Alternative cubics’ rules with an algebraic appeal

Daniel R. L. Brown*

Rough draft, June 26, 2015

Abstract

Two alternating vector operations on a cubic hypersurface are given
simple expressions. Direct use of the first operation’s expression seems
less efficient than state-of-the-art elliptic curve cryptography. The sec-
ond expression seems mainly interesting towards an elementary expo-
sition about elliptic curve theory.

1 Cubic-secant intersection: a vector expression

A cubic homogeneous polynomial (cubic form) e acts on vector x by:

6(5{3) = 6(:1,‘0, Lyy---) = Z €, kTiTjTh-
0<i<j<k

Fix e. For any vectors x and v, define:!

r$y=e(x—y)(z+y) +elx+y)(zr—y), (1)

except in characteristic two, where one first divides by two, as detailed
in §2.2. Say x is on (hypersurface) e, and write = € e, if e(z) = 0 and
x # (0,0,...). Properties of binary operation $ include:

Proposition 1. Ife(z) = e(y) =0, then e(z $y) = 0.

Proposition 2. For field F, if x,y,z € e, and z € (Fx + Fy) \ (Fz U Fy),
then x $y € Fz.

Proposition 3. If dim(Fz + Fy) =2 and z,y € e and x $y = (0,0,...),
then Fx + Fy C e.

*dbrown@Qcerticom.com
!Using the usual vector operations: (z +y); = z; + y: and (az); = az;.

Relation to chord-and-tangent addition rule These three proposi-
tions essentially show that if the vector x $ y is a nonzero vector, then it
represents the third projective point on intersection of the hypersurface e
with the projective line F'z + Fy through = and y (the secant line).

In particular, when restricted to a three dimensional subspace of vec-
tors, where e defines a plane cubic curve, which can often yield an elliptic
curve, the operation $ corresponds to an intermediate step in the well-known
geometric chord-and-tangent rule for the addition law on elliptic curves.

So, the vector operation $ corresponds a well-known projective point
operation. Indeed, Niven, Zuckerman, and Montgomery [NZM91] attribute
the first use of a chord (secant) to find a new point on a cubic to a manuscript
of Newton.

Of all the vector operations corresponding to this geometric point op-
eration, the operation $ might have simplest expression (1) at least among
expression permitted to apply e as a function.

Absence of the expression in some earlier works Most introductory
texts on elliptic curves provide Jacobi’s geometric description of the ellip-
tic curve group law and usually an explicit computational description in
affine coordinates. Most cryptographic implementations use projective co-
ordinates, and therefore explicit computational descriptions of elliptic curve
operations are needed. For example, Bosma and Lenstra [BL95] provide
explicit group laws for elliptic curves given by Weierstrass equations. They
expand the polynomials fully as a sum of monomials times constants, which
may be satisfactory for a computational standpoint.

More recent work has sought more efficient explicit projective coordi-
nates description of elliptic curve group operations. Bernstein and Lange
[BL15] maintain an excellent database of such operations, with state-of-the-
art efficiency and security. These formula generally assume a special form
of curve, but one can often transform an arbitrary curve into one of these
special forms, so they are usually general enough for cryptography.

This operation $, and its expression in (1) continues in the trend of
elementary projective formulas, though it emphasizes brevity and generality
rather than efficiency. As such, $ does not immediately merit inclusion
in [BL15] due to it lacking any demonstration of efficiency and due to its
intermediacy with respect to the usual basic elliptic curve operation.

Illustration of the operation Figure 1 illustrates an example with four-
dimensional vectors projected onto the two-dimensional plane. The projec-

tion through the zero vector maps the four-space to three-space, which is
then projected onto the plane. The figure aims to convey the sense of the
projective three-space by showing depth: portions of geometric objects are
obscured by others in front of them. A subset of vectors on e is drawn as
a strip bent into the shape of the letter S. Three vectors on e, namely z,
y, and x $ y are shown, which appear collinear, since they belong to the
same two-dimensional space Fx + F'y, which is drawn as four collinear line
segments: with the three gaps being obscured by a strip cut out of the cubic
surface. The vectors z +y and x — y are also drawn, and belong to the same
two-dimensional space Fx+ Fy. Obviously, the figure in no way whatsoever
proves that our formula for x $ y actually belongs to the curve e.

Figure 1: The operation $ seen on a strip of a projective cubic surface

Figure 1 includes some liberties. The positioning of the five points in the
figure on the line Fx + F'y in merely schematic, and might not be consistent
with any actual projection. Also, the rims of the cubic strip, shown in solid,
are interpolated curves drawn with xfig program, and, as such, are probably
something akin to spliced together Bezier curves, with might not accurately

represent how any cubic strip would look.

The symbol $ that this report uses for this operation is a miniature
version of Figure 1, and may thus have mnemonic value. The two historical
facts that Newton worked at the mint and that Newton used the geometric
operation which Figure 1 and $ represent, may also help in remembering,

Naming the operation and expression Presumably, the actual vector
operation $ and its expression in (1) are already known and named, given
the extensive body of research into elliptic curves. Accordingly, they should
be named per such precedents.

Occasionally, names for formula ease spoken discussion. Temporarily,
until determining the preceding names, some interim short names can be
used. The operation $ can temporarily be called the bisectant operation.
The term bisectant merges the terms intersect, secant and bisect. The term
bisect is motivated by the vector operation (z + y)/2, which is projectively
equivalent to = + y, which appears in the expression (1). Because many
different expressions are possible for the same operation, the expression in
(1) may also need naming. Temporarily call the right hand side of (1) the
primeval or simplex or exemplary expression for the bisectant operation.

1.1 Inefficiency of expression (1)

This section looks at the efficiency of directly using expression (1) for com-
puting the the operation $. The conclusion is that it is almost certainly
considerably less efficient than the state-of-the-art elliptic curve operations.

For example, Hisil, Wong, Carter and Dawson [HWCDO8]| provide an ad-
dition rule for twisted Edwards curves that uses eight field multiplications, in
a sequential (single thread of) computation, and in two field multiplications
using four threads of parallel computation.

By contrast, the most efficient application of (1) described below, re-
quires a special form of cubic e and uses eight (resp. one) field cubing(s)
and eight (resp. one) field multiplication(s) in one (resp. eight) thread(s)
of parallel computation. Essentially, this consumes more than twice the
computational resources of the HWCD addition law.

The resulting estimates are so far from competing with methods like
Hisil-Wong—Carter—Dawson that it seems not worth trying to make an em-
pirical measurement by actually implementing $ according to (1).

1.1.1 Chord rule cost comparison

Recall from the traditional formulas for elliptic curves in short Weierstrass
form that, in an elliptic curve addition of distinct points, most of the com-
putation corresponds to the step of intersecting the secant with the cubic,
which is known as the chord rule. The remaining computation is, geomet-
rically, just a reflection in the horizontal axis, which corresponds to a very
simple linear vector operation.

If the same pattern holds in the general setting, then we can examine
the cost of the intersecting the secant and the cubic using $ as described
(1), keeping in mind that a small extra amount of work may be added
later, corresponding to the linear reflection operation used in the Weierstrass
standard equation.

1.1.2 Non-parallel implementation: too expensive

Consider first the cost of $ in a system that has no parallel operations.
Then it seems that the two scalar-vector multiplications in (1) already cost
2d field multiplications where d is the dimension of the vector space. The
vector space dimension must be at least 3. So this is six field multiplications,
which is already nearly the eight used by [HWCDO08], and yet we have not
even accounted for the cost of evaluating the cubic e twice.

These six or more field multiplications must be evaluated after two eval-
uations of e. With three dimensional vectors, most useful cubics e have
at least four monomial terms. Naively, such an e would be evaluated in at
least eight field multiplications, two per term, with perhaps also further field
multiplications by a constant. Since e must be evaluated twice, that gives
at least sixteen field multiplications. Adding the previous six, gives 22 field
multiplications.

Using a Legendre form for an elliptic curve, such as:

e(w) = xixy — wo(m0 — 2)(T0 — AT2)

for some A, can allow e to be evaluated with three general field multipli-
cations, one squaring, and one field multiplication by a constant (3M +
15+ 1K). Doing this twice, plus the previous six field multiplications, gives
12M + 2S + 2K, which is still far worse than [HWCDO08].

Note that using a Legendre equation here imposes the condition that the
elliptic curve groups have a subgroup of order four.

One can also work in extended coordinates using vectors of dimension
four instead of dimension three. In this case, the Legendre equation can be

written as e(z) = x3xy — xo(x — 3)x3. In the three-dimensional subspace
V defined by x3 = x¢g — A\z2, the effect is identical to the previous Legendre
equation. This approach replaces the two field multiplication by A in the two
evaluations of e, by two general field multiplications to handle the fourth
coordinate in the scalar-vector multiplications in the expression (1). So, this
case is worse than the previous.

Trying extended coordinates again, one can instead consider a Fermat
cubic:

e(r) = 3 + 28 4+ 23 + 23

The main hope here is that the using four field cubings (4C') above to eval-
uate e are more efficient than three field multiplications and a squaring
(3M + 15) in the Legendre equation case. That might not generally be the
case (though, later we will re-consider Fermat cubics in parallel computation
setting).

Note the use of Fermat cubic surface may impose some conditions on the
elliptic curves that intersect the surface.

Regardless, all the approaches above use more field multiplications than
even the old-fashioned standard approaches to point addition for short Weier-
strass equations. In other words, the only hope for an efficiency advantage
from (1) is in the case of parallel implementations.

1.1.3 Parallel implementation

In this section, we will consider an approach to implementing $ using 8
threads of parallel computation and the Fermat cubic form.

Simplistic view of parallel computation This report takes a simplis-
tic view of parallel computation. Many different types of parallel compu-
tation are available on modern devices, such as pipelines, superscalaring,
hyperthreading, single-instruction-multiple-data (SIMD) CPU instructions,
multiple CPU cores, and graphics processing units. This report discusses
parallel computation in terms of SIMD operations. In processors without
explicit SIMD instructions, some of the gains from SIMD operations might
also be achievable with pipelining or superscaling.

Generally, we consider the number of parallel threads of computation as
an important cost. Suppose one is comparing two algorithms, and that they
have essentially identical computation cost, except that one that uses more
threads of parallel computation. The one using fewer threads is preferred
for two reasons. Some systems many not have enough parallel capability to

support the larger number of threads. In other systems, the algorithm using
fewer threads frees up computational resources that can be used for other
simultaneous computations.

Expanded addition laws Bosma and Lenstra [BL95] find addition laws
for any elliptic curve that have bi-degree (2,2). If we allow an unlimited
number of parallel threads of computation, then each monomial term in
the addition can be computed in a parallel thread using two parallel field
multiplication plus one field multiplication by a constant. The main dis-
advantages of this approach is the high number of threads required, and
perhaps the one-time difficulty for the programmer to make sure all the
terms are entered correctly.

Field implementation Consider a finite field implementation with the
following properties. Each field elements has a set of representations, as
a sequence of computer words, where a word is some kind of data type
on which the computer naturally acts, such as an unsigned integer, or a
floating point number. The field representatives can be added, subtracted
and multiplied using a pre-determined set of computer operations on these
words. In particular, the set of computer operations does not depend on the
values of the field elements. Call this a constant operation implementation.

Such field implementations are now well-known. Because the operations
are constant, parallel computation is potentially useful. If multiple similar
field operations are done in parallel, then they complete at the same time,
which avoids branching and stalling.

SIMD word operations Many modern devices’ central processing units
(CPU) have an instruction set that include Single Instruction Multiple Data
(SIMD) operations. The SIMD instructions perform vector operations at the
level of computer words: one vector of words can be added to another vector
of words. Sometimes SIMD instructions allow word-by-word multiplication
of vectors. Some SIMD instruction sets allow dot product of two vectors of
words to computed.

SIMD field operations Given a constant operation implementation of a
field operation, such as field addition, one can try to convert this into the
corresponding vector operation, such as vector addition, by replacing each
word operation by the corresponding SIMD word operation.

For example in the expression (1), computing the vector sum x +y might
be done with a sequence of SIMD word operations, whereby the addition is
done simultaneously.

Fermat cubic surfaces The expression (1) for $§ describes two evaluations
of e. Therefore, if we are free to choose the form of e, we may want to
consider a form that is most efficient, and following the approach above,
best suited to a SIMD-based vector implementation.

To this end, consider a Fermat cubic surface, such as e(z) = 23 + 23 +
73 + 3. An evaluation of e can be done with SIMD-version of the field
cubing operation: the field cubes z7 being computed simultaneously. A
dedicated field cubing operation is potentially faster than two general field
multiplications.

The evaluation of $ as described above seems to require 8 threads of
parallel computation. In each thread, there is one field cubing, one field
multiplication, as well as some field additions and subtractions. Summarize
this cost as (1M + 1C)s.

The Hisil-Wong—Carter—-Dawson (HWCD) [HWCDO08] addition rule used
four threads of parallel computation, with each thread using two field mul-
tiplications and some field additions and subtractions. Summarize this cost
as (2M).

Because a field cubing is expected to be considerably slower than a field
multiplication, the approach above should be considerably slower than than
HWCD addition rule, even when it uses twice as many parallel threads of
computation as HWCD does.

1.2 Diffie-Hellman using $

This section considers using the operation $ to implement elliptic curve
Diffie-Hellman (ECDH). More precisely, one must also specify a three-
dimensional subspace V' of vectors.

As shown above, there seems to be no efficiency benefits to implementing
ECDH this way. The main benefit would be therefore be some kind of
simplicity.

Oddly, it does not seem necessary to specify the identity element. Con-
sequently, the implementation ECDH is defined over up to nine possible
group structures on the plane cubic curve.

A severe caution to such an implementer is in order. The simplicity
of $ in no way buys any protection from the existing attacks and various

risk of implementation faults. All the usual protections for ECDH must be
considered.

1.2.1 Review of traditional EC groups

This subsection reviews some basics of the traditional theory of elliptic curve
groups and how it relates to structure given by $. This relation is what allows
one to show that how $ can be used to implement ECDH.

Comparing $ to the usual EC group law The usual approach to
elliptic curve cryptography (ECC), especially elliptic curve Diffie-Hellman
(ECDH), uses the group structure on the elliptic curve. The cubic e alone is
enough to define the operation $ but it is not enough to pin down an elliptic
curve group structure. To define a group, one also needs:

e a three-dimensional subspace V' of vectors, thereby narrowing the cubic
hypersurface to a (projective) plane cubic curve e NV, and

e a point o € e NV selected as the identity element of the group.

With this additional information, the well-known theory of elliptic curves
define a group operation @,y on the projective points represented by the
vectors in e NV, such that o represents the identity element of the group.

Fix 0 and V, and abbreviate to the group operation to @, let & indicate
the associated negation operation. We henceforth assume that all the vectors
encountered belong to the three-dimensional subspace V', and refer to e as
a curve, though we really mean e N V.

In some cases, V will be define explicitly by a system of linear equations,
and in other cases, it may be defined implicitly by three vectors u, w, z € eNV
that also form a basis of V.

Inflective identity point Conventional approaches to elliptic curve groups
select an additive identity point o that is an inflection point. For example,
in the traditional Weierstrass form of an elliptic curve, the identity point
is selected as the point? (0 : 1 : 0) represented by vector (0,1,0). In affine
coordinates, this is a point at infinity.

Furthermore, part of the generality of the Weierstrass form of an elliptic
curve stems from the following well-known transformation of an arbitrary

2Thanks to Samuel Neves for noticing my mistake in the previous draft which had
(0:0:1) here.

plane cubic curve into Weierstrass form [ST92, 1.3]. First determine an in-
flection point o on the cubic curve. Then apply a bi-rational transformation
that maps o to (0,1,0), with some other properties (such as the line at
infinity being tangent to the transformed curve).

An efficiency, or at least simplicity, advantage of using an inflective iden-
tity is that o $ = can be re-scaled to be a linear function of z (this applies
even if the curve equation is not transformed to Weierstrass form).

For example, suppose that e(r) = 3 + 23 + 23 + 23, and we define V
by agxg + a1x1 + asxe + asrg = 0 for some vector a. If ag = as, then
it seems that the vector (0,0,1,—1) corresponds to an inflection point on
the curve. If we make o the additive identity, then we can use the linear
vector operation x = (zg, z1,x2,x3) — Ox = (zg, z1, 23, z2) for negation of
projective points. Then we can define x @ y as S(x $ y).

We henceforth assume an implicit choice of inflective point o and cor-
responding operation ¢. Recall that a cubic may have up nine inflection
points, so the implicit addition @ could represent any of these.

Doubling laws The conventional approaches to ECC also make use of a
doubling law in forming multiple of a point under the group law.

The usual geometric description of doubling involves the tangent line.
Doubling requires a choice of o, so is not computable using $ alone. All is not
lost, however. Negated doubling can be achieved using only the operation $
and some auxiliary vectors on the curve as described later below.

The §$ operation is alternating: * $y = —(y $ «). In particular x $ = =
(0,0,...), so unfortunately this most natural way of computing the negated
double fails. An implicit, non-constructive, way to compute the negated
double of z, is to find y such that x = 2 $ y. Further below, we give a more
explicit constructive method.

1.2.2 Using $ and V

This section proceeds to pursue the exercise of describing a form of ECDH,

while only using the operation $ and the three-dimensional vector subspace
V.

Adding any four points Consider the vector v = (w$z)$ (y$z). Then
v is nonzero if:

e w and zx represent distinct projective points, and

e y and z represent distinct projective points, and

10

e w$x and y$ 2 represent distinct projective points.

If v is nonzero, then v represents projective point w @ z @ y ® z, for the
implicit @ mentioned above. In this case, the ambiguity of @ vanishes: the
resulting of w @ x & y & z is the same for each of the nine inflection points
0. The vanishing of the ambiguity happens because an alternative inflection
point o’ has order three. For example, o' ® o ® o' ® o = 0'.

If v = (0,0,...), then v fails to represent w & x @ y & z. This case is
called an exception, using the terminology of Bosma and Lenstra [BL95].

Note this computation has a cost of 3% operations. This cost is somewhat
promising for this exercise, because it appears as though we can trade three
implicit & operations for three $, provided that we can arrange to avoid
any exceptional cases. Nevertheless, recall that we are not aiming for great
efficiency here, so we do not further pursue that level of efficiency.

Pre-computed auxiliary vectors The following calculations will use
two pre-computed arbitrary vectors w,z € e N V. These can be included in
the specification of V', or they can be found as follows.

To choose a random z = (29, 21, 22, - ..), choose zp and z; as arbitrary,
even random, field elements. Think of zy and z; as constants. Using the
description of the space V to describe any extra coordinates z3,24,... as
linear functions of z3. Then e(z) = 0 can be viewed as a univariate cubic
polynomial in variable z5. Solve for z5. If this univariate cubic has no roots,
then try again.

In this remainder of this section, consider w and z to be fixed vectors.

Negated doubling Vector v = (w$2)$ ((w$z)$ (y$ 2)), if non-zero,
represents the point ©(z @ x), the negated doubling of x, under any of the
implicit group structure mentioned above. (where o is an inflection point)

The use of the points w and z can be called bootstrapping, since using
$ and x alone leads nowhere. This booting process implies exceptions: for a
few values of x, the negated doubling approach above yields the zero vector.

For convenience, write this as u = @_2 x, or as @;ix to emphasize
the dependence on w and z as a vector operation, or as a projective point
operation where w and z only matter for defining the exceptions.

Not to pinch pennies, but the total cost of operation EB_Q is 5$.

Quadrupling to boot Repeating the negated doubling operation twice

gives: P 2P 2z =P

11

This is the second and last phase of the booting process, and introduces
some further exceptions.

Overall, booting has cost 10$ and yielding the vector representation of
z, @ 2z and @ z, albeit with an intangible cost that there are few z for
which the booting process fails.

Re-scaled double-and-add Th/e following variant of double-and-add can
be used to compute the point @*" 'z given @*" ™ z for n’ € {2n,n +1}:

693(2n)+1 e ((@72 x) s <@3n+1 a;)) s (<@3n+1 a;) 5 a;) |
@3(n+1)+1 . ((@4 x) g <@3n+1 x)) 52,
@3(n+0)+1 T = ((@1 :c) $ (@3n+1 x)) $x.

A formula with n’ = n + 0 with cost equal to the formula for n’ = n + 1 is
included above to help make the overall computation run in roughly constant
time. Recall that double-and-add works as follows: to compute the point
for n’ apply the formula above with n =n’ — 1 if n’ is odd and n = n//2 if
n is even (with an intermediate n = n’ — 0 if constant-time implementation
is warranted). Therefore, the bits in the binary expansion say which of the
formulas above to apply.

Note that the computations above do not use points w and z, and gen-
erally do not add any new exceptions. More precisely, exceptions only arise
given a dependency between n and the order of the point = in the ellip-
tic curve group. Izu and Takagi [IT03] considered this problem for various
elliptic curve addition laws (and addition chain methods).

The cost of the approach is about 5(3+ |logy(n)])$. This is considerably
more $ than the number of @ operations that a traditional ECDH would
use.

Elliptic curve Diffie-Hellman Alice chooses her private ECDH key as
an integer 3a + 1 for some random integer a that can represent a unbiased
value in the prime field F. Bob choose b similarly.

Let v be some point of V' that Alice and Bob agree to use. Then Alice
computes ¢ = @3“+1 v and sends x to Bob. Bob computes y = @SbH Yy
and sends y to Alice. Alice computes the point @** Ty = @Ba+DE+1)
Similarly, Bob computes @™ z = @(3b+1)(3“+1) v. Alice and Bob obtain
vector representation of the same projective point.

12

Alice and Bob must use the same method of representing points, because
their computed vectors may differ. Also, because of known attacks, such as
[NSS04], Alice and Bob should send each other the values z and y using the
canonical representations mentioned above.

1.3 Personalized group selection

Alice and Bob may want to use a personalized Diffie-Hellman group for key
exchange. Such a practice goes against the trend of using a common but
carefully vetted Diffie-Hellman group, and is generally deemed as dubious.
Perhaps Alice and Bob do not trust the common group. Perhaps Alice and
Bob think that using a personalized group confers to them the benefit that
an adversary cannot amortize the cost of attack against private keys across
multiple users or key exchanges.

Normally, a personalized Diffie-Hellman group is very costly to generate,
at least if one tries to follow the common strategy for a common group. For
example, one must perform point-counting, primality-checking and so on.

In the case of elliptic curve Diffie-Hellman groups, an alternative strategy
is available. For a given fixed field, a random projective plane cubic is likely
to define an elliptic curve. If the field size is chosen large enough (larger
than usual for common curves), then the elliptic curve group order can be
expected to have a prime factor of large size, just by chance. Alice and Bob
can then just trust to chance that the random curve that use is secure.

A straightforward way for Alice and Bob to choose a pseudorandom
elliptic curve Diffie-Hellman group would be to use some standard curve
form, such as a short Weierstrass equation like y? = z3 — 32+ b, and to then
choose b as the hash of their identities and some other information, such as
the date.

An alternative approach using the operation $ is as follows. Alice and
Bob would choose their preferred cubic, such as e(z) = 23 + 23 + 23 + 23,
but then select a three-dimensional subspace V' in a pseudorandom manner,
depending on their identities and the date.

Alice and Bob may further want an unpredictable curve, say, to avoid the
risk of an adversary pre-computing in advance some attack information for
their curve. In this case, they need to generate some unpredictable nonces,
and then derive the curve from the nonces. We must assume that they can
authenticate the nonces, which they might do with digital signatures.

The resulting pseudorandom vector space V' can be specified either by
its defining equations, or by selection of some basis. For example of the
latter, Alice might choose a basis vector w, and Bob might choose a basis

13

vector z. Alice sends w to Bob and Bob sends z to Alice. Alice choose secret
integers a = 1 mod 3 and Bob chooses b similarly. Alice computes z = @*v
and sends z to Bob, where v is the third basis element of V', chosen by some
pre-arranged method. Bob computes y = @b v and sends y to Alice. Two of
these four communications can be merged, resulting in three passes between
Alice and Bob.

1.4 An alternating quaternary operation?

If V is a three-dimensional subspace of the vectors on which e acts, then
equip V with a vector cross product, written as A, by fixing some 3-basis.
For w,z,y,z € e, V, let

o, 2.y, 7) = (wSz)$(y$2) . @)

el(w A) A (y 7 2)
) (2)(5) ()]

interpreting w, x, y, z as row vectors, in the 3-basis over which A is defined,

to form square matrices like <§> In other words, the determinant ‘ (é) ‘ =

x - (y A z) is the triple product of z, y, and z. Strictly speaking, v is only
defined where the denominator in (2) is nonzero.

Apparent properties of v A few simple numerical calculations suggest
that the function v is

e an alternating function of its four inputs (swapping two inputs negates
its value),

e equivalent in its action on surface eNV to a polynomial vector function
of multi-degree (4,4,4,4) in the coordinates.?

From alternation to quasi-associativity A consequence of the alter-
nating property of function v is a kind of quasi-associativity of the operation
$ in the form:

(wSz)$(y$2)ox (wSy)$(x$2), (3)

3 Achieving this polynomiality seemed to require including the matrices and determi-
nants in (2).

14

where u o« v means that F'u C Fv or Fv C Fu, provided that at least one
of the corresponding denominators in (2) does not vanish*. The relation
o is transitive over nonzero vectors, and its equivalence classes (of nonzero
vectors) correspond to projective points.

Basic point operation properties of § A potential theoretical applica-
tion of quasi-associativity is to help establish associativity of another oper-
ation. But first, we note that Proposition 2 implies a kind of involutionary
property:

(x8y) Sy ox . (4)

We also note the more obvious commutativity property y $z o x $ y, which
follows from the operation $ being alternating on its vectors inputs: y $z =
—z$y.

Jacobi’s construction of the group law Fix o € e and define the
operation @ for any p,q € e by

p®qg=0%(p$q). (5)

Jacobi first introduced the operation & as a group law for an cubic curve in
1835, (according Husemoller [Hus04, §5]).

Jacobi’s now famous addition rule is illustrated schematically in Figure 2.
The dashed lines and curves indicate a plane cubic curve. The curve is nearly
singular, so it looks like a union of a horizontal line and a circle in the figure.
The solid line segments indicating two chords, and cover a middle portion
of the nearly horizontal part of the curve. Small solid disks represent the
points involved, as labeled. The similarity between the symbol & and the
figure is, of course, contrived and atypical, but may nonetheless have some
mnemonic value.

From quasi-associativity to associativity It is also well-known [ST92,
Ex. 1.11] that certain properties of an operation like $ yield associativity of

41f the polynomial-action property of v holds, then this proviso can be dropped since
the numerator will be zero making (3) hold vacuously.

15

/’—.‘\\
- ~
- ~
i ~
4 N
e N
4 \
/ \
/ \
/ \
/ \
! \
|
_____ . . ¢ -
'z x$!
\ Y Ty
\ /
\ /
\ /
\ ’
A 7
N 7
N 7
~ -
~ -
~ -
-~ & - -
o

Figure 2: Jacobi’s addition rule

@. For example, if o,p,q,r € V, then:
p@(@r)=o08(p 5 (08(¢8r)))

commute

xo0$((0$(q8r))$)

NG
involution
x08((08(g87))3((pSq)84q)
=08 ((Lo_8(¢87)8((p $Q)$€/)))

w T

x08((_(pSa)(($r)S ¢)

w y x z
x0$((0$(p$q)$((r$q)$q))
x03((0$(pSq)S$r)

=(p®q) @,

which establishes that p ® (¢ ® r) « (p ® ¢) ® r in the cases where all the
intermediate vectors are nonzero, because transitivity applies making chain
of «x carry through from start to finish. Exceptions to the argument occur
if any of the intermediate vectors are zero.

From associativity to alternation? The arguments above do not seem
to work in the converse direction. Associativity of &, which holds at the level

16

of point operations, does not seem to immediately imply the alternation of
v as a vector operation.

2 Proofs of the propositions

Presuming that the three propositions are correct, one should expect that
the formula $ and the proofs of its properties are already known.

Cursory searches of a few introductory texts did not yield such proofs.
Therefore, for completeness, this report proves the basic properties of the
operation $.

2.1 Proofs for non-binary fields

For non-binary fields (meaning field of zero or odd characteristic with 1+1 #
0), the proofs of the first three propositions are made simple by using the
following lemma.

Lemma 1. Ife(x) =e(y) =0, then
azx $by = (ab)*(z $) (7)
for all a,b e F.

Proof. In the expansion of the coordinates of the right side of equation (1)
as polynomials in the coordinates of z and y, the scalar multipliers e(x — y)
and e(x + y) each have total degree 3, while the the vectors = and y each
have total degree 1. So, the total degree of x $y is 3 +1 = 4.

Consider the degrees in the coordinates of x separately from the degrees
in the y coordinates. Each non-zero monomial term in the polynomial ex-
pansion x $ y has a degree m in the coordinates of x and a degree n in the
coordinates of y. The pair (m, n) is called the bi-degree of the term. Because
the total degree is four: the bi-degree (m,n) obeys m +n = 4.

Swapping the two terms on the right of equation (1) shows that 2$(—y) =
2$y. This makes z$y an even function of the vector y. Evenness implies that
terms in the polynomial expansion have even degree in the y coordinates®:
so n is even. Consequently, m = 4 — n is even too.

The monomial terms with bi-degree (m,n) = (4,0) in the polynomial
expansion x $ y do not depend on y. Therefore, the bi-degree (4,0) sum
to 2 $(0,0,...). Setting y = (0,0,...) on the right of equation (1) shows

®This argument may implicitly require working in an infinite extension of the field F.

17

that « $ (0,0,...) = 2e(x)z. If e(x) = 0, then terms with m = 4 make
no contribution to x $ y and can effectively be dropped for the purpose of
evaluation of = $ y.

Swapping z and y on the right of equation of (1) has the effect of negating
both term, so y $x = —(z $y). In terms of a polynomial expansion, this
implies a kind of symmetry, up to signs, between z and y in the nonzero
monomial terms. Because the terms of bi-degree (4,0) can be dropped if
e(z) = 0, as shown above, this symmetry implies the terms with bi-degree
(0,4) can be dropped when e(y) = 0.

The remaining terms all have bi-degree (m,n) = (2,2). Consequently,
each term scales by (ab)? when z is scaled by a and y by b. The sum of
terms scales similarly by linearity. O

The bi-homogeneity of the operation $ relative to the cubic e ensures
that it is well-defined as an operation of projective points.

The bi-homogeneity of the operation $ enables scaling of x and y to ax
and by. This scales z 4+ y to ax + by. Setting ax + by to any target point in
Fx + Fy is a key step in the next three proofs.

Proof of Proposition 1. The goal here is to show that if e(z) = e(y) = 0,
then e(x $y) = 0.

If and y are linearly dependent, then y = ax, or x = ay for some scalar
a. In the first case, * $y = a?(x $) = ¢(0,0,...)(2x) + e(27)(0,0,...) =
(0,0,...),s0 e(x $y) = 0. The case x = ay has the same argument. Other-
wise, z and y are linearly independent, which is assumed for the rest of the
proof.

Ifx$y € Fzor x$y € Fy, then e(x$y) = 0 by homogeneity. Otherwise,
x$y & Fr U Fy, which is assumed for the rest of the proof.

Because 2 $y € F(z +y) + F(x —y) C Fx + Fy, there exists a, b, such
that z $ y = ax + by. By the assumption that z $y € Fa U Fy, it follows
that a,b # 0. Write z = ax + by = z $ y and w = ax — by. Vectors z and w
are linearly independent because z and y are. From Lemma 1:

(ab)?z = (ab)*(x $ y)
= az $ by ()
=e(w)z + e(z)w.
Therefore (e(w) — (ab)?)z +e(z)w is zero vector. By the linear independence

of w and z, both both coefficients in the linear combination must be zero.
In particular, e(z) = 0. O

18

Proof of Proposition 2. The task here is to show that if z,y,2z € e and z €
(Fx+ Fy) \ (Fz U Fy), then x $y € Fz.
Writing z = ax + by for a,b # 0, applying Lemma 1:

(8 y) = (ab)*(az $ by)
= (ab)%(e(az — by)z + (ab)2e(2)(azx — by)) 9)
= (ab)2e(azx — by)z,

which shows that © $y € Fz. O

Proof of Proposition 3. The task here is to show that if dim(Fz + Fy) = 2,
and z,y € e, and x $y = (0,0,...), then Fz + Fy C e.

Let z € Fx + Fy. If z € Fx, then e(z) = 0 by homogeneity. Similarly, if
z € Fy. Otherwise, z = ax + by for some a,b # 0. Let w = ax — by. Vectors
z and w are linearly independent. From Lemma 1,

(0,0,...)=z %y

By linear independence of z and w, we must have e(w) = e(z) = 0. In
particular e(z) = 0, which holds for any z € Fx + Fy. O

2.2 Proofs for all fields

In fields of characteristic two, equation (1) always evaluates to the zero
vector, since 1 = —1 causes both terms to be equal, canceling each other.
Furthermore, the proofs of the first three propositions use trick that ax + by
and ax — by are independent if z and y are, which does not work in charac-
teristic two. So, in this section, we amend the definition of the operation $,
and provide rather different proofs.

Consider the ring R, = Z[x;, e; |, and consider e(x) as an element of
R. Notice that e is cubic in the z; but linear in the e; ;. For any other
ring S and any vector z, we can define e(z) by mapping z; to z;, and some
appropriate mapping of the coefficients e; ; into the ring S: this is called
the evaluation of e at vector z.

Consider the ring R, , = Z[x;, ¥i, €; 1] which extends R,. We evaluate
e(z) for a vector z with coordinates in R, by mapping e; ;1 in R, to its
copy in R, ,. Now define the operation $ as:

zdy = (e(z—y)x+y) +elr+y)(z—y)/2 (11)

19

where the division above is possible for integer coefficients, because each
monomial of given degrees appears in both terms, only differing by signs.
When monomials collected by common degrees in variables, the coefficients
will be even integers. Therefore z$y € R, .

When z and y are vectors over an arbitrary ring S, we can define x $ y
using the usual substitution of variables by coordinates and constants. This
provides our modified definition of the operation $ for any vector space, and
any given cubic (where the e; ; are assigned constant values).

In fields of odd or zero characteristic, the new operation $ is just our the
old operation $ divided by two. Because two is invertible in this fields, all the
old propositions apply to the new operation $, and the effect on projective
points is identical.

Let

f(x,y) = (e(z +y) —e(r —y))/2, (12)

where the division by two is integral by the same arguments as for the new
operation $, so f(x,y) € Ry,. Then:

fly,) = (ely +) —e(y —))/2 = (e(z +y) +e(r —y))/2 (13)
from the fact that e(—z) = —e(z). It follows that:
e(r+y) = flz,y) + f(y,z) (14)

Next consider that

f(x,—y) = (e(z —y) —e(z +y))/2 = = f(2,9), (15)

so f(x,y) is odd as a function of y. This means that, as a polynomial, all
its terms have total odd degree in the variables y;.

Lemma 2. If e(z) = 0, then f(ax,bz) = a®bf(x, z) for all scalars a,b.

Proof. We showed above that the polynomial f(x,y) only has terms of odd
degree in y. The total degree of f is 3, like e, so y degree of each term is
either 3 or 1.

In terms of y-degree 3, the z-degree is 0. The sum of these terms is (0, y)
(where 0 here is the zero vector). But f(0,y) = (e(y) —e(—y))/2 = e(y).
Therefore, these y-cubic terms make no contribution f(x, z), since e(z) = 0.

In particular, the terms contributing to f(z,z) have degree 1 in z and
degree 2 in x. 0

20

In fact, one can expand f as follows:

flay) =el)+ Y ejn(rizye + ziyae + yizjoe), (16)
0<i<j<k

which holds as an equation in R, .

For the rest of this section, we revert to the notation z and y vectors in
an arbitrary ring: so x and y are no longer restricted to be vectors in R, .
This allows use to write e(z) = e(y) = 0 and to state claims similar to the
rest of this report.

Lemma 3. Ife(z) = e(y) = 0, then e(ax +by) = a®bf (z,y) +ab®f(y,z) for
all scalars a,b.

Proof. Combine Lemma 2 and equation (14). O

Returning to our new operation $ definition, by regrouping terms it
follows that:

In this form, one easily sees that the new operation $ is also bi-quadratic,
as per Lemma 1.

Second proof of Proposition 1. The goal here is to show that if e(z) = e(y) =
0, then e(z $ y) = 0. Expand as follows:

e(z$y) = e((=f(y,2)z + f(z,y)y)
(_f(yv $)2f(l‘,y))f(l',y) + (—f(y,:z:))(f(:n,y)2)f(y,a:) (18)
0,

where: the first equality above uses equation (17) with the order of terms
swapped; the second equality uses Lemma 3; and the third equality follows
by arithmetic. O

Second proof of Proposition 2. The task here is to show that if x,y,2z € e
and z € (Fx + Fy) \ (Fz U Fy), then z $y € Fz.
If z € Fx+ Fy with z € Foz U Fy, then there exists nonzero scalars such

21

that z = ax + by. Now:

8y = fz,y)y— fly,x)x
= (ab)~2(f(az, by)by —
= (ab)"2(f(az,by by + (f(ax,by) — f(az,by) — f(by,ax))ax)
= (ab)2(f by + (f(az,by) — e(ax + by))azx)

(ab))by — f(by, ax)az)
(ab)™()
(ab)™"()

= (ab)~*(f(az, by)by + (f(az, by) — e(2))az)
(ab)™()
(ad) (
(ab)

(

(a
an, by (19)
= (ab)~2(f(az, by)by + f(az,by)ax)

= (ab) 2 f(ax, by)(azx + by)
= (ab) "2 f(ax, by)z

which shows that 2 $y € Fz. O

Second proof of Proposition 3. The task here is to show that if dim(Fx +
Fy)=2,and z,y € e, and z$y = (0,0,...), then Fz + Fy C e.

The vector x $y = f(z,y)r — f(y,x)y is a linear combination of inde-
pendent vectors x and y and can only be zero if the coefficients of x and y
are both zero. So, f(z,y) = f(y,x) =0.

Suppose z € Fx + Fy, which means that there exists nonzero scalars
such that z = ax + by. Now:

e(z) = e(ax + by)
= f(CLl', by) + f(byv aw)

(20)
= a’bf(z,y) + ab*f(y, z)
= 0.
which shows that e vanishes on Fx + Fy. O
References
[BL95] W. Bosma and H. W. Lenstra, Jr. Complete systems of two
addition laws for elliptic curves. J. Number Theory, 53(2):228-
240, 1995.
[BL15] Daniel J. Bernstein and Tanja Lange. Explicit-formulas

database. hyperelliptic.org/EFD, 2015.

[Hus04] Dale Husemoller, editor. Elliptic Curves, volume 111 of Gradu-
ate Texts in Mathematics. Springer, 2nd edition, 2004.

22

[HWCDO8] Huseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, and
Ed Dawson. Twisted edwards curves revisited. In Josef
Pieprzyk, editor, Advances in Cryptology — ASIACRYPT 2008,
number 5350 in LNCS, pages 326-343. Springer, 2008. See also
eprint.iacr.org/2008/522.

[IT03] Tetsuya Ize and Tsuyoshi Takagi. Exceptional procedure attack
on elliptic curve cryptosystems. In Yvo G. Desmedt, editor,
Public key cryptography — PKC 2003, number 2567 in LNCS,
pages 224-239. Springer, 2003.

[NSS04] David Naccache, Nigel P. Smart, and Jacques Stern. Projective
coordinates leak. In Christian Cachin and Jan L. Camenisch,
editors, Advances in Cryptology — EUROCRYPT 2004, number
3027 in LNCS, pages 257—267. Springer, 2004.

[NZMO91] Ivan Niven, Herbert S. Zuckerman, and Hugh L. Montgomery.
An Introductio to the Theory of Numbers. John Wiley & Sons,
Inc., 5th edition, 1991.

[Sch91] Norbert Schappacher. Developpment de la loi de groupe sur une
cubique. Progress in Mathematics, 91:159—-184, 1991.

[ST92] Joseph H. Silverman and John Tate. Rational Points on Elliptic
Curves. Undergraduate Texts in Mathematics. Springer, 1992.

A History

Schappacher [Sch91]® discusses the history of the elliptic curve group law.
Schappacher notes that Sylvester describes a procedure for deriving a se-
quence of elliptic curve points from a single point, naming them by integers
corresponding to what modern notation describes as multiplies under the
group law. But Sylvester does not fully describe the group, and instead, a
series of secants, very similar the procedure that this report describes for
computing a subset of the multiples of a point.

In the complete works of Sylvester, one can find his name for the point
obtained from two distinct points by intersecting the secant with the cubic:
the connective. Sylvester refers to the connective in the context of projective
points, rather than a more explicit vector operation. (Again, there are many

SThanks to Samuel Neves for drawing my attention to Schappacher’s article

23

vector operation corresponding to a single point operation, by scaling the
points.)

B Simplistic code samples

In this section, some simplistic code samples using $ and a form of elliptic
Diffie-Hellman described. The sample code is not optimized for efficiency.
Worse yet, the sample code include no protections against side channels and
other implementation security risks.

The sample code mostly omits explanatory comment: but this report is
essentially the comment.

B.1 J script

The J programming language, an interpreter, can be useful for quickly test-
ing some certain mathematical ideas. It has built-in big integers, multi-
dimensional array manipulation, and a tacit syntax. The tacit syntax makes
for terse and difficult reading of code, but for quick programming, once one
accustomizes to it.

p =:-1-2x"521

inv =: (p&|@~)&(p-2)

aff =: p | }. (% inv) {.
prj =: 1 &,

e =:p | ([: +/ "&3) " 1

s =: [+/ [(ex].) + ,: -
S =:(pls)"1

W =: 3 4 5 _6x

Z =: 112 _10 _9x

dbn =: (w S z) S (w& S) S (8 & z)

btr =: dbn™: 0 1 2 2

sum =: _2&(S/\)":2

dub =: }: (, sum) 0 3 3 1&{

itr =: (}:@:1) , (S/)@:(({7(0 3,+:))~dub)

rec =: 1°({H{.eDitr($:7F.)")ae. (0<#a[)

exp =: [: aff [: {: (#:0:]) rec (btr@:prje:[)
g =:aff 168 _9x

Table 1: J code for ECDH using $

24

Table 1 provides a script. The last line includes an example base point.
I took all the three points from Elkies’ web page on the Fermat cubic, which
makes it convenient to change the field size. The J verb exp implements
exponentiation but the exponent is recoded.

B.2 C++ code (unsecured)

Not being a software developer, I seldom use C or C++. Operator over-
loading in C++ makes it easy to write code with appearance of standard
mathematical notation. The algorithm for elliptic curve Diffie-Hellman de-
scribed in this report is implemented in Table 2.

// May leak secrets
include "vecctor.hh"
static scalar e (vector x) {return sum(cube(x));}
define § |
static vector operator $ (vector x, vector y)
{return e(x-y)*(x+y) + e(x+y)*(x-y);}
define w vector_int(3, 4, 5,-6)
define z vector_int(1,12,-10,-9)
static vector negative_double (vector x)
{return (w $ z) $ ((w$x) $ x$ 2));}
typedef struct {
define EXP_LENGTH 521

bool bit [EXP_LENGTH];
} bit_array;
point operator (point base, bit_array exponent)
{vector x1, x_2, x4, y;

x1 = projective (base);

x_2 = negative_double (x1);

x4 = negative_double (x_2);

y = x4;

for (int i=0; i<EXP_LENGTH; i+=1){

y= 18y 8 (y$x2);
y = ((exponent.bit[i] 7 x4 : x1) $ y) $ x1;}
return affine(y);

Table 2: C++ code usable for ECDH

25

This code is incomplete in that it requires an implementation of the
vector space. The interface it uses to the vector space implementation is
describe in the file vecctor.hh given in Table 3. A toy implementation of a

include "vecctor_internal.hh" // vector, point, scalar

vector operator + (vector, vector); // add vectors

vector operator - (vector, vector); // subtract vectors

vector operator * (scalar, vector); // scalar vector

vector vector_int (int, int, int, int); // initialize small vector
point affine (vector); // projective vector --> affine point

vector projective (point); // affine point --> projective vector

vector cube (vector); // cube each vector coordinate

scalar sum (vector); // sum of vector coordinates

Table 3: File vecctor.hh with interface used by C++ code sample

vector space over the field of very small size 521 seems to interoperate with
the previous J code when p is redefined to be 521.

M. Scott’s recent C++ implementation of the field of size 2°%! — 1 can
be adapted to fit this interface above. On a rather old personal computer,
the C++ code from Table 2 runs about 10 times slower than Scott’s ECDH
implementation of Weierstrass curve P-521. This may be due to Scott’ use
of faster addition rules and to the better windowing. Although this speed
is far from optimal, it may be adequate for end-to-end encryption between
end users of high end devices.

Scott’s field implementation together with Table 2 has not yet been
successfully tested interoperabilty with the J code from Table 1, but perhaps
only due to formatting differences.

The sample C++ code includes no effort into ensuring a secure imple-
mentation. For example, it may cause severe side channels, it may leave
secret values in memory, and so on.

26

