
Generic Key Recovery Attack on Feistel Scheme

Takanori Isobe and Kyoji Shibutani

Sony Corporation
1-7-1 Konan, Minato-ku, Tokyo 108-0075, Japan

{Takanori.Isobe,Kyoji.Shibutani}@jp.sony.com

Abstract. We propose new generic key recovery attacks on Feistel-type block ciphers. The
proposed attack is based on the all subkeys recovery approach presented in SAC 2012, which
determines all subkeys instead of the master key. This enables us to construct a key recovery
attack without taking into account a key scheduling function. With our advanced techniques,
we apply several key recovery attacks to Feistel-type block ciphers. For instance, we show
8-, 9- and 11-round key recovery attacks on n-bit Feistel ciphers with 2n-bit key employ-
ing random keyed F-functions, random F-functions, and SP-type F-functions, respectively.
Moreover, thanks to the meet-in-the-middle approach, our attack leads to low-data complex-
ity. To demonstrate the usefulness of our approach, we show a key recovery attack on the
8-round reduced CAST-128, which is the best attack with respect to the number of attacked
rounds. Since our approach derives the lower bounds on the numbers of rounds to be secure
under the single secret key setting, it can be considered that we unveil the limitation of
designing an efficient block cipher by a Feistel scheme such as a low-latency cipher.

Keywords: block cipher, key scheduling function, all-subkeys-recovery attack, meet-in-the-
middle attack, key recovery attack, low-data complexity attack

1 Introduction

A block cipher is considered as an essential technology on modern cryptography, since it is one
of the most widely used primitives. Moreover, studies on designing a secure and efficient block
cipher are useful also for designing other symmetric primitives such as hash functions and stream
ciphers. Since DES was developed in 1977 [19], a lot of progress has taken place in this area.
Recently, with the large deployment of network devices requiring security, block ciphers satisfying
new demands such as lightweight and low-latency have received a lot of attention. In fact, several
block ciphers designed for a lightweight hardware implementation have been proposed such as
PRESENT [9], KATAN/KTANTAN [16], LED [20] and Piccolo [32]. The concept of a low-latency
encryption, which is used for an application requiring an instant response, was discussed in [24].
Since a low-latency encryption requires a quick response, the number of rounds must be reduced
as much as possible compared to a general-purpose block cipher such as AES. In 2012, PRINCE
was proposed as an instantiation of a low-latency cipher [12]. Note that PRINCE is not only a
low-latency cipher, but also a lightweight block cipher even after supporting both encryption and
decryption. Those features are considered to be important in practical use of the cipher, since its
lightweightness directly leads to low power and energy consumption and supporting decryption
function without much cost leading to this cipher being used more widely.

In general, an SPN cipher requires an inverse function when supporting decryption, and thus
an SPN cipher with a decryption function needs additional gate areas. In spite of the fact that
PRINCE is an SPN cipher, it is efficiently implemented even when implementing a decryption
function due to its novel property called α-reflection. However, as pointed out by the designers,
it has been known that α-reflection reduces the security of the cipher [12, 23, 33] and thus the
cipher having α-reflection does not have optimal security. Meanwhile, it has been known that a
Feistel cipher, another traditional structure of block cipher, is suitable for a lightweight block cipher
especially when supporting both encryption and decryption, since it does not require an inverse

c©IACR 2013. This article is a minor revision of the version published by Springer-Verlag available at
http://dx.doi.org/10.1007/978-3-642-42033-7 24.

Table 1. Numbers of Attacked Rounds by Generic Attacks on Feistel Schemes

Single Secret Key Setting

Attack Type Feistel-1 Feistel-2 Feistel-3

5 [28] 5 [28] 5 [28]
Distinguisher 5∗ [25] 5∗ [25] 5∗ [25]

5∗ [11] 5∗ [11] 5∗ [11]

Key Recovery Attack (k = 2n) 7 [22] 8 (Ours) 9 (Ours) 11 (Ours)

Key Recovery Attack (k = 3n/2) 5 [22] 6 (Ours) 7 (Ours) 9 (Ours)

Key Recovery Attack (k = n) 3 [22] 4 (Ours) 5 (Ours) 7 (Ours)

Known Key Setting

Distinguisher not given 7 [26] 11* [31]

* : Each F function is restricted to a permutation

function. Thus, a Feistel cipher is considered as a possible candidate of a low-latency cipher, if
it has sufficiently small number of rounds. However, it has been still unknown how many rounds
are sufficient for a Feistel cipher to be secure. Note that, for low-latency encryption, since the
key scheduling function can be precomputed, it can be a heavy function. Thus, its performance
with respect to low-latency is considered to mainly depend on the data processing part, namely
its number of rounds. Hence, our question is “how many rounds can be reduced without loss of
security requirements for Feistel schemes”.

In this paper, we tackle the security evaluations of several Feistel schemes, assuming that the
key scheduling function is an ideal function. We deal with key recovery attacks under the single
secret key setting by extending the all subkeys recovery approach [22]. Since our approach derives
the lower bounds on the numbers of rounds to be secure against a key recovery attack even if
the underlying key scheduling function is an ideal function, our results show the limitation of
designing a low-latency encryption by a Feistel scheme. We introduce several advanced techniques
including function reduction and key linearization. Using those advanced techniques and with
the help of the meet-in-the-middle approach [10, 21], we show several key recovery attacks on
various Feistel ciphers. Table 1 summarizes the number of attacked rounds for Feistel schemes by
both distinguishers and key recovery attacks under the single secret key and known-key settings.
Compared to the previous results, some of our attacks are the first generic key recovery attacks
and also the best for several Feistel schemes with respect to the number of attacked rounds, even
if the attacker is allowed to use the known secret key. Moreover, our attack does not restrict the
underlying F-function to a permutation, which is a limitation of some of the previous attacks.
Furthermore, one of the advantages of our approach is its low data requirement thanks to the
meet-in-the-middle approach, in contrast to the classical statistical attacks such as an impossible
differential attack [6]. As an example for the practical impact of our work, we show the best
attack on the reduced CAST-128 [1] even when its key scheduling function is ideal. Also, we show
extremely low-data attacks on the reduced Camellia [5] with less than 60 data sets.

This paper is organized as follows: Section 2 gives notations and definitions used throughout
this paper, and gives a brief review of the all subkeys recovery approach. We review the related work
and show its improvement in Section 3. Our key recovery attacks on two types of Feistel ciphers
and those applications to CAST-128 and Camellia are described in Sections 4 and 5. Section 6
discusses the usefulness of our attack. Finally, we conclude in Section 7.

2 Preliminary

In this section, we give notations used throughout this paper, then define our target Feistel ciphers.
Finally, we briefly review the all subkeys recovery approach presented in [22].

2.1 Notation

The following notation will be used throughout this paper:

2

... ...P C

K

FFFFFFF

r rounds

K1 Ka KrKa+1 Ka+2Ka−1Ka−2

L1

R1
Lr+1

Rr+1

k

n

n/2

key scheduling function

Fig. 1. Balanced Feistel Network (Feistel-1)

n : block size.
k : the size of the master key.

Li, Ri : left or right half of the i-th round input.
Ki : the i-th round subkey (n/2 bits).
ℓ : the size of an S-box.
m : the number of S-boxes in an S-box layer.
Xi : the i-th round state.
Xi,j : the j-th S-box word (ℓ-bit data) of Xi.

XiL, XiR : left or right half bits of Xi.
a|b or (a|b) : Concatenation.

2.2 Feistel Cipher

In this paper, we focus on balanced Feistel networks as illustrated in Fig. 1. An n-bit plaintext P
is divided into two sub-blocks as P = (L1, R1), where Li, Ri ∈ {0, 1}

n/2. Then the (i+1)-th round
input state is calculated as follows:

(Li+1, Ri+1)← (Ri ⊕F
Ki
i (Li), Li),

where FKi
i : {0, 1}n/2 → {0, 1}n/2 is a keyed function in the i-th round using the i-th round

(n/2)-bit subkey Ki. An n-bit ciphertext C for the r-round encryption function is derived as
C = (Rr+1, Lr+1). Note that the last round of the Feistel cipher does not have a swap operation.
Hereafter, the size of each subkey used in one round is assumed to be half of the block size (i.e.,
Ki ∈ {0, 1}

n/2).
In this work, we deal with three types of Feistel block ciphers illustrated in Fig. 2. Feistel-1

denotes the Feistel cipher with random keyed F-functions. Each subkey is assumed to be randomly
independent. Thus each keyed F-function is also independent from each other. In concrete ciphers,
each subkey is usually XORed before an F-function. Feistel-2 reflects such ciphers. In other words,
the output of the F-function Yi = FKi

i (Xi) is represented as Yi = Fi(Xi ⊕ Ki), where Fi is a
fixed function in the i-th round (not limited to a permutation). Similarly, Feistel-3 is the Feistel-2
cipher whose Fi is limited to an SP-type F-function, where each F-function consists of a bijective
S-box layer (S-layer) and a linear diffusion layer (P-layer), and an n/2-bit subkey is XORed before
the S-box layer. Each S-box layer consists of m ℓ-bit S-boxes (i.e., m · ℓ = n/2), and each P-layer
consists of an m ×m linear matrix represented as Mi. Note that Feistel-1 includes Feistel-2 and
Feistel-3, also Feistel-3 is a subset of Feistel-2. The size of the master key is denoted as Feistel-[k].
For example, Feistel-2[n] is the Feistel cipher with fixed F-functions XORed by a subkey before the
function whose master key size is the same as the block size (e.g., a 128-bit block cipher taking a
128-bit key).

2.3 All Subkeys Recovery Approach [22]

The all subkeys recovery (ASR) attack was proposed by Isobe and Shibutani at SAC 2012 [22]. The
ASR attack is considered as an extension of the meet-in-the-middle (MITM) attack, which mainly
exploits a low key-dependency in the key scheduling function. The basic concept of the ASR attack
is guessing all subkeys instead of the master key so that the attack can be constructed independently

3

Fi Fi

KiKiKi

s

s
s

Mi..
.

..
.

..
.

..
.

..
.

..
.

..
.

Feistel-1 Feistel-2 Feistel-3

Fig. 2. Target Feistel Ciphers

from the structure of the key scheduling function, by regarding all subkeys as independent variables.
Thus the attack can also be applied to a block cipher having a complex key scheduling function.

Let us briefly review the procedure of the ASR attack. In the ASR attack, an attacker first
determines a t-bit matching state X, where X ∈ {0, 1}t. In the forward direction, the matching
state derived from a plaintext P and a set of subkeys K(1) by a function F(1) is represented as
X = F(1)(P,K(1)). Similarly, the state computed from a ciphertext C and another set of subkeys

K(2) by a function F(2) in the backward direction is denoted as X = F−1
(2) (C,K(2)). K(3) denotes a

set of the remaining subkeys not required for computing X, i.e., |K(1)|+|K(2)|+|K(3)| = r ·n/2. The

attacker guesses K(1) and K(2) in parallel, then checks if the equation F(1)(P,K(1)) = F
−1
(2) (C,K(2))

holds. Note that the equation holds when the guessed subkey bits are correct. After this process, it
is expected that there will be 2r·n/2−t key candidates. Finally, the attacker exhaustively searches
the correct key from the surviving key candidates. The required computations of the attack in total
Ccomp using N plaintext/ciphertext pairs is estimated as

Ccomp = max(2|K(1)|, 2|K(2)|)×N + 2r·n/2−N ·t. (1)

The number of required plaintext/ciphertext pairs is max(N, ⌈(r · n/2 −N · t)/n⌉). The required
memory is about min(2|K(1)|, 2|K(2)|)×N blocks, which is the cost of the table used for the matching.
Clearly, the ASR attack works faster than the brute force attack when Eq.(1) is less than 2k, which
is the required computations for the brute force attack.

3 Generic Key Recovery Attack on Feistel-1

In this section, we first review key recovery attacks on balanced Feistel networks presented in [22]
and generalize it to Feistel-1[n], -1[32n] and -1[2n]. After that, we show that the basic attack can
be improved by using splice and cut [3] and key linearization techniques. By the improved attack,
the numbers of attacked rounds for the Feistel-1 are increased by one round.

For a Feistel-1 cipher, an (n/2)-bit matching state X is computed from a plaintext P and
a set of subkeys K(1) ∈ {K

(1), K(2), ..., K(a−1)} as shown in Fig. 1 (i.e., X = F(1)(P,K(1))).
Similarly, the matching state is obtained from a ciphertext C and another set of subkeys K(2) ∈

{K(a+1),K(a+2), ...,K(r)} asX = F−1
(2) (C,K(2)). Also,X is computed independently from an (n/2)-

bit subkey K(a), i.e., K(3) ∈ {K
(a)}.

3.1 Basic Attack on Feistel-1 [22]

For Feistel-1[2n] (e.g., a 128-bit block cipher accepting a 256-bit key), 7 rounds of the cipher can be
attacked in a straightforward manner, since F(1) and F(2) are composed of 3 rounds of the cipher
and thus the sizes of K(1) and K(2) are both 3 · n/2 bits. In this attack, the total time complexity
Ccomp using four plaintext/ciphertext pairs is estimated as

Ccomp = max(23n/2, 23n/2)× 4 + 27·n/2−4·n/2 ≈ 23n/2+2 (= 23k/4+2)

The required memory is about 4× 23n/2 blocks. Since Ccomp is less than 22n(= 2k) when (4 < n),
the attack works faster than the exhaustive key search.

Similarly to this, for Feistel-1[32n] and Feistel-1[n] (e.g., a 128-bit block cipher accepting a
192-bit key or a 128-bit key), key recovery attacks of at least 5 and 3 rounds of the cipher are

4

F1 F2 F2F3 F3K1 K2 K2K3 K3
K′

1LK′
1R

CON
n/2

n/4

n/4

L1

R1 R1

Fig. 3. Splice and Cut Technique for Feistel-1

constructed, respectively. For Feistel-1[32n], F(1) and F(2) consist of 2 rounds of the cipher, and
thus the sizes of K(1) and K(2) are both n bits. Therefore, the required time complexity using 3

plaintext/ciphertext pairs is estimated as Ccomp = max(2n, 2n) × 3 + 25n/2−3n/2 ≈ 2n+2, and the
required memory is about 2n+2 blocks. For Feistel-1[n], a similar attack on 3 rounds requiring
2n/2+1 (≈ 2n/2 × 2 + 2n/2) computations and (2 × 2n/2) blocks memory is mounted by using 1
round of F(1) and F(2). Roughly speaking, when Eq.(1) is less than 2k, the ASR attack works faster
than the brute force attack. Therefore, the necessary condition for the basic ASR attack is that
each size of all subkeys in F(1) and F(2) is less than the size of the master key.

3.2 Improved Attack on Feistel-1

We demonstrate that the basic attack on Feistel-1 presented in [22] is improved by controlling the
value of plaintexts. It allows us to attack one more round on Feistel-1, e.g., an 8-round attack on
Feistel-1[2n].

Suppose that an input L1(= R2) is fixed to an arbitrary (n/2)-bit constant CON, then L2

is expressed as L2 = R1 ⊕ K ′
1, where K ′

1 = F1(K1 ⊕ CON). Since K ′
1 depends only on K1,

it is regarded that a new (n/2)-bit subkey K ′
1 is linearly inserted in the first round without an

F-function, which is called key linearization.
As shown in Fig. 3, since K ′

1 can be divided into two (n/4)-bit words K ′
1L and K ′

1R, the splice
and cut technique in [4] enables us to separately use K ′

1L and K ′
1R in F(1) and F(2), respectively.

Note that, in the splice and cut technique, the MITM attack starts from multiple values of start
states for parallel guesses of K(1) and K(2), while the basic MITM attack starts from multiple
plaintext/ciphertext pairs.

For Feistel-1[2n], an 8-round generic key recovery attack is mounted thanks to the splice and
cut technique, while each cost (namely time, memory and data) for the attack is increased by
O(2n/4) compared to the basic attack. The size of each key set K(1) and K(2) is increased by (n/4)
bits due to the splice and cut, and thus the size of each set K(1) and K(2) is 7n/4(= 3 · n/2 + n/4)
bits long. In this attack, the total time complexity Ccomp using five start states is estimated as

Ccomp = max(27n/4, 27n/4)× 5 + 28·n/2−5·n/2 ≈ 27n/4+3 (= 27k/8+3).

The required memory is about 5×27n/4 blocks. Since (n/4) bits of plaintexts are varied depending
on K(2) and the start states, the required data is 2n/4 chosen plaintexts when the other 3n/4 bits
of the start state are fixed.

For Feistel-1[32n] and Feistel-1[n], by using the splice and cut technique, key recovery attacks
of at least 6 and 4 rounds of the cipher are constructed, respectively. For Feistel-1[32n], the sizes of
K(1) and K(2) are 5n/4 bits each. Therefore, the required time complexity with four start states

is estimated as Ccomp = max(25n/4, 25n/4) × 4 + 26n/2−4n/2 ≈ 25n/4+2, and the required memory
is about 25n/4+2 blocks. For Feistel-1[n], a similar attack requiring 23n/4+2 (≈ 23n/4 × 3 + 2n/2)
computations and (3 × 23n/4) blocks memory is mounted. These attacks also require 2n/4 chosen
plaintexts. Those results are summarized in Table 2.

4 Key Recovery Attack on Feistel-2

This section shows generic key recovery attacks on Feistel-2 ciphers. In contrast to Feistel-1 ci-
phers, key injections of Feistel-2 ciphers are restricted to XOR operations. This allows an attacker
to equivalently transform subkeys, then more rounds can be attacked. To begin with, we intro-
duce an advanced technique called function reduction, which enables us to reduce the number of

5

L1

L2L2

L3L3L3L3

L4L4

L5L5L5L5

L6L6L6

R1R1R1R1

R2R2R2R2

R3R3

R4R4R4R4

R5R5

R6R6R6

L′
2L′

2

L′
4L′

4

R′
3R′

3

R′
5R′

5

K1

K2K2

K3K3K3K3

K4K4

K5K5K5

K′
1

K′
1

K′
1

K′
2K′

2

K′
4K′

4

CONCONCON

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

(a) (b) (c) (d)

K′
1 = F (K1 ⊕ CON1)

K′
2 = K2 ⊕ K′

1

K′
4 = K4 ⊕ K′

1

L′
i = Li ⊕ K′

1

R′
i = Ri ⊕ K′

1

Fig. 4. Function Reduction Technique

involved subkey bits by exploiting degrees of freedom of a plaintext/ciphertext pair. Combining
it with a (multi-)collision technique, 5, 7 and 9 rounds attacks on Feistel-2[n], -2[32n] and -2[2n]
are demonstrated, respectively. The overview of the function reduction is depicted in Fig. 4. The
required complexities for those attacks are summarized in Table 2, and the overview of the attacks
are illustrated in Fig. 5. Note that the key additions of Feistel-2 are limited to XOR operations,
however, similar idea may be applied to other key additions such as modular additions. Moreover,
as an application of our approach on Feistel-2, we show a key recovery attack on the reduced
CAST-128 [1, 2]. The structure of CAST-128 is similar to Feistel-2, however, the size of each round
key of CAST-128 is larger than that of Feistel-2 and the key additions are not only XOR operations
but also modular additions and subtractions. Since the larger round key generally requires more
computations to guess, it seems to be hard to directly mount an attack on CAST-128. We use the
improved function reduction technique to make an attack feasible, then show a key recovery attack
on the 8-round reduced CAST-128, which is the best attack known in literature.

4.1 Function Reduction Technique

Suppose that the half outputs of the r-round Feistel-2 cipher Lr+1 and Rr+1 are represented by
functions FL,r and FR,r as Lr+1 = FL,r(KL, L1|R1) and Rr+1 = FR,r(KR, L1|R1), where KL and
KR denote sets of subkeys used in FL,r and FR,r, respectively. In general, after sufficient number
of round operations, all subkeys are required to compute Lr+1, i.e., |KL| = n/2 · r, while Rr+1 is
derived independently from the last subkey Kr, i.e., |KR| = n/2 · (r − 1). For the Feistel-2 cipher,
fixing half bits of inputs, one more round of subkey data can be reduced as follows:

Theorem 1 (Function Reduction). For the Feistel-2 cipher, if L1 is fixed, KL and KR used in
FL,r and FR,r contain at most (n/2 · r) and (n/2 · (r− 2)) subkey bits when r is odd, and contain
at most (n/2 · (r − 1)) and (n/2 · (r − 1)) subkey bits when r is even, respectively.

Proof. By using the key linearization, L2 is considered to be linearly affected by the subkey K ′
1

as follows. Assuming that L1 is an arbitrary (n/2)-bit constant CON, L2 and R2 are expressed as
L2 = R1 ⊕K ′

1 and R2 = CON , where K ′
1 = F (K1 ⊕ CON)⋆. Since K ′

1 depends only on K1, it
can be regarded as a new subkey instead of K1 (see Fig. 4-(b)). By using an equivalent transform,
K ′

1 is moved to the end of the cipher as shown in Figs. 4-(c) and (d). After the transform, each
subkey introduced in even round is XORed with K ′

1, and thus it can be redefined as K ′
p = Kp⊕K ′

1

(p is even). When r is even, K ′
1 is linearly affecting to Rr+1 in the last as shown in Fig. 4-(c).

Therefore, both Lr+1 and Rr+1 contain at most (n/2 · (r − 1)) bits of subkeys. When r is odd,
K ′

1 is linearly affecting to Lr+1 in the last as shown in Fig. 4-(d). Consequently, Rr+1 contains at
most (n/2 · (r − 2)) bits of subkeys, while the amount of subkey bits required for computing Lr+1

is not reduced (i.e., |KL| = n/2 · r). ⊓⊔

⋆ For simplicity, we assume that all F-functions are identical. However, our attack works even if each
F-function is distinct from each other.

6

L2

L2

L2

L3

L3

L3

L4

L4

L4

L5

L5

L5

L6

L6

L6 L7

L7 L8

L8

L9

L10
R1

R1

R1

R2

R2

R2

R3

R3

R3

R4

R4

R4

R5

R5

R5

R6

R6 R7

R7 R8 R9

K3

K3

K3

K5

K5

K7

K′
1

K′
1

K′
2

K′
2

K′
2

K′
4

K′
4

K′
4

K′
5

K′
6

K′
6

K′′
7

K′
8

K′
9

CON1

CON1

CON1

CON2

CON2

CON2

F

FFFF FFF

FFF

FFFF

K′
1 = F (K1 ⊕ CON1)

K′
2 = K2 ⊕ K′

1

K′
5 = F (K5 ⊕ CON2)

K′
4 = K4 ⊕ K′

5

K′
1 = F (K1 ⊕ CON1)

K′
2 = K2 ⊕ K′

1

K′
4 = K4 ⊕ K′

1

K′
6 = K6 ⊕ K′

7

K′
7 = F (K7 ⊕ CON2)

K′
1 = F (K1 ⊕ CON1)

K′
2 = K2 ⊕ K′

1

K′
4 = K4 ⊕ K′

1

K′
6 = K6 ⊕ K′

9

K′
8 = K8 ⊕ K′

9

K′
9 = F (K9 ⊕ CON2)

K′′
7 = K′

1 ⊕ K′
7

(a) 5-round Attack on Feistel-2[n]

(b) 7-round Attack on Feistel-2[32n]

(c) 9-round Attack on Feistel-2[2n]

Fig. 5. Key Recovery Attacks on Feistel-2 Ciphers

The function reduction technique, which consists of equivalent transforms of round keys and
the key linearization, is related to the complementation properties of Feistel networks in which the
round keys of even (or odd) rounds are complemented by some fixed values. It essentially exploits
the property of Feistel network that an input of a keyed F-function in the i-th round (Li) linearly
affects an input of a keyed F-function in the (i+ 2)-th round (Li+2). In other words, the relation
of Li and Li+2 is expressed as Li+2 = Li ⊕ Xi+1, where Xi+1 is an output of an F-function of
(Li+1). We exploit it in the line of a MITM attack to reduce the subkey data for the computation
of the intermediate values, while the previous attacks are used for differential attacks [15, 8] and
speeding up keysearches using equivalent keys [7, 18].

4.2 Key Recovery Attack on 5-round Feistel-2[n]

In order to apply the function reduction to both the forward and backward computations, we
prepare plaintext/ciphertext pairs in the form of L1 = CON1 and R6 = CON2, where CON1 and
CON2 denote arbitrary (n/2)-bit constants.

Let R4 be an (n/2)-bit matching state. From Theorem 1, in the forward computation, R4

can be computed by an (n/2)-bit subkey K ′
2(= K2 ⊕ K ′

1), where K ′
1 = F (K1 ⊕ CON1). In the

backward computation, since R4 can be regarded as an output of the even round (r = 2), R4

can also be computed by an (n/2)-bit subkey K ′
4(= K4 ⊕K ′

5), where K ′
5 = F (K5 ⊕ CON2), i.e.,

K(1) ∈ K ′
2 and K(2) ∈ K ′

4. Since |K(1)| = |K(2)| = n/2 and the size of the matching state is also
n/2, two plaintext/ciphertext pairs are sufficient to determine K(1) and K(2). In order to obtain

such two pairs that have the form of L1 = CON1 and R6 = CON2, we use 2n/4 chosen plaintexts
by randomly changing R1 as P = (CON1|R1). After this process, we have 2n/4 corresponding
ciphertexts, and thus there will exist (n/2) bits colliding R6 with high probability due to the
birthday paradox.

The time complexity of determiningK ′
2 andK ′

4 by the MITM approach is estimated as Ccomp =
max(2n/2, 2n/2) × 2 = 2n/2+1. In order to determine all subkeys, we use the following equation:
F (R4⊕K3) = R1⊕K

′
1⊕L6⊕K5 = R1⊕L6⊕K

′′
1 , where K

′′
1 = K ′

1⊕K5. Since R4 can be computed
from K ′

2 or K ′
4, we can recursively mount the MITM approach to determine K3 and K ′′

1 with
complexity of 2n/2+1(= max(2n/2, 2n/2)×2). After exhaustively guessingK1 with a time complexity
of 2n/2, all subkeys Ki (1 ≤ i ≤ 5) are determined from the previously obtained subkeys K ′

2, K
′
4

and K ′′
1 . Therefore, the whole time complexity is estimated as 2n/2+2(≈ 2n/2+1 + 2n/2+1 + 2n/2).

Due to k = n, the time complexity 2n/2+2 = 2k/2+2 is less than 2k which is required computations

7

Table 2. Details of Our Attacks

Target key size Round Time Memory Data Reference

Feistel-1

n 4 23n/4+2 23n/4+2 2n/4 Sect. 3
3
2
n 6 25n/4+2 25n/4+2 2n/4 Sect. 3

2n 8 27n/4+3 27n/4+3 2n/4 Sect. 3

Feistel-2

n
4 2n/2+2 2n/2+1 2 Sect. 4.2

5 2n/2+2 2n/2+1 2n/4 Sect. 4.2

3
2
n

6 25n/4+4 2n+4 9 Sect. 4.4

7 25n/4+4 2n+4 9!1/9 · (2n/2)8/9 Sect. 4.4

2n
8 23n/2+3 23n/2+3 6 Sect. 4.3

9 23n/2+3 23n/2+3 6!1/6 · (2n/2)5/6 Sect. 4.3

Feistel-3

n 7 23n/4+ℓ ·N1 23n/4+ℓ ·N1 N1 Sect. 5.3

3
2
n

8 2n+ℓ ·N2 2n+ℓ ·N2 N2 Sect. 5.5

9 2n+ℓ ·N2 2n+ℓ ·N2 N !1/N2 · (2n/2)(N2−1)/N2 Sect. 5.5

2n 11 27n/4+ℓ ·N3 27n/4+ℓ ·N3 N3 Sect. 5.4

N1 = (3n/2 + 2ℓ)/ℓ, N2 = (2n+ 2ℓ)/ℓ, N3 = (7n/2 + 2ℓ)/ℓ

for the brute force attack. The required data is 2n/4 chosen plaintext, and the required memory is
about 2n/2+1 words. If the function reduction technique is used only in the forward computation,
a 4-round attack is constructed with less data (see Fig. 5-(a) and Table 2).

4.3 Key Recovery Attack on 9-round Feistel-2[2n]

A key recovery attack on a 9-round Feistel-2[2n] is constructed in a similar way to the 5-round
attack on Feistel-2[n]. In this attack, we can add 2 more rounds in each direction, and a 6-
multicollision is required to obtain desired plaintext/ciphertext pairs unlike the attack on Feistel-
2[n]. It has been known that an n-bit t-multicollision is found in t! · 2n·(t−1)/t random data with
high probability [34]. Thus, the six plaintext/ciphertext pairs whose form are P = (CON1|R1)
and C = (CON2|L10) could be found from 6!1/6 · (2n/2)5/6 ≈ 3 · (2n/2)5/6 chosen plaintexts. More
precisely, after querying 3 ·(2n/2)5/6 chosen plaintexts with distinct R1, there will exist a 6-collision
of R10 in corresponding ciphertexts with high probability (see Fig. 5-(c) and Table 2).

4.4 Key Recovery Attack on 7-round Feistel-2[3
2
n]

In this attack, R5 is used as the matching state. From Theorem 1, in the forward computation,
R5 can be computed from 3 · n/2 bits subkeys K ′

2, K3 and K ′
1, where K ′

2 = K2 ⊕K ′
1 and K ′

1 =
F (K1⊕CON1). In the backward computation, R5 can be computed from 3 ·n/2 bits subkeys K ′

6,
K5 and K ′

7, where K
′
6 = K6⊕K ′

7 and K ′
7 = F (K7⊕CON2). Since R5 is expressed as K ′

1⊕L4 and
K ′

7⊕ (F (R6⊕K5)⊕L6), if only (n/4) bits of K ′
1⊕K ′

7 are guessed, (n/4)-bit matching is feasible.
It is regarded that K ′′

7 (= K ′
1 ⊕K ′

7) is included in the backward computation (see Fig. 5-(b)).
Then, since |K(1)| = n/4, |K(2)| = 5n/4, and the size of the matching state is n/4, nine plain-

text/ciphertext pairs are required to determine K(1) and K(2) due to the relation (n+5n/4)/(n/4) =
9. Such nine plaintext/ciphertext pairs whose form are P = (CON1|R1) and C = (CON2|L8) can
be found from 9!1/9 · (2n/2)8/9 ≈ 4.2 · (2n/2)8/9 chosen plaintexts. The other complexities required
for this attack and the low data attack on 6-round Feistel-2[32n] are described in Table 2.

4.5 Application to 8-Round Reduced CAST-128

In order to demonstrate the practical impact of our work on Feistel-2, we apply it to CAST-128
block cipher. Using the improved function reduction techniques, we show an attack on the 8-round
reduced CAST-128 having more than 118 bits key, which is the best attack with respect to the
number of attacked rounds in literature even when its key scheduling is an ideal function.

8

L1 L2 L3 L4 L5 L6 L7 L8

L9R1 R2 R3 R4 R5 R6 R7 R8

≪
≪≪≪≪≪≪

Km1
Km2 Km3

Km4 Km6

Km7

Kr1
Kr2 Kr3

Kr4 Kr5
Kr6

Kr7

K′
m5

K′
8

K′
8

CON

fff fff f
K′

8

= f((Km8
⊕ CON) ≪ Kr8

)

K′
m5

= Km5
⊕ K′

8

Fig. 6. Key Recovery Attack on 8-Round CAST-128

Description of CAST-128. CAST-128 [1, 2] is a 64-bit Feistel block cipher accepting a variable
key size from 40 up to 128 bits (but only in 8-bit increments). The number of rounds is 16 when
the key size is longer than 80 bits. First, the algorithm divides the 64-bit plaintext into two 32-bit
words L0 and R0, then the i-th round function outputs two 32-bit data Li+1 and Ri+1 as follows:

Li+1 = Ri ⊕ Fi(Li,K
rnd
i), Ri+1 = Li,

where Fi denotes the i-th round function and Krnd
i is the i-th round key consisting of a 32-bit

masking key Kmi
and a 5-bit rotation key Kri . The detail of Fi is expressed as

Fi = f((Li©i Kmi
) ≪ Kri),

where f consists of four 8 to 32-bit S-boxes, ≪ Kri denotes a Kri -bit left rotation, and ©i

denotes addition, XOR or subtraction depending on the round number i, i.e., ©i denotes addition
for i ∈ {1, 4, 7, 10, 13}, XOR for i ∈ {2, 5, 8, 11, 14} and subtraction for i ∈ {3, 6, 9, 12, 15}. We omit
the details of f , since, in our analysis, it is regarded as the random function that outputs a 32-bit
random value from a 32-bit input.

Key Recovery Attack on 8-round CAST-128. The structure and the parameter of CAST-128
having sufficiently large key are similar to Feistel-2[2n]. However, for CAST-128, a 37(= 32+5)-bit
subkey is inserted into each Fi, i.e., a 32-bit subkey is used in©i and the remaining 5-bit subkey is
used in a key dependent rotation, while a 32-bit subkey is inserted in each round for Feistel-2[2n]
with n = 32. Thus, the 9-round attack on Feistel-2[2n] is not directly applicable to CAST-128.
However, the improved function reduction technique allows us to construct an 8-round attack on
CAST-128.

Let R5 be an (n/2)-bit matching state. In the backward computation, R9 is fixed as CON ,
and K ′

8 = f((CON ⊕Km8
) ≪ Kr8) is moved to L5 and an input of the 7-th round function, by

converting Km5
into K ′

m5
= K ′

8⊕Km5
, as shown in Fig. 6. Then, the input of f in the 7-th round

is expressed as (L9⊕K ′
8)+Km7

. If the lower b bits of L9, which are controllable by the ciphertext,
are fixed to 0, the lower b bits of this computation are expressed as K ′

8 +Km7
. Thus, (K ′

8 +Km7
)

is regarded as a new b-bit subkey K ′
m7

= (K ′
8 + Km7

), while the upper (n/2 − b) bits remain
(L9 ⊕K ′

8) +Km7
. In the backward computation of R5, |K(2)| = 37 × 2 + (b + (n/2 − b) × 2 + 5)

bits of the key are involved.

Evaluation. Since |K(1)| = 111, |K(2)| = 114 (b = 29) and the size of the matching state is 32
bits, eight plaintext/ciphertext pairs are required to determine K(1) and K(2) due to the relation

(111 + 114)/32 < 8(= 232−29). The required time complexity to determine subkeys Krnd
1 , Krnd

2 ,
Krnd

3 , Krnd
6 , K ′

m5
, Kr5 , the lower 29 bits of K ′

m7
, the upper 3 bits of K ′

8, and Km7
is estimated as

Ccomp = max(2111, 2114)×10 ≈ 2118. The remaining Kr4 and K ′
8 are exhaustively searched with the

time complexity of 264. Then, all subkeys are obtained by using the relations of K ′
m7

= K ′
8+Km7

,
K ′

m5
= K ′

8 ⊕ K ′
m5

and K ′
8 = f((CON ⊕ Km8

) ≪ Kr8). The required data is eight chosen
ciphertexts, and the required memory is 2111 words. Therefore, when the key size is more than 118
bits long, our attack works faster than the brute force attack.

5 Key Recovery Attack on Feistel-3

This section presents generic key recovery attacks on Feistel-3 ciphers. Feistel-3 ciphers are the
Feistel-2 ciphers whose F-functions are restricted to be SP-type F-functions, which consist of an

9

LiLi

Li

Li+1

Li+2

Li+3

Li+3

RiRi

Ri+1

Ri+2

Ri+3Ri+3

Ri+3

M
−1
i

(Ri)

M
−1
i+2

(Li+3)

KiKiKi

Ki+1

Ki+2Ki+2

Ki+2

MiMi

Mi

Mi+1

Mi+2Mi+2
Mi+2

s

s
s

s

s
s

s

s
s

s

s
s

s

s
s

s

s
s

s

s
s

X

X

X

X

X matching

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

Fig. 7. Matching without Matrix

S-box layer followed by a linear matrix operation. This allows an attacker to exploit a linearity of
a matrix computation, and thus the number of attacked rounds can be increased. To begin with,
we review two techniques which exploit a linearity of a matrix computation. We refer those two
techniques as matching without matrix and matrix separation to make our explanation simple.
However, those techniques have already been introduced, for example, in [27, 30]. Combining them
with a (multi-)collision technique and function reduction, 7, 9 and 11 rounds attacks on Feistel-3[n],
-3[32n] and -3[2n] are demonstrated, respectively. Furthermore, as an application of our approach
on Feistel-3, we show several key recovery attacks on the reduced Camellia [5]. Since Camellia is a
Feistel cipher with SP-type F-functions, our attack on Feistel-3 can be directly applied to it even
if its key scheduling function is ideal. Besides, the number of attacked rounds by our attack is
further increased by one round for Camellia due to its non-MDS matrix. Consequently, we present
generic key recovery attacks requiring extremely low data on the 8-, 10-, 12-round reduced Camellia
without FL/FL−1 functions and key whitenings.

5.1 Matching without Matrix [30]

Let us consider three consecutive rounds of the Feistel-3 cipher whose input and output are rep-
resented as (Li|Ri) and (Li+3|Ri+3) as shown in Fig. 7. Assuming that an attacker knows those
input and output variables, the following equation holds:

Fi(Li ⊕Ki)⊕Ri = Fi+2(Ri+3 ⊕Ki+2)⊕ Li+3. (2)

In order to check if the equation holds, we need to guess 2·n/2 bits subkeysKi andKi+2, whileKi+1

is not needed to be guessed. However, if F-functions are SP-type F-functions (i.e., Fi = Mi ◦ Si,
where Mi and Si denote an m × m matrix and an S-box layer consisting of m ℓ-bit S-boxes,
respectively), the size of guessing subkey bits can be reduced by exploiting the linearity of the
matrix operation. Since Mi is a linear function, Eq.(2) is redescribed as:

Mi(Si(Li ⊕Ki))⊕Ri = Mi+2(Si+2(Ri+3 ⊕Ki+2))⊕ Li+3,

Mi(Si(Li ⊕Ki)⊕M−1
i (Ri)) = Mi+2(Si+2(Ri+3 ⊕Ki+2)⊕M−1

i+2(Li+3)).

When Mi = Mi+2, we have

Si(Li ⊕Ki)⊕M−1
i (Ri) = Si+2(Ri+3 ⊕Ki+2)⊕M−1

i+2(Li+3). (3)

Unlike Eq.(2), we can separately check if Eq.(3) holds by the size of the S-box ℓ. Therefore, this
technique enables us to reduce the number of subkey bits to be guessed for the 3-round matching
from 22·n/2 to 22ℓ. When Mi 6= Mi+2, the matching technique called matching through matrix
presented in [29] is utilized. In this case, more than m · ℓ bits subkeys are required to be guessed.
For simplicity, from now on, we assume that Mi = Mi+2.

In the function reduction, the modified subkey K ′
1 affects L2t and R2t−1 (t = 1, 2, ...). Also, in

the matching without matrix, we utilize the relation of Li+1 as the matching state. This implies
that if (i + 1) is even (i.e., (i + 1) = 2t), Li+1 is affected by K ′

1 and it cannot be used as the
matching state. Therefore, if the matching without matrix is used with the function reduction, the
starting round of the matching i must be even (i.e., (i+ 1) must be odd).

10

Li,1

Li,1

Li,2

Li,2

Li,3

Li,3

Li,4

Li,4

Ki,1

Ki,1

Ki,2

Ki,2

Ki,3

Ki,3

Ki,4

Ki,4

Ri

Ri

Mi

Mi

Mi

s

s

s

s

s

s

s

s

0

0

0

0

ℓℓℓℓ

ℓℓℓℓ

Fig. 8. Matrix Separation

5.2 Matrix Separation [27]

In general, for the function reduction technique, all inputs of an F-function are needed to be fixed.
However, in the Feistel-3 ciphers, the (partial) function reduction is constructed by fixing only a
part of inputs due to the linearity of the matrix. This technique referred as matrix separation in
this paper gives more degrees of freedom to the inputs.

Since Mi is a linear operation, each operation can be divided by ℓ bits. For instance, we
show the case of m = 4 as an example (see Fig. 8). Suppose that Ki = (Ki,1|Ki,2|Ki,3|Ki,4),
Ki,j ∈ {0, 1}

ℓ and Li = (Li,1|Li,2|Li,3|Li,4), Li,j ∈ {0, 1}
ℓ. If three input words Li,1, Li,2 and

Li,3 are fixed, only 3/4 × n/2 bits of Ki are linearly inserted into the (i + 1)-round by regarding
T = M(S′((Li,1 ⊕ Ki,1)|(Li,2 ⊕ Ki,2)|(Li,3 ⊕ Ki,3))|0

ℓ) as new subkey bits, where S′ consists of
three S-boxes and 0ℓ denotes ℓ bits of 0. Note that T is an (n/2)-bit data, however, it is determined
by (3/4 · n/2) bits subkeys Ki,1, Ki,2 and Ki,3. Since Li,4 is not fixed, M(03/4·n/2|s(Li,4 ⊕Ki,4))
is non-linearly inserted into the (i+ 1)-th round.

5.3 Key Recovery Attack on 7-round Feistel-3[n]

For the 7-round Feistel-3[n], it seems that the function reduction is applied to both directions
and the matching without matrix is used in the rounds 3 to 5. However, this approach does not
work due to the restriction of the combination of the matching without matrix and the function
reduction. To overcome this problem, we utilize the partial function reduction in conjunction with
the matching without matrix.

At first, L1 is fixed as CON1, and K ′
1 = F (K1 ⊕CON1) is moved to R5 by converting K2 and

K4 into K2 ⊕ K ′
1 and K4 ⊕ K ′

1, respectively. In addition, R1L, which is the left half of R1 (n/4
bits), is also fixed as an n/4-bit constant CONL. Using the matrix separation technique, the partial
function reduction technique is applicable to the left half of K ′

2 represented as K ′
2L. Specifically, let

an n/2-bit variable K ′′
2 be K ′′

2 = M(S′(K ′
2L ⊕ CONL)|0

n/4), where S′ consisting of m/2 S-boxes
and 0n/4 denotes n/4 bits of 0. Since K ′′

2 is linearly inserted in round 2 by the matrix separation,
it is possible to move to L7 (see Fig. 9-(a)).

The matching without matrix technique is applied to the three consecutive rounds from rounds
4 to 6. In the forward and backward computations, (L4|R4) and (L7|R7) are computable from
(K ′

2R,K
′
3) and (K ′

2L,K
′
7), respectively. Then, if ℓ bits of K

′
4 and K6 are guessed, an ℓ-bit matching

is feasible, i.e., K(1) ∈ {K
′
2R,K

′
3,K

′
4,a} and K(2) ∈ {K

′
2L,K

′
7,K6,a}, where (1 ≤ a ≤ m), and K ′

4,a

and K6,a denote arbitrary ℓ bits data of K ′
4 and K6, respectively.

Since |K(1)| = |K(2)| = 3/2 · n/2 + ℓ and the matching size is ℓ bits, N1 = (3n/2 + 2ℓ)/ℓ
plaintext/ciphertext pairs are required to determine K(1) and K(2). The complexity of determining

K(1) and K(2) is estimated as Ccomp = max(23n/4+ℓ, 23n/4+ℓ) × N1. After that, we are able to
determine the other bits for finding all subkey bits by using a simple MITM attack on the remaining
K ′

4 and K6, and K ′
1 and K5, respectively.

Therefore, the whole time complexity is estimated as 23n/4+ℓ×N1. Due to k = n, the required
complexity 23k/4+ℓ ·N1 is less than 2k. The required data is N1 = (3n/2+2ℓ)/ℓ chosen plaintexts,
and the memory is 23n/4+ℓ ·N1 words.

5.4 Key Recovery Attack on 11-round Feistel-3[2n]

Similarly to the attack on the 7-round Feistel-3[n], chosen plaintexts in the form of P = (L1|R1L|R1R)
= (CON |CONL|R1R) are used. Then two more rounds can be added to both forward and back-

11

L2

L2

L2

L3

L3

L3

L4

L4

L4

L5

L5

L5

L6

L6

L6

L7

L7

L7

L8

L8

L8

L9

L9

L10

L10 L11

L12

R1

R2

R2

R2

R3

R3

R3

R4

R4

R4

R5

R5

R5

R6

R6

R6

R7

R7

R7

R8

R8

R8

R9

R9 R10 R11

R12

CONL|R1R

CONL|R1R

K3

K5

K5

K6
K7

K7

K7 K8
K9 K10 K11

K′
1

K′
1

K′
1

K′
2

K′
3

K′
3

K′
4

K′
4

K′
4 K′

5

K′
6

K′
6

K′
8

K′
9

K′′
2

K′
2R

K′
2R

K′′
2

CON1

CON1

CON1 CON2

matching without matrix

MMMM MM

MMMMMM M

MMMM MMMM MM

K′
1 = F (K1 ⊕ CON1)

K′
2 = K2 ⊕ K′

1 = K′
2L|K′

2R

K′
4 = K4 ⊕ K′

1

K′′
2 = M(S′(K′

2L ⊕ CONL)|0n/4

K′
3 = K3 ⊕ K′′

2

K′
5 = K5 ⊕ K′′

2

K′
1 = F (K1 ⊕ CON1)

K′
2 = K2 ⊕ K′

1

K′
4 = K4 ⊕ K′

1

K′
6 = K6 ⊕ K′

9

K′
8 = K6 ⊕ K′

9

K′
9 = F (K9 ⊕ CON2)

K′
1 = F (K1 ⊕ CON1)

K′
2 = K2 ⊕ K′

1 = K′
2L|K′

2R

K′
4 = K4 ⊕ K′

1

K′
6 = K6 ⊕ K′

1

K′′
2 = M(S′(K′

2L ⊕ CONL)|0n/4)

K′
3 = K3 ⊕ K′′

2

K′
5 = K5 ⊕ K′′

2

K′
7 = K7 ⊕ K′′

2

(a) 7-round Attack on Feistel-3[n]

(b) 9-round Attack on Feistel-3[32n]

(c) 11-round Attack on Feistel-3[2n]

Fig. 9. Key Recovery Attacks on Feistel-3 Ciphers

ward directions due to increasing the master key size. Thus, an 11-round attack is constructed. For
the detailed parameters, see Table 2 and Fig. 9.

5.5 Key Recovery Attack on 9-round Feistel-3[3
2
n]

As shown in Fig. 9-(b), for the 9-round Feistel-3[32n], the function reduction is applied to both
directions combined with the matching without matrix to the rounds 4 to 6, since the middle of
the matching is odd indexed round. Thus, a key recovery attack is constructed in a straightforward
way, unlike the attacks on Feistel-3[n] and -3[2n].

In this attack, since |K(1)| = |K(2)| = 2n/2 + ℓ and the matching size is ℓ bits from Fig. 9-
(b), N2 = (2n + 2ℓ)/ℓ plaintext/ciphertext pairs are required to determine K(1) and K(2). Such

pairs in the form of L1 = CON1 and R10 = CON2 are found from N2!
1/N2 · (2n/2)N2−1/N2

chosen plaintext/ciphertext pairs. Note that, if the number of required chosen plaintext/ciphertext
pairs, which depends on the parameter n and ℓ, is more than n/2, the partial function reduction
technique can be applied to L1 and R10. Otherwise, another attack approach is required for this
variant. Moreover, if the function reduction is used only in the forward direction, an 8-round attack
with extremely low data complexity is derived (see Table 2).

5.6 Application to Reduced Camellia

In order to demonstrate the usefulness and versatility of our approach on Feistel-3, we apply our
attack to the reduced version of Camellia block cipher [5], which is Camellia without FL/FL−1

functions and key whitenings. Camellia is a Feistel block cipher whose F-function is the SP-type
F-function consisting of eight 8-bit S-boxes followed by an 8 × 8 matrix operation. Thus, our
attacks on the Feistel-3 cipher presented in the previous section are directly applicable to the
7/9/11-round reduced Camellia-128/192/256. Note that since our attack does not depend on the
key scheduling function, the attack works on any key scheduling function even ideal. Furthermore,
by exploiting the low diffusion property on the matrix used in Camellia, we develop the advanced
five round matching technique. Then we present low-data complexity attacks requiring less than 60
plaintext/ciphertext pairs on the 8/10/12-round reduced Camellia-128/192/256 without FL/FL−1

and key whitenings.

12

L2

L2

L2

L3

L3

L3

L4

L4

L4

L5

L5

L5

L6

L6

L6

L7

L7

L7

L8

L8

L8

L9

L9

L9

L10

L10

L11

L11

L12

L13R1

R1

R2

R2

R2

R3

R3

R3

R4

R4

R4

R5

R5

R5

R6

R6

R6

R7

R7

R7

R8

R8

R8

R9

R9

R9

R10

R10

R11

R11

R12

R13

K3

K3

K5

K5 K6

K7

K7

K8

K8

K8

K9 K10

K10

K11 K12

K′
1

K′
1

K′
1

K′
2

K′
2

K′
3

K′
4

K′
4

K′
4 K′

5

K′
6

K′
6 K′

7
K′

9

K′′
2

K′
2,8

CON1

CON1

CON1

CON2

5-round matching for non-MDS matrix

MMMMM MMMM MM

MM MMM MM

MMM MMMM MM

K′
1 = F (K1 ⊕ CON1)

K′
2 = K2 ⊕ K′

1

K′
4 = K4 ⊕ K′

1

K′
6 = K6 ⊕ K′

1

K′′
2 = M(S′(K′

2,1−7 ⊕ CONL)|08)

K′
3 = K3 ⊕ K′′

2

K′
5 = K5 ⊕ K′′

2

K′
7 = K7 ⊕ K′′

2

K′
9 = K9 ⊕ K′′

2

(a) 8-round Attack on Camellia-128

(b) 10-round Attack on Camellia-192

(c) 12-round Attack on Camellia-256

Fig. 10. Key Recovery Attacks on Reduced Camellia-128/192/256

Five Round Matching for Non-MDS Matrix. Let us consider five consecutive rounds of the
Camellia whose input and output are represented as (Li|Ri) and (Li+5|Ri+5), respectively. By
using the three-round matching without matrix technique in the middle, the following equation
holds.

S(Li+1 ⊕Ki+1)⊕M−1(Li) = S(Ri+4 ⊕Ki+3)⊕M−1(Ri+5).

Since the S-box layer consists of eight 8-bit S-boxes, by guessing two bytes of subkeys with the same
byte positionKi+1,j andKi+3,j , the 8-bit matching is possible if the same indexed 8 bits data Li+1,j

and Ri+4,j are also known. Since Li+1 = M(S(Li⊕Ki))⊕Ri and Ri+4 = M(S(Li+5⊕Ki+4))⊕Ri+5,
all bits of Ki and Ki+4 are required to be guessed to obtain any byte of Li+1 and Ri+4 if the
underlying matrix M is optimal (i.e., MDS matrix). However, for Camellia, the 8 bits data Li+1,j

and Ri+4,j are derived by guessing corresponding 40(= 8×5) bits ofKi andKi+4 when (5 ≤ j ≤ 8),
since Camellia utilizes non-MDS matrix (See [5] for the details of the matrix used in Camellia). For
example, Li+1,5 and Ri+4,5 are derived from Ki,p(p ∈ {1, 2, 6, 7, 8}) and Ki+4,q(q ∈ {1, 2, 6, 7, 8},
respectively. Therefore, the number of key bits to be guessed for the 5-round matching in each
direction is reduced from 128 bits (= 64× 2) to 48 bits (= 8 + 40).

Key Recovery Attack on 8-Round Reduced Camellia-128. Let us consider the 8-round
reduced Camellia-128. In order to use the function reduction technique in the forward process, we
collect chosen plaintexts in the form of L1 = CON1.

The five round matching for non-MDS matrix technique is used from rounds 3 to 7. In the
forward and backward computations, (L3|R3) and (L8|R8) are computable by usingK ′

2(= K2⊕K
′
1)

and K8, respectively. Then, for the 8-bit matching, 8 bits subkey K ′
4,a and the corresponding 40

bits of subkey K3 in the forward computation are required to be guessed, where K ′
4 = K4 ⊕K ′

1.
Similarly, we need to guess 8 bits subkey K6,a and the corresponding 40 bits of subkey K7 in the
backward computation. In other words, K(1) ∈ {K

′
2,K

′
4,a, 40 bits of K3} and K(2) ∈ {K8,K6,a, 40

bits of K7}, where 5 ≤ a ≤ 8.
Since |K(1)| = |K(2)| = 112 and the matching size is 8 bits, 28(= (112 + 112)/8) plain-

text/ciphertexts are sufficient to determine K(1) and K(2). The complexity of determining K(1)

and K(2) is estimated as Ccomp = max(2112, 2112)× 28 ≈ 2117. After that, we are able to determine

13

Table 3. Summary of Key Recovery Attacks on Reduced Camellia-128/192/256 without FL/FL−1 Func-
tions and Key Whitenings

Target # Attacked Rounds Attack Type Time Memory Data Reference

Camellia-128 8 Meet-in-the-Middle 2117 2117 28 Sect. 5.6

Camellia-192 10 Meet-in-the-Middle 2190 2174 44 Sect. 5.6

Camellia-256 12 Meet-in-the-Middle 2246 2246 60 Sect. 5.6

the other bits for finding all subkeys by using the simple MITM attack on the remaining 24 bits
of K3 and K7, and 56 bits of K ′

4 and K6 in the forward and backward computations, respectively.
Therefore, the whole complexity is estimated as 2117(≈ 2117 + 280). The required memory is 2117

words, and the required data is only 28 chosen plaintext/ciphertext pairs (see Fig. 10-(a)).

Key Recovery Attack on 12-Round Reduced Camellia-256. Similarly to the attack on the
reduced Camellia-128, for the reduced Camellia-256, the five round matching for non-MDS matrix
technique is used. Since two more rounds can be appended to each direction, a 12-round attack is
constructed (see Fig. 10-(c) and Table 3).

Key Recovery Attack on 10-Round Reduced Camellia-192. In this attack, in order to
utilize the function reduction technique in conjunction with the matrix separation technique, we
collect chosen plaintexts in the form of L1 = CON1 and R1,1−7 = CONL, where R1,1−7 denotes
the left 56 bits of R1 and CONL is a 56-bit constant. Then K ′

1 = F (CON1 ⊕ K1) is moved to
R7 by redefining K ′

p = Kp ⊕K ′
1(p = 2, 4, 6). In addition, the left 56 bits of K ′

2 defined as K ′
2,1−7

is also moved to R10 by using the partial function reduction technique. Namely, we assume that
K ′′

2 = M(S′(K ′
2,1−7 ⊕ CONL)|0

8) is linearly inserted in round 2 and the remaining 8-bit subkey
K ′

2,8 is non-linearly inserted in round 2, where S′ consists of seven 8-bit S-boxes.
The five round matching for non-MDS matrix technique is used from rounds 5 to 9. Here,

(L5|R5) and (L10, R10) are computed from (K ′
2,8,K

′
3(= K3⊕K

′′
2),K

′
4(= K4⊕K

′
1L)) and (K ′

2,1−7,K9),
respectively. For the 8-bit matching, K ′

6,8 and the corresponding 40 bits of K ′
5(= K5⊕K ′′

2) are re-
quired to be guessed in the forward computation, where K ′

6 = K6⊕K ′
1. Similarly, in the backward

computation, K8,8 and the corresponding 40 bits of K ′
9(= K9 ⊕K ′′

2) are required to be guessed.
Namely, K(1) ∈ {K

′
2,8,K

′
3,K

′
4,K

′
6,8, 40 bits of K ′

5} and K(2) ∈ {K
′
2,1−7,K9,K8,8, 40 bits of K ′

9}. In
this attack, the whole complexity to determine all subkey bits is estimated as 2190(≈ 2190 + 280).
The required memory is 2174(≈ 2168 × 44) words, and the required data is only 44 chosen plain-
text/ciphertext pairs (see Fig. 10-(b) and Table 3).

6 Discussion

In order to compare the numbers of attacked rounds by our attacks with the previous results, we
consider key recovery attacks from a 5-round impossible differential distinguisher or a 5-round zero-
correlation linear distinguisher on the Feistel ciphers employing bijective F-functions [6, 11]. Note
that those distinguishers depend only on the structure of the cipher unlike the other distinguishers
such as a differential and a linear distinguisher. When k = n, guessing n/2 bits subkey involved
in the 6-th round, it is possible to construct a 6-round key recovery attack from the 5-round
distinguishers. Similarly, for k = 3n/2 and k = 2n, a 7 and an 8-round key recovery attacks
are constructed by additionally guessing n/2 and n bits subkeys, respectively. Compared to those
results, our attacks are the best attacks with respect to the number of attacked rounds for Feistel-
2[2n], -3[n], -3[32n] and -3[2n] as described in Table 1. Also, for Feistel-1[2n] and Feistel-2[32n],
the same numbers of rounds are attacked by our approach. Especially, the attack on the 11-
round Feistel-3[2n] greatly exceeds the number of attacked rounds given by the distinguisher based
attacks. More importantly, Feistel-3[2n] structure is well used in concrete block ciphers such as a
128-bit block cipher taking a 256-bit key, e.g., Camellia-256.

In addition, thanks to the MITM approach, most of our attacks require an extremely small
data complexity, in contrast to the classical statistical attacks such as the impossible differential

14

and zero correlation linear attacks that generally require huge amount of data. This implies that
our attacks may work even if the number of queries to the encryption oracle is restricted. In fact,
the similar approach, which is the low-data complexity attacks on AES, has already been studied
in [13, 14]. Thus, our work is also regarded as the first evaluation results on the low-data complexity
attacks on the Feistel schemes.

7 Conclusion

This paper has shown the improved generic key recovery attacks on Feistel schemes independent
of the key scheduling function. The proposed approach is based on the all subkeys recovery attack.
With several advanced techniques such as function reduction and key linearization, which basically
reduce the number of involved subkey bits, we presented several new key recovery attacks on the
Feistel schemes.

To demonstrate the usefulness and the versatility of our approach, we showed several attacks
on the concrete block ciphers including CAST-128 and Camellia. Among them, we would like to
stress that the presented attack on the 8-round reduced CAST-128 having more than 118 bits key
is the best attack with respect to the number of attacked rounds. Since our approach is generic, it
is expected to be applied to other Feistel-type block ciphers. We believe that our results are useful
not only for a deeper understanding the security of the Feistel schemes, but also for designing an
efficient block cipher such as a low-latency cipher. Moreover, we expect that our attacks could be
improved by combining with the recent attack called sieve-in-the-middle attack [17].

References

1. C. Adams, “The CAST-128 encryption algorithm.” RFC-2144, May 1997.

2. C. Adams, “Constructing symmetric ciphers using the CAST design procedure.” Des. Codes Cryptog-
raphy , vol. 12, no. 3, pp. 283–316, 1997.

3. K. Aoki and Y. Sasaki, “Preimage attacks on one-block MD4, 63-step MD5 and more.” in SAC
(R. Avanzi, L. Keliher, and F. Sica, eds.), vol. 5381 of LNCS , pp. 103–119, Springer, 2008.

4. K. Aoki, J. Guo, K. Matusiewicz, Y. Sasaki, and L. Wang, “Preimages for step-reduced SHA-2.” in
ASIACRYPT (M. Matsui, ed.), vol. 5912 of LNCS , pp. 578–597, Springer, 2009.

5. K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima, and T. Tokita, “Camellia: A 128-
bit block cipher suitable for multiple platforms - design and analysis.” in Selected Areas in Cryptography
(D. R. Stinson and S. E. Tavares, eds.), vol. 2012 of LNCS , pp. 39–56, Springer, 2000.

6. E. Biham, A. Biryukov, and A. Shamir, “Cryptanalysis of Skipjack reduced to 31 rounds using impos-
sible differentials.” in EUROCRYPT (J. Stern, ed.), vol. 1592 of LNCS , pp. 12–23, Springer, 1999.

7. E. Biham and A. Shamir, “Differential cryptanalysis of Snefru, Khafre, REDOC-II, LOKI and Lucifer.”
in CRYPTO (J. Feigenbaum, ed.), vol. 576 of LNCS , pp. 156–171, Springer, 1991.

8. A. Biryukov and I. Nikolic, “Complementing Feistel ciphers.” in FSE (S. Moriai, ed.), vol. 8424 of
LNCS , pp. 3–18, Springer, 2014.

9. A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Robshaw, Y. Seurin,
and C. Vikkelsoe, “PRESENT: An ultra-lightweight block cipher.” in CHES (P. Paillier and I. Ver-
bauwhede, eds.), vol. 4727 of LNCS , pp. 450–466, Springer, 2007.

10. A. Bogdanov and C. Rechberger, “A 3-subset meet-in-the-middle attack: Cryptanalysis of the
lightweight block cipher KTANTAN.” in Selected Areas in Cryptography (A. Biryukov, G. Gong, and
D. R. Stinson, eds.), vol. 6544 of LNCS , pp. 229–240, Springer, 2010.

11. A. Bogdanov and V. Rijmen, “Linear hulls with correlation zero and linear cryptanalysis of block
ciphers.” Des. Codes Cryptography , vol. 70, no. 3, pp. 369–383, 2014.

12. J. Borghoff, A. Canteaut, T. Güneysu, E. B. Kavun, M. Knezevic, L. R. Knudsen, G. Leander, V. Nikov,
C. Paar, C. Rechberger, P. Rombouts, S. S. Thomsen, and T. Yalçin, “PRINCE - a low-latency block
cipher for pervasive computing applications - extended abstract.” in ASIACRYPT (X. Wang and
K. Sako, eds.), vol. 7658 of LNCS , pp. 208–225, Springer, 2012.

13. C. Bouillaguet, P. Derbez, O. Dunkelman, N. Keller, V. Rijmen, and P.-A. Fouque, “Low data com-
plexity attacks on AES.” IEEE Transactions on Information Theory , vol. 58, no. 11, pp. 7002–7017,
2012.

14. C. Bouillaguet, P. Derbez, and P.-A. Fouque, “Automatic search of attacks on round-reduced AES and
applications.” in CRYPTO (P. Rogaway, ed.), vol. 6841 of LNCS , pp. 169–187, Springer, 2011.

15

15. C. Bouillaguet, O. Dunkelman, G. Leurent, and P.-A. Fouque, “Another look at complementation
properties.” in FSE (S. Hong and T. Iwata, eds.), vol. 6147 of LNCS , pp. 347–364, Springer, 2010.

16. C. D. Cannière, O. Dunkelman, and M. Knežević, “KATAN and KTANTAN - a family of small and
efficient hardware-oriented block ciphers.” in CHES (C. Clavier and K. Gaj, eds.), vol. 5747 of LNCS ,
pp. 272–288, Springer, 2009.

17. A. Canteaut, M. Naya-Plasencia, and B. Vayssière, “Sieve-in-the-middle: Improved MITM attacks.”
in CRYPTO (1) (R. Canetti and J. A. Garay, eds.), vol. 8042 of LNCS , pp. 222–240, Springer, 2013.

18. I. Dinur, O. Dunkelman, and A. Shamir, “Improved attacks on full GOST.” in FSE (A. Canteaut,
ed.), vol. 7549 of LNCS , pp. 9–28, Springer, 2012.

19. FIPS, “Data Encryption Standard.” Federal Information Processing Standards Publication 46.
20. J. Guo, T. Peyrin, A. Poschmann, and M. J. B. Robshaw, “The LED block cipher.” in CHES (B. Pre-

neel and T. Takagi, eds.), vol. 6917 of LNCS , pp. 326–341, Springer, 2011.
21. T. Isobe, “A single-key attack on the full GOST block cipher.” J. Cryptology , vol. 26, no. 1, pp. 172–

189, 2013.
22. T. Isobe and K. Shibutani, “All subkeys recovery attack on block ciphers: Extending meet-in-the-

middle approach.” in Selected Areas in Cryptography (L. R. Knudsen and H. Wu, eds.), vol. 7707 of
LNCS , pp. 202–221, Springer, 2012.

23. J. Jean, I. Nikolic, T. Peyrin, L. Wang, and S. Wu, “Security analysis of PRINCE.” in FSE (S. Moriai,
ed.), vol. 8424 of LNCS , pp. 92–111, Springer, 2014.

24. M. Knezevic, V. Nikov, and P. Rombouts, “Low-latency encryption - is “lightweight = light + wait”?.”
in CHES (E. Prouff and P. Schaumont, eds.), vol. 7428 of LNCS , pp. 426–446, Springer, 2012.

25. L. R. Knudsen, “DEAL - a 128-bit block cipher.” Technical Report 151, University of Bergen, Depart-
ment of Informatics, Norway, Feb. 1998.

26. L. R. Knudsen and V. Rijmen, “Known-key distinguishers for some block ciphers.” in ASIACRYPT
(K. Kurosawa, ed.), vol. 4833 of LNCS , pp. 315–324, Springer, 2007.

27. C. Ohtahara, K. Okada, Y. Sasaki, and T. Shimoyama, “Preimage attacks on full-ARIRANG: Analysis
of DM-mode with middle feed-forward.” in WISA (S. Jung and M. Yung, eds.), vol. 7115 of LNCS ,
pp. 40–54, Springer, 2011.

28. J. Patarin, “Security of random Feistel schemes with 5 or more rounds.” in CRYPTO (M. K. Franklin,
ed.), vol. 3152 of LNCS , pp. 106–122, Springer, 2004.

29. Y. Sasaki, “Meet-in-the-middle preimage attacks on AES hashing modes and an application to
Whirlpool.” in FSE (A. Joux, ed.), vol. 6733 of LNCS , pp. 378–396, Springer, 2011.

30. Y. Sasaki, “Preimage attacks on Feistel-SP functions: Impact of omitting the last network twist.” in
ACNS (M. J. Jacobson Jr., M. E. Locasto, P. Mohassel, and R. Safavi-Naini, eds.), vol. 7954 of LNCS ,
pp. 170–185, Springer, 2013.

31. Y. Sasaki and K. Yasuda, “Known-key distinguishers on 11-round Feistel and collision attacks on its
hashing modes.” in FSE (A. Joux, ed.), vol. 6733 of LNCS , pp. 397–415, Springer, 2011.

32. K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Akishita, and T. Shirai, “Piccolo: An ultra-
lightweight blockcipher.” in CHES (B. Preneel and T. Takagi, eds.), vol. 6917 of LNCS , pp. 342–357,
Springer, 2011.

33. H. Soleimany, C. Blondeau, X. Yu, W. Wu, K. Nyberg, H. Zhang, L. Zhang, and Y. Wang, “Reflection
cryptanalysis of PRINCE-like ciphers.” in FSE (S. Moriai, ed.), vol. 8424 of LNCS , pp. 71–91, Springer,
2014.

34. K. Suzuki, D. Tonien, K. Kurosawa, and K. Toyota, “Birthday paradox for multi-collisions.” in ICISC
(M. S. Rhee and B. Lee, eds.), vol. 4296 of LNCS , pp. 29–40, Springer, 2006.

16

