +Qj)

≪2,

otherwise abort.
5. Return forgery query (Ck, D

∗, Tj) where

D∗ = (Di +Qi +Qj) + (Di +Qi +Dj +Qj)
≪2.

3.3 Analysis of Success Probability of Forgery

For each index i, 1 ≤ i ≤ q, we associate three lists of (n − 1) bit strings (1)
Qi, (2) αi := (Di +Qi)

≪2 and and (3) βi = Qj + (Qj +Dj)
≪2. In the step 4,

we try to find i ∈ I1, j ∈ I2, k ∈ I such that Qk = αi + βj . This is actually a
generalized birthday problem to find such a solution and we do not know so far
the exact time complexity for the generalized birthday problem for three or more
lists. However, here we analyze it in terms of query complexity and so the time
complexity could be more, e.g. about 22n/3. The main reason is to choose I1 and
I2 disjoint to make αi, βj and Qk independent. If |I| = 2n/3+1 then there are
about 2n+1 many possible values of Qk +αi + βj and we expect one such triple,
for which it takes value zero. So we set q = 2

n
3 +2 and so by pigeonhole principle,

|I| ≥ 2n/3+1. We first note that αi, βj and Qk’s follow uniform and independent
distributions (otherwise we would be able to mount distinguishing attack on this
mode). Moreover, we can assume that F is pseudorandom function (or random
function) on complete block messages, otherwise we also have a distinguishing

3 Truly speaking SHELL uses a masking before it applies XLS. However, it can be
easily seen that the same attacks works for any linear key masking.
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attack. So Qi’s are independent and uniformly distributed. As we have chosen
αi and βj from disjoint sets I1 and I2, Qk, αi and βk are independent. Armed
with these basic observations, we have our analysis of the forging algorithm.

Theorem 2. Given that A1 does not abort, it forges with success probability
1/4. Moreover, when q = 4× 2n/3, on the average we do not expect to abort.

Proof. We have already argued why we do not expect to abort. Now we show
that when it does not abort, i.e., αi + βj = Qk the forging succeeds with prob-
ability at least 1/4. We recall the main properties from algorithm A0. We have
shown that if (Ci, Di) and (Cj , Dj) are responses of (P,Qi) and (P,Qj) respec-
tively then the decryption of (Cj , Di,j) is (P ′, Q′) with probability 1/2 where

1. Di,j = Di +Qi +Qj + (Di +Qi +Dj +Qj)
≪2 and

2. Q′ = Di,j + (Dji +Qi) = (Di +Qi)
≪2 +Qj + (Qj +Dj)

≪2.

In this forging algorithm, we now have Q′ = Qk. So now we try to decrypt
(Ck, D

∗, Tj). Here Tj plays role of Cj and so when we apply XLS−1(Tj , D
∗) we

obtain (m∗‖t∗), Qk) for some m∗‖t∗ ∈ {0, 1}n. Now t∗ = 0 with probability
1/2 and so when we run the verification algorithm for (Ck, 0‖Qk), it passes and
returns the message Mk. So we forge a message of the form (Mk,m

∗) for some
Mk controlled by adversary and unknown m∗ with success probability about
1/4. ut

The abort in step 4 can be checked without making any forging query. How-
ever, the bit t∗ is 0 can not be verified without making verification query. So if
we repeat the forging algorithm k times we can increase the success probability
of forging almost to 1/2 for a single forging attempt.

Remark 2 (reason why it violates Theorem 3 (integrity security claim) of COPA).
So far we do know any algorithm with time complexity less than 2n/2 which finds
such i, j and k. However, in terms of query complexity, our algorithm requires
less query complexity, i.e. about 2n/3 than what claimed in [3], i.e., 2n/2 even for
an unbounded adversary. Note that our attack works for all types of underlying
blockcipher even for ideal random permutation.

4 XLS is a Pseudorandom function

4.1 A General Form of Encrypt-then-Mix Encryption

We extend the definition of this permutation to the domain ∪n−1s=1 {0, 1}n+s as
follows. mix2′(X1‖X1, Y ) = (mix2′L,mix2′R) where

mix2′L(X1‖X2, Y ) = (X1⊕1)‖mix2L(X2, Y ), and mix2′R(X1‖X2, Y ) = mix2R(X2, Y ).

Here, 1 is the bit string of size n − s whose last bit is 1 and all other bits are
zero. So mix2′ is an involution from {0, 1}n+s to itself, 1 ≤ s ≤ n− 1.
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Input: (P,Q) ∈ {0, 1}n × {0, 1}s, 1 ≤ s ≤ n− 1.
Output: (C,D) ∈ {0, 1}n × {0, 1}s.
Key: keys of permutations Π1, Π2 and Π3.

Algorithm GXLS(P,Q)

1 A← Π1(P ).
2 (U,W )← mix1(A,Q). \\ the functions mix1 and mix2 are linear

permutations on {0, 1}n+s.

3 V ← Π2(U).
4 (B,D)← mix2(V,W ).
5 C ← Π3(B).
6 return (C,D).

Algorithm 2: The encryption algorithm GXLS.

A general version of XLS (we call it GXLS) in which mix2′ function is replaced
by two invertible linear functions mix1 and mix2. In order to make the encryption
scheme invertible, we need mix functions to be invertible. Another generalization
is to consider three independent random permutation instead of two. Whenever
we restrict E to be an n-bit blockcipher, the GXLS is defined over the domain
∪2n−1i=n+1{0, 1}i. It can also be seen as three iterations of encrypt (for n bits) and
mix functions except that the last round which does not have mixing. Note that
the elastic blockcipher also falls in this paradigm where the number of rounds
can vary. The above algorithm is also denoted as GXLSΠ1,Π2,Π3 [mix1,mix2]. Note

that decryption algorithm is GXLSΠ
−1
1 ,Π−1

2 ,Π−1
3 [mix−11 ,mix−12 ]. With this nota-

tion, XLS is nothing but GXLSE,E,E [mix2′,mix2′]. Similarly, three round elastic
blockcipher can be described. When the mix functions are understood from the
context we simply write GXLSΠ1,Π2,Π3 . Note that we can view it as an oracle
algorithm which interacts with three permutations or any systems (could be
stateful) Π1, Π2 and Π3.

4.2 Generalized XLS is a Pseudorandom Function

In this section we prove that XLSE,E,E is a pseudorandom function whenever
E and E are pseudorandom functions used to compute XLS. In the security we
consider hybrid constructions by replacing these by ideal objects. Moreover, we
generalize XLS construction by considering general mixing functions. The figure
for a more general construction and the elastic blockcipher are illustrated in
Appendix B. We actually show that GXLS is pseudorandom function provided
that mixing functions satisfy certain conditions which are actually satisfied by
mix2.

Some Properties of the Mixing Function mix2 For any length-preserving
permutation π on ∪n−1s=1 {0, 1}n+s, we denote π(z) = πL(z)‖πR(z) where πL(z) ∈
{0, 1}n and πR(z) ∈ {0, 1}s. Now we define some properties of a length-preserving
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permutation π = (πL, πR) on ∪n−1s=1 {0, 1}n+s. A function f : D → R is called

regular if U
$← D implies f(U)

$← R. In other words, for all y ∈ R, Pr[f(U) =
y] = |R|−1 where U is uniformly chosen from D. A function f is called ε-regular
if for all y ∈ R, Pr[f(U) = y] ≤ ε. So a |R|−1-regular function is nothing but a
regular function.

1. LR-regular: For all B ∈ {0, 1}s, the function πR(·, B) : {0, 1}n → {0, 1}s
is regular.

2. RL-injection: For all x ∈ {0, 1}n andB 6= B′, we have πL(x,B) 6= πL(x,B′).
3. LL-bijection: For all x ∈ {0, 1}s and A 6= A′, we have πL(A, x) 6= πL(A′, x).

4. LL-ε-regular: For all B ∈ {0, 1}s and all y ∈ {0, 1}n, Pr[πL(X,B) = y;X
$←

{0, 1}n] ≤ ε. If ε = 2−n then it is equivalent to LL-bijection.

Lemma 1. The mix2′ function is LR-regular, RL-injection and LL-21−n-regular.

Proof. (1) LR-regular: mix2R(a, x,B) = x≪ ⊕ (B≪ ⊕ B). So clearly, the
function mapping x to mix2R(a, x,B) is a permutation for all a and so mapping
(a, x) to mix2R(a, x,B) is a regular function.

(2) RL-injection: Let mix2′L(x,B) = mix2′L(x,B′) for any B,B′ and x ∈
{0, 1}n. Suppose, |B| = |B′|. Then, clearly, B = B′. So assume that s = |B| <
|B′|. Then, the (n− s)th bit of mix2′L(x,B) is not same as that of mix2′L(x,B′).
So we arrive contradiction.

(3) LL-21−n-regular: Let X = (X1, X2)
$← {0, 1}n−s × {0, 1}n. Now for

all B ∈ {0, 1}s and all y = (y1, y2) ∈ {0, 1}n−s × {0, 1}s, Pr[πL(X,B) = y] =
Pr[X1 = y1 ⊕ 1, X2 ⊕X≪

2 = B≪ ⊕ y2]. As X1 and X2 are independent and the
mapping x 7→ x⊕ x≪ is a two-to-one function. Thus, it is a LL-21−n-bijection.

ut

Main Security Claim of GXLS

To simplify the notation we write Advprf
GXLS(q) to mean Advprf

GXLS(t, q, 2q, 2)
for some t.

Theorem 3. Suppose mix1 is LL-ε-regular, LR-regular, RL-injection, and mix2
is LL-ε-regular, LR-regular then

Advprf
GXLS(q) ≤ Advprf

E (2q) + Advprf
E (q) + 2.5q(q − 1)ε.

Proof. For notational simplicity, we writeΠ1·Π2·Π3 to denote GXLSΠ1,Π2,Π3 [mix1,mix2].
We first define different games or interactive systems which interacts with dis-
tinguishers making no repetition queries. Let A be a chosen plaintext adversary
which makes exactly q distinct queries out of which q1 many queries have in-
complete last block (i.e., the query size is not multiple of n).

1. Let G0 be the real GXLS based on keyed permutations E and E and the
mixing functions, i.e., G0 = E · E · E.
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2. We consider an intermediate system G1 in which E and E are replaced by
two independent uniform random functions R1 and R2. In notation, G1 :=
R1 · R2 · R1. By using standard hybrid argument we have

|Pr[AG0 = 1]− Pr[AG1 = 1]| ≤ Advprf
E (2q1) + Advprf

E (q). (1)

3. We also consider another intermediate system G2 := R1 · S1 · S2 where Si’s
denote the uniform random sources which return uniform string for every
query. The equivalent pseudocode descriptions of G1 and G2 are given in
Algorithm 3 (see Appendix C). Note that these are identical except that the
game G1 executes boxed statements whereas G2 does not. Whenever the
boxed statements are getting executed, we set BAD to be 1. In other words,
G1 and G2 are identical until bad.

|Pr[AG1 = 1]− Pr[AG2 = 1]| ≤ Pr[BAD = 1 in the interaction AG2 ]. (2)

Note that a uniform random function behaves like a uniform random source
if it gets all distinct inputs. So the bad event actually captures the collisions
among inputs of R1 and R2’s. More formally,
(a) input collisions of R2,
(b) input collisions of the second invocation of R2,
(c) input collision between the first and second invocations of R1.

4. Finally, we define G3 := S(2) which returns 2n bits uniform random strings.

Lemma 2. If mix2 is LR-regular then the Game G2 is equivalent to G3.

Proof. Note that for each query, G2 returns (S2(B),mix2R(S1(U),W )), Since
mix2 is LR-regular, by the randomness of output of random sources, output of
G2 is uniformly distributed over {0, 1}2n. So G2 is equivalent to a 2n-bit uniform
random source G3. ut

Finally, we state a Lemma which bounds the probability of BAD event. We
give the proof of the Lemma later in the section.

Lemma 3. Suppose mix1 is LL-ε-regular, RL-injection, and mix2 is LL-ε-regular,
LR-regular then we have Pr[BAD = 1 in the interaction AG2 ] ≤ 2.5q(q − 1)ε.

Assuming this, we have

Advprf
GXLS(q) = |Pr[AG0 = 1]−Pr[AG3 = 1]| ≤ Advprf

E (2q)+Advprf
E (q)+2.5q(q−1)ε.

This proves the theorem. ut

Corollary 1. XLS and elastic blockcipher with three rounds are pseudorandom
function.

Proof. We have already seen that mix2 satisfies the given conditions of the
above theorem with ε = 2−n+1 (as shown in lemma 1. So XLS is a pseudorandom
function. Similarly, one can show that the mixing function corresponding to the
elastic blockcipher satisfy the given conditions and hence it is also PRF. ut
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Remark 3. The three round elastic blockcipher with appropriate xor-ing with
1 gives a pseudorandom function. Given any such construction, we only need
to check whether mixing functions satisfies those properties or not to claim
pseudorandom security.

4.3 Proof of Lemma 3

Deterministic Adversary. By fixing a random coin of a probabilistic adver-
sary A, one can find a deterministic unbounded adversary A such that

Pr[BAD = 1 in the interaction AG2 ] ≤ Pr[BAD = 1 in the interaction AG2 ].

Moreover, a system which behaves like a uniform random function against un-
bounded deterministic adversary then so does against any probabilistic adver-
sary. So throughout the proof we assume that the adversary A is deterministic
but computationally unbounded (which is as powerful as a probabilistic algo-
rithm). Without loss of generality, we assume that A makes exactly q queries
and all queries are distinct.

We state a simple lemma, called masking lemma, which is useful in general.

Lemma 4 (masking lemma). Suppose a length-preserving permutation π is
LR-regular and let Y be an s-bit random variable. Then,

∀X $← {0, 1}n, X ⊥ Y ⇒ πR(X,Y ) ⊥ Y.

Proof. As π is LR-regular and X ⊥ Y , πR(X,Y ) follows uniform distribution
on {0, 1}s. Now we compute the joint distribution of (πR(X,Y ), Y ). For any
y, z ∈ {0, 1}s, Pr[πR(X,Y ) = z, Y = y] = Pr[Y = y] × Pr[πR(X, y) = z]. As π
is LR-regular Pr[πR(X, y) = z] = 2−s and hence Pr[πR(X,Y ) = z, Y = y] =
Pr[πR(X, y) = z]× Pr[Y = y]. ut
Notation. We first identify the source random variables (independent and
uniformly distributed) in G2 and the other random variables which are de-
rived from the sources while a deterministic adversary A interacts with G2. Let
I = {i : si = 0} and I ′ = {1, 2, . . . , q}\ I. Let I ′′ = {i ∈ I ′ : ∀j < i, Pj 6= Pi}. So,
I ′′ denotes the set of all queries of A for which Aj values are sampled indepen-
dently. From the definition of G2, we have the following underlying distributions
(which induces all other random variables).

Source Random Variables and Other Derived Variables

1. Zi
$← {0, 1}nki , ∀i ∈ I;

2. Ai
$← {0, 1}n, ∀i ∈ I ′′ and (C ′i, Vi, Ci)

$← {0, 1}n(kj+1) ∀i ∈ I ′.

Note that I, I ′ and I ′′ are also random variables which are deterministically
determined from the above source variables in a recursive manner. More pre-
cisely, suppose for all i < j the source random variables have been defined (i.e.,
conditioned). Then Mj is determined deterministically and so whether j ∈ I,
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j ∈ I ′′ or j ∈ I ′ \I ′′ is determined. Based on this, we sample the source variables
on the index j. We continue it recursively for all 1 ≤ j ≤ q. Now we define other
dependent random variables as follows. Let i ∈ I ′. We define Wi = mix1R(Ai, Qi)
and Di = mix2R(Vi,Wi) and Zi = (C ′i, Ci, Di). Let Domj(Li) denote the set
Dom(Li) at the time of responding jth query i = 1, 2, 3. So we have

1. Domj(L1) = {Pi : i ∈ I ′, 1 ≤ i < j}.
2. Domj(L2) = {Mi : i ∈ I, i < j} ∪ {P ′i ‖ mix1L(Ai, Qi) : i ∈ I ′, i < j}.
3. Domj(L3) = {mix2L(Vi,Wi) : i ∈ I ′, i < j}.

We denote a tuple (x1, . . . , xj−1) by x<j or x≤j−1. So the jth query Mj of
a deterministic adversary A is a function (determined by the adversary) of the
responses Z<j obtained so far. Now we first observe some independence among
different random variables which are required to bound the probabilities of bad
events. We recall that mix1 is LL-ε-regular, RL-injection, LL-regular, and mix2
is LL-ε-regular, LR-regular.

Lemma 5. With the notation as defined before and the mix functions satisfying
the given conditions as mentioned above we have the following:

1. A≤j ⊥ Z<j.
2. Bi ⊥ Z≤j for all i ≤ j.
3. Zj ⊥ Z<j.

Proof. 1. It is enough to show that Zj |A≤j , Z<j is uniform. Moreover, we assume
j ∈ I ′ since otherwise it is trivially true. By definition of Vi’s, the conditional
distribution of Vj given (A≤j , Z<j) is uniform. Once we fix (A≤j , Z<j) the value
ofQj is fixed and as mix2R(·, x) is a regular function for all x,Dj = mix2R(Vj ,Wj)
is uniform. Note that Wj depends on Aj and Qj only. Again by definition C ′j , Cj
are chosen uniformly and independently. So we are done.

2. Note that ((Ai, Vi, C
′
i, Ci), (Zk)k≤j,k 6=i) regularly maps to (Bi, Z≤j) by

conditioning all other source variables. This is true since Ai regularly maps to
Wi (due to LR-regular property of mix1) and (Vi,Wi) bijectively maps to Bi, Di)
(as mix2 is a permutation). So the result follows.

3. As adversary makes distinct queries, we need to show that all outputs
Zj are independent and uniform on {0, 1}|Mj |. It is sufficient to show that the
conditional distribution Zj |(Z1, . . . , Zj−1) is uniform on {0, 1}|Mj |. If sj = 0
then we are done (see the line 3 of the game G2). So assume that sj 6= 0. Note

that Zj = (C ′j , Cj , Dj) where (C ′j , Vj , Cj)
$← {0, 1}nk−1×{0, 1}s×{0, 1}n (from

the lines 13 and 17) and Dj = mix2R(Vj ,mix1R(Aj , Qj)). By using LR-regular
property of mix2 it is easy to see that (C ′j , Cj , Dj) is conditionally uniformly
distributed. ut

Types of Bad Events. Note that BAD = 1 can occur in one of the lines 4,
10, 14, 18 and 19. Let us denote the event BADj,l if BAD = 1 is set for the first
time on line l of jth query of the interaction AG2 where l ∈ {4, 10, 14, 18, 19}. So
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we have

Pr[BAD = 1 in the interaction AG2 ] ≤
q∑
j=1

∑
l∈{4,10,14,18,19}

Pr[BADj,l].

Now we bound the probabilities of the all bad events. We fix 2 ≤ j ≤ q as
for the first query there can not be any bad event.

Claim 1. Pr[BADj,l] ≤ (j − 1)ε, l ∈ {4, 14}.
Proof of Claim 1. Note that BADj,4 means that Mj ∈ Domj(L2) and so
mix1L(Ai, Qi) = X for some i < j where the last n bits of Mj is X. Note
that in lemma 5, we have shown that A≤q ⊥ Z≤q and so Ai ⊥ (Qi, X). Thus,
Pr[mix1L(Ai, Qi) = X] ≤ ε (due to LL-ε-regular property of mix1). Similarly,
BADj,14 means that mix1L(Aj , Qj) = mix1L(Ai, Qi) for some i, and we have
(Ai, Aj) ⊥ (Qi, Qj) and Ai ⊥ Aj (note that Pi 6= Pj). So by conditioning
Ai, Qi, Qj and using LL-ε-regular property, Pr[mix1L(Aj , Qj) = mix1L(Ai, Qi)] ≤
ε.

Claim 2. Pr[BADj,10] ≤ (j − 1)ε.

Proof of Claim 2. Note that BADj,10 means that Pj ∈ Domj(L3) and so there
exist i < j such that Bi := mix2L(Vi,Wi) = Pj . We know that Bi ⊥ Z≤j and so
Bi ⊥ Pj . By using LL-ε-regular property Pr[Bi = Pj ] ≤ ε.

Claim 3. Pr[BADj,l] ≤ (j − 1)ε, l ∈ {18, 19}.
Proof of Claim 3. As Vj is sampled uniformly freshly, it is independent with
Z<j and A≤j . By using LL-ε-regular property, Pr[BADj,l] ≤ (j−1)ε, l ∈ {18, 19}.

ut
By using the above bounds of bad events we have

Pr[BAD = 1 in the interaction AG2 ] ≤ 2.5q(q − 1)ε.

5 Privacy and Integrity Security Analysis of COPA

We have already defined F using F for full-block messages and XLS to handle
the last incomplete message block. We already know that XLS is a pseudorandom
function. Now we show that F is a pseudorandom function and we find modified
bound (which is also tight in terms of query complexity as described a forging
algorithm in the section 3.2) for integrity security. Here we assume that F is an
ideal random online injective function and so for all fresh queries to F it returns
randomly keeping online property and so it returns the last block uniformly for
all fresh queries. When we make a fresh F−1-query (i.e., not obtained by F-
query) then the response is ⊥ (abort) with probability about 1−2−n. Moreover,
F uses XLS based on three independent random permutations Π1, Π2 and Π3.
We prove the privacy and integrity for this simplified construction. One can also
extend the bound for actual construction. However, we keep this for simplified
presentation of understanding of security of COPA as a domain completion.
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Theorem 4. Let F be the COPA domain completion using XLS. Then we have
the following results.

1.

Advoprf

F (t, q, σ, `) ≤ 5.5q2

2n
.

2.

Advauth
F (t, q, σ, `) ≤ 2q3 + 6.5q2 + 10q + 1

2n
.

Proof. First part is straightforward from the composition of PRF. Note that
XLS is PRF with advantage 5q2/2n. Now if we have no collision on the inputs
of XLS then we can not distinguish it from online random injective function.
So overall online RPF advantage is bounded by 5q2/2n + q2/2n+1 and hence it
proves the first part.

Now we prove the second part.

Notation. Without loss of generality, we assume that adversaryAmakes queries
both Mi[1..di] and Mi[1..di − 1] where di ≥ 2 and mi := Mi[di] is an incom-
plete block, 1 ≤ i ≤ q. Suppose the responses are C[1..di]‖Ti and Ci[1..di−1]‖Si
respectively. We write ci := Ci[di]. Thus, XLS(Mi[di]‖Si) = Ti‖Ci[di] := Ti‖ci.
Finally, it forges C∗[1..d+ 1] = C∗[1..d]‖T ∗. Let us assume that |Mi[di]| = n− 1
for all i. For a smaller incomplete block the similar proof works with more no-
tational complexity. Again for the sake of notational simplicity we provide the
simpler proof.

We now describe our proof strategy. Let Fail denote the event the forgery A
fails to forge correctly. We want to show that the Pr[Fail] ≥ 1− 2q3+6.5q2+10q+1

2n .

To show this, we consider the set T of all transcripts of the interaction AF . A
transcript consists of all the values (mentioned above) observed by A. We say
that a transcript τ is good if the following three hold:

1. Si’s are distinct.
2. Ci[1..di − 1] are distinct.
3. For all i, j and k, we have

Sk 6= Si ⊕ (Si ⊕ Sj)≪2 ⊕ (ci ⊕ cj)⊕ (ci ⊕ cj)≪2.

Lemma 6. For any good transcript τ , Pr[Fail | τ(AF ) = τ ] ≥ (1− 10q+1
2n ).

Proof. Proof of the lemma is postponed to the following subsection. ut

Lemma 7.

Pr[τ(AF ) is good ] ≥ 1− 6.5q2 + 2q3

2n
.

Proof. Let O denote the ideal random online authenticated function (for vari-
able length). Note that F is assumed to be same for full-block message. Now,

Pr[τ(AF ) is good] ≥ Pr[τ(AO) is good]−5.5q2/2n. We use the privacy bound for
the inequality. Now Si’s and ci’s are randomly distributed while A is interacting
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with O. So by using union bound on the complement of the good transcript, we
have Pr[τ(AO) is good] ≥ 1− q3/2n−1 − q2/2n. This proves the lemma. ut

From above lemmas, we have Pr[Fail] ≥ (1 − 6.5q2+2q3

2n )(1 − 10q+1
2n ) ≥ 1 −

2q3+6.5q2+10q+1
2n . This completes the proof of the integrity security of COPA. ut

5.1 Proof of Lemma 6

We introduce some more notation. We denote Ai, Ui, Vi, and Bi to denote the
all n-bit intermediate values and Wi to denote (n − 1)-bit values for the XLS-
computation of the ith message (see the figure corresponding to GXLS). For the
forged message we similarly denote A,U, V,B and W . We prove the lemma by
considering several cases.

Case 1: C∗[1..d− 1] 6= Ci[di − 1] for all i: If C∗[1..d− 1] 6= Ci[di − 1] for all i
then clearly forging F means that forging F . So Pr[A forges ] ≤ 2−n.

Case 2: C∗[1..d − 1] = Ci[di − 1], T ∗ = Tj for some i and j: The condition
3 for a good transcript forces that Vk 6= V for all k. Hence, after conditioning
on all inputs-outputs of Π1, Π2, Π3 favorable to the transcript, the output of
Π−12 (V ) = U is uniformly distributed over a set of size at lease 2n − q. Since
U to A mapping is defined by mix2L which is a 2-to-one mapping. So, at most
2q choices of A values can collide with Ak for some k. Thus, with probability
at least 1 − 3q/2n, A is different from all Ak values. So m∗‖S∗ is uniformly
distributed over a set of size at least (2n − q)(2n−1 − 3q). This proves that
Pr[S∗ 6= Si | A is fresh ] ≥ 1 − 4q/2n and so the unconditional probability
Pr[S∗ 6= Si] ≥ 1− 7q/2n. Hence

Pr[Fail | τ(AF ) = τ ] ≥ (1− (7q + 1)/2n).

Case 3: C∗[1..d − 1] = Ci[di − 1], for some i, T ∗ 6= Tj for all j: This case
is also similar to the previous case. However, we need to start the argument of
freshness in the inputs from Π−11 onwards. As T ∗ is fresh to Π−13 , the output
B is uniformly distributed over a set of size at least 2n − q. Among all these
choices, at least 2n − 3q would give a fresh V input to Π−12 . Similarly, at least
2n − 3q choices of A are fresh given that V is fresh. Finally, m∗‖S∗ is uniformly
distributed over a set of size at least (2n− q)(2n−1− 3q). By combining all these
probabilities we have

Pr[Fail | τ(AF ) = τ ] ≥ (1− (10q + 1)/2n).

6 Conclusion and Future Works

In this paper we first show a distinguishing attack on XLS. We extend this
attack to obtain a forging algorithm on COPA. Our forging algorithm makes
about 2n/3 queries. This algorithm can be applied to all similar authenticated
encryptions which handle the partial block in a similar fashion. In a positive side,
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we show that XLS is a pseudorandom function. In fact, XLS is little more stronger
than pseudorandom function. By exploiting this, the authenticated encryption
COPA can be shown to be secure up to 2n/3 queries. Thus, the query complexity
bound for COPA is tight. However, in terms of time complexity, it requires to
solve generalized birthday problem in which case we do not know any efficient
algorithm for three lists. Thus, it remains open problem to analyze COPA in
terms of time complexity.
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Appendix A: Where the proof of [27] went wrong

In this section we first see where the proof of XLS went wrong. Like many other
proofs, authors defined several games. Game G0 exactly simulates XLS (based on
random permutations E and E) and its inverse while G1 always returns random
bits. While interacting with these games, an event bad set true depending on
some internal collisions. As G0 and G1 are identical until bad, for any adversary
A we have

Adv±prfXLS (A) ≤ Pr[AG1 sets bad].

The games G2.G3 and G4 are defined and it had been shown that

Pr[AG1 sets bad] ≤ Pr[AG4 sets bad] + p

for some negligible p. In the game G4 the adversary specifies a transcript τ =
(M,C, ty) where M = (M1, M2, . . . , Mq), C = (C1, C2, . . . , Cq) and ty = (ty1, ty2, . . . , tyq)
where tyi’s are either Enc or Dec. If it is Enc then the ith query is Mi and Ci is
the response. Otherwise, the ith query is Ci and Mi is the response. The internal
variables are defined in such a manner so that the above transcript is realized.
The bad events holds true if a collision on inputs or outputs of E occurs. In
Claim 7 and 8 of [27], it is shown that Pr[AG4 sets bad] ≤ q2/2n+1 when we set
s = n − 1. However, the claims are incorrect. We describe a transcript of four
queries as follows:

1. M = ((P,Q), (P,Q⊕ α), (P3, Q3), (P4, Q3 ⊕ γ),
2. C = ((C,D), (C ′, D ⊕ β), (C,D3), (C ′, D3 ⊕ γ) and
3. ty = (Enc,Enc,Dec,Dec)

where γ = (α ⊕ β) ⊕ (α ⊕ γ)≫2. This is exactly same as one of the possible
transcript of our distinguisher A0. As discussed in the analysis of A0, the col-
lisions on outputs of E (in the last two queries) occur with probability 1/2. So
the claims are not correct.
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Now we investigate where exactly it went wrong. In the proof of claim 7,
authors considered six cases. In the third case there is one sub-case which con-
siders M i

2 6= M j
2 (the inputs of first E call of an encryption query). Subsequently,

authors mistakenly claimed that

“M i
4,M

i
5,M

j
4 ,M

j
5 are all independently and uniformly chosen at random”.

Note that for a specific transcript, M i
2 and M j

2 can appear as parts of the outputs

of two previous decryption queries. In this case, M i
5 and M j

5 are defined through
the mix function instead of sampling. So these can be very much dependent for
some choices of transcripts.

Appendix B: Figures

We illustrate XLS, GXLS and 3-round of elastic blockcipher in Fig. 6.
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Fig. 4. Illustration of (1) XLS, (2) GXLS and (3) 3-round Elastic Blockcipher.
The XLS and 3-round Elastic blockcipher have specific mix functions mix1 and
mix2 for all 1 ≤ s ≤ n− 1.
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Appendix C: Description of the Games

Game G2 G1 (with boxed statements executed).

Initialization: partial functions L1 = L2 = L3 = φ (empty),
j = 0, BAD = 0.
On query M := Mj+1

1 j = j + 1 and let |Mj | = nkj + sj , 0 ≤ sj < n, k ≥ 1
2 if sj = 0 then

3 Zj
$← {0, 1}|Mj |.

4 if Mj ∈ Dom(L2) then BAD[2, 2] = 1, Zj = L2(Mj) .

5 return L2(Mj)← Zj .
6 else

7 parse Mj = (P ′j , Pj , Qj) ∈ {0, 1}n(k−1) × {0, 1}n × {0, 1}s

8 Aj
$← {0, 1}n.

9 if Pj ∈ Dom(L1) then Aj ← L1(Pj).

10 else if Pj ∈ Dom(L3) then BAD[1, 3] = 1, Aj ← L3(Pj)

11 else L1(Pj)← Aj .
12 (Uj ,Wj)← mix1(Aj , Qj).

13 (C ′j , Vj)
$← {0, 1}n(k−1) × {0, 1}n

14 if (P ′j , Uj) ∈ Dom(L2) then

BAD[2, 2] = 1, (C ′j , Vj) = L2(P ′j , Uj) .

15 else L2(P ′j , Uj)← (C ′j , Vj)

16 (Bj , Dj)← mix2(Vj ,Wj).

17 Cj
$← {0, 1}n.

18 if Bj ∈ Dom(L1) then BAD[3, 1] = 1, Cj ← L1(Bj) .

19 else if Bj ∈ Dom(L3) then BAD[3, 3] = 1, Cj ← L3(Bj) .

20 else L3(Bj)← Cj .
21 return Zj = (C ′j , Cj , Dj).

Algorithm 3: The game G1 is equivalent to G′1 = GXLSR1,R2 as
L1 ∪ L3 and G2 behave like independent random functions (see
lemma 2).


