
Publicly Verifiable Software Watermarking

Aloni Cohen∗ Justin Holmgren† Vinod Vaikuntanathan‡

December 7, 2015

Abstract

Software Watermarking is the process of transforming a program into a functionally equiv-
alent “marked” program in such a way that it is computationally hard to remove the mark
without destroying functionality. Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan and
Yang (CRYPTO 2001) defined software watermarking and showed that the existence of indis-
tinguishability obfuscation implies that software watermarking is impossible. Given the recent
candidate constructions of indistinguishability obfuscation, this result paints a bleak picture for
the possibility of meaningful watermarking.

We show that slightly relaxing the functionality requirement gives us strong positive results
for watermarking. Namely, instead of requiring the marked program to agree with the original
unmarked program on all inputs, we require only that they agree on a large fraction of inputs.
With this relaxation in mind, our contributions are as follows.

1. We define publicly verifiable watermarking where marking a program requires a secret key,
but anyone can verify that a program is marked. The handful of existing watermarking
schemes are secretly verifiable, and moreover, satisfy only a weak definition where the ad-
versary is restricted in the type of unmarked programs it is allowed to produce (Naccache,
Shamir and Stern, PKC 1999; Nishimaki, EUROCRYPT 2013). Moreover, our definition
requires security against chosen program attacks, where an adversary has access to an
oracle that marks programs of her choice.

2. We construct a publicly verifiable watermarking scheme for any family of puncturable
pseudo-random functions (PPRF), assuming indistinguishability obfuscation and injective
one-way functions.

Complementing our positive result, we show that there are pseudo-random functions which
cannot be watermarked, even in a very weak setting. As a corollary, we demonstrate the first
family of PRFs that are not point-puncturable.1

∗E-mail: aloni@mit.edu. MIT.
†E-mail: holmgren@mit.edu. MIT.
‡E-mail: vinodv@mit.edu. MIT. Research supported in part by DARPA Grant number FA8750-11-2-0225, an

Alfred P. Sloan Research Fellowship, Microsoft Faculty Fellowship, and a Steven and Renee Finn Career Development
Chair from MIT.

1This work has since been improved, revised, and merged with [NW15]. The merged version is [CHN+15].

1

Contents

1 Introduction 3
1.1 Our Results . 3
1.2 Our Techniques . 4
1.3 Related Work . 5

2 Preliminaries and Definitions 6
2.1 Watermarking Schemes . 6

2.1.1 Weakened Definitions . 8
2.2 Remarks on the Definition . 9

3 Amplifying Unremovability and Unforgeability 9

4 A Distinguishing to Removing Reduction 11

5 Main Construction 12

6 The Limits of Watermarking 14

A Puncturable Encryption 18
A.1 Required Properties . 19

B Puncturable Encryption Construction 20
B.1 Construction . 20
B.2 Ciphertext Pseudorandomness . 22

C Proof of Theorem 5.3 26

D Proof of Theorem 5.4 29

E Proof of Theorem 4.2 31

F Unwatermarkable PRFs 31
F.1 Preliminaries . 32
F.2 Construction . 33
F.3 Learnability . 34
F.4 Pseudorandomness . 35

G Relationship between γ and δ 37
G.1 Multi-bit Equivalence . 38

2

1 Introduction

Software watermarking is the process of embedding a “mark” in a program so that the marked
program preserves functionality, and furthermore, it is impossible to remove the mark without
destroying functionality. Despite its numerous applications in digital rights management and copy
protection, rigorous definitions of software watermarking and mathematically sound constructions
have been few and far between.

Software watermarking was first formally defined in the seminal work of Barak, Goldreich,
Impagliazzo, Rudich, Sahai, Vadhan and Yang [BGI+12]. They showed that the existence of
indistinguishability obfuscation (IO) implies that software watermarking cannot exist (for any non-
trivial class of programs). Given the recent candidate constructions of IO [GGH+13, BR14, PST14,
GLSW14], this result paints a rather dismal picture for the possibility of meaningful watermarking.
Fortunately, though, this impossibility result crucially relies on the fact that the marked version
of a program computes the same function as the original program. Indeed, they suggested that an
approximate functionality-preserving relaxation of the definition wherein the programs agree on a
large fraction (but not all) inputs might lend itself to positive results.

In this work, we pursue the notion of approximate functionality, and show constructions of
watermarking for a general class of functions, namely any family of puncturable pseudo-random
functions [BW13, BGI14, KPTZ13], under a strong definition of security. Our construction is pub-
licly verifiable, meaning that while marking a program requires a secret (marking) key, verification
is public. Moreover, our construction is secure against chosen program attacks, where the adversary
gets access to an oracle that marks any program of its choice. Curiously enough, our construction
relies on the existence of indistinguishability obfuscators.

A natural question that arises out of our positive result is whether all families of PRFs (more
generally, any class of unlearnable circuits) can be watermarked. Complementing our positive result,
we show that there are pseudo-random functions which cannot be watermarked. Our result relies
on a generalization of the notion of robust unobfuscatable functions of Bitansky and Paneth [BP12].

We describe our results in more detail.

1.1 Our Results

Our first contribution is to define the notion of public-key watermarking, building on the beautiful
work of Hopper, Molnar and Wagner [HMW07] who introduced a secret-key definition.2 Roughly
speaking, in a watermarking scheme, there is a marking algorithm Mark that takes as input a
program P and uses the (secret) marking key MK to produce a marked program #P 3 while
the verification algorithm Verify uses the (public) verification key V K to recognize legally marked
programs. A watermarking scheme should satisfy three properties:

• Approximately Functionality Preserving: The program #P should agree with P in at least
1− ρ(n) fraction of inputs, where ρ is the approximate functionality parameter.

• Unremovability: We say that a watermark remover R succeeds given #P if she produces
as program P̂ that is approximately (functionally) equivalent to #P and yet, Verify fails

2While the work of [HMW07] targeted the watermarking of perceptual objects such as text, audio and video, the
definition remains essentially unchanged for watermarking programs or circuits.

3Marked programs are always denoted as #P or #C (in the case of circuits) in this paper.

3

to recognize P̂ as a marked program. Unremovability says that this should be hard for
polynomial-time removers R.

• Unforgeability: The other side of the coin is unforgeability which requires that a forger F
cannot succeed in producing a new marked program, given only #P and the verification key
V K.

Moreover, we require security against chosen program attacks, namely that unremovability and
unforgeability hold even given access to a Mark oracle that produces marks programs for the ad-
versary. (In this case, the forger needs to produce a marked program that is sufficiently different
from all his queries to the Mark oracle).

Armed with this definition, our main result is the construction of a publicly verifiable watermark-
ing scheme for any family of puncturable pseudo-random functions. Puncturable pseudo-random
functions (PPRFs) [BW13, BGI14, KPTZ13] are pseudorandom functions wherein the owner of the
key K can produce a punctured key Kx that allows computation of the PRF on all inputs y 6= x.
Moreover, given the punctured key, PRFK(x) is pseudorandom. PPRFs have seen a large number
of uses recently in applications of indistinguishability obfuscation. We show:

Theorem 1.1 (Informal). Assuming indistinguishability obfuscation and injective one-way func-
tions, there is a watermarking scheme for any family of puncturable pseudo-random functions.

1.2 Our Techniques

We describe our publicly verifiable watermarking construction through a sequence of ideas. As
a starting point, we construct a simple secret-key watermarking scheme for puncturable PRFs.
Intuitively, the (secret) marking key specifies a random pair (x∗, y∗), and the watermarking of
a PRF key K is simply the indistinguishability obfuscation of a program PK,x∗,y∗ that does the
following:

On input x, output y∗ if x = x∗, and PRFK(x) otherwise.

(Secret-key) verification of a circuit C is simply checking whether C(x∗)
?
= y∗. Intuitively, it should

be hard to remove the mark since the obfuscation #P = O(PK,x∗,y∗) “should hide” the location
x∗ where the functionality is altered. In other words, removing the mark necessitates altering the
program at essentially all points. We formalize this intuition via a two-step proof.

First, we show a general distinguishing-to-removing reduction. Consider a watermark remover
that takes the program #P and outputs an unmarked, yet approximately equivalent, program
Q. We claim that the remover can be used to distinguish between the special input x∗ and a
uniformly random input x. This is because (a) we know that #P (x∗) 6= Q(x∗) (simply because
the watermark remover succeeded), and yet: (b) for a uniformly random input x, #P (x) = Q(x)
w.h.p. (because Q and #P agree on a large fraction of inputs). This idea can be formalized as a
general distinguishing-to-removing reduction, as long as the watermark verifier uses the program
#P as a black-box (which is true for all our constructions).

Secondly, we show that #P hides x∗, crucially relying on both the pseudorandomness of the
family as well as its puncturability. First, one can indistinguishably replace #P by a program that
uses the punctured PRF key Kx∗ to compute the PRF on all inputs x 6= x∗; this is because of the
IO security guarantee. Second, we can replace y∗ by PRFK(x∗) indistinguishably; this is because
of pseudo-randomness. Finally, change the program to one that simply computes the PRF on all

4

points, using the IO security guarantee again. At this point, the program contains no information
about x∗ whatsoever.

Unforgeability can be shown using similar ideas.

However, this construction falls to the following attack, against an adversary that obtains the
marked version of even a single program of its choice. Consider an adversary that obtains a marked
version #Q of an unmarked program Q that she chooses. She can build a distinguisher for x∗ using
these two programs. Indeed, if Q(x) 6= #Q(x), then x is likely x∗. In other words, she can build
a program DistQ,#Q that, on input x, predicts whether x = x∗. With this newfound ability, the
adversary can easily remove marks from programs. Indeed, given a marked program #P , it builds
a wrapper around P that first checks if an input x is x∗. If yes, it outputs ⊥, otherwise, it computes
the program correctly.

Looking back at this attack (which we call the “majority attack”), we realize that the main
source of difficulty is that we reuse the trigger point x∗ across all programs. Our main idea to
circumvent this attack is to make the trigger point program-dependent. In particular, the marking
algorithm probes the program on a set of pre-determined inputs to obtain x∗ (That is, x∗ is a
function of the values of the program on these inputs). Then, it goes ahead and changes the output
of the program on x∗. This allows us to construct a watermarking scheme secure against lunch-time
chosen program attacks. That is, the adversary can query the Mark oracle before it obtains the
challenge program, but not after.

Finally, we augment the construction to be publicly verifiable. Our security proof sketched
above relied crucially on the fact that the trigger points cannot be distinguished from uniformly
random points, and yet verification seems to require knowledge of these points. We resolve this
apparently conundrum by first embedding an exponentially large number (yet an exponentially
small fraction) of trigger points, and observing that while verification requires a program that
generates a random trigger point, security only requires that a uniformly random trigger point is
pseudo-random. These requirements can indeed co-exist, and in fact, we use a variant of the hidden
sparse trigger machinery of Sahai and Waters [SW14] to achieve both effect simultaneously. We
refer the reader to Section 5 for the technical details.

Limits of Watermarking. A natural question that arises out of our work is whether all classes
of circuits can be watermarked (of course, with approximate preservation of functionality).4 We
show that there are PRF families that cannot be watermarked. Our result relies on the notion of
robust unobfuscatable functions of Bitansky and Paneth [BP12]. (See Section 6 for more details.)

1.3 Related Work

There has been a large body of work on watermarking in the applied research community. Notable
contributions of this line of research include the discovery of protocol attacks such as the copy attack
by Kutter, Voloshynovskiy and Herrigel [KVH00] and the ambiguity attack by Adelsback, Katzen-
beisser and Veith [AKV03]. However, these works do not formally define the security guarantees
required of watermarking, and have resulted in a cat-and-mouse game of designing watermarking
schemes that are broken fairly immediately.

4Clearly, circuits that can be exactly learned from black-box access cannot be watermarked, for obvious reasons.
Thus, our question is non-trivial for unlearnable circuits.

5

There are a handful of works that propose rigorous notions of security for watermarking, with
associated proofs of security based on complexity-theoretic assumptions. Hopper, Molnar and Wag-
ner [HMW07] formalized strong notions of watermarking security with approximate functionality;
our definitions are inspired by their work. Barak et al. [BGI+12] proposed simulation-based defini-
tions of watermarking security; their main contribution is a negative result, described earlier in the
introduction, which shows that indistinguishability obfuscation rules out any meaningful form of
watermarking that preserves functionality exactly. The starting point of our construction is their
speculative idea that relaxing this to approximate functionality might result in positive results.

In another line of work, Naccache, Shamir and Stern [NSS99] showed how to watermark a specific
hash function. Nishimaki [Nis14] recently showed a similar result along these lines, watermarking
a specific construction of lossy trapdoor functions (LTDF) based on bilinear groups. These works
achieve a rather weak notion of watermarking. First and most important, they define a successful
adversary as one that outputs a program from the class C. In particular, the watermark remover
for the LTDF must output an LTDF key. In contrast, we permit the watermark remover to output
any (polynomial-size) circuit. Secondly, that is they are only secure as long as a bounded number
of marked programs is released to the adversary. Finally, they are both privately verifiable.

2 Preliminaries and Definitions

Notation. We will let λ denote a security parameter throughout this paper. We will let {Cλ}λ∈N
be the family of all circuits with domain {0, 1}n(λ) and range {0, 1} for some polynomial n. We will
let {Cλ}λ∈N be a particular family of circuits; that is Cλ ⊆ Cλ for all λ ∈ N.

Let ρ : N→ [0, 1] be a function. For circuits C,C ′ ∈ Cλ, we say that C ∼ρ C ′ if

Pr
x←{0,1}n

[C(x) 6= C ′(x)] ≤ ρ(n)

We call such circuits “ρ-close”. We refer to probabilistic polynomial time algorithms simply as
“p.p.t. algorithms”.

2.1 Watermarking Schemes

Our definitions will generalize and refine those of Hopper, Molnar and Wagner [HMW07]. A (public-
key) watermarking scheme W for a family of circuits C = {Cλ}λ∈N is a tuple of p.p.t. algorithms
(Setup,Mark,Extract), where:

• (mk, vk)← Setup(1λ) is a p.p.t. key generation algorithm takes as input a security parameter
λ ∈ N and outputs a marking key mk and a verification key vk.

• C# ← Mark(mk, C) is a p.p.t. marking algorithm that takes as input the marking key mk
and a circuit C ∈ Cλ and outputs a circuit C#.

• b← Verify(vk, C#) is a p.p.t. algorithm which takes as input the (public) verification key vk
and a (possibly marked) circuit C# ∈ C, and outputs either accept (1) or reject (0).

Note that while Mark and Verify take any circuit in C as input, we only require the correctness and
security properties input to Mark is from C ⊆ C.

6

Correctness Properties. Having defined the syntax of a watermarking scheme, we now define
the desired correctness properties. First, it is functionality preserving, namely marking a circuit C
does not change its functionality too much. We formalize this by requiring that the marked and
unmarked circuits agree on ρ(n) fraction of the domain (where n is the length of the input to the
circuit). Secondly, we require that the verification algorithm always accepts a marked circuit.

Definition 2.1 (ρ-Functionality Preserving). We say that a watermarking scheme (Setup,Mark,Verify)
is ρ-functionality preserving if for all C ∈ C:

Mark(mk, C) ∼ρ C

Definition 2.2 (Completeness). A watermarking scheme (Setup,Mark,Verify) is said to be complete
if

Pr

[
Verify(vk,Mark(mk, C)) = 1

∣∣∣∣ mk, vk← Setup(1λ)
C ← C

]
≥ 1− negl(λ)

Security Properties. We turn to the desired security properties of the watermarking scheme.
We define a scheme’s “uremovability” and “unforgeability” with respect to the following security
game.

The watermarking security game is defined with two helper sets C and M: C is the set of marked
challenge programs given to a p.p.t. adversary A; M is the set of circuits given to the adversary as
a response to a Mark(mk, ·) query. We only require that the adversary cannot “unmark” a challenge
program, and that the adversary cannot “forge” a mark on a program for which he has never seen
a mark.

Game 2.1 (Watermarking Security). First, the challenger generates (mk, vk) ← Setup(1λ) and
helper sets C and M initialized to ∅. The adversary is presented with vk and access to the following
two oracles.

• A marking oracle OM which takes a circuit C and returns Mark(mk, C). OM also adds C to
the set M.

• A challenge oracle OC which takes no input, but samples a circuit C∗ uniformly from C and
returns #C∗ = Mark(mk, C∗). #C∗ is then added to C.

Finally, A outputs a circuit Ĉ.

Our ideal notion of unremovability is that no adversary can – with better than negligible prob-
ability – output a program that is δ-close to the challenge program, but on which Verify returns
zero with any noticeable probability. Along the way, we will need to consider a relaxed notion:
(p, δ)-unremovable. For this, we require that no adversary can – with better than negligible prob-
ability – output a program that is δ-close to the challenge program, but on which Verify returns 0
with probability significantly greater than p. If p = 0, then this coincides with the previous notion
of unremovability, which we simply call δ-unremovability.

Definition 2.3 ((p, δ)-Unremovable). In the security game, we say that the adversary (p, δ)-
removes if Pr[Verify(vk, Ĉ) = 0] > p + 1

poly(λ) and Ĉ ∼δ C ′ for some C ′ ∈ C. A’s (p, δ)-removing

advantage is the probability that A (p, δ)-removes. The scheme is (p, δ)-unremovable if all p.p.t. A
have negligible (p, δ)-removing advantage. The scheme is δ-unremovable if it is (p, δ)-unremovable
for all p > negl(λ).

7

Formally, the scheme is (p, δ)-unremovable if for all p.p.t. algorithms A and all polynomials
poly(λ):

Pr

 (
Pr[Verify(vk, Ĉ) = 0] > p+ 1

poly(λ)

)
∧
(
∃C ′ ∈ C : C ′ ∼δ Ĉ

) ∣∣∣∣∣∣ mk, vk← Setup(1λ),

Ĉ ← AOM ,OC (1λ, vk)

 ≤ negl(λ)

Likewise, we say a scheme is (q, γ)-unforgeable if no adversary can – with better than negligible
probability – output a program that is γ-far from all marked programs previously received from
the challenger, but on which Verify returns 1 with probability significantly greater than q. If q = 0,
then this coincides with a stronger notion we call γ-unforgeability.5

Definition 2.4 ((q, γ)-Unforgeable). In the security game, we say that the adversary (q, γ)-forges
if Pr[Verify(vk, Ĉ) = 1] > q+ 1

poly(λ) and for all C ′ ∈M∪C, Ĉ 6∼γ C ′. A’s (q, γ)-forging advantage is

the probability that A (q, γ)-forges. The scheme is (q, γ)-unforgeable if all p.p.t. A have negligible
(q, γ)-forging advantage. The scheme is γ-unforgeable if it is (q, δ)-unforgeable for all q > negl(λ).

Formally, the scheme is (q, γ)-unforgeable if for all p.p.t algorithmsA for all polynomials poly(λ):

Pr

 (
Pr[Verify(vk, Ĉ) = 1] > q + 1

poly(λ)

)
∧
(
∀C ′ ∈M ∪ C : C ′ 6∼γ Ĉ

) ∣∣∣∣∣∣ mk, vk← Setup(1λ),

Ĉ ← AOM ,OC (1λ, vk)

 ≤ negl(λ)

2.1.1 Weakened Definitions

In our main construction, we achieve a weaker version of δ-unremovability, which we call δ-lunchtime
unremovability.6 In this weaker definition, the adversary only has access to the marking oracle
before receiving the challenger, and receives only one challenger program.

Definition 2.5 ((p, δ)-Lunchtime Unremovability). δ-lunchtime unremovability is defined as above,
except that we modify the security game: the adversary can query OC at most once, after which
the adversary can no longer query OM .

In our main construction, we achieve a weaker notion of γ-unforgeability. In particular, we only
show that a “strong” type of γ-forgery is impossible, in effect establishing only a relaxed form of
unforgeability.

In order to say that A γ-strong-forges, we require an additional property on A’s output Ĉ.
Instead of requiring that for all marked programs C ′ ∈M ∪ C received by the adversary, there is a
γ fraction of the domain on which C ′ differs from Ĉ, we switch the order of the quantifiers. That
is, there is a γ fraction of the domain on which for all C ′ ∈M ∪ C, C ′ differs from Ĉ.

Definition 2.6 ((q, γ)-Relaxed Unforgeability). We say that the adversary (q, γ)-strong forges if
Pr[Verify(vk, Ĉ) = 1] > q + 1

poly(λ) and for all C ′ ∈M ∪ C,

Pr[∃C ′ ∈M ∪ C s.t. C ′(x) = Ĉ(x)|x← {0, 1}n] ≤ γ

The scheme is (q, γ)-relaxed unforgeable if all p.p.t. A have negligible (q, γ)-strong forging advan-
tage.

5This implies a sort of “meaningfulness” property a la [BGI+12]: that for a random circuit C ← C, Verify(vk, C) = 0
with high probability.

6This name is in analogy to “lunchtime” chosen ciphertext attacks on encryption schemes, in which access to a
decryption oracle is given only before the challenge ciphertexts.

8

2.2 Remarks on the Definition

Relation to definition in “From Weak to Strong Watermarking” As discussed in the
introduction, [HMW07] provide a similar definition for watermarking to that provided above. One
major difference is the notion of public verification – to the best of our knowledge, we are the first
to put forth this notion and provide a construction in any cryptographic setting.

Another important difference is in the definitions of ρ-functionality preserving, δ-unremovability,
and γ-unforgeability. The earlier definition does not consider these parameters separately: all three
are conflated and represented by δ. As observed in that work, the (im)possibility of watermarking
in a particular setting depend intimately on these parameters. In this work, we separate them. In
doing so, we are able to achieve constant δ for negligible ρ: that is an adversary cannot remove
a mark that only alters the behavior of the original negligible fraction of the domain, even by
changing the functionality of the program on 1/4 of the domain! Additionally, we show that if a
watermarking scheme is both (0, δ)-unremovable and (0, γ)-unforgeable, then γ ≥ δ + 1

poly(n) for

some polynomial poly. (see Appendix G). We also provide an Amplification Lemma (see section 3)
which depends crucially on δ and γ being distinct.

Extractable Watermarking We consider a setting in which a program is either “marked”
or it is “unmarked.” A natural extension is to allow a program to be “marked with a string.”
That is, Mark would take a string M as an additional argument and output a marked program
CM . A corresponding detection algorithm Extract would then extract the embedded mark. Indeed,
similar definitions are considered in [BGI+12] and [HMW07]. The two notions coincide the space of
possible marks to embed is just a singleton. The extractable setting presents a number of additional
challenges, and is a very interesting direction for future work.

Perfectly Functionality Preserving. As observed in Barak et al. [BGI+12], if indistinguisha-
bility obfuscation exists for C, then no watermarking scheme can exist that perfectly preserves
functionality. To see this, choose C ← Cλ and mark it to get C#. Obfuscate both circuits (ap-
propriately padded) – yielding C̃ and C̃#. By unforgeability, Verify(vk, C̃) = ⊥; by unremovability
Verify(vk, C̃#) = m. In this way, Verify gives a distinguisher for the two obfuscated circuits. Because
Mark perfectly preserves functionality, this violates the security of the obfuscation.

Even more basically, if we restrict our attention to black-box verification (as discussed in sec-
tion 4), then a watermarking scheme must clearly change the functionality in some way.

3 Amplifying Unremovability and Unforgeability

Ideally, we would like to construct a watermarking scheme that that is δ-unremovable and γ-
unforgeable; that is, for all PPT algorithms A, the probability that A can remove or forge is negli-
gible. In this section, we show that it suffices to prove something weaker. Informally, we show that
given a watermarking scheme (Setup,Mark,Verify) that is (p, δ)-unremovable and (q, γ)-unforgeable
for some parameters (1− p) ≥ q + 1

poly(λ) , we construct a watermarking (Setup,Mark,Verify′) that
is δ-unremovable and γ-unforgeable.

To achieve this, we amplify both security guarantees by repeating Verify a polynomial number
of times, and choosing an appropriate verification threshold τ = q+(1−p)

2 : if Verify = 1 on more

9

than τ trials, we return 1; if Verify = 1 on fewer than τ trials, we return 0. More formally, we prove
the following lemma.

Lemma 3.1 (Amplification Lemma). Let (Setup,Mark,Verify) be a (p, δ)-unremovable and (q, γ)-
unforgeable watermarking scheme, where the run-time of Verify is tVerify. Suppose that (1−p) = q+α
for some non-negligible α. Then there is a watermarking scheme (Setup,Mark,Verifyp,q) that is

(0, δ)-unremovable and (0, γ)-unforgeable, and the run-time of Verifyp,q is O(λ
α2) · tVerify.

Remark 1. The proof that follows is essentially an application of a Hoeffding bound. The argument
also holds for the weaker definitions of unremovability and unforgeability that we consider in this
work. Specifically, in the setting of , we use the Amplification Lemma to construct a δ-lunchtime
unremovable, γ-relaxed unforgeable watermarking scheme from a (2δ, δ)-lunchtime unremovable,
(1− γ, γ)-relaxed unforgeable scheme.

Proof. Let τ = q+(1−p)
2 . We define Verifyp,q(vk, C) the following algorithm that repeatedly evaluates

Verify(vk, C) a total of T = 8λ
α2 times, with independent randomness on each trial.

Verifyp,q(vk, C)

{
1 if 1

T

∑T
i=1 Verify(vk, C) > τ

0 if 1
T

∑T
i=1 Verify(vk, C) ≤ τ

As Setup and Mark are unchanged, the new scheme preserves functionality to the same extent
as the original.

To show completeness, we observe that for all C ∈ C and C# ← Mark(mk, C), Verifyp,q(vk, C#) =
0 if at least a (1 − τ) fraction of the independent executions of Verify(vk, C#) return 0. By the
completeness of the original scheme, Pr[Verify(vk, C#) = 0] ≤ negl(λ) in each independent run.
Observing that 1−τ is significantly larger than α

4 , and applying a standard Hoeffding bound yields
Pr[Verifyp,q(vk, C#) = 0] ≤ e−λ.

Next, we must show that (Setup,Mark,Verifyp,q) is (0, δ)-unremovable. That is, for all p.p.t. A
playing the watermarking security game and outputting Ĉ, if Ĉ is δ-close to a challenge program
C ′ ∈ C, then Pr[Verifyp,q(vk, Ĉ) = 0] is negligible. Equivalently, we must show that Pr[

∑T
i=1 Verify(vk, Ĉ) ≤

τ · T] is negligible. By the (p, δ)-unremovability of the watermarking scheme, we know that
Pr[Verify(vk, Ĉ) = 1] > 1 − p − negl(λ), lower-bounding the one-shot probability of verification.
Combined with the definition of τ , this implies that Pr[Verify(vk, Ĉ) = 1]− τ is significantly larger
than α

4 . Applying a standard Hoeffding bound yields Pr[Verifyp,q(vk, Ĉ) = 0] ≤ e−λ.
Lastly, we must show that (Setup,Mark,Verifyp,q) is (0, γ)-unforgeable. That is, for all p.p.t. A

playing the watermarking security game and outputting Ĉ, if Ĉ is γ-far from all marked programs
in M ∪ C, then the probability Pr[Verifyp,q(vk, Ĉ) = 1] is negligible. Equivalently, we must show

that the probability Pr[
∑T

i=1 Verify(vk, Ĉ) > τ · T] is negligible. By the (q, γ)-unforgeability of

the watermarking scheme, we know that Pr[Verify(vk, Ĉ) = 1] < q + negl(λ), upper-bounding
the one-shot probability of verification. Combined with the definition of τ , this implies that τ −
Pr[Verify(vk, Ĉ) = 1] is significantly larger than than α

4 . Aplying a standard Hoeffding bound yields

Pr[Verifyp,q(vk, Ĉ) = 1] ≤ e−λ.

10

4 A Distinguishing to Removing Reduction

The way in which we prove unremovability is by showing that no adversary can distinguish points
queried by Verify from random. This technique is clearly restricted to schemes in which there is
a notion of “points queried by Verify”. We will therefore restrict our attention in this work to
watermarking schemes with black-box verification.

Definition 4.1 (Watermarking scheme with black-box Verify). We say a watermarking scheme has
a black-box verification if Verify(vk, P) can be efficiently evaluated with oracle access to P .

The distinguishing-to-removing reduction we now illustrate applies to any game in which the
adversary’s goal is to unmark a random marked program, but for concreteness we only show a
reduction to Theorem 2.1.

We now give sufficient conditions for a watermarking scheme to be (p, δ)-unremovable. In
particular, the condition is that no p.p.t. algorithm A has non-negligible advantage in the following
game.

Game 4.1 (Distinguishing). First, the challenger samples (mk, vk) from Setup(1λ). The adversary
is then given vk and access to the following two oracles.

• A marking oracle OM which takes a circuit C and returns Mark(mk, C).

• A challenge oracle OC which when queried, samples a circuit C∗ uniformly from C and
computes C∗# = Mark(mk, C∗). The adversary must query OC exactly once.

At the end of the game, the challenger executes Verify(vk, C∗#). From the points at which Verify
queried C∗#, the challenger picks x0 uniformly at random. The challenger also chooses x1 as a
random point in the domain of C∗#. The challenger picks a random bit b and sends xb to the
adversary.

The adversary then outputs a bit b′ and wins if b′ = b.

Lemma 4.2 (Distinguishing to Removing Reduction). If all p.p.t. algorithms A have negligible
advantage in Theorem 4.1, and if Verify queries at most L points, then (Setup,Mark,Verify) is
(L · δ, δ)-unremovable for all δ.

We prove the lemma by assuming the existence of an (L · δ, δ)-remover, and constructing a
distinguisher for the above game. Consider a removing adversary restricted to changing at most δ
fraction of the marked challenge program. If he can remove the mark with too high of a probability
(significantly greater than L · δ), then we must show that he can distinguish points queried by
Verify from random points with non-negligible advantage. This follows because Verify is black-box;
intuitively, the unmarked program Ĉ will disagree with the challenge C∗# at x0 with significantly
greater probability than on a uniformly random point x1.

Remark 2. It is natural to wonder whether a converse of the above lemma holds. That is, if
there exists an algorithm A with non-negligible advangatge in Theorem 4.1, does there exist an
efficent (p, δ)-remover for some δ and p? A weak converse may be shown: f A distinguishes with
probability 1−negl(λ), then a (1−negl(λ), δ)-remover can be constructed for some δ that depends
on the specifics of the watermarking scheme.

11

5 Main Construction

Theorem 5.1. There is a watermarking scheme which is both δ-lunchtime unremovable and γ-
relaxed unforgeable, for any choice of δ, γ satisfying γ > 2δ + 1

poly(λ) for some polynomial poly.

Proof. In Theorem 5.3, we show that Theorem 5.2 is (2δ, δ)-lunchtime unremovable for every δ. In
Theorem 5.4, we show that Theorem 5.2 is (1− γ, γ)-relaxed unforgeable for every γ.

Given any δ′, γ′ satisfying γ′ > 2δ′ + 1
poly(λ) , we note that our scheme is (2δ′, δ′)-lunchtime

unremovable and (1− γ′, γ′)-relaxed unforgeable. Theorem 3.1 then implies that Theorem 5.2 can
be amplified into a scheme which is simultaneously (0, δ′)-lunchtime unremovable and (0, γ′)-relaxed
unforgeable.

Remark 3. In subsection G.1, we describe how to extend this construction to pseudorandom function
families with arbitrary output bit-length, with a small loss in parameters.

Our construction marks any PRF family {Pλ : {0, 1}n → {0, 1}m}λ∈N that is puncturable at a
single point, if n = n(λ) and m = m(λ) are Ω(λε) for some ε > 0. Our construction uses the
following building blocks.

• Pseudorandom function families {Fλ : {0, 1}n → {0, 1}m}λ∈N and {Gλ : {0, 1}` → {0, 1}m}λ∈N
which are selectively puncturable on any interval. We refer the reader to [BW13] for definitions
and constructions of selectively secure puncturable PRF families.

• A puncturable encryption system PE with plaintexts in {0, 1}` and ciphertexts in {0, 1}n,
where ` = `(λ) is Ω(λε). We explicitly denote the randomness used in PE .Enc as r. We
construct such a PE in Appendix A.

• A collision resistant hash function {hλ : {0, 1}m → {0, 1}`/2}λ∈N.

• A pseudorandom generator PRG1 : {0, 1}`/4 → {0, 1}`/2, as well as another pseudorandom
generator PRG2 : {0, 1}`/2 → {0, 1}n.

Construction 5.2 (Unamplified). • Setup(1λ): Setup samples (DK,EK) ← PE .Gen(1λ) and
puncturable PRFs F ← Fλ and G ← Gλ. Setup then outputs (mk, vk), where mk =
(DK,F,G) and vk is the iO-obfuscation of the program in Figure 3.

• Mark(mk, C): Mark outputs the iO obfuscation of the circuit C#, which is described in Fig-
ure 1, but padded to be as big as the largest of the circuits in any of the hybrids.

• Verify(vk, C): Verify samples uniformly random bit strings a ∈ {0, 1}`/4 and randomly samples
r. Verify then computes b = h(C(PRG2(PRG1(a)))). Verify evaluates vk (an obfuscated
program) on (a‖b, r) to obtain a pair (x, y), and returns 1 if C(x) = y; otherwise, it returns
0.

As Verify is an algorithm which runs an obfuscated program vk as a subroutine, we provide the
“unrolled” verification algorithm in Figure 3.

We now state the main theorems of this section, and defer the proofs to appendices C and D.

Theorem 5.3. Theorem 5.2 is (2δ, δ)-unremovable for every δ.

Theorem 5.4. Theorem 5.2 is (1− γ, γ)-relaxed unforgeable for every γ.

12

C#

Constants: Decoding key DK, Puncturable PRFs F and G, and a circuit C
Inputs: c ∈ {0, 1}n

1. Try t‖b← Dec(DK,x), where t ∈ {0, 1}`/2 and b ∈ {0, 1}`/2.

2. If t‖b 6= ⊥ and h(C(PRG2(t))) = b, output F (c)⊕G(t‖b).

3. Otherwise, output C(c).

Figure 1: Program C#

Verify
Inputs: Verification key vk and circuit C.

1. Sample a← {0, 1}`/4

2. b = h(C(PRG2(PRG1(a))))

3. r ← $

4. (x, y) = vk(a, b, r) :

vk

Constants: Encoding key EK, Puncturable PRFs F and G
Inputs: a ∈ {0, 1}`/4, b ∈ {0, 1}`/2, randomness r

Generate c← Enc(EK,PRG1(a)‖b; r).
Output (c, F (c)⊕G(PRG1(a)‖b)).

5. If C(x) = y output 1. Otherwise output 0.

Figure 2: Unrolled Verify(vk, C). Line 4 expands the execution of the program vk, which is itself
an obfuscated program.

Constants: Encoding key EK, Puncturable PRFs F and G
Inputs: a ∈ {0, 1}`/4, b ∈ {0, 1}`/2, randomness r

1. Generate x← Enc(EK,PRG1(a)‖b; r).

2. Output (x, F (x)⊕G(PRG1(a)‖b)).

Figure 3: Verification key vk (pre-obfuscated)

13

6 The Limits of Watermarking

A natural question is whether there are families of functions that for which there does not exist
any watermarking scheme (waterproof). Barak et al observed that general-purpose indistinguisha-
bility obfuscation rules out a notion of watermarking that exactly preserves functionality, but not
watermarking schemes that change functionality on even a negligible fraction of the domain (as in
section 5).

In this section, we discuss a number of conditions sufficient to prove that a family of circuits
cannot even be watermarked – even with a much weaker form of unremovability. Informally, if a
family is (non-black-box) learnable given access to a ρ-approximation of a circuit in the family,
then the family is waterproof. Because it suffices to learn the family with an approximate imple-
mentation, we focus on non-black-box learnability. For such a family, from a challenge marked
program the learning algorithm is able to recover the original (unmarked) program. This violates
unremovability of a watermarking scheme.7

We construct waterproof PRFs using techniques closely related to the unobfuscatable function
families of [BGI+12] and [BP12].8 In doing so, we present a construction of a family of PRFs that is
not point-puncturable. To the best of our knowledge, this is the first such “unpuncturable” family
of PRFs.

Consider an indexed family of functions F = {fK} where each function is indexed by the key
K. In our setting, the learning algorithm will be given any circuit g that is a ρ(n)-approximate
implementation of fK , a uniformly sampled function from the family. The (randomized) learner
will then output some “hypothesis” function h. If h is sufficiently close to fK , then we can conclude
that the family F cannot be watermarked.

As a warm up, we begin with a very strong notion of learnability, in which the learning algorithm
– here called an extractor – can not only output a hypothesis h which agrees with fK on all inputs,
but output the circuit fK itself.

Definition 6.1 (ρ-Robustly Extractable Families). Let F = {Fn}n∈N be a circuit ensemble where
each family Fn = {fK}K∈{0,1}n . We say that F is ρ-robustly extractable if there exists an efficient
extractor E such that for all large enough n ∈ N and random K ← {0, 1}n, E extracts K from any
circuit C such that C ∼ρ(n) fK :

Pr[K ← E(C, 1n)] is non-negligible.

Theorem 6.1. If F is ρ-robustly extractable, then there does not exist a watermarking scheme that
is ρ(n)-functionality preserving, δ-unremovable, and γ-unforgeable for any δ ≥ 0 and γ ≤ 1. 9

Proof. Given a ρ functionality-preserving watermarking scheme for the family F , for all circuits
fK ∈ F , the marked program #fK = Mark(mk, fK) is ρ-close to the original. If F is ρ-robustly
extractable, then given a challenge marked program,10 the extractor E outputs fK with noticeable

7We avoid the language of learning theory because the learnability conditions we consider are not among the
common settings of that field.

8Specifically, we extend Theorem 4.3 from [BGI+12] to a more general notion of approximate obfuscators.
9More precisely, (0, δ)-unremovability and (1 − 1

poly(n)
, γ)-unforgeability, for any δ ≥ 0, γ ≤ 1, and polynomial

poly(n).
10Recall that unremovability requires that the mark cannot be removed from a random challenge.

14

probability. Unless Verify(vk, fK) = 1 with high probability, the extractor E violates even 0-
unremovability. Otherwise we may trivially violate 1-unforgeability by simply outputting a random
fK ← F (without ever receiving a marked program).

Note that the watermarking adversary presented in the proof breaks even a very weak notion
of watermarking. Namely, the adversary requires only a challenge, and no calls to a Mark oracle
nor to a Verify key or verification oracle whatsoever. In this very weak setting, the construction in
Theorem 5.2 is secure for any family of point-puncturable PRFs.

Towards proving the main theorems of this section, we weaken Definition 6.1 in two ways.
Combined together in Definition 6.2, these weaker notions of learnability will capture richer func-
tiontionalities and allow us to construct a PRF family that cannot be watermarked (Theorem 6.3).
The following discussion motivates the stronger definition and outlines the proof of the correspond-
ing Theorem 6.2

Learnable versus extractable. What if the family is only “learnable,” but not “extractable:”
instead of outputting fK itself, the learning algorithm L(C) can only output a circuit h that was
functionally equivalent to fK? One might think that this is indeed sufficient to prove Theorem 6.1,
but the proof encounters a difficulty.

As before, we run the learner on the challenge program to get h = L(#fK); if Verify(vk, h) = 0
with noticeable probability, then unremovability is violated. On the other hand, if Verify(vk, h) = 1
with high probability, how is unforgeability violated? In the extractable setting, it was possible to
sample a program which verifies without ever seeing a marked version, simply by picking fK ← F .
In the weaker learnable setting, we only know how to sample from this verifying distribution by
evaulating L(#fK) on a marked program. But a forger must output a marked program that is
substantially different (at least γ-far) than all other marked programs seen.

To get around this issue, we consider families that are learnable with implementation indepen-
dence; that is, for any g and g′ which are both ρ approximations of fK ∈ F , the distributions
L(g) and L(g′) are computationally indistinguishable.11 To complete the above proof, a forger will
simply evaluate h ← L(fK) for random (unmarked) fK (rather than on the marked #fK). Input
independence of L guarantees that Verify(vk, h) = 1 with high probability.

Approximate versus exact learning. In Definition 6.1 (and the discussion above), we required
that an algorithm learning a family F is able to exactly recover the functionality fK , when given
g that ρ-approximates fK . What can we prove if h = L(g) is only required to δ-approximate the
original function fK?

Though we cannot violate 0-unremovability, we might hope to violate δ-unremovability. For
ρ-functionality preserving watermarking scheme, when given a marked program #fK , the learn-
ing algorithm returns h = L(#fK) which is a δ-approximation (with noticeable probability). By
similar reasoning to Theorem 6.1, it must be that either Verify(vk, h) = 1 with high probabil-
ity or δ-unremovability is violated. If L is implementation independent as above, we contradict
unforgeability.

11Weaker notions likely suffice because unforgeability only requires noticeable probability of forging whereas this
condition gives us high probability. We consider the input independence notion because it is a simple, natural and,
as we will see, powerful case.

15

Definition 6.2 (ρ-Robustly, δ-Approximately Implementation Independent Learnable Families).
Let F = {Fn}n∈N be a circuit ensemble where each family Fn = {fK}K∈{0,1}n . We say that F
is ρ-robustly, δ-approximately learnable if there exists an efficient learner L such that for all large
enough n ∈ N, random K ← {0, 1}n, and any circuit C such that C ∼ρ(n) fK :

Pr[h ∼δ fK : h← L(C, 1n)] is non-negligible.

We say that L is implementation independent if for all C1, C2 that are both ρ(n)-close to fK , the
distributions L(C1, 1

n) and L(C2, 1
n) are computationally indistinguishable.

Theorem 6.2. If F is ρ-robustly, δ-approximately learnable with implementation independence,
then there does not exist a watermarking scheme (Setup,Mark,Verify) that is ρ(n)-functionality
preserving, δ-unremovable, and γ-unforgeable for any γ ≤ 1. 12

The existence of indistinguishability obfuscation implies a 0-robust, exact, implementation in-
dependent learning algorithm for polynomial-sized circuits.13 Therefore the theorem rules out
exact watermarking schemes, assuming the existence of iO – capturing the impossibility of exact
watermarking originally presented in [BGI+12].

Already, this rules out watermarking a large array of families. For instance, any family that
is improperly PAC learnable cannot be watermarked for any negligible function ρ. The main
result of this section is that there exists a PRF family that is learnable as in Definition 6.2; the
construction and proof are presented in Appendix F.

Theorem 6.3. Assuming one-way funcitons, there exists a pseudorandom function family Fδ that
is ρ-robustly, δ-approximately learnable with implementation independence, for any δ = 1

poly(n) , and

any negligible ρ(n).

Corollary 6.4. Assuming one-way functions, for any negligible function ρ(n), inverse-polynomial
function d(n), and γ ≤ 1, there is a family of pseudorandom functions that is not (ρ, 1

d(n) , γ)-
watermarkable.

As discussed, the watermarking adversary in Theorem 6.2 breaks even a very weak notion of
watermarking. The adversary requires only a challenge, and no calls to a Mark oracle nor to a
Verify key or verify oracle whatsoever. In this very weak setting, the construction in Theorem 5.2
is secure for any family of point-puncturable PRFs. Thus we construct an “unpuncturable” family.

Corollary 6.5. Assuming one-way functions, there exists a family of pseudorandom functions that
is not puncturable at points.14

12More precisely, (0, δ)-unremovability and (1 − 1
poly(n)

, γ)-unforgeability, for any δ ≥ 0, γ ≤ 1, and polynomial

poly(n).
13Observed by Nir Bitansky.
14In fact, a much simpler family already achieves this notion. Only a slight modification of the families presented

in [BGI+12] is needed. Furthermore, we actually show that there exists a family of pseudorandom functions that is
not puncturable on neglible-sized sets.

16

References

[AKV03] André Adelsbach, Stefan Katzenbeisser, and Helmut Veith. Watermarking schemes
provably secure against copy and ambiguity attacks. In Moti Yung, editor, Proceedings
of the 2003 ACM workshop on Digital rights management 2003, Washington, DC, USA,
October 27, 2003, pages 111–119. ACM, 2003.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM, 59(2):6,
2012.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudoran-
dom functions. In Public-Key Cryptography - PKC 2014 - 17th International Conference
on Practice and Theory in Public-Key Cryptography, Buenos Aires, Argentina, March
26-28, 2014. Proceedings, pages 501–519, 2014.

[BP12] Nir Bitansky and Omer Paneth. From the impossibility of obfuscation to a new non-
black-box simulation technique. In 53rd Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages
223–232. IEEE Computer Society, 2012.

[BR14] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all circuits
via generic graded encoding. In Yehuda Lindell, editor, Theory of Cryptography - 11th
Theory of Cryptography Conference, TCC 2014, San Diego, CA, USA, February 24-
26, 2014. Proceedings, volume 8349 of Lecture Notes in Computer Science, pages 1–25.
Springer, 2014.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applica-
tions. In Advances in Cryptology - ASIACRYPT 2013 - 19th International Conference
on the Theory and Application of Cryptology and Information Security, Bengaluru, In-
dia, December 1-5, 2013, Proceedings, Part II, pages 280–300, 2013.

[CHN+15] Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan, and Daniel
Wichs. Watermarking cryptographic capabilities. Cryptology ePrint Archive, Report
2015/1096, 2015. http://eprint.iacr.org/.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2013, 26-29 October, 2013, Berkeley, CA, USA, pages 40–49. IEEE Computer Society,
2013.

[GLSW14] Craig Gentry, Allison B. Lewko, Amit Sahai, and Brent Waters. Indistinguishability
obfuscation from the multilinear subgroup elimination assumption. IACR Cryptology
ePrint Archive, 2014:309, 2014.

[HMW07] Nicholas Hopper, David Molnar, and David Wagner. From weak to strong watermark-
ing. In Salil P. Vadhan, editor, Theory of Cryptography, 4th Theory of Cryptography
Conference, TCC 2007, Amsterdam, The Netherlands, February 21-24, 2007, Proceed-
ings, volume 4392 of Lecture Notes in Computer Science, pages 362–382. Springer, 2007.

17

http://eprint.iacr.org/

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias.
Delegatable pseudorandom functions and applications. In Ahmad-Reza Sadeghi, Vir-
gil D. Gligor, and Moti Yung, editors, 2013 ACM SIGSAC Conference on Computer
and Communications Security, CCS’13, Berlin, Germany, November 4-8, 2013, pages
669–684. ACM, 2013.

[KVH00] M. Kutter, S. Voloshynovskiy, and A. Herrigel. The watermark copy attack. In Pro-
ceedings of the SPIE, Security and Watermarking of Multimedia Contents II, volume
3971, pages 371–379, 2000.

[Nis14] Ryo Nishimaki. How to watermark cryptographic functions. IACR Cryptology ePrint
Archive, 2014:472, 2014.

[NSS99] David Naccache, Adi Shamir, and Julien P. Stern. How to copyright a function? In
Hideki Imai and Yuliang Zheng, editors, Public Key Cryptography, Second International
Workshop on Practice and Theory in Public Key Cryptography, PKC ’99, Kamakura,
Japan, March 1-3, 1999, Proceedings, volume 1560 of Lecture Notes in Computer Sci-
ence, pages 188–196. Springer, 1999.

[NW15] Ryo Nishimaki and Daniel Wichs. Watermarking cryptographic programs against
arbitrary removal strategies. Cryptology ePrint Archive, Report 2015/344, 2015.
http://eprint.iacr.org/.

[PST14] Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation from
semantically-secure multilinear encodings. In Juan A. Garay and Rosario Gennaro,
editors, Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I, volume 8616 of
Lecture Notes in Computer Science, pages 500–517. Springer, 2014.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In David B. Shmoys, editor, Symposium on Theory of Computing,
STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 475–484. ACM, 2014.

A Puncturable Encryption

One of our main abstractions is a puncturable encryption system. This is a public-key encryption
system in which the decryption key can be punctured on a set of ciphertexts. We will rely on a strong
ciphertext pseudorandomness property which holds even given access to a punctured decryption
key. We will additionally require that valid ciphertexts are sparse, and that a decryption key
punctured at some set of ciphertexts C is functionally equivalent to the nonpunctured decryption
key, except possibly on C.

In this section we define the puncturable encryption abstraction that we use in section 5. We
instantiate this definition in Theorem A.1.

Syntactically, a puncturable encryption scheme PE for a message space M = {0, 1}` is a triple
of probabilistic algorithms (Gen,Puncture,Enc) and a deterministic algorithm Dec. The space of
ciphertexts will be {0, 1}n where n = poly(`, λ). For clarity and simplicity, we will restrict our

18

http://eprint.iacr.org/

exposition to the case when λ = `. The puncturable encryption scheme has an additional parameter
Q ∈ N which determines the number of points that can be punctured.15

• Gen(1λ)→ EK,DK: Gen takes the security parameter in unary, and outputs an encryption
key EK and a decryption key DK.

• Puncture(DK,C)→ DK{C}: Puncture takes a decryption key DK, and a set of ciphertexts
C ⊂ {0, 1}n, of size at most Q.16 Puncture outputs a “punctured” decryption key DK{C}.

• Enc(EK,m) → c: Enc takes an encryption key EK and a message m ∈ {0, 1}`, and outputs
a ciphertext c in {0, 1}n.

• Dec(DK, c) → m or ⊥: Dec takes a possibly punctured decryption key DK and a string
c ∈ {0, 1}n. It outputs a message m or ⊥.

A.1 Required Properties

Correctness We require that for all messages m,

Pr

[
Dec(DK, c) = m

∣∣∣∣ (EK,DK)← Gen(1λ),
c← Enc(EK,m)

]
= 1

Punctured Correctness We also require17the same to hold for keys which are punctured. For
all possible keys (EK,DK) ← Gen(1λ), all sets C ⊂ {0, 1}n of size at most Q, all punctured keys
DK ′ ← Puncture(DK,C), and all potential ciphertexts c ∈ {0, 1}n \ C:

Dec(DK, c) = Dec(DK ′, c)

Ciphertext Pseudorandomness We require that in the following game, all PPT adversaries A
have negligible advantage.

Game A.1 (Ciphertext Pseudorandomness). .

1. A sends a messages m1, . . . ,mQ/2 ∈M to the challenger.

2. The challenger does the following:

• Samples (EK,DK)← Gen(1λ)

• Computes encryptions ci ← Enc(EK,mi) for each i ∈ [Q/2]. Let ~c = (c1, . . . , cQ/2).

• Samples r1, . . . , rQ/2 ← {0, 1}n. Let ~r = (r1, . . . , rQ/2).

• Generates the punctured key DK ′ ← Puncture(DK, {c1, r1, · · · , cQ/2, rQ/2})
• Samples b← {0, 1} and sends the following to A:

(~c, ~r, EK,DK ′) if b = 0
(~r,~c, EK,DK ′) if b = 1

3. The adversary outputs b′ and wins if b = b′.

15This Q will correspond to the number of queries made by the Verify algorithm in the final watermarking con-
struction, hence the choice of letter.

16We can assume that the set C is represented as a list in sorted order.

19

Sparseness We also require that most strings are not valid ciphertexts:

Pr
[
Dec(DK, c) 6= ⊥

∣∣∣(EK,DK)← Gen(1λ), c← {0, 1}n
]
≤ negl(λ)

One of our contributions is the following theorem.

Theorem A.2. A puncturable encryption system can be constructed using indistinguishability ob-
fuscation and injective one-way functions

A full construction and proof is provided in appendices B and B.2.

B Puncturable Encryption Construction

We provide a construction of the puncturable encryption defined in Appendix A.

B.1 Construction

We construct a puncturable encryption scheme in which the length n of ciphertexts is 12 times the
length ` of plaintexts. Our construction utilizes the following ingredients:

• A length-doubling PRG : {0, 1}` → {0, 1}2`

• A puncturable, injective family of PRFs {Fλ : {0, 1}3` → {0, 1}9`}. We require Fλ to be
selectively puncturable on any Q prefixes.18[TODO: Remark that this can be done from any OWF.]

• A puncturable family of PRFs {Gλ : {0, 1}9` → {0, 1}`}. We require Gλ to be selectively
puncturable on any Q of points.[TODO: Remark that this can be done from any OWF.]

• A injective bit commitment Commit using randomness in {0, 1}9`, which can in fact be con-
structed by an injective one-way function. We only use this in our security proof.

Construction B.1 (Puncturable Encryption Scheme). . [TODO: Padding]

– Gen(1λ) samples a function F ← F and G ← G, and generates EK as the iO-obfuscation of
the circuit in Figure 4. Gen returns (EK,DK), where DK is the (un-obfuscated) program
in Figure 5.

– Puncture(V K, c0, c1) outputs DK ′, where DK ′ is the iO-obfuscation of the program described
in Figure 6.

– Enc(EK,m) takes m ∈ {0, 1}` and outputs EK(m) ∈ {0, 1}12`.

– Dec(DK, c) takes c ∈ {0, 1}12` and returns DK(c).

Remark 4. We note that in all of our obfuscated programs (including the hybrids), whenever α0

and α1 or β0 and β1 or γ0 and γ1 are treated symmetrically, then we can and do store them in
lexicographical order. A random ordering would also suffice for security.

18As in [SW14], any puncturable PRF family from {0, 1}k → {0, 1}2k+ω(log λ) can be made statistically injective
(with no additional assumptions) by utilizing a family of pairwise-independent hash functions.

20

Pre-obfuscated EK
Constants: Puncturable injective PRF F : {0, 1}3` → {0, 1}9`, Puncturable PRF G :
{0, 1}9` → {0, 1}`
Inputs: m ∈ {0, 1}`, r ∈ {0, 1}`

1. Compute α = PRG(r).

2. Compute β = F (α‖m).

3. Compute γ = G(β)⊕m.

4. Output (α, β, γ).

Figure 4: Program describing how to encode

Decoding key DK
Constants: Puncturable injective PRF F : {0, 1}3` → {0, 1}9`, Puncturable PRF G :
{0, 1}9` → {0, 1}`
Inputs: c = (α‖β‖γ), where α ∈ {0, 1}2`, β ∈ {0, 1}9`, and γ ∈ {0, 1}`.

1. Compute m = G(β)⊕ γ.

2. If β = F (α‖m), output m.

3. Else output ⊥.

Figure 5: Program describing how to decode

Pre-obfuscated DK ′ punctured at c0 and c1
Constants: C ⊂ {0, 1}n, a puncturable injective PRF F : {0, 1}3` → {0, 1}9`, and a punc-
turable PRF G : {0, 1}9` → {0, 1}`
Inputs: c = (α‖β‖γ), where α ∈ {0, 1}2`, β ∈ {0, 1}9`, and γ ∈ {0, 1}`.

1. If c ∈ C, output ⊥.

2. Compute m = G(β)⊕ γ.

3. If β = F (α‖m), output m.

4. Else output ⊥.

Figure 6: Program describing how to decode

Correctness Correctness follows from the fact that indistinguishability obfuscation exactly pre-
serves functionality, and observing in the punctured case that DK ′ is defined to be functionally

21

equivalent to DK except on inputs in C.

Sparseness Sparseness follows from, for example, the length-doubling PRG; most values of α are
not in the image of PRG.

B.2 Ciphertext Pseudorandomness

We give a sequence of hybrids H0 through H14. The goal of the hybrids to reach a game in which the
challenge encryptions c1, . . . , cQ/2 and the random ciphertexts r1, . . . , rQ/2 are treated symmetrically
in EK and DK ′, and in which both are sampled uniformly at random by the challenger. We proceed
by iteratively replacing pieces of c0 by uniformly random values, puncturing F and G as necessary.

[TODO: Instead of simply presenting the hybrids in order, do a “top-down” view of the hybrid argument.

Present the first/last hybrids, then the main 2-3 intermediate hybrids, then the rest of the intermediate hybrids.]

H0 Hybrid H0 is defined as the real security game:

1. A sends a messages m1, . . . ,mQ/2 ∈M to the challenger.

2. The challenger does the following:

(a) Samples an injective PRF F : {0, 1}3` → {0, 1}9` which is selectively puncturable on Q
prefixes, and PRF G : {0, 1}9` → {0, 1}` selectively puncturable on Q points.

(b) For each i ∈ [Q/2]:

Samples ti ← {0, 1}`,
αi = PRG(ti) ∈ {0, 1}2`,
βi = F (αi‖mi),

γi = G(βi)⊕mi.

Let ci as αi‖βi‖γi, and ~c = (c1, . . . , cQ/2).

(c) Samples r1, . . . , rQ/2 ← {0, 1}12`.
Parse ri = α′i‖β′i‖γ′i and let ~r = (r1, . . . , rQ/2).

(d) Generates EK as the iO-obfuscation of Figure 4 and DK ′ as the iO-obfuscation of
Figure 6.

(e) Samples b← {0, 1} and sends the following to A:

(~c, ~r, EK,DK ′) if b = 0
(~r,~c, EK,DK ′) if b = 1

3. The adversary outputs b′ and wins if b = b′.

H1: In hybrid H1, we alter the generation of the challenge ciphertexts (see Line 2(b) of H0).
Sample each αi ← {0, 1}2` uniformly at random.

H2: In hybrid H2, we alter the generation of EK (see Line 2(d) of H0). We puncture F in EK
on all strings of the form αi‖? or α′i‖? for each i ∈ [Q/2]. This is functionally equivalent because
F is never evaluated on strings of these forms because αi and α′i are with high probability not in
the image of PRG. This is where we use the the prefix-puncturability of F .

22

H3: In hybrid H3, we modify the generation of DK ′. For each i ∈ [Q/2], hard-code the constants
β̂i = F (α′i‖mi) and γ̂i = G(β̂i)⊕mi. For each i ∈ [Q/2], add the following line in the beginning of
DK ′: “If c ∈ α′i‖β̂i‖γ̂i, output mi.” This change is functionally equivalent, as αi‖β̂i‖γ̂i is already a
valid encryption of ci. Notice, that these β̂i do not correspond to either the βi or β′i (and similarly
for γ̂i). [TODO: explain what they are. Forward pointer to H4.]

For reference, we describe DK ′ from Hybrid H3 in Figure 7.

Constants: C ⊂ {0, 1}n, a puncturable injective PRF F : {0, 1}3` → {0, 1}9`, and a punc-
turable PRF G : {0, 1}9` → {0, 1}`, and for every i ∈ [Q/2]: the values αi, α

′
i, β̂i, γ̂i, mi.

Inputs: c = (α‖β‖γ), where α ∈ {0, 1}2`, β ∈ {0, 1}9`, and γ ∈ {0, 1}`.

1. [TODO: Emphasize the changed lines] If α = α′1 and β = β̂1 and γ = γ̂1, output m1.

If α = α′2 and β = β̂2 and γ = γ̂2, output m2.

. . .

If α = α′Q/2 and β = β̂Q/2 and γ = γ̂Q/2, output mQ/2.

2. If c ∈ C, output ⊥.

3. Compute m = G(β)⊕ γ.

4. If β = F (α‖m), output m.

5. Else output ⊥.

Figure 7: DK ′ as in Hybrid H3, pre-obfuscation

H4: In hybrid H4, we again modify the generation of DK ′ (see Figure 8). We add the following

check: “If (α,m) ∈
⋃Q/2
i=1 {(αi,mi), (α′i,mi)}, output ⊥.” This is functionally equivalent by two

cases:

1. When (α,m) = (αi,mi) for some i ∈ [Q/2], then either c = ci, in which case DK ′ already
would output ⊥, or c 6= ci, in which case DK ′ rejects c as an invalid ciphertext (because every
pair (α,m) together define a unique valid ciphertext).

2. When (α,m) = (α′i,mi), we only reach this line if c 6= α′i‖β̂i‖γ̂i (by the check introduced in
Hybrid H3). In this case, DK ′ already rejects c as an invalid ciphertext.

For reference, we describe DK ′ from Hybrid H4 in Figure 8.

23

Constants: C ⊂ {0, 1}n, a puncturable injective PRF F : {0, 1}3` → {0, 1}9`, and a punc-
turable PRF G : {0, 1}9` → {0, 1}`, and for every i ∈ [Q/2]: the values αi, α

′
i, β̂i, γ̂i, mi.

Inputs: c = (α‖β‖γ), where α ∈ {0, 1}2`, β ∈ {0, 1}9`, and γ ∈ {0, 1}`.

1. If α = α′1 and β = β̂1 and γ = γ̂1, output m1.

If α = α′2 and β = β̂2 and γ = γ̂2, output m2.

. . .

If α = α′Q/2 and β = β̂Q/2 and γ = γ̂Q/2, output mQ/2.

2. If c ∈ C, output ⊥.

3. Compute m = G(β)⊕ γ.

4. [TODO: emphasize the changed lines.] If (α,m) ∈
⋃Q/2
i=1 {(αi,mi), (α′i,mi)}, output ⊥.

5. If β = F (α‖m), output m.

6. Else output ⊥.

Figure 8: DK ′ as in Hybrid H4, pre-obfuscation

H5: In hybrid H5, we modify the generation of the key DK ′ in the security game. Instead of
using the unpunctured key for F , we puncture F at the points αi‖mi and α′i‖mi for each i ∈ [Q/2].
This is functionally equivalent because – by the checks added in the previous hybrid – F will never
be evaluated on such inputs.

H6: In hybrid H6, we alter the generation of the challenge ciphertexts (see Line 2(b) of H0). We
sample β∗ uniformly at random from {0, 1}9`. This is indistinguishable by the pseudorandomness
of F at punctured points.

H7: In hybrid H7, we change Line 1 of Figure 8. For each i ∈ [Q/2], hardcode zi := Commit(0; β̂i,
and we replace the check “β = β̂i” with the check “Commit(0; β) = z∗”. This is functionally
equivalent by the injectivity of Commit.

H8: In hybrid H8,zi is instead hard-coded as “Commit(1; β̂i). Indistinguishability is by the com-
putational hiding of Commit.

H9: In hybrid H9,we replace the expression “Commit(0; β) = zi” with False. This is functionally
equivalent with high probability because of the perfect binding of Commit (which follows from
injectivity). In fact, we remove the entire line 1, which also preserves functionality.

For reference, we describe DK ′ from Hybrid H9 in Figure 10.

24

[TODO: Punctured keys] [TODO: update] Constants: C ⊂ {0, 1}n, a punctured injective PRF

F ′ : {0, 1}3` → {0, 1}9` punctured at
⋃Q/2
i=1 {αi‖mi, α

′
i‖mi}, and a puncturable PRF G′ :

{0, 1}9` → {0, 1}`. Also the values αi, α
′
i, mi for each i ∈ [Q/2]. Inputs: c = (α‖β‖γ), where

α ∈ {0, 1}2`, β ∈ {0, 1}9`, and γ ∈ {0, 1}`.

1. If (α,m) ∈
⋃Q/2
i=1 {(αi,mi), (α′imi)}, output ⊥.

2. If c ∈ C, output ⊥.

3. Compute m = G(β)⊕ γ.

4. If β = F ′(α‖m), output m.

5. Else output ⊥.

Figure 9: DK ′ as in Hybrid H4, pre-obfuscation

H10: In hybrid H10, we modify how the challenge ciphertexts are generated (see Line 2(b) of H0).
For every i ∈ [Q/2], sample βi ← {0, 1}9` uniformly at random. This is indistinguishable by the
pseudorandomness of F at the (selectively) punctured points.

H11: In hybrid H11, we alter the generation of EK (see Line 2(d) of H0). We puncture G in EK
on βi and β′i for every i ∈ [Q/2]. This is functionally equivalent by the sparsity of F ; since βi and
β′i are now chosen at random for every i, with high probability they are not in the image of F .

H12: In hybrid H12, we alter the generation of DK ′, changing Line 2 of Figure 10. Instead of “If

c ∈ C: output ⊥”, we replace it with “If β ∈
⋃Q/2
i=1 {βi, β′i}: output ⊥”. To see that this change is

functionally equivalent, we observe that with high probability, neither of these lines has any effect.

Since with high probability, none of the βi and β′i are in the image of F , if β ∈
⋃Q/2
i=1 {βi, β′i}

– which is the case when c ∈ C – then DK ′(c) = ⊥ with high probability, even without the extra
check.

The obvious question, then, is why not remove the check? Because checking if β ∈
⋃Q/2
i=1 {βi, β′i}

will allow us to puncture G on this set in the following hybrid.

H13: In hybrid H13, we alter the generation of DK ′. We puncture G at
⋃Q/2
i=1 {βi, β′i} in DK ′. This

change is functionally equivalent because of the ostensibly useless checks in the previous hybrid.

H14: In hybrid H14, we generate the challenge ciphertexts in a different way. For each i ∈ [Q/2],
we sample γi uniformly at random from {0, 1}`. This change is indistinguishable by the selective
indistinguishability of G at the punctured set.

For reference, we describe DK ′ from Hybrid H14 in Figure 10. In this hybrid, ci = αi‖βi‖γi and
ri = α′i‖β′i‖γ′i are now treated symmetrically in both EK and DK ′. Furthermore, they are both
sampled uniformly and independently at random from {0, 1}12`. So no adversary has any advantage
in this hybrid.

25

Constants: C ⊂ {0, 1}n, a punctured injective PRF F ′ : {0, 1}3` → {0, 1}9` punctured at⋃Q/2
i=1 {αi‖mi, α

′
i‖mi}, and a punctured PRF G′ : {0, 1}9` → {0, 1}` punctured at

⋃Q/2
i=1 {βi, β′i}.

Also the values αi, α
′
i, mi for each i ∈ [Q/2].

Inputs: c = (α‖β‖γ), where α ∈ {0, 1}2`, β ∈ {0, 1}9`, and γ ∈ {0, 1}`.

1. If (α,m) ∈
⋃Q/2
i=1 {(αi,mi), (α′i,mi)}, output ⊥.

2. If c ∈ C, output ⊥.

3. Compute m = G′(β)⊕ γ.

4. If β = F ′(α‖m), output m.

5. Else output ⊥.

Figure 10: DK ′ as in Hybrid H14, pre-obfuscation

C Proof of Theorem 5.3

To prove Theorem 5.3, we first give a distinguishing game and show that no p.p.t. algorithm A
can win this game with non-negligible probability. Because Verify is black-box as in Definition 4.1
and queries exactly 2 points of an argument program, a variant of Theorem 4.2 implies the desired
result.19

Game C.1 (Lunchtime Distinguishing). First, the challenger generates (mk, vk) by Setup(1λ). The
adversary is presented with vk and access to the following two oracles.

• A marking oracle OM which takes a circuit C and returns Mark(mk, C).

• A challenge oracle OC which takes no input, but samples a circuit C∗ uniformly from C and
returns C∗# = Mark(mk, C∗). The adversary must query OC exactly once, after which he may
no longer query either oracle.

At the end of the game, the challenger executes Verify(vk, C∗#). From the points at which Verify
queried C∗#, the challenger picks x0 uniformly at random. The challenger also chooses x1 as a
random point in the domain of C∗#. The challenger picks a random bit b and sends xb to the
adversary.

The adversary then outputs a bit b′ and wins if b′ = b. The adversary’s advantage is
∣∣Pr[b′ = b]− 1

2

∣∣.
Lemma C.2. Every p.p.t. algorithm A has negligible advantage in Theorem C.1 for Theorem 5.2.

We will show that security in the last hybrid reduces to the security of the puncturable en-
cryption PE . We will construct an algorithm B distinguishing (EK,DK{x0, x1}, x0, x1) from
(EK,DK{x0, x1}, x1, x0) with non-negligible advantage. To do so, we will have to answer the
queries of the watermarking adversary in Theorem C.1 using the PE challenge. The main challenge
therefore is to use only the punctured decryption key and to treat x0 and x1 symmetrically.

19As noted in the discussion of Theorem 4.2, we prove that lemma for specific removing and distinguishing games.
The proof techniques and result apply directly in this setting as well.

26

Proof. We must show that in the game, no p.p.t. algorithm can distinguish x0 from a random point
x1 with non-negligible advantage. Recall that x0 is chosen from the points at which Verify queries
C∗#. In Theorem 5.2, there are two such points, one of which is PRG2(PRG1(a

∗)) for randomly

chosen a∗ ← {0, 1}`/4, and thus pseudorandom. In the rest of the proof, we focus on the other case:
x0 is computed as Enc(EK,PRG1(a

∗)‖h∗), where h∗ = h(C∗#(PRG2(PRG1(a
∗)))). We must show

that this distribution of x0 is indistinguishable from a uniform x1.
As A’s runtime is bounded by some polynomial q, we define a sequence of hybrid games H0

through Hq+4. Hybrid H0 is simply Theorem C.1, except that the challenger picks C∗, generates
C∗#, and samples x0 and x1 appropriately before presenting the adversary with vk. This is possible
because these are all chosen independently of the adversary’s actions.

In hybrid Hi, the adversary’s first i queries C1, . . . , Ci to Om are answered in a modified way (as in
Figure 11). These queries are answered using only a punctured decryption key DK ′ = DK{x0, x1}
and punctured PRF key F ′ = F{x0, x1}. In hybrid Hq, we answer all queries to OM in this way.20

Constants: Punctured decoding key DK ′ = DK{x0, x1}, Punctured PRF F{x0, x1}, PRF
G, and a circuit Cj
Inputs: x ∈ {0, 1}n

1. If x ∈ {x0, x1}, output Cj(x).

2. Try t‖b← Dec(DK ′, x).

3. If t‖b 6= ⊥ and h(Cj(PRG2(t))) = b, output F{x0, x1}(x)⊕G(t‖b).

4. Otherwise, output Cj(x).

Figure 11: Modified marked program Cj# for j ≤ i in hybrid Hi.

Claim C.2.1. In Hi, h(Ci+1(PRG2(PRG1(a
∗)))) = h∗ with negligible probability.

Proof. First we note that because h : {0, 1}m → {0, 1}`/2 is a compressing collision-resistant hash
function, h is also a one-way function. Suppose that in hybrid Hi, h(Ci+1(PRG2(PRG1(a

∗)))) = h∗

with non-negligible probability. Then we provide an algorithm Inv that inverts h, or violates the
pseudorandomness of C∗. Throughout this proof, let PRG denote PRG2 ◦ PRG1.

Inv takes as input y = h(r) for uniformly sampled r ← {0, 1}m. Inv samples random a∗ ←
{0, 1}`/2, EK,DK ← Gen(1λ), x1 ← {0, 1}n, F ← Fλ, and G ← Gλ. Inv samples an encryption
of a∗‖y, namely x0 ← Enc(a∗‖y). Lastly, Inv punctures both the decryption key and PRF key at
{x0, x1}, obtaining DK ′ and F ′.

Using the above, Inv runs A and answers queries to OM as in hybrid Hi. The view of A in this
simulation is indistinguishable from the view in the real hybrid Hi; the only difference is that in
the real hybrid, y = h(r) for r = C∗(PRG(a∗)) for random C∗ ← C (instead of uniformly random
r). By the pseudorandomness of the family C, the views are indistinguishable.

20The reason for puncturing F here is so that later we may make a change to the challenge program (see hybrid
Hq+3).

27

Finally, A outputs a circuit Ci+1. By our hypothesis, h(Ci+1(PRG(a∗))) = h∗ with non-
negligible probability. Thus, with non-negligible probability, Inv has found a pre-image of y under
h, namely Ci+1(PRG(a∗))

The proof of the above claim crucially relies on the fact that when A queries the circuit Ci,
he has no information about C∗. This is why this proof only applies to lunchtime unremovability.
Using the above claim, we now prove the following:

Claim C.2.2. For 0 ≤ i < q, Hi ≈ Hi+1.

Proof. The only difference between Hi and Hi+1 is in the way that the i + 1th query is answered.
We now show that the two programs returned are functionally equivalent with high probability,
and so by the security of iO, the two hybrids are indistinguishable.

By the correctness of the punctured PE decryption key DK ′ and the correctness of the punc-
tured PRF F ′ on non-punctured points, there are only two possible inputs on which Ci+1# may
differ in Hi and Hi+1: namely, x0 and x1.

By the sparseness of ciphertexts in PE , Dec(DK,x1) = ⊥ with high probability over the choice
of x1. Thus in hybrid Hi, Ci+1#(x1) = Ci+1(x1). This is also true in hybrid Hi+1.

On the other hand, x0 decrypts to a∗‖h∗. By the previous claim, the check that h(Ci+1(PRG(a∗))) =
h∗ fails with high probability. Thus in hybrid Hi, Ci+1#(x0) = Ci+1(x0). This is also true in hybrid
Hi+1.

From Hq to Hq+4, every query to OM is answered as Figure 11. We proceed to modify only
C∗#, with two simultaneous goals in mind. We want x0 and x1 to be treated symmetrically in the
challenge marked program C∗#. We also want to generate C∗# using only the punctured decryption
key DK ′{x0, x1}.

Hq+1: In hybrid Hq+1, we modify C∗# as in Figure 12. We puncture C∗ at {x1} and F at {x0}, and
hard-code a mapping x0 7→ y0 and x1 7→ y1. y0 and y1 are defined as y0 = F (x0)⊕G(PRG1(a

∗)‖h∗)
and y1 = C∗(x1). We also puncture the decryption key DK at {x0, x1}. These changes preserve
functionality with high probability. F is never evaluated on x0 because of the hard-coded check in
line 1. Similarly, C∗{x1} is not evaluated at x1 on line 4. Furthermore, with high probability, x1
is not in the image of PRG. Thus on line 3, C∗{x1} is never evaluated at x1.

Constants: A punctured decoding key DK ′ = DK{x0, x1}, punctured PRF F{x0}, PRF G,
and a punctured circuit C∗{x1}, values x0, x1, y0 = F (x0)⊕G(PRG1(a

∗)‖h∗), y1 = C∗(x1)
Inputs: x ∈ {0, 1}n

1. If x = xi for i ∈ {0, 1}, output yi.

2. Try a‖b← Dec(DK ′, x).

3. If a‖b 6= ⊥ and h(C∗{x1}(PRG2(PRG1(a)))) = b, output F{x0}(x)⊕G(PRG1(a)‖b).

4. Otherwise, output C∗{x1}(x).

Figure 12: Modified C∗# in Hq+1

28

Hq+2: In hybrid Hq+2, we change y1 to be random. This is an indistinguishable change by the
punctured pseudorandomness of C∗ at x1.

Hq+3: In hybrid Hq+3, we change y0 to be random. This is an indistinguishable change by the
punctured pseudorandomness of F at x0.

Hq+4: In hybrid Hq+4, we no longer puncture C∗ and F . This preserves the functionality of C∗#
by the same reasoning as in hybrid Hq+1, hence is an indistinguishable change by the security of
iO.

Final Security Argument We now reduce to the security of PE . Given an adversary A with
non-negligible advantage in hybrid Hq+4, we construct an adversary B violating the punctured ci-
phertext indistinguishability of PE . That is, in Theorem A.1, B distinguishes (EK,DK{x0, x1}, x0, x1)
from (EK,DK{x0, x1}, x1, x0) with the same advantage. B executes the following steps:

1. B samples C∗ ← C, picks a∗ ← {0, 1}`/4, computes h∗ = h(C∗(PRG2(PRG1(a
∗)))), and

sends m = a∗‖h∗ to the PE challenger.

2. B receives (EK,DK{x0, x1}, xb, x1−b) as input, where x0 ← Enc(m), x1 ← {0, 1}n for some
unknown b ∈ {0, 1}.

3. B samples F ← F and G← G to construct the verification vk as in Setup, and runs A on vk.
B answers A’s queries to OM and OC as in Hq+4.

4. At the end of the game, B sends xb to A. A outputs a bit b′, and B also outputs b′.

In this execution, A’s view is exactly the same as in Hq+4. The b in Theorem C.1 is the same as
the b in Theorem A.1.

D Proof of Theorem 5.4

For clarity, we recall the security game of (q, γ)-relaxed unforgeability. In the theorem statement,
q = 1− γ.

Game D.1 ((q, γ)-relaxed Unforgeability). First, the challenger generates (mk, vk) ← Setup(1λ).
The adversary is presented with vk and access to a marking oracle OM , which takes a circuit Ci
and returns Ci# = Mark(mk, Ci).

At the end of the game, the adversary outputs a circuit Ĉ. The adversary wins if the following
conditions hold:

1. Pr
[
Verify(vk, Ĉ) = 1

]
≥ q + 1

poly(λ)

2. Pr
[
∀i, Ĉ(x) 6= Ci(x)

∣∣∣x← {0, 1}n] ≥ γ.

Remark 5. As in the proof of Theorem 4.2, we will analyze A’s winning probability conditioned
on A outputting a Ĉ that satisfies condition 2. This isn’t an efficiently testable event because the

29

threshold of γ is too sharp.21 However, as discussed in Theorem 4.2, we can relax this condition in
a way which only increases A’s advantage. Even in this game, the adversary has a negligible chance
of winning. For clarity, we omit these technical details and just assume that A always outputs such
a Ĉ.

of Theorem 5.4. We will construct a series of games H0 through H3 between a challenger and an
adversary. Each game defines some random variables. In particular, each game defines the following
variables:

• The queries C1, . . . , CT made by the adversary (T is a bound on the adversary’s running time)

• The candidate forgery Ĉ output by the adversary at the end of the game

• A randomly chosen t∗. This, together with C∗, C1, . . . , CT defines h1, . . . , hT and h∗. Specif-
ically, we define hi = h(Ci(PRG2(t

∗))), and h∗ = h(Ĉ(PRG2(t
∗))).

• x∗

In our security proof, we consider two events:

1. The event that Ĉ(x∗) = F (x∗)⊕G(t∗‖h∗). In H0, the probability of this event is exactly the
probability that Verify(vk, Ĉ) = 1 in Theorem D.1.

2. The event that for some i ∈ {1, . . . , T}, hi = h∗. We will upper bound the probability of this
“bad” event to upper bound the probability that Verify(vk, Ĉ) = 1.

H0: Our first hybrid H0, is defined as follows: the challenger runs Theorem D.1 with Theorem 5.2,
as well as sampling a few extra variables. The extra variables are a∗ ← {0, 1}`/4 and t∗ = PRG1(a

∗).
That is, the challenger first samples (EK,DK)← PE .Gen(1λ), and samples F ← F and G← G.

These are used to define marking keys (mk, vk) as in Setup(1λ). The challenger sends vk to A.
When A makes a query Ci, the challenger responds with Ci# = Mark(mk, Ci). If the adversary

produces a candidate forgery Ĉ, x∗ is defined as as Enc(EK, t∗‖h∗), where h∗ = h(Ĉ(PRG2(t
∗))).

Claim D.1.1. In H0, event 2 happens with probability at most 1− γ + negl(λ).

Proof. Here we just use the collision resistance of h, the pseudorandomness of PRG2, and the fact
that in Theorem D.1, the adversary is restricted to producing Ĉ such that Ĉ differs from every Ci
on at least a γ fraction of the domain.

Claim D.1.2. In H0, event 1 happens with probability at most 1− γ + negl(λ)

Proof. We give indistinguishable hybrids H1 through H3, such that in hybrid H3, the probability
of event 1 is bounded by the probability of event 2, which by the previous claim is 1− γ + negl(λ).

H1: In hybrid H1, B samples t∗ ← {0, 1}`/2 instead of generating t∗ = PRG1(a
∗). This is indistin-

guishable by the pseudorandomness of PRG1.

H2: In hybrid H2, B sends a modified vk to the adversary. In this vk, the puncturable PRF G is
punctured at the set of strings beginning with t∗. This is functionally equivalent because with high

21in fact, #P -complete!

30

probability t∗ is not in the image of PRG1. Indistinguishability thus follows from the security of
iO.

H3: In hybrid H3, B answers the queries to OM in a modified way. In particular, each marked
response Ci# will have G punctured on the set of strings beginning with t∗. Ci# will also have
the values t∗, hi, and G(t∗‖hi) hard-coded where hi = h(Ci(PRG2(t

∗))). We modify Ci# by the
correct hard-coded value on the only punctured point (t∗‖hi) on which G will ever be evaluated.
Indistinguishability thus follows from the security of iO.

When event 2 does not happen, the probability that Ĉ(x∗) = F (x∗)⊕G(t∗‖h∗) is negligible.

This concludes the proof of Theorem 5.4.

E Proof of Theorem 4.2

of Theorem 4.2. Suppose that a removing adversary outputs a circuit Ĉ such that Pr[Verify(vk, Ĉ) =
0] = L · δ+Adv for some non-negligible Adv. Let qi be a random variable denoting the ith point at
which Verify queries C∗#.

L · δ + Adv = Pr[Verify(vk, Ĉ) = 0]

≤ Pr[∃i : Ĉ(qi) 6= C∗#(qi)] + negl(λ) (1)

≤
∑
i

Pr[Ĉ(qi) 6= C∗#(qi)] + negl(λ) (2)

= L · Pr
i←{1,...,L}

[
Ĉ(qi) 6= C∗#(qi)

]
+ negl(λ)

= L · Pr
x0

[
Ĉ(x0) 6= C∗#(x0)

]
+ negl(λ)

Inequality (1) is by the black-box property of Verify. With high probability, Verify(vk, C∗#) = 1, by

completeness. If Verify(vk, Ĉ) = 0, then (with high probability) there must be some queried point qi

for which Ĉ(qi) 6= C∗#(qi). Inequality (2) is by a union bound. As a result Prx0

[
Ĉ(x0) 6= C∗#(x0)

]
≥

δ + Adv′ for some non-negligible Adv′ ≈ Adv
L .

If the adversary outputs a circuit Ĉ such that Ĉ ∼δ C∗#, then since x1 is chosen uniformly at

random, Prx1

[
Ĉ(x1) 6= C∗#(x1)

]
≤ δ. Thus there is a p.p.t. algorithm distinguishing x0 from x1

with non-negligible advantage (specifically, Adv′/2).

F Unwatermarkable PRFs

Our starting point is the constructions of unobfuscatable function families in [BGI+12] and [BP12],
and an understanding of those constructions will prove helpful towards understanding ours. The
former work presents a construction of 0-robustly extractable PRF families; from any exact imple-
mentation, the key can be recovered. They extend this notion to a very weak form of approximate
functionality (weaker than what we require). The latter work handles a very strong form of ap-
proximation: the approximate implementation must only agree on some constant fraction of the

31

domain. They achieve this, they sacrifice the total learnability of the earlier construction, instead
learning only a single predicate of the PRF key. We require a notion of approximation stronger
than [BGI+12] but weaker than [BP12], and a notion of learnability weaker than [BGI+12] but
stronger than [BP12], and achieve this by adapting techniques from both works.

F.1 Preliminaries

The construction requires an invoker randomizable pseudorandom function [BGI+12] and a de-
composable encryption schemes [BP12]. The following definitions and discussion are taken almost
verbatim from those works.

Definition F.1 (Invoker-Randomizable Pseudorandom Functions,[BGI+12]). A function ensemble
{fk}k∈{0,1}∗ such that fk : {0, 1}n+m → {0, 1}m, where n and m are polynomially related to |k|, is
called an invoker-randomizable pseudorandom function ensemble if the following holds:

1. {fk}k∈{0,1}∗ is a PRF family.

2. For every k and x ∈ {0, 1}n, the mapping r 7→ fk(x, r) is a permutation over {0, 1}m.

Property 2 implies that, for every fixed k and x ∈ {0, 1}n, if r is chosen uniformly in {0, 1}m, then
the value fk(x, r) is distributed uniformly (and independently of x) in {0, 1}m.

Lemma F.1 ([BGI+12]). If pseudorandom functions exist, then there exist invoker-randomizable
pseudorandom functions.

Definition F.2 (Decomposable Encryption [BP12]). An encryption scheme (Gen,Enc,Dec) is de-
composable if there exists an efficient algorithm pub that operates on ciphertexts and satisfies the
following conditions:

1. For a ciphertext c, pub(c) is independent of the plaintext and samplable; that is, there exists
an efficient sampler PubSamp such that, for any secret key sk ∈ {0, 1}n:

PubSamp(1n) ≡ pub(Encsk(0))) ≡ pub(Encsk(1))

2. A ciphertext c is deterministeically defined by pub(c) and the plaintext; that is, for every secret
key sk and two distinct ciphertexts c and c′, if pub(c) = pub(c′), then Decsk(c) 6= Decsk(c

′).

We use as our decomposable encryption scheme a specific symmetric-key encryption scheme
which enjoys a number of other necessary properties. Given a PRF {fk}k∈{0,1}∗ with one-bit

output and for security parameter λ, the secret key is a random sk ∈ {0, 1}λ, and the encryption of
a bit b is computed by sampling a random r ← {0, 1}λ and outputting (r, Fsk(r)⊕b). This function
satisfies a number of necessary properties [BP12]:

• It is CCA-1 secure.

• It is decomposable.

• The support of (Encsk(0)) and (Encsk(1)) are each a non-negligible fraction (in reality, at least
1
2 − negl) of the cipher-text space.

• For a fixed secret key sk, random samples from (b,Encsk(b))b←{0,1} are indistinguishable from
uniformly random strings.

32

F.2 Construction

The key k for the PRF is given by a tuple k = (α, β, sk, s1, s2, se, sh, sb, s
∗). For security parameter

λ, α and β are uniformly random λ-bit strings, sk is a secret key for the decomposable encryption
scheme described above, sh is a key for an invoker-randomizable pseudorandom function, and s1,
s2, se, sb, and s∗ are independent keys for a family of PRFs. We denote by Fs a PRF with key s.

The domain of the PRF will be of the form (i, q) for i ∈ {1, . . . , 9}, and q ∈ {0, 1}`(n), for
some polynomial `. The range is similarly bit strings of length polynomial in `. The function
will be defined in terms of 9 auxiliary functions, and the index i will select among them. We use
a combination of ideas from [BGI+12] and [BP12] to construct a PRF family for which s∗ can
be recovered from any (negligibly-close) approximation to fk, which will enable us to compute fk
restricted to i = 9. This allows us to recover a 1/9-close approximation of fk that is implementation
independent (simply by returning 0 whenever i 6= 9). To achieve a δ-close approximation for any
δ = 1

poly(λ) , we simply augment the index i with an additional log(δ) bits: if all these bits are 0,

then we index as before; otherwise, use index i = 9. Instead of recovering 1/9th of the function,
we now recover 1− δ of the function. This establishes the theorem.22

We now define the auxiliary functionalities we will use in the construction.

• Rs: The function Rs is parameterized by a PRF key s. It takes as input q and returns
Rs(q) = Fs(q), the PRF evaluated at q. That is, Rs simply evaluates a PRF.

• Ca,b,s: The function Ca,b,s is parameterized by two bit strings a and b, and a PRF key s. It
takes as input q and returns Ca,b,s(q) = b⊕ Fs(q ⊕ a), where Fs is the PRF given by key
s. That is, C evaluates a PRF on a point related to the queried point, then uses the value
to mask the bitstring b.

• Esk,α,se : The function Esk,α,se is parameterized by a secret key sk for the encryption scheme,
a bitstring α, and a PRF key sE . It takes as input q and returns Esk,α,se(q) = Encsk(α; r)
with randomness r = Fse(q). That is, E returns an encryption of α using randomness
derived by evaluating the PRF on the query.

• Hsk,sh : The function Hsk,sh is parameterized by a secret key sk for the encryption scheme,
and a invoker-randomizable PRF key sh. It takes as input two cipher-texts of bits c
and d, the description of a two-bit gate �, and some additional input q̄, and returns
Hsk,sh(c, d,�, q̄) = Encsk(Decsk(c) � Decsk(d); r) with randomness r = Fsh(c, d,�, q̄).
That is, H implements a homomorphic evaluation of � on the ciphertexts c and d by
decrypting and re-encrypting, with randomness derived by applying a PRF to the whole
input.

• Bsk,α,β,sb : The function Bsk,α,β,sb is parameterized by a secret key sk for the symmetric-key
encryption scheme, bitstrings α and β, and a PRF key sb. It takes as input n ciphertexts
c1, . . . , cλ and additional input q̄, and returns

Bsk,α,β,sb(c1, . . . , cλ, q̄) = α⊕ Fsb(m1 ⊕ β1, . . . ,mλ ⊕ βλ, pub(c1), . . . , pub(cλ), q̄)

22Note that the result is a PRF family that depends on the choice of δ. The argument would fail if δ was a negligible
function, because an approximation for could “erase” all the structure of the PRF family, thwarting learnability.
Removing this dependence (ie: constructing a family that works for all inverse polynomial δ simultaneously) would
be interesting.

33

where mi = Decsk(ci).

Having defined the auxiliary functions, our pseudorandom function fk for k = (α, β, sk, s1, s2, se, sh, sb, s
∗)

is a combination of these functions. The argument (i, q) selects which function is evaluated, and
q is parsed appropriately by each of the functionalities. For example, B parses q as λ ciphertexts
c1, . . . , cλ, and all remaining bits as q̄.

fk(i, q) =



C1(q) := Cα,β,s1(q) if i = 1

C2(q) := Cα,s∗,s2(q) if i = 2

E(q) := Esk,α,se(q) if i = 3

H(q) := Hsk,sh(q) if i = 4

B(q) := Bsk,α,β,sb(q) if i = 5

R1 := Rs1(q) if i = 6

R2 := Rs2(q) if i = 7

Rb := Rsb(q) if i = 8

R∗ := Rs∗(q) if i = 9

While this construction may appear daunting, each subfunction serves a very concrete purpose
in the argument; understanding the proof ideas will help clarify the construction. We must now
argue two properties of this family: learnability as in Definition 6.2, and pseudorandomness.

F.3 Learnability

We must show that Fλ = {fk} is robustly, 1
9 -approximately learnable by an implementation-

independent algorithm, L.23 It suffices to show that, given any ρ-implementation g of fk for
random key k, s∗ can be recovered, because R∗ = Rs∗ comprises 1/9th of the functionality.

To begin, consider the case the when the implementation is perfect: g ≡ fk. In this case,
recovery of s∗ is straightforward. Given α, C1, and R1 it is easy to find β: for any q, β =
C1(q)⊕ R1(q ⊕ α). That is, it is easy to construct a circuit that, on input α, outputs β (by fixing
some uniformly random q in the above). 24 But we don’t know α, only encryptions of α (coming
from E), so how might we recover β?

Using H, it is easy to homomorphically evaluate the circuit on such an encryption, yielding an
encryption c = (c1, . . . , cn) of β = (β1, . . . , βn). For any q̄, evaluating B(c, q̄) will yield α⊕Fsb(~0, c, q̄).
Evaluating Rb(~0, pub(c1), . . . , pub(cn), q̄) immediately yields α in the clear. Now we can directly
recover s∗ = C(q)⊕ R2(q ⊕ α), for any q.

How does this argument change when g and fk may disagree on an (arbitrary) ρ-fraction of
the domain for some negligible function ρ(n)? The first observation is that in the above algorithm,
each of C1, C2, E, R1, and R2, can each evaluated (homomorphically in the case of C1) at a single
point that is distributed uniformly at random. With high probability, g will agree with fk on these
inputs.

23As discussed earlier, it suffices to prove learnability for δ = 1/9. We may then change the how the subfunctions
are indexed to achieve any inverse polynomial.

24This is ability is what enables the learnability; the black-box learner cannot construct such a circuit and thus
cannot continue with the homomorphic evaluation in the next step.

34

It remains to consider robustness to error in H, B, and Rb. The same idea does not immediately
work, because the queries to these circuits are not uniform.

For H, we leverage the invoker-randomizability of the PRF Fsh , using the argument presented
in [BGI+12]25. In every query to H(c, d,�, q̄), the input q̄ only effects the randomness used in the
final encrypted output. For each such query, pick q̄ uniformly and independently at random. Now
H returns a uniformly random encryption of Decsk(c)� Decsk(d). This is because the randomness
used for the encryption is now uniformly sampled by Fsh . The distribution over the output induced
by the random choice of q̄ depends only on (Decsk(c),Decsk(d),�) ∈ {0, 1}2 × {0, 1}2 × {0, 1}4. As
in [BGI+12], the probability of returning an incorrect answer on such a query is at most 64ρ, which
is still negligible.

For B and Rb, we leverage the properties of the decomposable symmetric-key encryption scheme,
using the argument presented in [BP12].26 We modify the procedure of using B and Rb to recover
α given an encryption c of β. Instead of querying B on (c, q̄), sample a fresh random m, and using
H, compute an encryption c′ of β⊕m. Note that c′ is a uniformly random encryption (by invoker-
pseudorandomness) of the uniformly random string β⊕m, and is thus a uniformly-distributed string
of the appropriate length. Independently sample a random q̄ and query α′ := B(c′, q̄). This query
to B is now distributed uniformly, and will therefore be answered correctly with high probability.

To recover α, we evaluate α = α′ ⊕ Rb(m, pub(c1), . . . , pub(cλ), q̄). This query to Rb is also
distributed uniformly at random (for random q̄), and will therefore be answered correctly with high
probability.

F.4 Pseudorandomness

Our proof that the family {fk} is pseudorandom follows that of [BP12]; the main technical change
comes from the fact that B depends on α. We consider a polynomial-time adversary A with oracle
access to fk. For simplicity, we ignore the indexing of the subfunctions of fk and assume that A
has direct oracle access to each of the constituent functions, showing that they are simultaneously
pseudorandom.

Let E1 be the the event that A produces distinct queries q = (c, q̄), q′ = (c′, q̄′) such that:

(m⊕ β, pub(c1), . . . , pub(cλ), q̄) = (m′ ⊕ β, pub(c′1), . . . , pub(c′λ), q̄′)

where m,m′ ∈ {0, 1}λ are the decryptions under sk of c and c′ respectively.

Claim F.1.1. Prk,A[E1] = 0

Proof. Recall that for any ciphertext c, pub(c) and the plaintext m uniquely determine the cipher-
text. If m⊕ β = m′ ⊕ β, and pub(ci) = pub(ci)

′ for all i, then c = c′. Therefore q = q′.

We consider two “bad” events, and argue that if A is to distinguish fk from a random function,
(at least) one of the events must occur.

• Let Eα be the event that A produces queries q and q′ such that q ⊕ α = q′.

• Let Eβ be the event that A produces queries q = (c, q̄) and q′ such that q′ = (m ⊕
β, pub(c1), . . . , pub(cλ), q̄), where m ∈ {0, 1}λ is the decryption under sk of c.

25Proof of Theorem 4.3
26Proof of Claim 3.8

35

Claim F.1.2. If Prk,A[Eα] ≤ negl(λ) and Prk,A[Eβ] ≤ negl(n), then A cannot distinguish between
fk and a random oracle.

Proof. Because fk depends on the PRF keys s1, s2, se, sh, and sb (but not s∗) only by black-box
application of the respective PRFs, we can indistinguishably replace all applications of these PRFs
by (independent) truly random functions. If Eα never occurs, than the responses from C1 and R1

(respectively C2 and R2) are uncorrelated; thus we can indistinguishably replace C1 (respectively,
C2) by a independent random function. At this point, A’s oracle only depends on s∗ through
calls to the PRF F ∗s ; we can now replace R∗ with a independent random function. By similar
reasoning, if Eβ never occurs, then the responses from B and Rb are uncorrelated; thus we can
indistinguishably replace B with another independent random oracle. The above holds with high
probability, conditioning on ¬Eα and ¬Eβ.

Now A is left with oracles of E and H in which the PRFs Fse and Fsh have been replaced by
random (along with 7 additional independent random oracles). The ciphertexts of the encyption
scheme we use are pseudorandom. Thus, access to these two oracles may be replaced with random
without noticeably affecting the output distribution of A.

All that remains is to bound the probabilities of Eα and Eβ. We consider two cases separately:
when Eα occurs before Eβ and vice-versa, arguing that the probability of either event occurring
first is negligible. Let Eα,i (respectively, Eβ,i) be the event that Eα (respectively Eβ) occurs in the
first i queries.

Claim F.1.3. For all i, Prk,A[Eβ,i|¬Eα,i−1] ≤ negl(λ)

Proof. It suffices to show that for all i:

Pr
k,A

[Eβ,i|¬Eα,i−1,¬Eβ,i−1] ≤ negl(λ).

Furthermore, because the events are efficiently testable given only α, β, and sk, it is enough to
prove the claim when all the underlying PRFs (corresponding to s1, s2, se, sh, sb, and s∗ are
replaced by (independent) truly random functions.

As in Claim F.1.2, if Eα doesn’t occur in the first i − 1 queries, than the responses from C1

and R1 (respectively C2 and R2) are uncorrelated on these queries; thus we can indistinguishably
replace C1 (respectively, C2) by a independent random function. By similar reasoning, if Eβ doesn’t
occur in the first i− 1 queries, then the responses from B and Rb are uncorrelated on these queries;
thus we can indistinguishably replace B with another independent random oracle. The above holds
with high probability, conditioning on ¬Eα,i−1 and ¬Eβ,i−1.

The view ofA after the first i−1 queries is now independent of β. Now Eβ amounts to outputting
a ciphertext c and string q such that Decsk(c)⊕ q = β, for β ← {0, 1}λ drawn independently of the
view of the adversary. This occurs with vanishingly small probability.

Claim F.1.4. Prk,A[Eα,i|¬Eβ,i−1] ≤ negl(λ)

Proof. It suffices to show that for all i:

Pr
k,A

[Eα,i|¬Eβ,i−1,¬Eα,i−1] ≤ negl(λ).

Again, because the events are efficiently testable given only α, β, and sk, it is enough to prove the
claim when all the underlying PRFs (corresponding to s1, s2, se, sh, sb, and s∗ are replaced by

36

(independent) truly random functions. As in the previous claim, we may indistinguishably replace
the first i− responses of C1, C2, B, Rb, R1, and R2 by independent random functions. The above
holds with high probability, conditioning on ¬Eα,i−1 and ¬Eβ,i−1.

The view of the adversary is depends on α only by way of E, the circuit that outputs random
encryptions of α. Furthermore, besides the oracles E and H, all of the oracle responsesA receives are
uniformly random (and independent of α). But just as in [BGI+12]27 and [BP12]28, with only these
two oracles, any CCA-1 encryption scheme is semantically secure. Thus we can indistinguishably
replace Esk,α,se with Esk,α,se – returning only encryptions of 0. Finally, the view of A is information
theoretically independent of α; as before, we conclude that Eα,i occurs with vanishingly small
probability.

G Relationship between γ and δ

Below we illustrate some simple requirements on δ and γ in the unremovability and unforgeability
definitions that are necessary if both are to be satisfied simultaneously. Specifically, if a water-
marking scheme is both (0, δ)-unremovable and (0, γ)-unforgeable, then γ ≥ δ + 1

poly(n) for some
polynomial poly.

Recall that an adversary δ-removes for a challenge C∗# if it outputs a program Ĉ ≈δ C∗# such

that Verify(V K, Ĉ) = 0 with non-negligible probility. That is, it must remove the mark without
changing the challenge program on more than δ-fraction of inputs. An adversary wins the γ-
forges if it outputs a program Ĉ such that Verify(V K, Ĉ) = 1 with non-negligible probability and
additionally, for all marked programs Ci# seen by the adversary, Ĉ 6≈γ Ci#. That is, its output is
only considered a forgery if it is at least γ-far from all marked programs.

Consider the following “attack”: Given a random marked program C# : {0, 1}n → {0, 1}m,
consider the following program, parameterized by c ∈ [2n]:

Cc(x) =

{
C#(x)⊕ 1 if x ≤ c
C#(x) if x > c

Consider b ← Verify(Cc, V K). At least one of Pr[b = 0] or Pr[b = 1] is at least 1/2. In the former
case, this construction violates unremovability unless δ ≤ c

2n ; in the latter case, this construction
violates unforgeability unless γ ≥ c

2n . That is, if a watermarking scheme is both unremovable and
unforgeable for parameters δ and γ, then for all c ∈ [2n], either γ ≥ c

2n or δ ≤ c
2n . Therefore, γ ≥ δ.

Furthermore, in the setting when Verify is black-box with respect to Cc, then γ ≥ δ + 1
poly(n) ,

for some polynomial. We alter the above attack as follows. For c ∈ [2n] and a pseudo-random
permutation π ← PRP:

Pc,π(x) =

{
C#(x)⊕ 1 if π(x) ≤ c
C#(x) if π(x) > c

Suppose there is some negligible function negl(n) such that γ = δ + negl(n). For c = δ2n and
randomly chosen π ← PRP, Verify(V K,Cδ2n,π) = 1 with all but negligible probability; other-
wise Cδ2n,π violates unremovability. For c = γ2n, Verify(V K,Cγ2n,π) = 0 with all but negligible
probability; otherwise Cγ2n,π violates unforgeability.

27Claim 3.6.1
28Claim 3.3

37

The programs Cδ2n,π and Cγ2n,π disagree on a negligible fraction of the domain. The set on
which they disagree is pseudo-random, by the security of π. Because Verify is black-box, we can
use it to distinguish black-box access to these two functions, which is statistically-difficult.

G.1 Multi-bit Equivalence

In our main theorem, we state that there exist watermarking schemes for puncturable pseudorandom
function families with long output lengths (specifically, Ω(λε) for some constant ε > 0.

However, we note that there is a simple reduction, allowing us to can watermark puncturable
pseudorandom function families with arbitrary output lengths, suffering only a small loss in pa-
rameters.

The idea is simple: any pseudorandom function with multi-bit outputs can be viewed as a PRF
with single-bit outputs, with a slightly expanded input space is slightly expanded.

Concretely, if we have a (p, δ)-unremovable watermarking scheme for a PRF family F with
m-bit outputs, then this is easily seen to be a (p, δ/m)-unremovable watermarking scheme for the
F interpreted as a PRF family with single-bit outputs. If the scheme for F is (q, γ)-unforgeable,
then it is also (q, γ)-unforgeable for F when interpreted as a family with single-bit outputs.

Dually, given a scheme for a family with single-bit outputs, we can analyze its parameters when
construed as a scheme for an m-bit PRF family. A (p, δ)-unremovable scheme for a single-bit family
is also (p, δ)-unremovable for the same family construed as an m-bit family. A (q, γ)-unforgeable
scheme for the single-bit family becomes a (q,mγ)-unforgeable scheme.

38

	Introduction
	Our Results
	Our Techniques
	Related Work

	Preliminaries and Definitions
	Watermarking Schemes
	Weakened Definitions

	Remarks on the Definition

	Amplifying Unremovability and Unforgeability
	A Distinguishing to Removing Reduction
	Main Construction
	The Limits of Watermarking
	Puncturable Encryption
	Required Properties

	Puncturable Encryption Construction
	Construction
	Ciphertext Pseudorandomness

	Proof of Theorem 5.3
	Proof of Theorem 5.4
	Proof of Theorem 4.2
	Unwatermarkable PRFs
	Preliminaries
	Construction
	Learnability
	Pseudorandomness

	Relationship between and
	Multi-bit Equivalence

