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Abstract. Side-channel attacks generally rely on the availability of good
leakage models to extract sensitive information from cryptographic im-
plementations. The recently introduced leakage certification tests aim
to guarantee that this condition is fulfilled based on sound statistical
arguments. They are important ingredients in the evaluation of leaking
devices since they allow a good separation between engineering challenges
(how to produce clean measurements) and cryptographic ones (how to
exploit these measurements). In this paper, we propose an alternative
leakage certification test that is significantly simpler to implement than
the previous proposal from Eurocrypt 2014. This gain admittedly comes
at the cost of a couple of heuristic (yet reasonable) assumptions on the
leakage distribution. To confirm its relevance, we first show that it allows
confirming previous results of leakage certification. We then put forward
that it leads to additional and useful intuitions regarding the information
losses caused by incorrect assumptions in leakage modeling.

1 Introduction

Side-channel attacks are an important threat against the security of modern em-
bedded devices. As a result, the search for efficient approaches to secure crypto-
graphic implementations against such attacks has been an ongoing process over
the last 15 years. Sound tools for quantifying physical leakages are a central in-
gredient for this purpose, since they are necessary to balance the implementation
cost of concrete countermeasures with the security improvements they provide.
Hence, while early countermeasures came with proposals of security evaluations
that were sometimes specialized to the countermeasure, more recent works have
investigated the possibility to consider evaluation methods that generally apply
to any countermeasure. The unified evaluation framework proposed at Euro-
crypt 2009 is a typical attempt in this direction [17]. It suggests to analyze
cryptographic implementations with a combination of information theoretic and
security metrics. The first ones aim at measuring the (worst-case) information
leakage independent of the adversary exploiting it, and are typically instantiated
with the Mutual Information (MI). The second ones aim at quantifying how ef-
ficiently an adversary can take advantage of this leakage in order to turn it into
(e.g.) a key recovery, and are typically instantiated with a success rate.

In this context, an important observation is that most side-channel attacks,
and in particular any standard Differential Power Analysis (DPA) attack, re-
quire a leakage model [10]. This model usually corresponds to an estimation of
the leakage Probability Density Function (PDF), possibly simplified to certain
statistical moments. Since the exact distribution of (e.g.) power consumption



or electromagnetic radiation measurements is generally unknown, it raises the
problem that any physical security evaluation is possibly biased by model errors.
In other words, security evaluations ideally require a perfect leakage model (so
that all the information is extracted from the measurements). But in practice
models are never perfect, so that the quality of the evaluation may highly depend
on the quality of the evaluator. This intuition can be captured with the notion
of Perceived Information (PI) - that is nothing else than an estimation of the
MI biased by the side-channel evaluator’s model [15]. Namely, the MI captures
the worst-case security level of an implementation, as it corresponds to an (hy-
pothetical) adversary who can perfectly profile the leakage PDF. By contrast,
the PI captures its practical counterpart, where actual (statistical) estimation
procedures are used by an evaluator, in order to profile the leakage PDF.

Picking up on this problem, Durvaux et al. introduced first “leakage certifica-
tion” methods at Eurocrypt 2014 [6]. Intuitively, leakage certification starts from
the fact that actual leakage models are obtained via PDF estimation, which may
lead to both estimation and assumption errors. As a result, and since it seems
hard to enforce that such estimated models are perfect, the best that one can
hope is to guarantee that they are “good enough”. For estimation errors, this is
easily verified using standard cross–validation techniques (in general, estimation
errors can anyway be made arbitrarily small by measuring more). For assumption
errors, things are more difficult since it requires to find out whether the estimated
model is close to an (unknown) perfect model. Interestingly, the Eurocrypt 2014
paper showed that indirect approaches allow determining if this condition is re-
spected, essentially by comparing the model errors caused by incorrect assump-
tions to estimation errors. That is, let us assume that an evaluator is given a set
of leakage measurements to quantify the security of a leaking implementation.
As long as the assumption errors measured from these traces remain small in
front of the estimation errors, the evaluator is sure that any improvement of his
(possibly imperfect) assumptions will not lead to noticeable degradations of the
estimated security level – since the impact of these improved assumptions will
essentially be hidden by the estimation errors. By contrast, once the assumption
errors become significant in front of estimation ones, it means that an improved
model is required to extract all the information from the measurements. Hence,
leakage certification allows ensuring that the modeling part of an evaluation is
sound (i.e. only depends on the implementation – not the evaluator).

In practice, the leakage certification test in [6] requires a number of technical
ingredients. Namely, the evaluator first has to characterize the leakages of the
target implementation with a sampled (cumulative) distance distribution, and
to characterize his model with a simulated (cumulative) distance distribution.
Working with distances allows exploiting a univariate goodness–of–fit test even
for leakages of large dimensionalities (i.e. it allows comparing the univariate
distances between multivariate leakages rather than comparing the multivariate
leakages directly). The Cramér–von–Mises divergence is used as a comparison
tool in the Eurocrypt 2014 paper. Qualitatively, large divergences between the
sampled and simulated distributions essentially mean that the assumptions are



imperfect. Quantitatively, the evaluator then has to determine whether such
divergences are significant, by verifying whether they can be explained by as-
sumption errors. This essentially requires computing the p-values when testing
the hypothesis that the estimated model is correct (which again requires comput-
ing many simulated cumulative distance distributions). Summarizing, the beauty
of this approach lies in the fact that it only relies on non-parametric estimations
and requires no assumptions on the underlying leakage distributions. But this
also comes at the cost of quite computationally intensive tools.

In this paper, we analyze solutions to mitigate the latter drawback, by in-
vestigating whether (computationally) cheaper and (conceptually) simpler cer-
tification procedures can be obtained at the cost of mild assumptions on the
statistical distributions in hand. Two natural options directly come to mind for
this purpose, that both aim to avoid dealing with the (expensive to characterize)
cumulative leakage distributions directly. One possibility is to “summarize” the
leakage distribution with its MI/PI estimates (since they can be used as good
indicators of the side-channel security level, as now proven in [5]). Another one
is to analyze this distribution “moments by moments”, motivated by the recent
results in [13]. In both cases, and following the approach in [6], the main idea
remains to compare actual leakage samples generated by a leaking implementa-
tion with hypothetical ones generated with the evaluator’s model. Surprisingly,
we show that the first approach cannot work, essentially because of situations
where model errors in one statistical moment (e.g. the mean) are reflected in
another statistical moment (e.g. the variance), which typically arises when using
the popular stochastic models in [16], and actually corresponds to the context of
epistemic noise discussed in [9]. More interestingly, we also show that a moment-
based approach provides excellent results under reasonable assumptions, and can
borrow from the “leakage detection tests” that are already used by evaluation
laboratories [8, 11]. The resulting leakage certification method is significantly
faster than the Eurocrypt 2014 one (and allows reproducing its experiments).
We also show that it easily generalizes to masked implementations, and enables
extracting very useful intuitions on the origin of the leakages. Eventually, our
new tools additionally lead to simple heuristics to approximate the information
loss due to incorrect leakage models, which remained an open problem in [6].
Summarizing, we simplify leakage certification into a set of easy–to–implement
procedures, hopefully more attractive for evaluation laboratories.

Cautionary note. This paper is about leakage certification, which is a different
problem than the leakage detection one discussed in [8, 11] (despite we indeed
borrow some tools from leakage detection to simplify leakage certification). In
this respect, Goodwill et al.’s non specific t-test is a natural approach to leakage
detection, and allows determining if there is “some” leakage in an implementa-
tion, independent of whether it can be exploited (e.g. how many traces do you
need to attack). By contrast, leakage certification aims to guarantee that a leak-
age model that can be exploited in an attack (and, e.g. can be used to determine
a key recovery success rate) is close enough to the true leakage model. That
is, it aims to make evaluators confident that their attacks are close enough to



the worst-case ones. So leakage detection and certification are essentially comple-
mentary. Note that leakage models (and certification) are needed in any attempt
to connect side-channel analysis with cryptographic security guarantees (e.g. in
leakage resilience [1, 7]), where we will always need an accurate evaluation of the
security level, or to build security graphs such as introduced in [20].

2 Background

2.1 Measurement setup

Our experiments are based on measurements of an AES Furious implementation1

run by an 8-bit Atmel AVR (ATMega644P) microcontroller at a 20 MHz clock
frequency. We monitored the voltage variations across a 22 Ω resistor introduced
in the supply circuit of our target chip. Acquisitions were performed using a
Lecroy WaveRunner HRO 66 oscilloscope running at 625 MHz and providing 8-
bit samples. In practice, our evaluations focused on the leakage of the first AES
master key byte (but would apply identically to any other enumerable target).
Leakage traces were produced according to the following procedure. Let x and s
be our target input plaintext byte and subkey, and y = x⊕s. For each of the 256
values of y, we generated 1000 encryption traces, where the rest of the plaintext
and key was random (i.e. we generated 256 000 traces in total, with plaintexts of
the shape p = x||r1|| . . . ||r15, keys of the shape κ = s||r16|| . . . ||r30, and the ri’s
denoting uniformly random bytes). In order to reduce the memory cost of our
evaluations, we only stored the leakage corresponding to the 2 first AES rounds
(as the dependencies in our target byte y = x⊕ s typically vanish after the first
round, because of the strong diffusion properties of the AES). In the following,
we will denote the 1000 encryption traces obtained from a plaintext p including
the target byte x under a key κ including the subkey s as: AESκs

(px) liy (with
i ∈ [1; 1000]). Eventually, whenever accessing the points of these traces, we will
use the notation liy(τ) (with τ ∈ [1; 10 000], typically). These subscripts and
superscripts will be omitted when not necessary or clear from the context.

2.2 PDF estimation methods

Side-channel attacks such as the standard DPA described in [10] require a leakage
model. In general, such models correspond to estimations of the leakage PDF
(possibly simplified to certain statistical moments). In the following, we will
consider two important PDF estimation techniques for this purpose.

Gaussian templates. The Template Attack (TA) in [3] approximates the
leakages using a set of normal distributions. It assumes that each intermedi-
ate computation generates Gaussian-distributed samples. In our typical scenario
where the targets follow a key addition, we consequently use: P̂rmodel[ly|s, x] ≈
P̂rmodel[ly|s ⊕ x] ∼ N (µy, σ

2
y), where the “hat” notation is used to denote the

1 Available at http://point-at-infinity.org/avraes/.



estimation of a statistic. This approach requires estimating the sample means
and variances for each value y = x⊕ s (and mean vectors / covariance matrices
in case of multivariate attacks). We denote the construction of such a model

with P̂r
ta

model ← L
p
Y , where LpY is a set of Np traces used for profiling.

Regression-based models. To reduce the data complexity of the profiling, an
alternative approach proposed by Schindler et al. is to exploit Linear Regres-
sion (LR) [16]. In this case, a stochastic model θ̂(y) is used to approximate the
leakage function and built from a linear basis g(y) = {g0(y), ..., gB−1(y)} cho-
sen by the adversary/evaluator (usually gi(y) are monomials in the bits of y).

Evaluating ˆθ(y) boils down to estimating the coefficients αi such that the vec-

tor θ̂(y) =
∑
i αigi(y) is a least-square approximation of the measured leakages

Ly. In general, an interesting feature of such models is that they allow trading
profiling efforts for online attack complexity, by adapting the basis g(y). That
is, a simpler model with fewer parameters will converge for smaller values of
Np, but a more complex model can potentially approximate the real leakage
function more accurately. Compared to Gaussian templates, another feature of
this approach is that only a single variance (or covariance matrix) is estimated
for capturing the noise (i.e. it relies on an assumption of homoscedastic errors).

Again, we denote the constructions of such a model with P̂r
lr

model ← L
p
Y .

2.3 Evaluation metrics

In this subsection, we recall a couple of useful evaluation metrics that have been
introduced in previous works on side-channel attacks and countermeasures.

Correlation coefficient. In view of the popularity of the Correlation Power
Analysis (CPA) distinguisher in the literature [2], a natural candidate evaluation
metric is Pearson’s correlation coefficient. In the non-profiled setting, an a-priori
(e.g. Hamming weight) model is used for computing the metric. The evaluator
then estimates the correlation between his measured leakages and the modeled
leakages of a target intermediate value. In our AES example, it would lead to
ρ̂(LY (τ),modelcpa(Y )). In practice, this estimation is performed by sampling
(i.e. measuring) Nt test traces from the leakage distribution (we denote the set
of these Nt test traces as LtY ). Next, and in order to avoid possible biases due
to an incorrect a-priori choice of leakage model, a natural solution is to extend
the previous proposal to the profiled setting. In this case, the evaluator will
start by estimating a model from Np profiling traces: ˆmodelcpa ← LpY (with

LpY ⊥⊥ LtY ). In practice, ˆmodelcpa can be seen as a simplification of the previous
Gaussian templates, that only includes estimates for the first-order moments of
the leakages. That is, for any time sample τ , we have ˆmodelcpa(y) = m̂1

y(τ) =

Êi(L
i
y(τ)), with m̂1

y a first-order moment and Ê the sample mean operator.

Mutual and perceived information. In theory, the worst-case security level
of an implementation can be measured with a MI metric. Taking advantage of
the notations in Section 2.1 and considering the standard case where a key byte
S is targeted, it amounts to estimate the following quantity:



MI(S;X,L) = H[S] +
∑
s∈S

Pr[s]
∑
x∈X

Pr[x]
∑
liy∈Lt

Prchip[l
i
y|s, x]. log2 Prchip[s|x, liy].

When summing over all s and x values, and a sufficiently large number of leak-
ages, the estimation tends to the correct MI. Yet, as mentioned in introduction,
the chip distribution Prchip[l

i
y|s, x] is generally unknown to the evaluator. So in

practice, the best that we can hope is to compute the following PI:

P̂I(S;X,L) = H[S] +
∑
s∈S

Pr[s]
∑
x∈X

Pr[x]
∑
liy∈Lt

Prchip[l
i
y|s, x]. log2 P̂rmodel[s|x, liy],

where P̂rmodel ← LpY is typically obtained using the previous Gaussian templates
or LR-based models. Under the assumption that the model is properly estimated,
it is shown in [10] that the CPA and PI metrics are essentially equivalent in
the context of standard univariate side-channel attacks (i.e. exploiting a single
leakage point liy(τ) at a time). By contrast, only the PI naturally extends to
multivariate attacks. It can be interpreted as the amount of information leakage
that will be exploited by an adversary using an estimated model. So just as the
MI is a good predictor for the success rate of an ideal TA exploiting the perfect
model Prchip, the PI is a good predictor for the success rate of an actual TA

exploiting the “best available” model P̂rmodel obtained thanks to profiling.

Moments-correlating DPA. Eventually, and in order to extend the CPA
distinguisher to higher-order moments, the Moments-Correlating Profiled DPA
(MCP-DPA) has been introduced in [13]. It features essentially the same steps as
a profiled CPA. The only difference is that the adversary first estimates dth-order

statistical moments with his profiling traces, and then uses ˆmodel
d

mcp−dpa(y) =

m̂d
y(τ), with m̂d

y a dth-order moment. For concreteness, we will consider d’s up
to four (i.e. the sample mean for d = 1, variance for d = 2, skewness for d = 3
and kurtosis for d = 4), which allows us discussing the relevant case-study of a
masked implementation with two shares. Yet, the tool naturally extends to any
d. One useful feature of this distinguisher is that it embeds the same “metric”
intuition as CPA: the higher the correlation estimated with MCP-DPA, the more
efficient the corresponding attack exploiting a moment of given order.

2.4 Estimating a metric with cross–validation

Estimating a metric α from a leaking implementation holds in two steps. First, a
model has to be estimated from a set of profiling traces Lp: ˆmodel← Lp. Second,
a set of test traces Lt (following the true distribution Prchip) is used to estimate
the metric: α̂ ← (Lt, ˆmodel). As a result, two main types of errors can arise.
First, the number of traces in the profiling set may be too low to estimate the
model accurately (which corresponds to estimation errors). Second, the model
may not be able to accurately predict the distribution of samples in the test set,
even after intensive profiling (which then corresponds to assumption errors).



In order to verify that estimations in a security evaluation are sufficiently
accurate, the solution used in [6] is to exploit cross–validation. In general, this
technique allows gauging how well a predictive (here leakage) model performs
in practice. For k-fold cross–validations, the set of evaluation traces L is first
split into k (non overlapping) sets L(i) of approximately the same size. Let us

define the profiling sets L(j)
p =

⋃
i 6=j L(i) and the test sets L(j)

t = L \ L(j)
p .

The sample metric is then repeatedly computed k times for 1 ≤ j ≤ k as

follows. First, we build a model from a profiling set: ˆmodel
(j) ← L(j)

p . Then we

estimate the metric with the associated test set α̂(j) ← (L(j)
t , ˆmodel

(j)
). Cross–

validation protects evaluators from obtaining too optimistic sample metric values
due to over-fitting, since the test computations are always performed with an
independent data set. Finally, the k outputs can be averaged in order to get an
unbiased metric estimate, and their spread characterizes the result’s accuracy.

3 A motivating negative result

As mentioned in introduction, detecting assumption errors is generally more
challenging than detecting estimation errors (which is easily done with the pre-
vious cross–validation). Intuitively, it requires to investigate the likelihood that
samples obtained from a leaking device can indeed be explained by an estimated
model, which requires a (multivariate) goodness–of–fit test. Since such tests are
computationally intensive, an appealing alternative would be to check whether
the samples obtained from the leaking device lead to a PI that is at least close
enough to the MI: this would guarantee a good estimation of the security level.
But we again face the problem that the MI is unknown, which imposes trying
indirect approaches. That is, we would need an metric counterpart to the sam-
pled simulated distance distribution in [6], which would typically correspond to
the following Hypothetical (mutual) Information (HI):

ĤI(S;X,L) = H[S]−
∑
s∈S

Pr[s]
∑
x∈X

Pr[x]
∑
liy∈Lt

P̂rmodel[l
i
y|s, x]. log2 P̂rmodel[s|x, liy].

Intuitively, this HI corresponds to the amount of information that would be ex-
tracted from an hypothetical implementation that would exactly leak according
to the model P̂rmodel. In itself, the HI is useless to the evaluator, as it is actually
disconnected from the chip distribution. For example, even a totally incorrect
model (i.e. leading to a negative PI) would lead to a positive HI. By contrast,
we could hope that as long as the HI and PI are “close”, the assumption errors
are “small enough” for the number of measurements considered in the security
evaluation. Furthermore, we could use a simple hypothesis test to detect non-
closeness. For a number of traces N in the evaluation set, this would require to
compute estimates P̂I(S;X,L)(j) and ĤI(S;X,L)(j) with cross–validation, and
to check whether these estimates come from different (univariate) distributions.
If they significantly differ, we would conclude that the model exhibits assumption
errors that degrade the estimated security level, in a similar fashion as in [6].



Unfortunately, and despite it can detect certain assumption errors, this ap-
proach cannot succeed in general. A simple counter–example can be explained
in the context of LR. Say an adversary estimates a model with a linear basis,
which leads to significant differences between the actual (mean) leakages and
the ones suggested by the model. Then, because of the homoscedastic error as-
sumption, the single variance of the LR-based model will reflect this error (i.e.
capture both physical noise and model error). As a result, whenever this type of
error increases, the PI will decrease (as expected) but the HI will also decrease
(contrary to the MI). So testing the consistency between the PI and HI estimates
will not reveal the inconsistencies between the PI estimates and the true MI.

4 A new method to detect assumption errors

Despite negative, the previous counter–example suggests two interesting tracks
for simplifying leakage certification tests. First, summarizing a complete distri-
bution into representative metrics (e.g. such as the PI) allows taking advantage
of simpler statistical tests. Second, since the fact that the homoscedastic errors
assumption is not fulfilled implies that errors made in the estimation of cer-
tain statistical moments (or more generally, parameters) of a distribution are
reflected in other statistical moments of this distribution, a natural approach is
to test the relevance of a model “moment by moment”. That is, for a number
of traces N in an evaluation set, one could verify that the moments estimated
from actual leakage samples are hard to tell apart from the moments estimated
from the model (with the same number of samples N). Based on this idea, our
simplified method to detect assumption errors will be based on the following two
hypotheses (one strictly necessary and the other optional but simplifying).

1. The leakage distribution is well represented by its statistical moments. This
corresponds to the classical “moment problem” in statistics, for which there
exist counter-examples (e.g. the log-normal distribution is not uniquely char-
acterized by its moments). So our (informal) assumption is that these counter-
examples will not be significant for our experimental case-studies.

2. The sampled estimates of our statistical moments are approximately Gaussian-
distributed. This directly derives from the central limit theorem and actually
depends on the number of samples used in the estimations (which will become
sufficient as the leakages become more noisy, e.g. in the case of protected im-
plementations that are most relevant for concrete investigations).

Let us add a couple of words of motivation for those assumptions. First recall
that we know from the previous results in [6] that leakage certification is possible
without such assumptions, at the cost of somewhat involved statistical reason-
ing and estimations. So it seems natural to investigate alternative (heuristic)
paths allowing to reach similar conclusions. As will be shown next, this is indeed
the case of our simplified approach for a couple of relevant scenarios. Second,
statistical moments are at the core of the reasoning regarding the masking coun-
termeasure. That is, the security order of an implementation is generally defined



as the lowest informative moment in the leakage distribution (minus one) – see [5]
for an extensive discussion of this issue. Besides, many concrete (profiled and
non-profiled) side-channel attacks are based (implicitly or explicitly) on para-
metric PDF estimation techniques that rely on the estimation of moments (e.g.
the Gaussian templates and LR-based models in Section 2.2, but also second-
order attacks such as [4, 14]). So an approach based on an analysis of moments
seems well founded in these cases.2 As a result, and maybe most importantly,
we believe that the following tools open interesting research avenues regarding
the intuitive evaluation of leaking devices based on their moments.

As for the Gaussian assumption, our motivation is even more pragmatic, and
relates to the observation that simple t-tests are becoming de facto standards
in the preliminary evaluation of leaking devices [8, 11]. So we find it appealing
to rely on statistical tools that are already widespread in the CHES community,
and to connect them with leakage certification. As will be clear next, this allows
us to use the same evaluation method for statistical moments of different orders.
However, we insist that it is perfectly feasible to refine our approach by using a
well adapted test for each statistical moment (e.g. F-test for variances, . . . ).

4.1 Test specification

The main idea behind our new leakage certification method is to compare (ac-
tual) dth-order moments m̂d

y estimated from the leakages with (simulated) dth-

order moments m̃d
y estimated from the evaluator’s model P̂rmodel (by sampling

this model). Thanks to our second assumption, this comparison can simply be
performed based on Student’s t-test. For this purpose, we need multiple estima-
tions of the moments m̂d

y and m̃d
y, that we will obtain thanks to an approach

inspired from Section 2.4 (although there is no cross–validation involved here).

More precisely, we start by splitting the full set of evaluation traces L into
k (non overlapping) sets of approximately the same size L(j), with 1 ≤ j ≤ k.
From these k subsets, we produce k estimates of (actual) dth-order moments

m̂
d,(j)
y , each of them from a set L(j). We then produce a set of simulated traces
L̃ that has the same size and corresponds to the same intermediate values as the
real evaluation set L, but where the leakages are sampled according to the model
that we want to evaluate. In other words, we first build the model P̂rmodel ← L,
and then generate a simulated set of traces L̃ ← P̂rmodel. Based on L̃, we produce

k estimates of (simulated) dth-order moments m̃
d,(j)
y , each of them from a set

L̃(j), as done for the real set of evaluation traces. From these real and simulated
moments estimates, we compute the following quantities:

µ̂dy = Êj(m̂
d,(j)
y ), σ̂dy =

√
v̂arj(m̂

d,(j)
y ),

µ̃dy = Êj(m̃
d,(j)
y ), σ̃dy =

√
v̂arj(m̃

d,(j)
y ),

2 Non-parametric PDF estimations do not suffer from assumption errors (at the cost
of a significantly increased estimation cost), so are out of scope here.



where v̂ar is the sample variance operator. Eventually, we simply estimate the t
statistic (next denoted with ∆d

y) as follows:

∆d
y =

µ̂dy − µ̃dy√
(σ̂d

y)
2+(σ̃d

y)
2

k

.

The p-value of this t statistic within the associated Student’s distribution returns
the probability that the observed difference is the result of estimations issues,
and is computed as:

p = 2× (1− CDFt(|∆d
y|, df )),

where CDFt is the Student’s t cumulative distribution function, and df is its
number freedom degrees.3 In other words, a small p-value indicates that the
model is incorrect with high probability. Concretely, the only parameter to set
in this test is the number of non overlapping sets k. Following [6], we used k = 10
which is a rather standard value in the literature. Note that increasing k has very
limited impact on the accuracy of our conclusions since all variance estimates
in the t-test are normalized by k. By contast it increases the time complexity of
the test (so keeping k reasonably small is in general a good strategy).

5 Simulated experiments

In order to validate our moment-based certification method, we first analyze a
couple of simulated experiments, where we can control the assumption errors. In
particular, and in order to keep these simulations reasonably close to concrete
attacks, we consider four distinct scenarios. In the first one (reported in Figure 1),
both the leakage function Prchip and the leakage model P̂rmodel follow a Gaussian
distribution, but the model’s estimated mean differs from the true distribution.
In the second one (reported in Figure 2), the leakage function and the leakage
model again follow a Gaussian distribution, this time with a model error on the
variance. These two examples informally correspond to the context of LR-based
attacks, where the basis is not large enough to capture the exact mean values.
Our third and fourth examples correspond to a slightly different setting aimed to
emulate a masked implementation, for which the true distribution is typically a
mixture [19]. So in the third scenario (reported in Figure 3), the leakage function
has a Gaussian mixture distribution with a non-zero skewness, while the leakage
model is still a Gaussian approximation. And in the fourth scenario (reported
in Figure 4), the leakage function has a Gaussian mixture distribution with a
non-zero kurtosis, while the leakage model is still a Gaussian approximation. In
all cases, we represent the true distribution and the biased model, the estimated
moments for these two distributions, and the p-value of our certification test.

3 Student’s t distribution is a parametric probability density function whose only pa-
rameter is its number of freedom degrees, that can be directly derived from k and
the previous σ estimates as: df = (k − 1) × [(σ̂d

y)2 + (σ̃d
y)2]2/[(σ̂d

y)4 + (σ̃d
y)4].



-5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

pdf

 

 

true distribution
biased model

0 500 1000 1500 2000 2500

2

2.5

3

3.5

4

4.5

mean

e
s
ti
m

a
te

d
 m

o
m

e
n

ts

0 500 1000 1500 2000 2500

0.5

1

1.5

2

2.5

3

standard deviation

0 500 1000 1500 2000 2500

-1

-0.5

0

0.5

1

1.5

skewness

0 500 1000 1500 2000 2500

2

4

6

kurtosis

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

→ number of traces

p
-v

a
lu

e

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

→ number of traces
0 500 1000 1500 2000 2500

0

0.2

0.4

0.6

0.8

1

→ number of traces
0 500 1000 1500 2000 2500

0

0.2

0.4

0.6

0.8

1

→ number of traces

Fig. 1. Gaussian leakages, Gaussian model, error in the estimated mean.
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Fig. 2. Gaussian leakages, Gaussian model, error in the estimated variance.
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Fig. 3. Gaussian mixture leakages, Gaussian model, error in the estimated skewness.
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Fig. 4. Gaussian mixture leakages, Gaussian model, error in the estimated kurtosis.



The results are mostly as expected and confirm the simplicity of the method.
That is, as the number of measurements in the evaluation set increases, we are
able to detect the assumption errors in all cases. The only difference between
the applications to different moments is that errors on higher-order moments
may be more difficult to detect as the noise increases. This difference is caused
by the same argument that justifies the relevance of the higher-order masking
countermeasure. Namely, the sampling complexity when estimating the moments
of a distribution increases exponentially in d. However, this is not a limitation
of the certification test: if such errors are not detected for a given evaluation
set, it just means that their impact is still small in front of assumption errors
at this stage of the evaluation. Besides, we note that the respective relevance of
the model errors on different moments will be further discussed in Section 7.

6 Measured experiments

In order to obtain a fair comparison with the results provided in [6], we also
applied our new leakage certification method to the same case-study. That is,
we used the measurement setup from Section 2.1 and evaluated the relevance of
two important profiling methods, namely the Gaussian TA and LR, for the most
informative time sample in our leakage traces (i.e. with maximum PI).

The main difference with the previous simulated experiments is that we now
have to test 256 models independently (each of them corresponding to a target
intermediate value y = x⊕ s). Our results are represented in Figure 5, where we
plot the p-values output by our different t-tests in greyscale, for four statistical
moments (i.e. the mean, variance, skewness and kurtosis). A look at the first
two moments essentially confirms the results of Durvaux et al. More precisely,
the Gaussian templates seem to capture the measured leakages quite accurately
(for the 256,000 traces in our evaluation set). By contrast, the linear regression
quickly exhibits inconsistences. Interestingly, assumption errors appear both in
the means and in the variances, which corresponds to the expected intuition.
That is, errors in the means are detected because for most target intermediate
values, the actual leakage cannot be accurately predicted by a linear combination
of the S-box output bits. And errors in the variances appear because the LR-
based models rely on the homoscedastic error assumption and capture both
physical noise and noise due to assumption errors in a single term.

By contrast, and quite intriguingly, a look at the last two moments (i.e.
skewness and kurtosis) also shows some differences with the results in [6]. That
is, we remark that even for Gaussian templates, small model errors appear in
these higher-order moments. This essentially corresponds to the fact that our
measured leakages do not have perfectly key-independent skewness and kurtosis,
as we assume in Gaussian PDF estimations. This last observation naturally raises
the question whether these errors are significant, i.e. do they contradict the
results of the Eurocrypt 2014 leakage certification test? In the next section, we
show that it is not the case, and re-conciliate both approaches by investigating
the respective informativeness of the four moments in our new test.
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Fig. 5. Results of the new leakage certification test for actual measurements.

7 Quantifying the information loss

Since Figure 5 suggests the existence of (small) model errors in our Gaussian tem-
plates, that are due to an incorrect characterization of the third- and fourh-order
moments in our leakage traces, we now want to investigate whether these errors
are leading to significant information losses. Fortunately, our “per-moment” ap-
proach to leakage certification also allows simple investigations in this direction
(which incidentally and heuristically answers one of the open questions in [6],
about the information loss due to model errors). In particular, we can simply use
the MCP-DPA mentioned in Section 2.3 for this purpose. Roughly, this tool com-
putes the correlation between a simplified model (that corresponds to dth-order
moments of the leakage distribution) to samples raised to the power d (possibly
centered or standardized if we consider centered and standardized moments). As
discussed in [13], the resulting estimated correlation coefficient features a “metric
intuition”: the higher the value of the MCP-DPA distinguisher computed for an
order d, the more efficient the MCP-DPA attack exploiting this statistical order
of the actual leakage distribution. Hence, computing the value of the MCP-DPA
distinguisher for different values of d should solve our problem.

Concretely, we start by applying MCP-DPA in the traditional sense and
exploit cross–validation for this purpose, this time following exactly Section 2.4.
That is, the set of evaluation traces L is again split into k (non overlapping) sets

L(i) of approximately the same size, and we use profiling sets L(j)
p =

⋃
i 6=j L(i)

and test sets L(j)
t = L\L(j)

p . We then repeatedly compute the dth-order moments

m̂
d,(j)
y ← L(j)

p , and the dth-order MCP-DPA distinguisher:

MCP-DPA(j)(d) = ρ̂
(
M̂

d,(j)
Y , (Ly)d ← L(j)

t

)
.



As previously mentioned, it corresponds to the sample correlation between the
random variable representing the estimated moments M̂d

Y , and the random vari-

able corresponding to the leakage samples coming from the test set Ly ← L(j)
t ,

raised to power d (possibly centered or standardized if we consider centered and
standardized moments). The k = 10 estimates for this MCP-DPA metric are
represented in the top part of Figure 6. We additionally considered two slightly
tweaked versions of MCP-DPA, where we rather estimate Gaussian TA (resp.

LR-based) models P̂r
ta

model (resp. P̂r
lr

model), and consider the two (resp. one) key-
dependent moments from these models to compute the metric. These tweaked
MCP-DPAs are represented in the middle (resp. lower) part of the figure.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

re
a

l

moments-correlating DPA

 

 

mean
variance
skewness
kurtosis

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

G
T

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

→ correlation

L
R

 

 

Fig. 6. MCP-DPA results actual measurements.

Our main observations are as follows. First, the upper part of the figure
suggests that the most informative moments in our leakage traces are the mean
and variance. There is indeed a small amount of information in the skewness and
kurtosis. But by considering the classical rule–of–thumb that the measurement
complexity of a correlation-based attack is inversely proportional to the square
of its correlation coefficient, we can see that the additional information gain in
these higher-order moments is very limited in our context. This observation backs
up the conclusions of the generic leakage certification test in [6] that Gaussian
templates are sufficiently accurate for our evaluation set. It can be similarly
quantified by using the following approximation from [10]:

I(X,Y ) ≈ −1

2
× log2

(
1− ρ(X,Y )2

)
,



considering that attacks exploiting two moments would take advantage of the
sum of their respective information (i.e. considering them as independent in-
formation channels), and using the formula in [?] which shows that the mea-
surement complexity of a side-channel attack is inversely proportional to the
MI/PI leaked by a target implementation. Next, we also see that TA-based and
LR-based MCP-DPA yield no information in the higher-order moments, which
trivially derives from the fact that they rely on a Gaussian assumption. Eventu-
ally, we notice that the information loss between LR-based models and TA-based
models can be approximated thanks to the correlation between their moments.
For example, and considering the means in Figure 6, we can compute the value
of the LR-based MCP-DPA distinguisher – worth ≈ 0.48 in the figure – by mul-
tiplying the value of the TA-based MCP-DPA distinguisher – worth ≈ 0.74 in
the figure – by ρ̂(M̂d,ta

Y , M̂d,lr
Y ) – worth ≈ 0.65 in our experiments (i.e. by taking

advantage of the “product rule” for the correlation coefficient in [18]).

Those last tools are admittedly informal. Yet, we believe they provide a
useful variety of heuristics allowing evaluators to analyze the results of their
certification tests. In particular, they lead to easy–to–exploit intuitions regarding
the impact (or lack thereof) of model errors detected in moments of a given order.
As discussed in the beginning of Section 4, further formalizing these findings,
and possibly putting forward relevant scenarios where our simplified approach
leads to significant shortcomings, is an interesting scope for further research.

Eventually, we mention that from the time complexity point–of–view, the
leakage certification tools in this paper are considerably more efficient than the
previous ones from [6]. Strict comparisons are hard to obtain since our current
implementations are prototype ones, and further optimizations could certainly
be investigated. But roughly speaking, generating leakage certification plots for
256 leakage models as in Figure 5 is completed in minutes of computations on
a standard desktop computer, whereas it typically took hours with the Euro-
crypt 2014 tools. Since the cost of our heuristic leakage certification method is
essentially similar to the one of a CPA, it can easily be applied on full leakage
traces, in particular if some high performance computing can be exploited to
take advantage of the parallel nature of the certification problem [12].
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