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Abstract—We propose a decentralized cryptocurrency called
Spacemint, which is based on a block chain ledger similar to that
of Bitcoin, but where the wasteful proofs of work are replaced
by efficient proofs of space, recently introduced by Dziembowski
et al. Instead of requiring that a majority of the network’s
computing power is controlled by honest miners (as in Bitcoin),
our currency requires that honest miners dedicate more net disk
space than a potential adversary.

In Spacemint, once a miner has dedicated and initialized some
space, participating in the mining process is very cheap. A new
block is added to the chain every fixed period of time, and
in every period a miner just has to make a small number of
lookups to the stored space to check if she “wins”, and thus can
efficiently add the next block to the chain and get the mining
reward. In this paper, we detail the construction of Spacemint,
analyze its security and game-theoretic properties, and study its
performance. Our prototype shows that it takes approximately
25 seconds to prove over a terabyte of space, and it takes a
fraction of a second to verify the proof.

I. INTRODUCTION

Bitcoin is a decentralized digital currency which was intro-
duced in 2009 [22] and now is by far the most successful digi-
tal currency ever deployed. The currency’s decentralized book-
keeping depends on maintaining a public ledger recording all
transactions that occur. This ledger is implemented by a block
chain: that is, a sequence of blocks each of which contains
transaction records and some auxiliary information, which
are generated by participants in the network. To encourage
participants to contribute blocks, those who add a block to the
chain are rewarded with some newly minted Bitcoin.

A principal difficulty when designing a digital currency is
to provide security against double-spending: that is, the owner
of a coin must be able to spend it exactly once. To prevent
double-spending, it must be enforced that all parties in the
network agree on the same block chain (except possibly for
the most recent few blocks). Before accepting a transaction,
a recipient should wait until the transaction has been in the
chain long enough that she can be reasonably sure it will stay
there forever (that is, consensus has been reached).

The Bitcoin protocol achieves consensus by making it
computationally hard to add a block to the chain: currently,
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mining a Bitcoin block requires about 265 hash computa-
tions [1]. Accordingly, a Bitcoin block is considered to be
a proof of work [11]: that is, a proof that a certain amount of
computational resources were invested.

The Bitcoin network mines a block approximately every
10 minutes, and so it consumes computational resources –
and associated natural resources, primarily in the form of
electricity – at a massive scale. Current network usage is
estimated to be several 100 MW of power; moreover, most
mining is currently done by dedicated hardware, which has
no use beyond mining Bitcoins. For these reasons, Bitcoin is
considered an “environmental disaster” [5] by some.

The original idea behind basing Bitcoin mining on com-
putational power was that anyone could participate in the
network by dedicating their spare CPU cycles, which incurs
little marginal cost in that it uses the idle time of already-
existing personal computers. However, the dynamics of mod-
ern Bitcoin mining have become very different: the majority of
successful mining is done by large-scale mining farms, often
in collaboration with electricity producers. Without specialized
mining ASIC hardware, you don’t have a chance: mining
with your spare CPU cycles will lose money, due to overhead
electricity costs. The nonlinearity of mining rewards in Bitcoin
relative to resources invested has been quantified by [26] as
shown in Figure 1 below. Designing a cryptocurrency where
expected reward is more proportional to invested resources
would be desirable for a number of reasons, including that the
presence of “small players” can be important for the stability
and decentralization of the currency.
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Fig. 1: Bitcoin mining profit vs. invested resources [26]

To address these issues, in this paper we propose a
cryptocurrency, Spacemint, which replaces the costly proofs
of work underlying Bitcoin with proofs of space [13]. In
Spacemint, in order to mine blocks (and thereby mint coins),
miners must invest disk space rather than computational power.
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Miners who dedicate more disk space have a proportionally
higher expectation of successfully mining a block and reaping
the reward. These days, tremendous amounts of disk space are
lying around unused, and all of this storage capacity carries
potential for mining. We note that in a space-based scheme, it
is clear that miners will be incentivized to invest in hard drive
capacity, just as Bitcoin miners are incentivized to invest in
electricity. However, we highlight a couple of key differences:

1) In Spacemint, the investment is in the form of capital
expenditure, and the mining process after the hard drives
are bought incurs negligible overhead cost (both in
terms of monetary and natural resources). In contrast,
in Bitcoin, the mining process requires perpetual energy
expenditure from miners.

2) In Bitcoin, resources are “used up” by mining: electricity
is a depletable resource which once used is gone, and
Bitcoin mining hardware is specialized, single-purpose
resource that is not useful for anything once the need
for Bitcoin mining is removed. In contrast, the resource
consumed by Spacemint is recyclable, in that it can be
used over and over, and multi-purpose, since hard drives
have intrinsic value in their ability to store useful data.1

The distinction between capital expenditure and recurring
overhead costs is significant also in that it changes the trade-
off between expected reward and mining resources invested.
More concretely, due to the low marginal cost of mining a
block, the shape of the curve depicted in Figure 1 will be much
flatter for Spacemint than Bitcoin, and thus the profitable area
would be spread more evenly over the horizontal axis.

A. Background and challenges

A “greener” cryptocurrency. The community has looked
for alternative decentralized consensus protocols and found a
potentially promising candidate in proofs of stake (PoStake).
In such schemes, the probability that a party mines the next
block is proportional to the fraction of coins (out of all coins
belonging to participating miners) that it holds. This idea is
very appealing as no resources (like energy, hardware, etc.)
are wasted, but unfortunately, making this approach actually
work turns out much more delicate than for schemes based on
proof of work (PoW).

Trying to adapt Bitcoin in a straightforward way by re-
placing PoW by PoStake, one runs into at least three major
problems which are outlined below. Intuitively, the first two
problems are related to the fact that producing a PoStake
proof is computationally cheap and thus opens up potential for
cheating in ways which are not possible in Bitcoin. We will see
that analogous challenges arise from the computational ease
of mining a block by proof of space, too; and our Spacemint
construction will propose ways to resolve these challenges.

1) Multiple chains: In Bitcoin, a rational miner will always
work towards extending the longest chain of which he is
aware, as working on any other chain would only lower the
probability that his mined block will end up in the block
chain. When using PoStake instead of PoW, checking whether

1One may ask: won’t Spacemint spur development of specialized types of
storage which are tailored for mining, and thus end up in the same position
as Bitcoin in this respect? We argue that this is unlikely; see Section IX.

one can extend a chain is very cheap, and thus miners may
try extending many different chains in parallel. This impedes
quick consensus finding, unlike in Bitcoin where all rational
miners concentrate on the longest chain, and thus it always
grows faster than others.

2) Grinding: In Bitcoin, the miner adding the ith block can
influence the hash of the chain up to block i by his choice
of transactions to be included. Influencing this value does not
result in any advantage in a PoW-based scheme like Bitcoin. In
a PoStake-based scheme, on the other hand, the miner adding
block i can try out many different hashes until he finds a
“good” one which will allow him to also add block i+ 1 (and
thus the miner could hijack the chain forever).

3) Participation: In a PoStake-based scheme, the parties
holding coins must also participate in securing the currency
by providing blocks when their coins “win”. Typically, only a
fraction of the parties holding coins will participate, and this is
an inherent challenge in designing a PoStake-based scheme (as
the scheme must work no matter what the fraction is and how it
changes over time). Moreover, this can become a security issue
when participation is very low. In the most popular PoStake-
based currency, Peercoin [19], participation is below 10%.

Largely due to these and related issues, many existing proof-
of-stake based cryptocurrency proposals combine PoStake
with some PoW, rather than basing purely on PoStake.

Proofs of space. A proof of space (PoSpace), recently
introduced by Dziembowski et al. [13], is a protocol between a
prover and a verifier that has two phases. After an initialization
phase, the prover P is supposed to store some data Sγ of
size N , and the verifier stores a short commitment γ to this
data. In a later execution phase V sends a challenge c to P ,
who efficiently responds with a short answer a after reading
a small fraction of Sγ . For application to cryptocurrency, it is
necessary to modify the format of the PoSpace as defined in
[13], because:
• in our setting, there is no (single) entity to act as the

verifier in the protocol, yet
• we require that anyone who sees the public ledger (i.e.

blockchain) can efficiently verify the validity of a proof.

B. Our approach and contributions
In this paper we propose digital currency schemes based on

proofs of space. We first construct a variant of PoSpace that
is suitable for the cryptocurrency setting (Section IV), which
addresses the issues outlined in the bullets above.

Two further problems that arise when integrating PoSpace
into a blockchain-based cryptocurrency are the issues of grind-
ing and mining multiple chains. (Note that the participation
problem which is inherent to PoStake does not arise in
PoSpace-based schemes.) We address these issues as follows.
• Grinding: We solve this problem fully, by “decoupling”

the hash chain from the transactions so that there is
nothing to grind. To bind the transactions back to the hash
chain, we add an extra signature chain, which guarantees
that past transactions cannot be altered once an honest
miner adds a block. Our solution also gives a simple and
novel way to solve the grinding problem in currencies
based on proofs of stake. Details are in Section VI-A.
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• Mining multiple chains: Our approach is based on penal-
izing miners who work on more than one branch. It is
important to discourage miners not only from announcing
blocks on multiple chains, but also from “trying out”
many different chains and choosing only the best one
to announce. We suggest three variant solutions. In the
first two schemes, a miner’s block quality is fixed for any
given time-step, so that trying many chains does not yield
any benefit; and then we penalize miners who announce
blocks on multiple chains. The third scheme takes a
different approach, and introduces interaction between
miners during the mining process, thus enabling detection
of miners who try many chains. Details in Section V-C.

Finally, we perform a game-theoretic analysis of Spacemint
and find that it has at least as strong equilibrium properties
as Bitcoin. We model the Spacemint protocol as an extensive
game, and prove that miners are not incentivized to deviate
from the rules as long as there is an honest majority. More
formally, we prove that the protocol is a sequentially rational
Nash equilibrium, which is the standard equilibrium concept
for games which happen over many time-steps. Prior work
related to equilibria in Bitcoin has given only an informal
treatment of the problem: notably, [20] presents a thorough,
but still informal, analysis of equilibrium strategies in Bitcoin,
and concludes that honest mining is a Nash equilibrium in
Bitcoin (if there is an honest majority).

Contribution. In summary, our contribution is as follows.
• Cryptocurrency from proofs-of-space: Spacemint is a

cryptocurrency based purely on proofs of space, and thus
avoids the major drawbacks of existing proof-of-work-
based schemes as discussed in this section.

• Addressing the “nothing-at-stake” problem: We propose
novel approaches to the known problems of grinding
and mining multiple chains in non-proof-of-work based
systems. Our solutions can also be extended to the proof-
of-stake setting where these issues were first encountered.

• Evaluation of Spacemint and proofs-of-space: We im-
plemented a proof-of-space library and a prototype of
Spacemint. It takes less than 20 seconds to prove over
1 TB of space, and a fraction of a second to verify.

• Game theory of Spacemint: Our game-theoretic analysis
models Spacemint as an extensive game proves that the
adhering to the protocol is a sequential Nash equilibrium.

II. RELATED WORK

Proofs of storage/retrievability. Other concepts similar to
proofs of space are proofs of storage and proofs of retriev-
ability (cf. [15], [8], [7], [17], [10] and many more). These
are proof systems where a verifier sends a file to a prover,
and later the prover can convince the verifier that it really
stored or received the file. Proving that one stores a (random)
file certainly shows that one dedicates space, but these proof
systems are not proofs of space because the verifier sends
the entire file to the prover, whereas an important property
of PoSpace is that the verifier’s computation (and thus also
communication) is at most polylogarithmic in the size of
storage dedicated.

Proofs of secure erasure. Another type of proof system
which is related to PoSpace is proof of secure erasure (PoSE).
Informally, a PoSE allows a space-restricted prover to con-
vince a verifier that it has erased its memory of size S. PoSE
were suggested by Perito and Tsudik [25], who also proposed
a scheme where the verifier sends a random file of size S to the
prover, who then answers with a hash of this file. PoSE with
small communication complexity have been constructed by
[14], [18], [6]. In [6], a weaker variant of PoSE is considered2,
where a prover “passes” whenever he has access to a sufficient
amount of space, but must not necessarily have erased it during
protocol execution. (Surprisingly, there actually exist problems
which need space to compute, but do not erase it [9].) A
PoSpace implies a PoSE (by simply running the initialisation
and execution phase sequentially), but PoSE seems not to
imply a PoSpace. The only application of PoSE of which we
are aware was proposed in [25] (i.e. to prove having erasing
one’s memory). In particular, PoSE cannot be used for any of
the applications of PoSpace put forward in [13], and also the
cryptocurrency proposed in this paper. We refer the reader to
[13] for a more detailed discussion on PoSpace vs. PoSE.

Permacoin. Permacoin [21] is a cryptocurrency similar to
Bitcoin, but where the proofs of work are replaced with proofs
of retrievability. Here the miners are actually supposed to store
useful data, so the currency serves as a data archive, whereas
in Spacemint the dedicated storage does not store anything
useful. Like in Bitcoin, Permacoin miners are constantly racing
to find a good proof (but the type of proof is different).
In contrast, the main goal of Spacemint is to avoid such a
race: miners only have to execute a proof once every minute,
but apart from that can use their resources (except the space
dedicated for mining) in a useful way, or not use them at all.

Burstcoin. The only cryptocurrency of which we are aware
that uses disk space as the primary mining resource is Burst-
coin [2]. The first public mention of Burstcoin we could find
is from mid-August 2014, which is over one year after the first
public talk on proofs of space and their potential for construct-
ing a “green” cryptocurrency [12]. As this first proposal of a
cryptocurrency based on proofs of space had several security
issues, it was not published. Below, we observe that Burstcoin
shares some of the security issues that the early proposals
had (most notably, time/memory trade-offs), and also highlight
some other issues with the Burstcoin mining process.

A major efficiency issue of Burstcoin is that a constant
fraction (0.024%) of dedicated disk space must be read every
time a block is mined3 Another issue is that when a miner
publishes a block, one has to hash over 8 million blocks just
to verify that the miner’s claim is valid. In terms of security,
arguably the most serious problem with Burstcoin is that it
allows for time/memory trade-offs: a miner doing just a little
extra computation can mine at the same rate as an honest

2Note that [6] refers to this type of proof as “one-stage proof of space”
which has led to some confusion with the original “proof of space” notion
proposed in 2013 [12] and first realised in [13]. In this work, “proof of space”
always refers to the notion of [13].

3In contrast, Spacemint requires accessing only logarithmically many
blocks in the size of dedicated space. A conservative back-of-the-envelope
calculation shows that Spacemint requires less disk reading than Burstcoin
already at a couple of GB of dedicated space. At 1TB, Burstcoin reads 24GB,
which is 1000 times more than Spacemint requires.
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miner, while using just a small fraction (say, 10%) of the space.
We detail this attack in Appendix B.

III. BITCOIN PRELIMINARIES

In Bitcoin, a digital coin is attached to a public key pk of a
digital signature scheme, and it belongs to the person holding
the corresponding secret key sk. To transfer a coin from pk to
pk′, a transaction (encoding the statement that the coin of pk
is transferred to pk′) is signed using sk. The complete record
of transactions is kept in a public ledger that has the form
of a block chain, which is a sequence β0, β1, . . . of blocks.
Each block βi = (txi, . . .) contains, among other information
discussed below, a set txi of new transactions to be added.

In order to extend a block chain Bi = β0, . . . , βi with a
new block βi+1, the block βi+1 must contain a proof of work.
In the case of Bitcoin, the PoW is a nonce µi such that the
hash αi+1 = hash(µi, αi, τi, pkminer) of µi together with the
hash αi of the previous block, the set of transactions τi to be
added and a public key pkminer (whose function we explain
below) starts with some sufficiently large number of 0’s. If
hash is modeled as a random oracle (in reality it is SHA-
256), finding a nonce µi+1 such that the hash αi+1 starts with
t zeros requires an expected 2t number of evaluations of hash.

The threshold t in the Bitcoin scheme is set dynamically
(and adapted roughly every two weeks) so that the total
computational power of the network is expected to find a
fresh block every 10 minutes. Searching for such a block
is called mining. To incentivize mining, every newly added
block generates some fresh coins, which are given to the
public key pkminer associated with the block. The secret key
corresponding to pkminer is known by the miner who found
the block, who thus gains ownership of these newly minted
coins. An additional mechanism to incentivize mining is the
transaction fee, whereby the initiator of a transaction offers a
small reward to the miner who includes the transaction in the
blockchain. Transaction fees are optional, and typically they
are much smaller than the reward for mining a block.

Once a miner finds a µi+1 satisfying the requirements
above, she generates a block and sends it out to the network.
As this block needs some time to propagate through the
network, it can occur that two blocks extending the same chain
are being sent out, and thus there is an inconsistent view on the
chain. The Bitcoin protocol specifies that every miner should
try to extend the longest valid branch4 of which it is aware; this
way, even if the block chain branches, ultimately one branch
will become longer, and the shorter ones will eventually be
ignored. It follows that once a transaction has been added to
the block chain, and sufficiently many blocks have been added
after it, the transaction will stay in the chain forever.

To double-spend a coin, a cheating party would have to
branch off sufficiently far in the past and then make this branch
“catch up” with the currently longest branch. A party cannot
do this with reasonable probability, unless it controls close
to 50% of the entire hash power. A crucial property of the
Bitcoin protocol is the fact that miners have a strong incentive
to follow the “work on the longest chain” rule. A rational
miner wants the blocks he finds to end up in the block chain

4More precisely, it is not necessarily the longest branch, but the one that
required most computation to find.

(and not a “dead” branch), and thus, always working to extend
the longest known chain is a Nash equilibrium.

IV. PROOFS OF SPACE

As briefly discussed in Section I, the goal of proof of space
is for a prover to prove to a verifier that it is storing a certain
amount of space. In this section, we first discuss two straw man
approaches that do not work, and then present our variant of
PoSpace for the cryptocurrency setting.

A. Two simple approaches that don’t work

Storing a function table. A tempting “solution” is to
have P store a lookup table (1, f(1)), . . . , (N, f(N)) of a
random-looking function f , sorted by the output. The prover’s
challenge would be to invert the function on value f(x) for
some random x ∈ [N ]: an honest prover can do this in time
log(N) by binary search. Unfortunately, this doesn’t work
due to time/memory trade-offs [16], which allow a cheating
prover to only store roughly N2/3 input/output pairs and still
invert the function in time N2/3 (in the case where f is a
permutation, this goes down to N1/2 time and space, cf. [13,
Appendix A] for details).

Storing a random file. Another simple idea would be for V
to send N (pseudo)random bits to P during initialization, and
simply query P for random subsets of these bits during execu-
tion. However, this requires N bits of communication, whereas
a PoSpace requires that the verifier’s efficiency depends on
some security parameter, but must be basically independent
of N – and this property is crucial for all applications of
PoSpace discussed in [13] and also for this paper.

B. Hard-to-pebble graphs

The PoSpace schemes proposed in [13] are based on peb-
bling graphs. These are directed graphs where the vertices are
labeled as follows: for some unique nonce µ (which is send
by V to P in the initialization phase), vertex i gets label

li := hash(µ, i, lp1 , . . . , lpt) (1)

where p1, . . . , pt are the parents of vertex i. The PoSpace
construction requires a family of graphs which are hard to
pebble: these graphs provide a provable lower bounds for the
amount of computation or storage that must be spent in order
to correctly compute the label of a random node in the graph.

[13] constructs two different families of hard-to-pebble
graphs that can instantiate their PoSpace scheme. The first
family has in-degree O(log log(N)) and gives a scheme where
any prover that can convince the verifier with constant proba-
bility must either dedicate Θ(N) bits of space (like an honest
prover), or run in time Θ(N) in the execution phase.5 The
second family of graphs has in-degree 2 and gives a scheme
where any prover must either dedicate Ω(N/ log(N)) bits
of storage, or otherwise incur at least Ω(N/ log(N)) space
complexity (and thus also time) during the execution phase.

5Note that this is the best we can hope for, as a cheating prover can always
just store the verifier’s message from the initialization phase, and re-initialize
the entire storage during the execution phase, which takes time Θ(N).
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Algorithm 1 Initialization
Initial state: P needs N = 2 · n · L bits of storage.
Common input: a (hard to pebble) DAG G with n nodes and
a function hash : {0, 1}∗ → {0, 1}L.

1) V samples a unique nonce µ and sends it to P .6
2) P computes and stores (γ, Sγ) := Init(µ,N) and sends

the commitment γ to V . Here Sγ contains the labels of
all the nodes of G computed as in equation (1) (of total
size n · L). γ is a Merkle tree commitment for these n
labels. The intermediate values of this Merkle tree are
also contained in Sγ (and are also of total size n · L).

Proofs-of-space for Spacemint. A proof of space uses four
algorithms PoS = {Init,Challenge,Answer,Verify}, and is
executed between a verifier V and a prover P . At a high level,
the PoSpace as described in [13] is carried out in two phases:

1) Initialization:
a) commitment generation: P initializes its space

and sends a commitment γ to V .
b) commitment verification: P convinces V that γ

commits to labels that are correctly computed.
2) Prove space: P convinces V that it is holding the space.
In the cryptocurrency setting, we would like the network to

act as V , and thus it is infeasible to perform the commitment
verification during the initialization phase. We therefore define
a different protocol where the prove space phase and commit-
ment verification will be in carried out in one combined step,
which we call the execution phase. Our PoSpace thus consists
of two phases, initialization and execution, which are described
in Algorithm 1 and 2.

After initialization, P should have stored the data Sγ of
size N , whereas V only stores the short commitment γ and
the nonce µ. We assume that the parameters (G,µ) are part
of the commitment γ and we will denote by Nγ = 2 · n · L,
the space dedicated by an honest P .

For verification, the construction based on the first graph
family requires the verifier to check k nodes and their parents,
while the second construction requires opening k · log(n)
nodes and their parents. However, the first graph requires more
parents to be opened per node, and the second graph also has
a simpler structure. We therefore use the second graph for our
prototype (Section VIII). We defer the exact efficiency and
security parameters of the two constructions to Appendix A.

V. OVERVIEW OF SPACEMINT

A. High-level protocol description

Transactions. Transactions are performed basically identi-
cally to Bitcoin: each coin “belongs” to some public key pk.
The block chain acts as a ledger that keeps track of which coins
belong to which keys (but to prevent grinding, we propose
a new design for the block chain in Section VI where the
transactions are decoupled from the proofs). To transfer a coin
from pk to pk′, a transaction specifying this must be signed
by sk (the secret key for pk), and then be added to the block

6The nonce ensures that the same space cannot be used for two different
proofs (this will be discussed more later).

Algorithm 2 Execution
Initial state: V holds commitment γ, P stores Sγ .
Common input: k ∈ N, where k is determined by number of
nodes needed to verify the commitment.

1) V samples k challenges (c1, . . . , ck) ←
Challenge(n, k, $) and sends them to P (the challenge
sampling algorithm Challenge takes as input the size of
the graph n, the number of requested challenges k, and
the last input are the random coins to be used for the
sampling).

2) P computes the answers ai := Answer(µ, Sγ , ci) for
i = 1, . . . , k and sends them back to V . Each ai contains
openings of the challenge label `ci and also the labels
of ci’s parents.

3) V runs the verification procedure bi :=
Verify(µ, γ, ci, ai) and accepts if all bi = 1. The
procedure Verify outputs 1 if ai contains openings
of the required labels, and the label `ci is correctly
computed, i.e., as in equation (1).

chain. We also add special transactions to initialize miners,
and a special type of transaction which penalizes a miner who
extends two different chains using the same proof of space.

Incentivize mining. Like in Bitcoin, there are two ways
to incentivize miners to contribute resources (disk space in
Spacemint, computing power in Bitcoin): (1) a reward for
adding blocks and (2) transaction fees.

Reward: For adding a block to the chain, a miner receives
some freshly minted coins. The reward size is specified as part
of the protocol, and typically depends on the block index.7

Transaction fees: When generating a transaction, one can
dedicate some (usually very small) amount of the transferred
coins to the miner who adds the transaction to the block chain.

Initialize miner. If a miner wants to contribute N bits of
space to the mining effort, she samples a public/secret key pair
(pk, sk) and runs the PoSpace initialization procedure. (Being
in a non-interactive setting, there is no verifier to generate the
unique nonce µ, so we simply use pk for this.)

(γ, Sγ) := Init(pk,N) .

The miner stores (Sγ , sk) and generates a special transaction
which just contains (pk, γ). Once this transaction is in the
block chain the miner can start mining as described next.

Mining. Blocks are added to the block chain every fixed time
period (say, every minute), and we require that all parties have
a clock that is roughly synchronized. To add a block in time
period i, the miner retrieves the hash value of the last block
in the best chain so far (this chain has i − 1 blocks), and
also a challenge c. This c is used as randomness to sample kp
challenges cp and kcv challenges ccv .8

7In Bitcoin, the reward was initially 50 Bitcoins, but it halves roughly every
4 years, and is currently at 25.

8Where, depending on which of the PoSpace discussed in the last section
we use, kp = O(1), kcv = log(n) or kp = O(1), kcv = λ · log(n). These
challenges can be sampled by first using c as a seed to generate a sufficient
amount of randomness (rp, rcv) := hash(c) for the challenge sampling al-
gorithm to get cp := Challenge(n, kp, rp), ccv := Challenge(n, kcv , rcv).
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How to derive the challenge c is the main difficulty we face.
In our simplest solution we assume an unpredictable beacon
that broadcasts a fresh random (or at least unpredictable) value
from which the challenge is derived every minute (we also
propose two solutions without assuming a beacon). The miner
then computes the PoSpace answer from cp:

a := Answer(pk, Sγ , cp) .

For two valid proofs (pk, γ, c, a) and (pk′, γ′, c′, a′) we denote
with (recall that Nγ is the size of the space committed by γ)

(a′, Nγ′) ≺ (a,Nγ)

that the proof a is better than a′. We postpone the discussion
on the precise definition of this ordering to Section V-B. For
now, we only mention that the ordering should satisfy

Pr[(a′, N ′) ≺ (a,N)] =
N

N +N ′
.

That is, the probability that a wins is proportional to its
fraction of the total space. The probability is taken over the
choice of random oracle used to compute the proof quality.

If the answer a found by a miner is so good that there is a
realistic chance of it being the best answer found by any miner,
the miner creates a block and sends it out to the network in the
hope that it will end up in the chain. A block must contain
transactions, the PoSpace proof a and also the commitment
verification output computed as acv := Answer(pk, Sγ , ccv).
Note that the commitment verification need not be executed
unless the miner has found an exceptionally good proof: thus,
the computation of the vast majority of miners in the network
will be very low, since they need only check the quality of their
proof, and most of them will not proceed with verification.

For the remainder of the one-minute time period, the miner
need not do anything. As mining only requires a small amount
of work (computation, communication and random access to
the storage) in every time period, it can be run on any computer
that has some free disk space and is connected to the internet,
without incurring any noticeable slowdown.

B. Quality of a PoSpace Proof

Consider some valid proofs
(pk1, γ1, c1, a1), . . . , (pkm, γm, cm, am) for spaces of
size N1, . . . , Nm. We want to assign a quality to a proof
(which will only be a function of ai and Ni), such that the
probability (over the choice of the random oracle hash) that
the ith proof has the best “quality” corresponds to its fraction
of the total space, i.e.

Pr
hash

[∀j 6= i : (aj , Nj) ≺ (ai, Ni)] =
Ni∑m
j=1Nj

.

We observe that in order to achieve this, it is sufficient to
achieve this for any pair of commitments, i.e.,

Pr
hash

[(aj , Nj) ≺ (ai, Ni)] =
Ni

Ni +Nj
.

If all the Ni were of the same size N , we could simply define

(aj , N) ≺ (ai, N) ⇐⇒ hash(aj) ≤ hash(ai)

That is, we map every ai to a random value hash(ai), and
whichever value is largest wins. We want to allow for different
Ni values, so miners who want to contribute space N ′ only
need one space commitment, and do not have to split it up in
N ′/N space commitments of size N , and then run a proof for
each chunk separately.

For this, we define a distribution DN , N ∈ N which is
defined by sampling N values in [0, 1] at random, and then
outputting the largest of them.

DN ∼ max {r1, . . . , rN : ri ← [0, 1], i = 1, . . . , N} (2)

With DN (τ) we denote a sample of DN (or rather, a distribu-
tion which is very close to it) using randomness τ to sample.
We now say that (ai, Ni) is of higher quality than (aj , Nj) if

(aj , Nj) ≺ (ai, Ni)⇔ DNj
(hash(aj)) ≤ DNi

(hash(ai)).
(3)

It remains to show how to efficiently sample from the
distribution DN for a given N . Recall that if FX denotes
the cumulative distribution function (CDF) of some random
variable X over [0, 1] and the inverse F−1

X exists, then F−1
X (U)

for U uniform over [0, 1] has the same distribution as X . The
random variable X sampled according to the distribution DN

has CDF FX(z) = zN , since this is the probability that all N
values ri considered in (2) end up being below z (and hence
also their maximum). Therefore, if we want to sample from
the distribution DN , we can simply sample F−1

X (U) for U
uniform over [0, 1], which is U1/N . In (3) we want to sample
DNi

using randomness hash(ai), and hash outputs bitstrings in
{0, 1}256 instead of values in [0, 1], so we have to normalize:

DNi
(hash(ai)) :=

(
hash(a)/2256

)1/N
.

Note that this introduces a tiny imprecision due to the fact
that hash(a)/2256 is uniform over a discrete set instead of the
continuous interval [0, 1], but this can be safely disregarded.

Remark. Notice that the quality function described above has
the property that the quality of block that a given miner pk
can produce in a given time-step is fixed, regardless of which
chain he chooses to extend. This property will be important
to prevent the “mining multiple chains” attack which was
described in Section I, as explained in the next section.

C. Where the challenge comes from

The main difficulty we face when designing a PoSpace-
based scheme is the generation of the PoSpace challenge c.
We suggest three solutions below: note that each one protects
against the “mining multiple chains” attack by penalizing
miners who try to mine on more than one chain; details are
given in the corresponding subsections.

1) Assuming an unpredictable beacon: Our most basic
solution assumes an unpredictable beacon which broadcasts a
value every minute. By the beacon’s unpredictability, no party
at time t has non-negligible probability of guessing the beacon
value that will be announced at time t + 1. Such a beacon
could e.g. be instantiated as the hash of the current time and
the NASDAQ chart. Given such a beacon, the challenge c
for mining block i is derived as a hash of the beacon value
(hashing maps an unpredictable value to a pseudorandom one).



7

An unpredictable beacon is a fairly strong assumption, but
it does not trivialise the problem. It does mostly solve the
grinding problem, but does not help with the “mining multiple
chains” problem at all. As the challenge does not depend on
the hash chain, a miner who finds a very good proof can try
to add it to many different chains – not just the best one –
to increase the probability of his block being in the ultimate
block chain. Such behavior is rational, but undesirable in that
it prevents consensus on a single chain. To de-incentivize this,
we define a special type of transaction which allows others to
“steal” the reward a miner gets for adding a block if the miner
used the same proof for extending two different chains.

To add a block, a miner must provide a signature on the
previous signature block in that chain. Thus, if a miner with
key (pk, sk) tries to add a block to two chains, he must sign
two different messages for the same time slot i. We allow for
special “punishment transactions” which are basically of the
form (pk′, σ′j , α) and have the following semantics. Let pk be
the key of the miner that added the jth block in the current
chain. If this block does not contain a signature for σ′j and α is
a signature for σ′j = (j, . . .) under pk, then half of the reward
that pk gets for adding this block is transferred to pk′, and the
other half is destroyed. Of course this reward will typically be
claimed by the miner who adds a subsequent block i > j, as
there is no point in adding such a transaction for another miner.
To prevent that a miner immediately transfers his reward to
another key – and thus avoid punishment – we specify that the
reward for adding a block cannot be transferred until several
(say 1000) blocks later (except via a punishment transaction).

This punishment strategy strongly discourages a miner from
trying to extend more than one chain, as doing so will most
likely lead to not getting any reward at all, even when having
the best proof for a given time slot.

2) Challenge from the past: We now describe our scheme
without an unpredictable beacon. This scheme is identical to
the one outlined above, except that the challenge c does not
come from the beacon, but is derived from the block chain
itself. The simplest solution that comes to mind (which does
not quite work) is to let the challenge for block i be the hash
of block i− 1. Our block chain consists of a proof chain, and
a separate signature chain that binds the transactions to the
proof chain. If we only hash the block from the proof chain,
no problem arises with miners trying to grind through several
possible challenges, but another problem remains: if there are
many different chains, the miner gets different challenges for
different chains. A rational miner would thus compute answers
for many different chains, and if one of them is very good, try
to add a block to the corresponding chain, even if this chain is
not the best chain seen so far. If all miners behave rationally,
this will considerably slow down consensus, as bad chains
get extended with blocks of the same quality as the currently
best chain; thus, we would expect to see a race between many
different chains without the lower-quality chains falling behind
rapidly. A solution to this kind of problem that is used in
Slasher [4] is to penalize miners that extend chains that do
not end up in the final chain, but this seems not very robust.

The solution we propose is to compute the challenge as a
hash of block i− δ (rather than i− 1), for some appropriately
chosen δ. (δ = 120 seems like a good value for a 1-minute

time slot.) Now, a miner only obtains different challenges for
the ith block of two different chains if those chains have forked
at least δ blocks ago. With δ = 120, it is extremely unlikely
that two chains will survive in parallel for δ blocks. Recall
that we penalize miners who add a block (using the same
challenge) to two different chains, if there are multiple chains
that forked less than δ blocks ago, there is a strong incentive
for miners to add their blocks to the best chain: hence, we
expect the other chains to fall behind very fast.

The reason δ cannot be arbitrarily large is that a miner at
time t knows its challenges for all the blocks t+ 1, . . . , t+ δ.
Thus, she can pre-compute all δ answers, and need not access
her space for the next δ minutes. If δ were very large, a miner
could use the same space for several space commitments, as
there would be enough time to re-instantiate the space several
times in the δ-block window. To avoid this, δ should be set
so that initializing the space takes roughly δ minutes.9

3) Request challenge from other miners: Finally, inspired
by existing PoStake-based schemes, we sketch a scheme where
a miner must request the challenge from other miners. A miner
who tries to extend two or more chains must publish at least
two requests for challenges, and any such pair of requests for
challenges in the same time slot (requests contain a signature
of the requesting party) can be used to create a punishing
transaction. Here we must require that miners, when putting
their space commitment into the chain, also put some deposit.
This deposit can later be withdrawn, but the space commitment
can only be used for mining as long as the deposit is there. If
a miner posts two requests, this pair of requests can be used
to get half of his deposit, whereas the other half is destroyed
(this ensures that the miner gets punished even when posting
the punishment transaction himself). Note that in the previous
scheme we punished a miner who added two blocks using the
same challenge, here we punish the mere attempt to request
two different challenges for different chains.

More concretely, assume a miner pk wants to extend some
chain with last block φi−1. He first computes an index
t = hash(pk, φi−1) ∈ {1, . . . , 10 000}, which means we must
ask the user who mined block i − t for a challenge. The
miner publishes this request to the network, hoping that the
user who mined block i − t is still online and will provide
the challenge. To incentivize providing challenges, the user
providing the challenge will get a fraction of the reward,
should the requesting miner successfully mine a block. We
limit the domain of possible “challenge-providing miners” to
those that added one of the last 10 000 blocks, so we can be
reasonably sure that a significant fraction of them is still active,
(while 10 000 is large enough so that the challenge requests
for each individual miner are rather small). If a miner receives
a request, he computes the challenge c using a verifiable
pseudorandom function (VRF) and publishes it.10

Realizing this solution seems significantly more compli-
cated and delicate than the previous ones, due to the added

9Re-instantiating mining space is expensive, since the miner must overwrite
his entire disk: we refer the reader to Section VIII for timings.

10We require a VRF to prevent “grinding” through many challenges even
if the requesting and the providing miner collude, or the requesting miner is
lucky and gets to “ask” himself for a challenge. With a VRF, even in these
cases, the miner gets just one extra challenge for free, at best doubling her
chance of mining the next block.
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Fig. 2: Our block chain consists of a proof chain PC that does
not allow for grinding, and a signature chain SC that binds
transactions to the proof chain.

complexity of interaction as well as issues of availibility
of online miners. We do not discuss further details of this
approach in this work.

VI. THE BLOCK CHAIN FORMAT

A block chain is a sequence of blocks β0, β1, . . . Each
block βi = (φi, σi, τi) is created by a miner and consists
of three main parts, which we call “sub-blocks”. Each sub-
block starts with the index i that specifies its position in the
block chain. Below, we outline the remaining components of
the three sub-blocks of a block βi, i > 0. The genesis block
β0 necessarily has a somewhat different format as it cannot
depend on previous blocks:

• The HASH sub-block φi contains:
– A 256-bit hash hash(φi−1) of the HASH sub-block from

the previous block in the chain.
– A “space proof” containing the miner’s identity pk (more

details on this are given below).

• The TRANSACTION sub-block τi contains:
– A list of transactions (defined in more detail below).

• The SIGNATURE sub-block σi contains:
– The miner’s signature Sign(sk, τi) on the TRANSACTION

sub-block τi associated with this block.
– The miner’s signature Sign(sk, σi−1) on the SIGNATURE

sub-block σi−1 associated with the previous block.
The links between consecutive blocks in the block chain

are illustrated in Figure 2. We will also refer to the hash sub-
blocks as the proof chain, and the signature sub-blocks with
the transactions as the signature chain. Solid arrows represent
hashes, and dotted arrows represent signatures. Notice that
while the signature and transaction sub-blocks are all linked
together, the hash sub-blocks are only linked to each other and
not to any signature or transaction sub-blocks.

A. Solution to the grinding problem
By decoupling proofs from transactions we achieve security

against grinding: for any space commitment (pk, γ), the miner
pk cannot generate two (or more) correctly formatted hash-
blocks to be added to the proof chain.11

The signature chain binds the transactions to the proof
chain. If an honest miner (honest to be defined below) adds
the ith block, the transactions corresponding to this proof

11To prove this, we require that it is computationally hard to find two
distinct accepting transcripts for the same challenge. The PoSpace of [13]
satisfies this property (finding two accepting transcripts in their schemes
amount to breaking collision-resistance of the underlying hash function).

chain up to block i cannot be changed any more, even if an
adversary controls all secret keys from miners that added the
first i − 1 blocks. Here the miner being honest means that
she only signs a single block of transactions using the secret-
key sk corresponding to her identity pk, and moreover keeps
sk secret. To see this, note that if we want to change the
transactions in block j < i while keeping the current proof
chain up to block i, then the signatures for blocks j, . . . , i
must be re-computed, which requires sk.

B. Transactions
Spacemint is based on a secure12 signature scheme

Σ = (SigParamGen,SigKeyGen,Sign,SigVerify)

and a PoSpace protocol

Π = (Init,Challenge,Answer,Verify) .

In the following we specify the three types of transactions
(for payments, space commitments and punishments) that we
allow in Spacemint.

Payments. Coins are held and transfered by parties identified
by a verification key in the support of SigKeyGen.13 More
specifically, a transaction transfers coins from m benefactors
to n beneficiaries and has the form

ctx = (payment, txId, ~in, ~out) .

• txId: A unique, arbitrary transaction identifier. That is,
no two transactions in a blockchain can have the same
identifier.

• ~out: A list of beneficiaries and the amount they re-
ceive. Specifically, ~out = (out1, . . . , outm) with outi =
(pki, vi), where:

– pki is in the support of SigKeyGen and specifies a
beneficiary, and

– vi is the number of coins that pki is to be paid.
• ~in: A list of input coins to the transaction. Specifically,
~in = (in1, . . . , inn), a list of n benefactors, each com-
prised of a triple: inj = (txIdj , kj , sigj), where:

– txIdj is the identifier of a past transaction,
– kj is an index that specifies a particular beneficiary
pkkj of the transaction txIdj ,14

– sigj is a signature of (txId, txIdj , kj , ~out), which
verifies under key pkkj proving ownership of the the
kj th beneficiary of transaction txIdj and binding the
coin to the beneficiaries.15

In order for a transaction to be considered valid, the
following conditions must be satisfied:

12Existentially unforgeable under chosen message attacks.
13In Bitcoin, the specification of payments is more general: instead of

specifying beneficiaries via their verification keys, recipients are specified
by writing a script scr in a special (non-Turing-complete) scripting language
called Bitcoin Script. The output coins of a transaction can then be redeemed
by any party which can produce inputs which “satisfies” the script scr. In
practice, Spacemint can be straightforwardly modified to accommodate such
scripting; but in this work, for clarity of exposition, we assume that each
payment recipient is specified by a verification key.

14That is the kj th beneficiary of transaction txIdj is the jth benefactor of
transaction txId.

15txId is signed in order to avoid transaction malleability https://en.bitcoin.
it/wiki/Transaction Malleability

https://en.bitcoin.it/wiki/Transaction_Malleability
https://en.bitcoin.it/wiki/Transaction_Malleability
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1) No benefactor is referenced by more than one transaction
in the block chain (to prevent double-spending).

2) The sum of the input values to the transaction (i.e. the
sum of the amounts provided by each benefactor) is at
least the sum of the amounts paid to beneficiaries.

Note that some of the beneficiary identities may belong to
the creator of the transaction, who may thus transfer money
back to himself as “change”: e.g. if the sum of the input values
exceeds the total payment amount he wants to transfer to other
parties. Apart from normal payments, we allow for two further
types of transactions to initialize and punish miners.

Space commitment. A space commitment transaction

ctx = (commit, txId, (pk, γ)) ,

consists of pk, a public key, and γ which is computed as
(γ, Sγ) := Init(pk,N). That is, ctx is a space commitment to
a space of size N (we assume that N is specified by γ, and
thus do not explicitly add it).

Why add commitments to the chain?. It is not obvious why
we require a miner to first add a space commitment (pk, γ)
to the hash chain before it can start mining, instead of simply
having miners keep this commitment locally and only send
it out once they found a good PoSpace proof. The reason is
that the PoSpace proofs from [13] have the property that one
can take a correctly constructed commitment (pk, γ0), and by
making minor changes turn it into many other commitments
(pk, γ1), (pk, γ2), . . . that can reuse almost all space, while it is
still possible to answer almost all challenges correctly.16 Thus,
if there were no requirement to have a published commitment
in the block chain with a unique public key, a cheating miner
could re-use the same space for many different commitments.

Punishment. A punishment transaction is of the form

ctx = (punish, txId, pk′, (m,α)) ,

where m starts with an index j − 1 for some j ∈ N. The
transaction has the following semantics. Let σj be the jth
block of the signature chain in the current chain, and pkj the
public key of the miner who added the jth block. If m 6= σj−1

and SigVerify(pkj ,m, α) = 1, that is, pkj was used to sign
another message than σj−1 with index j − 1, then half the
reward and transaction fees that went to pkj for adding the
jth block are transferred to pk′. The other half is destroyed.

We additionally require that i − j < 1000, thus, the
punishment must happen within 1000 blocks (and as we
disallow withdrawing a mining rewards for 1000 blocks, this
reward cannot have already been spent).

VII. INSTANTIATION

In this section we describe the concrete steps required for
setting up, mining and paying in Spacemint. We give the
instantiation for the second scheme (challenge from the past),
outlined in Section V-C. The first (random beacon) scheme is
almost identical, except that the challenge c is derived from the
random beacon (and not by hashing a block from the chain).

16γ0 is a Merkle-hash of all the labels in a hard to pebble graph. We can
change γ0 to another value by simply changing a single label, which will not
be noticed in the execution phase unless this particular label with its children
is requested.

Setup. At setup we have to fix the security parameter κ to
be used for the signature and PoSpace scheme. Moreover, we
must specify parameters and functions:
• time ∈ N specifies the length of a timeslot in minutes. It

should be sufficiently larger than the network propagation
time, but otherwise as small as possible. time = 1 seems
like a reasonable choice here.

• δ ∈ N specifies that the challenge for block i is a function
of block i− δ. A reasonable value is δ = 120.

• Reward is a function such that Reward(i) specifies the
amount of coins a miner gets for mining the ith block.

• Quality is function that takes as input a space com-
mitment (pk, γ) for space of size N together with a
challenge/answer pair (c, a). If Verify(pk, γ, c, a) 6= 1
(i.e., it is not a valid PoSpace proof transcript), the
Quality function outputs −∞. Otherwise the output is
(with DN as defined in Section V-B):

Quality(pk, γ, c, a) = DN (hash(a)) .

In order to decide which of two given proof chains is the
“better” one, we also need define the quality of a proof chain
φ0, . . . , φi, which we’ll denote with QualityPC(φ0, . . . , φi).
Each hash block φj contains a proof (pkj , γj , cj , aj), and we
let vj = DNj

(aj) denote the quality of the jth proof in the
chain. For any quality v ∈ [0, 1], we denote with

N(v) = min{N ∈ N : Pr[v ≺ w | w ← DN ] ≥ 1/2}

the space required to get a better proof than v on a random
challenge with probability 1/2. Note that N(vj) will usually
be around the total storage of all miners that were active
when the jth block was mined. With this definition, a natural
measure for the quality of the chain would be simply the sum17∑i
j=1N(vj). The problem with this measure is that if some

miner finds an extremely good proof, say N(v) is 1000 times
larger than the total storage (this will happen roughly every
1000 blocks), then the miner could withhold his proof, and
1000 blocks later generate a fork using this proof followed
by 999 arbitrarily bad proofs for the remaining blocks. To
avoid such deep forks, we cap proofs that are too good by
saying that vj cannot contribute more to the sum than, say 10
times the median of the last 101 blocks (the median gives a
good approximation of the total space that is dedicated towards
mining). Formally, let N̂(vj) be recursively defined as

N̂(vj) = max{N(vj) , 10·median(N(vj−101), . . . , N(vj−1)}

Another reason why defining the quality simply as∑i
j=1N(vj) is problematic, is that the total contributed space

can increase drastically over time. In this case, in order to
come up with a chain whose quality is better than the quality
of the real chain it is sufficient to dedicate much less than the
total space that is currently devoted towards mining. For this
reason, we only take the last 1000 blocks into account when
computing the quality:

QualityPC(φ0, . . . , φi) =

i∑
j=max{1,i−1000}

N̂(vj)

17We start summing with j = 1, not j = 0, as the genesis block (still to
be defined) will not contain a proof.
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Finally, a genesis block β0 = (φ0, σ0, τ0) is generated and
published; it has a format different from other blocks. The
transactions block contains only one space commitment τ0 =
(commit, txId, (pk0, γ0)), the hash block φ0 contains only
some random string,18 and the signature block σ0 contains
the signature Sign(sk0, τ0) of the transactions block (but not
of the previous signature block, as there is none).

Initialize Mining. In order to dedicate N bits of storage for
mining, a party generates an identity and a space commitment

(pk, sk)← SigKeyGen , (γ, Sγ) := Init(pk,N) .

It stores Sγ (of size N ) and sk locally. The
miner then generates and publishes a transaction
ctx = (commit, txId, (pk, γ)). Once ctx has been added as
a transaction to the hash chain, the miner can start mining as
described next.

Mining. As we enter time slot i, the miner retrieves19 the
so-far-best block chain β0, . . . , βi−1 (that is, the chain max-
imizing QualityPC(φ0, . . . , φi−1). We assume that the miner
“honestly” stores space Sγ and the corresponding commitment
(pk, γ) has been added to some transcription block τj , j ≤ i−1
in this chain. Next, the miner computes the randomness for the
challenge sampling by hashing the hash block that is δ blocks
in the past

c := hash(pk, φi−δ) .

From this c we then compute the challenges cp, ccv . The miner
computes the PoSpace answer

a := Answer(pk, Sγ , cp) .

If q := Quality(pk, γ, c, a) is very high, so it has a realistic
chance to end up as the best answer of the entire network, the
miner generates a hash block φi = (i, hash(φi−1), pi), where
pi is 20 (pk, γ, c, j, q, a, acv), where

acv := Answer(pk, Sγ , ccv) .

is the output of the commitment verification (as discussed in
Section V-A, for efficiency reasons we only execute commit-
ment verification at this point).

Then the miner retrieves transactions (typically, giv-
ing priority to the ones paying the highest fees), checks
their correctness, and adds the valid ones to a transac-
tion block τi. It then computes the signature block σi =
(Sign(sk, σi−1),Sign(sk, τi)) and publishes block βi =
(φi, σi, τi), hoping that it will end up in the block chain,
earning the miner Reward(i) coins, plus the transactions fees
of the transactions in τi.

Transaction. Any party can generate a transaction and pub-
lish it. If it is correctly generated, it should ultimately end up
in the block chain. We have already described the format and
semantics of the three types of transactions in Section VI-B.

18Or better, some kind of timestamp like a sentence from a newspaper of
the day, as is done in Bitcoin, to show that the genesis block was not generated
before some date.

19With “publishes” and “retrieves” we mean that a party sends or downloads
something from the network. Typically, there would be some servers that
organize the data, i.e., keep track of the best chains and collect transactions,
so a miner would only interact with one or a few such servers it trusts.

20The index j of the block where the space commitment was added and
the quality q are redundant, but they simplify verifying the proof.
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VIII. EVALUATION

To evaluate Spacemint, we have implemented a prototype
in Go, using SHA3 in 256-bit mode as the hash function. The
prototype uses the graphs from [24], and forces a cheating
prover to store at least Ω(N/ log(N)) bits in order to effi-
ciently generate proofs. Given that the network infrastructure
is very similar to Bitcoin, we are mainly interested in three
quantities: time to initialize the space (graph), size of the proof,
and time to generate and verify the proof. The experiments
were conducted on a server equipped with an Intel i5-4690K
Haswell CPU and 8 GB of memory. We used an off-the-shelf
hard disk drive, with 2 TB of capacity and 64 MB of cache.

Our proof-of-space library and Spacemint prototype are
available at: https://github.com/kwonalbert/spacemint.

Time to Initialize. To start mining Spacemint, the clients
must first initialize their space, as described in I-B. Concretely,
this involves computing all the hashes of the nodes, and
computing the Merkle tree over the hashes. In Figure 3,
we show the initialization time for spaces of size 8 KB to
1.3 TB. As expected the time to initialize grows linearly with
the size of the space; at 1.3 TB, it takes approximately 41
hours to commit the graph. While expensive, we note that this
procedure is done only once when the miner first joins the
Spacemint network, and will use the initialized space over and
over again. In fact, we require space initialization to non-trivial
time, because an extremely fast space initialization would
make re-using the same space for different commitments a
viable strategy (Section V-C).

Size of the Proof. A proof (i.e., a full solution to the puzzle)
in Spacemint consists of the hashes of the challenge nodes in
the graph and their parents, and the Merkle inclusion proofs

https://github.com/kwonalbert/spacemint
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Fig. 5: Time it takes for a potential winner to prove and verify
proof-of-space when λ log(n) nodes are opened for λ = 30.

for those nodes. For the simpler PoSpace that we implemented,
the number of nodes we have to open is λ · log(n), where λ
is a statistical security parameter. Since each opening is of
size log(n) · 32 bytes, the overall proof size is upper-bounded
3 · λ · log2(n) · 32 bytes as each node has at most 2 parents
in this PoSpace graph. We note that the proof sizes shown
here are known to be sufficient by the proofs in [13], but we
are unaware of any concrete attacks. In practice, we believe
that opening fewer nodes may already be sufficient. Figure 4
demonstrates the size of the proof when we open λ log(n)
nodes vs. just λ nodes for λ = 30. We believe that the size
of a sufficiently secure proof will lie somewhere in between,
closer to opening λ nodes.

Time to Generate/Verify the Proof. Unlike Bitcoin, generat-
ing an answer for a puzzle (i.e., generating a proof-of-space)
takes little time. In Bitcoin, the miner is expected to work
through most of the epoch in an attempt to find a preimage of a
hash with sufficient difficulty. In Spacemint, assuming a miner
is storing the space correctly, the miner needs to only perform
O(1) look-ups in the disk to find their solution (Section V-A),
which takes fraction of a second. For instance, it takes < 1 ms
to read a single hash from the disk. Only if the miner believes
its answer is of very good quality will it generate the full
proof, but even this takes seconds, not minutes.

As outlined above, our proofs are substantially bigger than
Bitcoin’s, and require more than just one hash evaluation to
verify. However, for an active currency, we can still expect
the size and verification time for the proofs added with every
block to be marginal compared to the size of the transaction
added with every block, and the time required to verify that the
transactions are consistent. Figure 5 indeed shows that though
it may take seconds to generate the proof, verification takes a
fraction of a second.

Energy. Though our prototype was evaluated using a full
CPU which wastes a lot of energy, one could in principal run
the prover and the verifier on a energy-efficient devices such as
Raspberry Pi [3]. An efficient microcontroller consumes less
than 10 W of power, and most miners will only open one node
per time-step since the quality of their answers will likely be
bad. To get an upper bound on the power requirement, let us
assume that there are 100,000 miners, each with 1 TB of space,
and about 1% of the miners mine “good” answers which they
will want to generate a full answer. Then we have

10W · 100000 · 0.01s+ 10W · 1000 · 20s = 210000J/block

which translates to 210 kJ/min if we add one block a minute.
In contrast, Bitcoin on average uses 100 MW, so it consumes
6 GJ/min, which is several orders of magnitude larger. We
note that this 1% figure is a very conservative bound, so the
difference could be even larger in practice.

IX. DISCUSSION

We now discuss some minor issues and how to resolve them.

DoS. A party who wants to mine must have its space commit-
ment (pk, γ) added to the hash chain. A malicious party could
flood the network with countless requests of fake commitments
to be added to the chain. One simple way to counter this
problem is to request some small transaction fee, as is done
for normal transactions. The drawback is that now miners
must already possess some coins to even start mining. Another
solution is to require a PoSpace proof for the commitment
(pk, γ) to be added, i.e., a := Answer(pk, Sγ , c), where the
challenge c can for example be computed via the Fiat-Shamir
transformation as c = hash(pk, γ). This proof is only provided
to convince miners that some work went into generating the
commitment, but the proof will not be added to the chain.

Reusing space. We require that a public key pk is only
used once for a space commitment: a commitment (pk, γ)
will not be added to the chain if some commitment (pk, γ′) is
already in the chain. As the PoSpace scheme from [13] uses
the unique nonce (here pk) as a prefix to every random oracle
query, the random oracle used in the PoSpace scheme for a
given commitment (pk, γ) is independent from the random
oracles used for any other commitments. This implies that
space cannot be re-used for different commitments.

Tapes. The designer(s) of Bitcoin probably were anticipating
that most of the mining will be done by users on their personal
computers. What happened instead is that today almost all
mining is done by clusters of application-specific integrated
circuits (ASICs), which can do the computation for a tiny
fraction of the hardware and energy cost of a general-purpose
processor. We anticipate that a PoSpace-based currency would
mostly use the idle disk space on personal computers for
mining. Although hard disks are rather expensive compared
to other storage devices – most notably, tapes – devices like
tapes are not really adequate for mining, as we also require
frequent random accesses to answer the PoSpace challenges,
which is more difficult on tapes which are made for long term
storage.

X. GAME THEORY OF SPACEMINT

The miners in a cryptocurrency are strategic agents who
seek to maximize the reward that they get for mining blocks.
As such, it is a crucial property of a cryptocurrency that
“following the rules” is an equilibrium strategy: in other
words, it is important that the protocol rules are designed in
such a way that miners never find themselves in a situation
where “cheating” and deviating from the rules yields more
expected profit than mining honestly.

Intuitively, Spacemint mining is modeled by the following
n-player strategic game. Game-play occurs over a series of
discrete time steps, each of which corresponds to a block
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being added to the block chain. At each time step, each player
(miner) must choose a strategy, specified by:
• which blocks to extend (if any), which transactions to

include in the new blocks, and
• which extended blocks to publish (if any).
We present the details of our game-theoretic analysis in the

unpredictable-beacon model, and remark that the analysis can
be extended to cover the other models too.

A. Game-theoretic preliminaries

The standard game-theoretic notion for a strategic game
which occurs over multiple time steps (rather than in “one
shot”) is the extensive game. In order to accurately model the
probabilistic aspects of the Spacemint protocol (e.g. the un-
predictable beacon), we consider extensive games with chance
moves: this is the standard game-theoretic notion to capture
extensive games which involve exogenous uncertainty. The
uncertainty is modeled by an additional player called Chance
which behaves according to a known probability distribution.

In the Spacemint setting, every player (including Chance)
makes an action at every time step. A player’s action consists
of choosing whether and how to extend the block chain, and
the action of Chance determines the value of the unpredictable
beacon for the next time step.

An extensive game is commonly visualized as a game tree,
with the root node representing the start of the game. Each
node represents a state of the game, and the outward edges
from any given node represent the actions that players can
take at that node. Leaf nodes represent terminal states: once
a leaf is reached, the game is over. In accordance with the
literature, we refer to paths in the game tree (starting at the
root) as histories; and histories which end at a leaf node are
called terminal histories.

Definition X.1 (Extensive game). An extensive game Γ =
〈N,H, fC , ~I, ~u〉 is defined by:
• [N ], a finite set of players.
• H , the set of all possible histories, which must satisfy the

following two properties:
– the empty sequence () is in H , and
– if (a1, . . . , aK) ∈ H then for all L ≤ K, it holds

that (a1, . . . , aL) ∈ H .
We write Z ⊆ H to denote the subset consisting of all
terminal histories. For any history h,

A(h) = {a : (h, a) ∈ H} = ×i∈[N ]Ai(h)

denotes the set of action profiles that can occur at that
history, and Ai(h) denotes the set of actions that are
available to player i at history h.

• f(·, h) is a probability measure on AC(h), where h ∈ H
and C denotes the Chance player.

• ~I = (I1, . . . , IN ), where each Ii is a partition of H
into disjoint information sets, such that Ai(h) = Ai(h

′)
whenever h and h′ are in the same information set I ∈ Ii.
Let Ai(I) denote the set of actions that are available to
player i at any history in information set I .

• ~u = (u1, . . . , uN ), where each ui : Z → R is the utility
function of player i.

Imperfect information and information sets. An extensive
game is said to have perfect information if at any point during
game-play, every player is perfectly informed of all actions
taken so far by every other player. In the context of Spacemint,
players are only aware of each others’ announced actions: for
example, if Alice tries extending several blocks and then only
announces one of them, then Bob does not know about the
other blocks that Alice tried to extend. Thus, Spacemint is a
game of imperfect information.

The information that players do not know about other
players’ actions is modeled by the partitions ~I = (I1, . . . , IN )
in Definition X.1. Each Ii is a partition of H into disjoint
information sets, and for each i ∈ [N ] and any pair of histories
h, h′ ∈ I in a particular information set I ∈ Ii, player i cannot
tell the difference between game-play at h and at h′.

Example X.2 (“Match my number” game). Consider a simple
two-player game in two rounds: in the first round, player 1
chooses a number a ∈ {0, 1, 2}. In the second round, player
2 chooses a number b ∈ {0, 1, 2}. Player 2 wins if b = a, and
player 1 wins otherwise. Clearly, player 2 can always win if
he knows a.

However, we consider a game of imperfect information
where player 2 must choose b without knowing a: in particular,
suppose player 2 only learns whether a = 0. Then, the
histories (a = 1) and (a = 2) are in the same information
set in the partition I2. Figure 6 shows the game tree, with
player 2’s information sets as dashed red boxes: within each
dotted box, player 2 cannot tell which history he is at.

Player 1’s turn

Player 2’s turn

P2P1P1

0
1

2

Player 2’s turn

P1P2P1

0
1

2

Player 2’s turn

P1P1P2

0
1

2

0
1

2

Fig. 6: Game tree for the “Match my number” game. Leaves
are labelled with the winning player.

Strategies. A strategy of a player in an extensive game
is defined by specifying how the player decides his next
move at any given history. In games of imperfect information,
the player may not know which history he is at, so we
instead specify how the player decides his next move at any
information set.

Definition X.3 (Strategy profile). A strategy profile ~α =
(α1, . . . , αN ) of an extensive game Γ = 〈N,H, fC , ~I, ~u〉
specifies for each player i ∈ [N ] and each information set
I ∈ Ii a probability distribution αi(I) over the action set
Ai(I). We say that αi is the strategy of player i.

Let I(h) denote the information set in which history h lies.
The probability that a history h occurs under strategy profile
α is denoted by Pr~α[h], and the probability that a history h′

occurs given that h occurred is denoted by Pr~α[h′|h].
Recall that the utility functions u1, . . . , uN were originally

defined on inputs in Z, the set of terminal histories. For each
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i ∈ [N ], we now define ui(~α) to be the expected utility of
player i given the strategy profile ~α. That is,

ui(~α) =
∑
h∈Z

ui(h) · Pr ~α[h].

Moreover, we define ui(~α|h) to be the expected utility of
player i given ~α and given that history h has already occurred.
That is,

ui(~α|h) =
∑
h′∈Z

ui(h
′) · Pr ~α[h′|h].

Equilibrium notions. The most widely known equilibrium
concept for a strategic game is the Nash equilibrium [23],
given in Definition X.4. Intuitively, in a Nash equilibrium,
each player’s strategy is a best response to the strategies of
the other players.

For a strategy profile ~α, we write ~α−i to denote
(αj)j∈N,j 6=i, that is, the profile of strategies of all players
other than i; and we use (α′i, ~α−i) to denote the action profile
where player i’s strategy is α′i and all other players’ actions
are as in ~α.

Definition X.4 (Nash equilibrium of an extensive game). Let
Γ = 〈N,H, f, ~I, ~u〉 be an extensive game. A strategy profile
~α is a Nash equilibrium of Γ if for every player i ∈ [N ] and
every strategy α′i of player i,

ui(~α) ≥ ui(α′i, ~α−i).

The Nash equilibrium concept was originally formulated for
one-shot games, and it is known to have some shortcomings in
the setting of extensive games. Informally, the Nash equilib-
rium does not account for the possibility of players changing
their strategy partway through the game: in particular, there
exist Nash equilibria that are not “stable” in the sense that
given the ability to change strategies during the game, no
rational player would stick with his equilibrium strategy all
the way to the end of the game.

Example X.5 (“Unstable” game). Consider a simple two-
player game in two rounds: in the first round, player 1 chooses
either strategy A or B. In the second round, player 2 chooses
either strategy C or D. The game tree is given below, where
the notation (x, y) at the leaves denotes that player 1 gets
payoff x and player 2 gets payoff y if that leaf is reached.

Player 1’s turn

Player 2’s turn

(1, 2)(1, 2)

C D

Player 2’s turn

(2, 1)(0, 0)

C D

A B

Fig. 7: Game tree for the “Unstable” game.

It is a Nash equilibrium of this game for player 1 to choose
B, and player 2 to always choose C21 However, the strategy
profile (B,C) seems “unstable”22, in the following sense:

21It is straightforward to verify that this is an equilibrium, by considering
the payoff matrix of the game.

22In this example, we assume that the game is with perfect information.

player 1 does not want to switch from strategy B to A because
of the “threat” that player 2 will then choose C. However, in
the situation where player 1 has actually chosen strategy A,
it is clearly better for player 2 to play D rather than follow
through with the threatened strategy C. That is, the threat does
not seem credible.

To address these shortcomings of the Nash equilibrium
concept for extensive games, an alternative (stronger) notion
has been proposed: the sequentially rational Nash equilibrium.
This stronger concept ensures that players are making the best
decision possible at any point during game-play. In a game
with imperfect information, it is necessary to consider not only
the strategy profile, but the players’ beliefs at any point in time
about how game-play arrived at the current information set. A
strategy profile which takes into account players’ beliefs is
called an assessment.

Definition X.6 (Assessment). An assessment in an extensive
game is a pair (~α, ~µ) where ~α = (α1, . . . , αN ) is a strategy
profile and ~µ = (µ1, . . . , µN ) is a belief system, in which
each µi is a function that assigns to every information set in
Ii a probability measure on histories in the information set.

In Definition X.6, µi(I)(h) represents the probability that
player i assigns to the history h ∈ I having occurred,
conditioned on the information set I ∈ Ii having been reached.
For each i ∈ [N ], we now define ui((~α, ~µ)|I) to be the
expected utility of player i at the information set I ∈ Ii,
given the strategy profile ~α and belief system ~µ. That is,

ui((~α, ~µ)|I) =
∑
h∈I

ui(~α|h) · µ(I)(h).

We write ui((~α, ~µ)) to denote ui((~α, ~µ)|{()}), that is, the
expected utility for player i at the beginning of the game.

An assessment (α, µ) is said to be sequentially rational if
for every i ∈ [N ] and every information set I ∈ Ii, the strategy
of player i is a best response to the other players’ strategies,
given i’s beliefs at I . A formal definition follows.

Definition X.7 (Sequentially rational assessment). Let Γ =
〈N,H, f, ~I, ~u〉 be an extensive game. An assessment (~α, ~µ) is
sequentially rational if for every i ∈ [N ] and every strategy
α′i of player i, for every information set I ∈ Ii, it holds that

ui((~α, ~µ)|I) ≥ ui(((α′i, ~α−i), ~µ)|I).

Definition X.7 almost fully captures the idea players should
be making the best decision possible given their beliefs at any
point during game-play. To fully characterize a sequentially
rational Nash equilibrium, we require additionally that the
beliefs of the players be consistent with ~α. For example, if an
event occurs with zero probability in ~α, then we require that
the players also believe that it will occur with zero probability.

Definition X.8 (Consistent assessment). Let
Γ = 〈N,H, f, ~I, ~u〉 be an extensive game. A strategy
profile ~α is said to be completely mixed if it assigns
positive probability to every action at every information set.
An assessment (~α, ~µ) is consistent if there is a sequence
((~αn, ~µn))n∈N of assignments that converges to (~α, ~µ) in
Euclidean space, where each ~αn is completely mixed and
each belief system ~µn is derived from ~αn using Bayes’ rule.
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Finally, we arrive at the definition of a sequentially rational
Nash equilibrium.

Definition X.9 (Sequentially rational Nash equilibrium). An
assessment is a sequentially rational Nash equilibrium if it is
sequentially rational and consistent.

B. Game-theoretic analysis of Spacemint
In order to analyze the game-theoretic properties

of Spacemint mining, we define an extensive game,
SpacemintGame, which models the actions that miners can
take, and the associated payoffs. To facilitate analysis, we
simplify the action space of the game as much as possible
while still accurately modeling the incentives of Spacemint
miners. Concretely:
• We do not include the action of creating a space commit-

ment because (as discussed in Section V-A under “Min-
ing”) we can assume that rational miners will commit to
all the space they have, and nothing else.23

• We do not include the action of creating transactions
because such actions do not affect the rewards that
players receive from mining blocks, except in the case
of punishment transactions. To deal with the case of
punishment transactions, we define the payoff of a player
who mines multiple blocks in the same time step to
be zero. This payoff function exactly captures that of
a miner in the actual Spacemint protocol, because it is
a dominant strategy for each other miner to create a
punishment transaction (including a positive transaction
fee) if she sees that a cheating player has mined multiple
blocks in a time step, and hence we can assume that the
cheating player will surely be punished at a later point in
the protocol. Since the punishment penalizes the cheating
player by the amount of the mining reward, it follows that
the cheater’s overall utility for the time step in which he
cheated is zero.

• We do not explicitly model the amount of space that each
player has24. Instead, we study the two critical cases: in
our initial analysis, we assume that no miner controls
more than 50% of the space committed by active miners.
Then, we discuss potential issues that arise if a miner
does control a majority of the space.

Definition X.10 (The Spacemint Game). Let B denote set
of all blocks as defined in Section VI. For any number of
players N ∈ N, any number of time steps K ∈ N, and any
reward function ρ : N → N, we define the extensive game
SpacemintGameΠ,K,ρ = 〈N,H, fC , ~I, ~u 〉 as follows:
• The set H of histories is defined inductively as follows.

– The action set of the Chance player AC(h) =
{0, 1}m is the same for every history h.

– The empty sequence () is in H , and Ai(()) =
{(∅,∅)} for each i ∈ [N ].

– Let h = (h′, a) be any non-terminal history where
the latest action profile a = (a1, . . . , aN , aC) con-
sists of the actions of each player in [N ] ∪ {C} at

23Later in this section, we address what happens if a miner gains additional
space (or loses some space) during the game.

24We remark that the standard way to model this would be to assign a type
to each player, representing how much space he has.

history h′, and for each player i ∈ [N ], the action
ai = (Si, Ti) is a pair of sets. Then for any i ∈ [N ],
the action set Ai(h) of player i at h is

Ai(h) = P(T )× B where T =
⋃
i∈[N ]

Ti.

An action ai = (Si, Ti) can be interpreted as
follows: Si is the set of blocks from the previous
time step which player i attempts to extend in this
time step, and Ti is the set of extended blocks which
player i announces in this time step.

• The probability measure f(·, h) is uniform over {0, 1}m.
• For each i ∈ [N ], we define the partition Ii by an

equivalence relation ∼i. The equivalence relation ∼i is
defined inductively as follows (we write [h]i to denote the
equivalence class of h under ∼i):

– [()]i = {()}, that is, the empty sequence is equivalent
only to itself.

– [(h, ((S1, T1), . . . , (SN , TN ), aC))]i =

{(h′, ((S′1, T ′1), . . . , (S′N , T
′
N ), a′C)) ∈ H :

h ∼i h′ ∧ Si = S′i ∧ Ti = T ′i ∧ aC = a′C

∧∀j 6= i, Tj = T ′j
}
,

where h and h′ are histories and the pairs (Sj , Tj)
and (S′j , T

′
j) are actions of player j. That is, two

histories are equivalent under ∼i if they are identical
except in the “first components” Sj of the actions
(Sj , Tj) taken by the players other than i.

• ~u = (u1, . . . , uN ), where each ui : Z → R is defined as
described below. For a history h, let beac(h) denote the
sequence of actions taken by the Chance player in h, and
let beacj(h) denote the jth action taken by the Chance
player in h. For a block B, let B.c denote the challenge
c within the proof of space of B. Recall that Quality(B)
was defined in Section VII. We define

Quality(B, c) =

{
Quality(B) if B.c = c

0 otherwise.

Similarly, let QualityPC((B1, . . . , BL), (c1, . . . , cL))

=

{
QualityPC((B1, . . . , BL)) if ∀i ∈ [L], Bi.c = ci
0 otherwise.

Let blocks(h) denote the sequence of “winning blocks”
at each time step in the game, defined inductively:

– blocks(()) = ()
– blocks(h = (h′, ((S1, T1), . . . , (SN , TN ), aC))) =

arg maxB∈T (Quality(B, beac|h|(h))),
where T = ∪i∈[N ]Ti.

Let blocksj(h) denote the jth block in the blockchain.
We assume that the winning block is unique at each time
step25.
Let winners(h) denote the sequence of players who an-
nounce the winning block at each time step in the game,
defined inductively as follows:

25This can be achieved by breaking ties between blocks in an arbitrary way.
Note that it is not possible for two different players to announce exactly the
same (valid) block, because each block contains the miner’s identity.
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– winners(()) = ()
– winners(h = (h′, ((S1, T1), . . . , (SN , TN ), aC))) =

arg maxi∈[N ] maxB∈Ti
(Quality(B, beac|h|(h))).

Let winnersj(h) denote the jth winner in the sequence
winners(h). Let onlyonej(i, h) be an indicator variable
for the event that player i’s jth action (Si, Ti) in the
history h does not mine multiple blocks, i.e. |Ti| ≤ 1.
Finally, the players’ utility functions are defined as fol-
lows: for a terminal history h of length K,

ui(h) =
∑
j∈[K]

δi,winnersj(h) ·onlyonej(i, h)·ρ(blocksj(h)),

where δi,j is the Kronecker delta function26. That is, a
player’s utility is the sum of the rewards he has received
for announcing a winning block (in the time steps where
he has announced at most one block).

By Definition X.10, for any i ∈ [N ], for any histories h, h′

in the same information set I ∈ Ii, it holds that blocks(h) =
blocks(h′). Thus, we can associate a unique blockchain with
each information set: we define blocks(I) to be equal to
blocks(h) for any h ∈ I . Similarly, beac(h) = beac(h′) for
any h, h′ ∈ I in the same information set I , so we define
beac(I) to be equal to beac(h) for any h ∈ I .

For a block B ∈ B and a challenge c ← Challenge, we
define Extendi(B, c) to be the block generated by player
i when mining the next block after B using the PoSpace
challenge c (see Section VII for exact block format).

Theorem X.11. For any number of players N , any number
of time steps K ∈ N, and any reward function ρ : N →
N, let ~α = (α1, . . . , αn) be a pure strategy profile of
SpacemintGameΠ,K,ρ, defined as follows: for each i ∈ [N ],
for any information set I ∈ Ii such that I 6= {()},

αi(I) (({blocksj(I)} , {Extendi(blocksj(I), beacj(I))})) = 1,

where j ≥ 1 is the length of the histories in information set
I27. That is, player i’s next action at information set I is

α̂i = ({blocksj(I)} , {Extendi(blocksj(I), beacj(I))}) .

Then ~α is a Nash equilibrium of SpacemintGameΠ,K,ρ.

Proof. Take any player i ∈ [N ]. By the definition of Extend,
for any information set I ∈ Ii with I 6= {()}, the quality v of
the extended blockchain

v = QualityPC((blocks(I),Extendi(B, beacj(I))), beac(I))

is the same for any block B which was announced at time step
j. Therefore, no utility can be gained by choosing any block B
over any other block B′ to extend: that is, ui(~α) ≥ ui(α′i, ~α−i)
for any strategy α′i which distributes probability over actions
of the form (S, T ) where |S| = 1.

Moreover, not extending any block or extending multiple
blocks precludes a player from being the “winner” and receiv-
ing the reward in this time step, so extending a block is prefer-
able to not extending any block. That is, ui(~α) ≥ ui(α′i, ~α−i)
for any strategy α′i which assigns non-zero probability to any
action of the form (S, T ) where |S| 6= 1.

26Kronecker delta function: δi,j = 1 if i = j, and 0 otherwise.
27All histories in an information set must be of the same length.

We have shown that ui(~α) ≥ ui(α
′
i, ~α−i) for all strategies

α′i of player i. The theorem follows.

Theorem X.12. Let Π = {Init,Challenge,Answer,Verify} be
a proof of space. For any number of players N , any number
of time steps K ∈ N, and any reward function ρ : N→ N, let
(~α, ~µ) be an assessment of SpacemintGameΠ,K,ρ where:
• ~α and α̂i are defined as in Theorem X.11, and for

each n ∈ N, we define ~αn to be the completely mixed
strategy profile which (at history h) assigns probability
1/|Ai(h)|n to every action except α̂i, and assigns all
remaining probability to α̂i.

• ~µ is derived from ~α using Bayes’ rule in the following
way: ~µ = limn→∞ ~µn, where for each n ∈ N, ~µn is
derived from ~αn using Bayes’ rule.

Then (~α, ~µ) is a sequentially rational Nash equilibrium of
SpacemintGameΠ,K,ρ.

Proof. Let I ∈ Ii be any information set of player i in
SpacemintGameΠ,K,ρ, and let L be the length of histories in
I . It follows from Definition X.10 that the expected utility of
player i at I is ui((~α, ~µ)|I) =∑
j∈[L]

δi,winnersj(h) · onlyonej(i, h) · ρ(blocksj(h)) + u′i((~α, ~µ)),

where u′i is the utility function of player i in the game
SpacemintGameΠ,K−L,ρ. Since winners, onlyone, and blocks
are invariant over histories within any given information set,
the summation term can be computed explicitly by player
i at I . Hence, in order to maximize his expected utility
at I , the player needs simply to maximize u′i((~α, ~µ)). Let
(~α|K−L, ~µ|K−L) denote the assessment (~α, ~µ) for the first
K − L time steps of the game. By Theorem X.11, ~α|K−L
is a Nash equilibrium of SpacemintGameΠ,K−L,ρ. Since ~µ is
derived from ~α by Bayes’ rule, it follows that ui((~α, ~µ)|I) ≥
ui(((α

′
i, ~α−i), ~µ)|I) for any strategy α′i of player i. Applying

this argument for every I , we conclude that (~α, ~µ) is sequen-
tially rational in SpacemintGameΠ,K,ρ.

By construction, limn→∞ ~αn = ~α and ~µ = limn→∞ ~µn, so
(~α, ~µ) is consistent. The theorem follows.

Parameters. The Spacemint Game is parametrized by N and
K. It is natural to ask: do we require that the number of
miners N is fixed in advance, or that the block chain will end
after a certain number K of time-steps? The answer is no.
Theorem X.12 gives a sequentially rational Nash equilibrium
in which each player’s strategy is independent of N , and so
it makes sense for each miner to play this strategy even if N
is unknown or changes over time. In light of this, from each
rational player’s point of view, K can be considered to be
the number of time-steps that he intends to participate in the
game: perhaps his goal is to use his earnings to buy a house
after K time-steps, or perhaps he does not expect to live for
more than K time-steps28. The crucial observation is that even

28In the latter case, K is an upper bound on the number of time-steps
that the player intends to stay in the game. It is reasonable to treat K as
an upper bound because maximizing expected utility after K time-steps also
maximizes expected utility after any 0 < L < K time-steps, as shown in the
proof of Theorem X.12.
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if different players have different values of K “in their heads”,
their equilibrium strategies are still the same.

Buying space. Players’ strategies in equilibrium do not
depend on the amount of space that (they believe) other players
possess. Also, we showed above that the equilibrium strategies
are robust to changes in N . Hence, if a player’s amount of
space changes (e.g. he buys/sells a hard disk), then he can
simply create a new space commitment, and then behave as a
“new player” with the new amount of space.

The “51% Attack”. If a player P controls more than half of
the total space that belongs to active miners, then following
the protocol rules is no longer a Nash equilibrium, because
whichever branch of the block chain P chooses to mine on
will eventually become the highest-quality chain. Thus, P can
decide arbitrary rules about which blocks to extend, and the
other players will be incentivized to adapt their strategies
accordingly. Moreover, P can prevent certain transactions
from ever getting into the block chain, by refusing to extend
blocks which contain these transactions – as a consequence,
P can mine multiple blocks per time-step without ever being
punished. This attack was first analyzed by [20] in the context
of Bitcoin, which suffers from the same problem (with respect
to computing power rather than space).

It may seem unrealistic that a single party would control
more than half of the total space that belongs to active miners
in a widely adopted currency. A more realistic concern could
be that a large group of miners (in a mining pool) may
acquire more half of the total space. However, under the
assumption that each miner is an individual strategic agent, we
consider it unlikely that such a mining pool could do much
damage: for this, a large group of self-interested and relatively
anonymous agents would have to coordinate and trust each
other throughout the duration of an attack. In particular, each
rational miner in the pool must be convinced that he will get
his share of the attack profits, and it seems highly unlikely
that a large group of anonymous people would all trust each
other so. The improbableness of a 51% attack by a mining
pool is supported by recent events: when a large mining pool
(ghash.io) was nearing 50% of Bitcoin computing power
in 2014, self-interested miners started leaving the mining pool
in order to avoid destabilizing the currency.

XI. CONCLUSION

We have presented Spacemint, a cryptocurrency that uses
efficient proofs of space instead of energy-intensive proofs
of work to maintain a public ledger of all transactions. We
have described a variant of a proof-of-space protocol that is
more suitable for cryptocurrencies, and modified the structure
of the hash chain and transactions to address some of the
issues of other cryptocurrencies. We have also demonstrated
the feasibility of Spacemint through a prototype, and show
that maintaining a public ledger could be much more efficient
with proof-of-space. Finally, we do a game-theoretic analysis
of Spacemint modeled as an extensive game, and prove that
it satisfies strong equilibrium properties.
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required to evaluate the underlying hash function hash :
{0, 1}∗ → {0, 1}L on inputs of length 2L (to hash an input of
length m · L takes time m · thash by using Merkle-Damgård),
For a given n, the number of nodes of the underlying graph,
an honest prover P must dedicate

N = 2 · n · L

bits of storage (L · n for the labels, and almost the same
for the values required to efficiently open the Merkle tree
commitment).

Proposition A.1 ([13] first construction). There exists a
PoSpace in the random oracle model with the following
properties:
• Efficiency: The verifier runs in time O(L) during initial-

ization (it just has to send a nonce and store a commit-
ment) and O(k ·log(n)·log log(n)·thash) during execution
(it must check O(k · log log(n)) openings of the Merkle
tree commitment, the parameter k is discussed below).
The (honest) prover runs in time O(n · log log(n) · thash)
during initialization and in O(k ·log(n)·log log(n)·thash)
during execution.

• Security: Let kcv, kp denote the parameter k we set for
the proof execution and commitment verification phase. If
a (potentially cheating) prover P passes the commitment
verification phase, then with probability 1 − 2Θ(kcv) the
following holds: If P can make V accept in in the proof
execution phase with probability ≥ 2−Θ(kp), then P
either stores Θ(N) bits (i.e., almost as much as an honest
prover) or runs in time Θ(thash · n · log log(n)) (i.e., the
time required for initialization).

To use the above PoSpace in our construction, we’ll have
to set kcv = λ where λ is a statistical security parameter, and
kp = Θ(1) can be a constant.

Proposition A.2 ([13] second construction). There exists a
PoSpace in the random oracle model with the following
properties:
• Efficiency: The verifier runs in time O(L) during ini-

tialization and in O(k · log(n) · thash) during execution.
The (honest) prover runs in time O(n · thash) during
initialization and in O(k · log(n) · thash) during execution.

• Security: Let kcv, kp denote the parameter k we set
for the proof execution and commitment verification
phase. If a (potentially cheating) prover passes the com-
mitment verification phase, then with probability 1 −
2Θ(−kcv/ log(n)) the following holds: If P can make V
accept in in the proof execution phase with probability
≥ 2−Θ(kp), then P either stores Ω(nL/ log(n)) =
Ω(N/ log(n)) bits or requires Ω(N/ log(n)) space and
Ω(thash · n/ log(n)) time during execution.

To use the above PoSpace in our construction, we’ll have to
set kcv = λ · log(n) where λ is a statistical security parameter,
and kp = Θ(1) can be a constant.

B. Burstcoin

In this section we give some more details on the efficiency
and security issues of Burstcoin as outlined in Section II. We

not only discuss Burstcoin because it is relevant related work,
but also, looking at its design illustrates some of the challenges
that we had to solve when designing a Proof of Space based
cryptocurrency.

The only specification of the Burstcoin mining process that
we were able to find is the webpage http://burstcoin.info/intro,
which unfortunately is rather informal. The description below
is thus only our best guess on how exactly the mining process
in Burstcoin works, mostly based on the figure http://burstcoin.
info/assets/img/flow.png.

Burstcoin uses the Shabal256 hash function, which below
we will denote with H(·). To mine Burstcoin, a miner first
initialises his disk space as follows: he picks a nonce µ and
an account identifier (which is a hash of a public key) Id, and
then computes iteratively 4096 values x0, x1, . . . ∈ {0, 1}256

as
x0 = H(Id, µ) and (4)

xi+1 = H(xi‖xi−1‖ . . . ‖x0) for i = 0, . . . , 4095 . (5)

The miner then stores s0, . . . , s4095 where si = xi ⊕ x4096.
Each block si is called a “scoop”, and the 4096 scoops
together are called a “plot”. The miner is supposed to store
as many plots as he can (using different nonces) until all the
dedicated space is filled. To compute a plot, one must hash
4096· 1+4096

2 ≈ 8 million 256-bit blocks29. In the following we
assume for simplicity that there is just one plot s0, . . . , s4095.

Efficiency. Once every few minutes, a new block gets added
to the hash-chain. At this point the miner can compute a
designated (public) index i ∈ {0, . . . , 4095} and must look up
the value si. This si then determines if the miner “wins” and
thus can add the next block to the block chain30. Note that this
requires accessing a constant fraction of the entire dedicated
disk space (i.e. one block per plot, or 0.024%), every time a
new block gets mined. Moreover, in order to verify that a miner
“won” and can add a block, it is necessary to recompute the
entire plot from the initial inputs (Id, µ), which, as mentioned
above, involves hashing over 8 · 106 blocks. In comparison,
in Spacemint, the number of bits read from the disk is only
logarithmic in the size of the dedicated space, and verification
also just requires a logarithmic number of hashes. (In Bitcoin,
verification requires just a single hash.)

Time-memory trade-offs. We observe that Burstcoin allows
for a simple time-memory trade-off: instead of storing an
entire plot s0, . . . , s4095, a miner can initially compute and
store only the value x4096. The miner then re-computes the
required scoop si at a given time-step, but only if i is
sufficiently small (say, i ≤ 10). This would require hashing
only at most 50 blocks31. Thus, the miner will get a shot at
adding a block only at 10/4095 ≈ 0.25% of the time slots,
but now also only requires a 1/4095 ≈ 0.025% fraction of the

29Note that in equation (4), a freshly computed block xi is prepended to the
previous input. This is important as Shabal256 is an iterated hash function:
appending instead of prepending would bring the number of hashes required
to compute a plot down to linear (instead of quadratic) in the length of the
plot, but at the same time would allow for much more dramatic time-memory
trade-offs than the ones outlined below.

30The details of how to add a block to the chain are irrelevant for this
discussion, and hence we omit them.

31To be precise, the miner computes x0, . . . , xi and sets si = xi⊕x4096.

http://burstcoin.info/intro
http://burstcoin.info/assets/img/flow.png
http://burstcoin.info/assets/img/flow.png
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space that would be needed to store an entire plot. Using this
strategy, given some fixed amount of disk-space, it is possible
to mine 0.25/0.025 = 10 times faster than the honest mining
algorithm, at the price of having to compute a modest number
of extra hashes. More generally, using this type of mining
strategy, it is possible to mine t times faster at the price of
having to hash t2/2 blocks with every block read from the
disk.

Given that application-specific integrated circuits (ASICs)
can compute in the order of millions of hashes per second per
dollar invested32, such time-memory trade-offs seem practi-
cal33. We remark that in http://burstcoin.info/intro, the creators
of Burstcoin discuss the possibility of mining their currency
in a pure proof-of-work style, though they come to a different
conclusion from ours:

Technically, this mining process can be mined POW-
style, however mining it as intended will yield thou-
sands of times the hashrate, and your hardware will
sit idle most of the time. Continuously hashing until
a block is found is unnecessary, as waiting long
enough will cause any nonce to eventually become
valid.

Grinding and Extending Multiple Chains. The two main
challenges we had to overcome when designing Spacemint
were attacks based on grinding and mining multiple chains.
(The problem with time-memory trade-offs was solved in the
Proofs of Space [13] paper upon which this work builds.)

Due to lack of documentation of the Burstcoin mining
process, we do not know to what extent Burstcoin can be
attacked using grinding or by extending multiple chains. From
our understanding of the Burstcoin mining process, it seems
especially crucial to avoid grinding of the index of the scoop
to be used in a given round: otherwise, a malicious miner
could “hijack” the chain forever (i.e. mine all future blocks)
using only a very small fraction of the total dedicated space,
as follows. The figure http://burstcoin.info/assets/img/flow.png
indicates that this scoop index is computed from two values
PrevGenSig and PrevBlkGenerator. The naming indicates that
PrevGenSig corresponds to the value NewGenSig used in the
previous block. This value is computed deterministically and
thus is “ungrindable”. We were not able to find details on the
functionality of PrevBlkGenerator so do not know whether
it can be grinded; however, it seems possible that this value
serves to bind transactions to proofs within a given block, and
thus can be grinded (by trying different sets of transactions to
include in a block).

32https://en.bitcoin.it/wiki/Mining hardware comparison
33However, we remark that currently, ASICs exist primarily for the SHA256

hash function used in Bitcoin (and not for the more unconventional Shabal256
hash used in Burstcoin).

http://burstcoin.info/intro
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